2012年国赛A题 国一论文

合集下载

2012年全国大学生数学建模竞赛A题国一

2012年全国大学生数学建模竞赛A题国一
葡萄酒的评价模型
摘要
在问题一中,首先根据 T 检验、方差显著性检验和 Wilcoxon 秩和检验对两组评酒 员给葡萄酒的评价结果的差异的显著性检验。在大多数评酒员评分可靠的假设下,分别 利用评分方差比较模型,说明第二组结果可靠。在此基础上引入了评酒员“失误度”概 念来衡量每位评酒员与所有评酒员总体评价的差异, 对各组失误度求和得到第二组结果 更可靠。为了进一步优化评酒员评分,利用根据失误度对评酒员排序,跨组选取失误度 最小的 10 位评酒员组成新的评分组,其平均值认为比第二组更可靠,作为整个文章中 评价葡萄酒质量的标准指标。 在问题二中,由于红、白葡萄的理化指标有较大差异,分开考虑红白两种葡萄酒: 对于红葡萄酒,对应问题一得出的葡萄酒质量指标,从三个角度,即外观分析(又分为 由大分子因子决定的澄清度和基于 LAB 色彩模型的色调考虑到指标间存在的竞争关系 采用非线性回归分析和逐步回归分析) 、香气分析(Fisher 线性判别分析)和口感分析 (主成分分析和因子分析) ,后进行异常点检验,逐一剔除异常点来求解酿酒葡萄的量 化指标。对于白葡萄酒的三个指标采用 Fisher 判别分析求解。最后将三个方面得分加权 平均得到酿酒葡萄量化的总分,进行聚类分析,根据聚类分析结果将红葡萄和白葡萄各 分为四级。 在问题三中,为研究酿酒葡萄与葡萄酒的理化指标之间的联系,将葡萄酒的理化指 标用酿酒葡萄的理化指标来表示。根据指标间的相关性,剔除部分相关性不强的指标, 选择部分相关性较好的酿酒葡萄的指标作为自变量, 对不同的葡萄酒指标分别进行多元 线性回归、逐步回归和回归检验。根据指标本身的特点及 AIC 信息统计量,剔除不显著 的自变量,而达到用尽量少的葡萄的理化指标来表示葡萄酒的理化指标的目的。在求解 过程中,建立典型相关分析模型来分析红葡萄酒色泽指标间的关系,利用主成分分析将 白葡萄的多个指标综合为少数几个主成分,再进行回归分析。模型求解结果显示,葡萄 酒的每个指标都能用部分葡萄的指标来线性表示,且具有较好的拟合效果。 在问题四中,为了分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,结合问 题一、二、三的结果以及理化指标和芳香物质的化学意义,综合评估各个广义上的理化 指标(附件二和附件三) ,针对红葡萄酒和白葡萄酒的区别分别在酿酒葡萄和葡萄酒的 理化指标中选取对葡萄酒质量影响较大的指标, 通过线性回归分析将理化指标和葡萄酒 质量进行拟合,从而得出酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响。为进一步 论证结果,首先,对模型进行残差分析以及拟合情况分析;其次,用分组样本检验方法, 将白葡萄酒的 28 个样本数据分成两组,采用用一组进行拟合,另一组进行结果回带分 析的方式,进一步论证用葡萄和葡萄酒的理化指标来评价葡萄酒的质量的可靠性。通过 论证分析得出结论:葡萄和葡萄酒的理化指标可以用来评价葡萄酒的质量,但也有其不 足之处,如当从葡萄酒食用性方便角度考虑,用评酒员评价方法就更直接。 关键词:葡萄酒质量 识别聚类 失误度 非线性回归 逐步回归 Fisher 判别分析 主成 分分析 因子分析 显著性检验 残差分析 异常点检测

2012数学建模A题论文:葡萄酒的评价

2012数学建模A题论文:葡萄酒的评价

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2012年 9月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要葡萄拥有很高的营养价值,含有多种氨基酸、蛋白质和维生素,而以葡萄为原料的葡萄酒也蕴藏了多种营养物质,而且这些物质都是人体必须补充和吸收的营养品。

目前,已知的葡萄酒中含有的对人体有益的成分大约就有600种。

葡萄酒的营养价值由此也得到了广泛的认可,可以说葡萄酒是一个良好的滋补品。

本文通过对葡萄酒的评价,以及酿酒葡萄和葡萄酒的理化指标之间的关系进行讨论分析。

对不同的酿酒葡萄进行了分类,并更深入讨论两者的理化指标是否影响葡萄酒质量。

对于本题,我们主要采用SPSS软件对模型进行求解。

针对问题一,首先我们将附件1中数据在Excel中进行处理;其次,我们在SPSS中,采用T检验,分别分析出两组评酒品红、白葡萄酒的评价结果有无差异性。

全国研究生数学建模竞赛论文(2012年国家一等奖)讲解

全国研究生数学建模竞赛论文(2012年国家一等奖)讲解

参赛密码(由组委会填写)第九届“华为杯”全国研究生数学建模竞赛学校山东-青岛科技大学参赛队号C10426015队员姓名1.刘邵星2.荆禄旭3.韩梦参赛密码(由组委会填写)第九届“华为杯”全国研究生数学建模竞赛题目有杆抽油系统的数学建模及诊断摘要:本文主要研究有杆抽油系统的数学建模及诊断问题。

针对问题一,本文从有杆抽油系统四连杆结构的几何关系和运动特点出发,首先建立了游梁的摆动方程,进而求得了悬点E运动的数学模型(式(19)),并根据题给数据对模型进行了求解并得到了运动规律曲线(如图3),最后与有荷载的附件1的悬点位移数据进行了比较(见表1)。

针对问题二,首先利用分离变量法将Gibbs波动方程拆分为位移函数和荷载函数,并对其进行傅里叶级数展开,得出了悬点处随时间变化的位移和荷载函数,求得了泵随时间变化的位移和荷载函数,进而计算出两口油井的泵功图数据(表3、表4),绘制出了两油井的悬点示功图和泵功图(图5、图6)。

针对问题三,本文选择对第2问(泵内气体判断)进行研究。

首先对泵内气体影响情况进行了分析,然后给出了有效冲程的计算方法,在此基础上提出了泵内是否充气的判别算法,并根据所给数据求解判断出口井1泵内有气,口井7泵内无气。

针对问题四,第一问中,首先分析了Gibbs波动方程建立的过程,认为Gibbs 模型忽略了重力的影响,在Gibbs模型的基础上加入了重力因素加以改进,得到了相应的位移和荷载函数(式71、式72)。

第二问中,通过抽油杆柱的摩擦功率得到了阻尼系数的求解公式,并给出了迭代求解阻尼系数的算法和迭代流程图(图9)。

本问题的研究对提高抽油机泵效和产油量有重要的意义。

关键词:Gibbss模型,阻尼系数,傅里叶系数,有效冲程1.问题重述目前,开采原油广泛使用的是有杆抽油系统(垂直井,如图1)。

电机旋转运动转化为抽油杆上下往返周期运动,带动设置在杆下端的泵的两个阀的相继开闭,从而将地下上千米深处蕴藏的原油抽到地面上来。

2012高教社杯全国大学生数学建模竞赛全国一等奖A题

2012高教社杯全国大学生数学建模竞赛全国一等奖A题

2011高教社杯全国大学生数学建模竞赛城市表层土壤重金属污染分析摘要本文主要研究重金属对城市表层土壤污染的问题,我们根据题目所给定的一些数据和信息分析并建立了扩散传播模型、权重分配模型、对比模型和转换模型解决问题。

首先,我们利用Matlab 软件拟出该城区地势图(图1),根据所给数据绘出该地区的三维地势及采样点在其上的综合空间分布图。

之后将8种重金属的浓度等高线投影到该地区三维地形图曲面上,接着分别计算8种重金属在五个区域的平均值,立体图和平面图(图1附件)相结合便可得出8种重金属元素在该城区的空间分布。

其次,在确定该城区内不同区域重金属的污染程度时,我们运用两种方法进行解答。

先假设各重金属毒性及其它性质相同,运用公式ijij P C P ='求出各区域各金属相对于背景平均值的比值作为金属污染程度,再运用1ji ij j C C ==∑求出各区域重金属污染程度,并将各区进行比较。

之后,我们加上各重金属的毒性,对各重金属求出权数,再结合国标重金属污染等级和已知的各组数据来确定金属的污染程度。

由上述两种方法的对比,更准确地得出重金属对各区的影响程度。

即: 工业区>交通区>生活区>公园绿地区>山区 并根据第一个模型的数据来说明重金属污染的主要原因。

再次,对重金属污染物的传播特征进行了分析,判断出重金属污染物主要是通过大气、土壤和水流进行传播。

在分析之中,我们得出这三种状态的传播并不是孤立存在的,而是可以相互影响和叠加的,因此,我们分别建立三个传播模型,再对这三个传播模型进行了时间和空间上的拟合,得出重金属浓度最高的区域图,并结合各重金属的分布图(图6)来确定各污染源的位置。

最后,本题中只给出了重金属对土壤的污染,对于研究城市地质环境的演变模式,还需要搜集一些信息(图7)。

根据每种因素对地质环境的影响程度进行由定性到定量的转化。

建立同一地质时期地质环境中各因素的正影响和负影响的权重分配模型,再对这些权重进行验算和修正。

2012年全国大学生数学建模大赛一等奖论文

2012年全国大学生数学建模大赛一等奖论文

葡萄酒的评价摘要随着人民生活水平的提高,葡萄酒开始走进千家万户,而葡萄酒的优劣评定也成了人们热议的话题。

葡萄酒的优劣评价一般通过聘请有经验的评酒员进行品评并做出评分。

本文围绕葡萄酒的评价问题进行研究分析。

针对问题一,首先我们对附录1数据进行整理分析。

先利用matlab编程对数据进行正态性检验,得出样本均满足正态分布这一条件之后进一步运用SPSS对数据进行配对样本T检验,检验得出的两组p值都小于标准0.05,判定两组品酒员的评价结果存在显著性差异。

接着,对所给评分数据进行方差分析,并进一步运用组间离均平方和方法比较第一、二组P值和F值的波动性,并最终得出结论:第二组评酒员所给的评分更为可信。

针对问题二,我们结合原问题附件中的数据,先采用因子分析方法提炼出对葡萄总体理化指标有显著影响的因子,分红葡萄和白葡萄两类之后采用聚类分析方法将葡萄分为五类。

在问题一的基础上,利用可信度高的品酒员所评分数作为葡萄酒质量的衡量标准,为五类葡萄划分好坏。

最终我们将红白葡萄都分为五个级别,分别是A级(极好),B级(较好),C级(普通),D级(较差),E级(最差)。

图-红葡萄的分类针对问题三,由于葡萄的理化指标众多,首先利用sas软件分析葡萄与葡萄酒的理化指标之间的相关系数,选取与葡萄酒理化指标相关性较显著的葡萄理化指标,做典型相关分析。

并对典型相关分析的结果进行分析。

红葡萄和红葡萄酒间的典型相关分析结果说明:两组变量间,花色苷、苹果酸、褐变度、色泽L*相关密切,特别是葡萄与葡萄酒间的花色苷指标可见显著相关;白葡萄与白葡萄酒的结果说明:白葡萄指标的黄酮醇、褐变度、单宁指标与白葡萄酒的总黄酮、单宁、总酚可见显著相关。

针对问题四,针对问题四,利用酿酒葡萄和葡萄酒的理化指标与葡萄酒的质量构建多元线性回归模型,从而分析出哪些理化指标对葡萄酒的质量有显著影响。

在最后,我们将酿酒葡萄和葡萄酒的感官指标当作变量引入回归方程,得到回归方程的拟合度为98.62%,而没加上感官指标时的拟合度为78.89%,所以加上感官指标后回归方程的拟合度明显变高,而且各个参数都通过了显著性检验,论证了不能用葡萄和葡萄酒的理化指标来评价葡萄酒的质量。

2012年数学建模葡萄酒的评价一等奖论文

2012年数学建模葡萄酒的评价一等奖论文

2012高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话): 20122129 所属学校(请填写完整的全名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):日期: 2012年 9月 9日赛区评阅编号(由赛区组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A题葡萄酒的评价一,摘要第一问中,我们通过T-检验来判断两组评酒员的评价结果有无显著性差异,结果发现两组评酒员的评价结果无显著性差异;对红,白葡萄各自两组的可信度分析,我们引入稳定性指标X,即将每一组的十位品酒师对于同一样品所有指标所给的分求标准差并根据指标所占分数进行相应的加权求和。

最后求出总平均稳定性指标,数值较小的可信度较高。

结果发现红,白葡萄酒均是第二组品尝评分较合理。

第二问中,首先对酿酒葡萄的一些特殊理化指标进行简化处理(如Ph值,芳香物质,果皮颜色),接着采用用无量纲化对所有数据进行处理。

将指标分级后运用熵值法求出各个指标所占权重。

使用topsis算法求出各评价对象与最优方案的接近程度并进行排序,将红葡萄酒酿酒葡萄分为7级,白葡萄酒酿酒葡萄分为5级。

2012年 全国数学建模大赛A题获奖论文英文版English

2012年 全国数学建模大赛A题获奖论文英文版English

The Evaluation of WinesSummaryThe general way is to employ a number of qualified wine critics to taste the wi nes when needing to determine the quality of the wines. But the grapes of making wines are able to influence the quality of the wines in acertain extent.In Task 1, we firstly solve the arithmetic mean to the two groups of the same s ample wine ratings of Appendix I of the wine critic Members , then prove and verif y two groups Tasting ratings results have the existence of significant differences using SPSS software by paired T test ,finally solve the second assessment wine grou p more reliable by analysis of variance method.In Task 2, by an accurate analysis of the impact of the physical and•chemic al indicators of wine grape and the quality of wine to wine grapes ,we extract the pri ncipal component that embodies the basic characteristics of the object of study, so w e can reduce redundancy, and reduce the dimension of the physical and chemical in dicators of wine grapes, which of the various samples conduct a comprehensive e valuation and ranking grapes .Red grapes into four categories on this basis, the thr ee levels of white grape.In Task 3, we analyze the correlation degree of both using the typical correlation, it is concluded that both has the very high correlation, that is, the better the quality of wine grape, the higher the quality of the wine.In Task 4,we again use SPSS software to visually show the correlation coefficient between the three study and concluded that the impact on wine quality is more than two, there are other factors not taken into account.Through the Third Schedule aromatic substances added argumentation analysis, we have confirmed the larger factors exist .Physical and chemical indicators of wine grapes and wine can not be very accurate assessment of the quality of the wine, you can consider the introduction of a sensory analysis of taste and smell. Keywords:Paired samples T-test Principal Component Analysis Canonical- correlation analysis Path AnalysisIntroductionThe general way is to employ a number of qualified wine critics to tast the wines when needing to determine the quality of the wines. First,each tasting member in the taste of the wine samples give rates in accordance with the classification index, then sum the total scores to determine the quality of the wines. Quality of wine grape has a direct bearing with the quality of the wines. the physical and chemical indicators of wine grape and the wine can reflect the quality of the wine and grape to some extent. Following issues need to be addressed :1. Analysis in Annex 1 two groups of evaluation of wine member of the evaluation results whether there were significant differences of both, which a set of results more reliable.2. According to the physical and chemical indicators of the wine grape and wine quality, how about were these wine grape classified ?3. Analyze the link between the physical and chemical indicators of wine grapes and wine.4. Analyze the physical and chemical index of the wine grape and wine to the influence on the quality of wine, and demonstrate the ability to use the physical and chemical indicators of grape and wine to evaluate the quality of the wine.The analysis of issueBackgroundThe high-quality wines are popular in 2012. It ’s seems to be urgent to study that the main raw materials - whether the quality of the red grapes and white grapes of the wine is good or bad a decisive role. Therefore analyzed the relationship between wines ’ and grapes ’ quality and physical and chemical indicators over thirty kinds of physical and chemical indicators of grape and wine.Assumptions1 Each tasting wine samples from an approximate normal distribution of the distribution of the overall ;2 Tasting members are normal senses, there is not much difference ;3 Annex all the physical and chemical indicators can be representative of the nature of the study, omission of the object of study have a significant impact on physical and chemical indicators ;Symbolic representationα: Significant parameters ;W : Rejection region range ;m : The number of indicator variables ; 12,,...,,m x x x : Evaluation object ;i j a⋅ Standardized index value ; ,j j s μ: Sample mean and sample standard deviation of the j-th indicator ; R : Correlation coefficient matrix ; A : Standardized matrix; (1,2,,)i i m λ= Eigenvalue ;(1,2,,)i e i m = Eigenvectors ;1V Eigenvectors of the correlation coefficient matrix of red wine grapes; 1D Red wine grape correlation coefficient matrix eigenvalue;2V White wine grape correlation coefficient matrix of eigenvectors; 2D Eigenvalues of the correlation matrix of white wine grapes;12,,,p λλλ The characteristic value corresponding to the first, second ...... p maincomponen ;p The number of indicators in the wine ;q The number of indicators of the wine grape ;11R The coefficient matrix of the first set of variables ;22R The coefficient matrix of the second set of variables ;11'R 、22'R The correlation coefficient of the first set of variables and the second setof variables ;1Z Comprehensive evaluation function of the principal component of red grape wine grape ;2Z Comprehensive evaluation function of the principal components of the white grape wine grape ;,1,2,...,28j x j = Transverse section of physical and chemical indicators in accordance with Annex II to turn on behalf of the 27-level indicators of the total amino acids, proteins, VC, ......, as well as wine quality and wine quality ratings;,1,2,...,14,15;i y i = Wine quality, peel quality juice rate (%), respectively, in turn, said, stems ratio (%), one hundred quality / g, ear quality / g dry matter content g/100g solid acid than titratable acidity (g/l), PH value, soluble solids g/l, the reducing sugars g/L, total sugar g/L, and flavonols (mg/kg), resveratrol (mg/kg) and other physical and chemical indicators ;Model establishments and solutionsTask1:Analysis in Annex 1 two groups of evaluation of wine member of the evaluationresults whether there were significant differences of both, which a set of results more reliable.To review the wine member of the evaluation result, significant difference and credibility evaluation calculation methods are varied ,mainly including Sensory evaluation of significant differences, based on the evaluation of the credibility of the Analytic Hierarchy Process, discriminant analysis, T value analysis, F value analysis,etc.Firstly, in accordance with the principle of the score with the same sample that 10 Tasting 'average score obtained in Schedule I of the first and second sets each red and white wine sample tasting ratings. Are listed below:two tables of very difference.Establishments of Model 11-1 For the evaluation of red wine :First of all by the data observation, it is known that on the whole, in view of the same sample wine in the first group and the second group of score difference are more prominent,therefore the relationship between the two with a Broken line vividly expressed. From the sensory ,image display greater differences in two groups Tasting set of evaluation criteria, shown in the following figure line chart:Figure 1 the overall rating of FirstSet and SecondSet for each of the red wine samplesThen, the overall rating results of the two rating wine group in a significant level 0.05α= are made a significant difference test. Firstly, each wine sample is selected from the large number of the same kind of samples wine from testing samples ,sample population can be approximated as a normal distribution . Secondly, Of all samples tested constitute 27 paired samples tested overall. Therefore we paired samples T-test two samples. The results are as follows:Table 3 The paired samples T-test the first and second Sets(The red)Inspection objectthe difference with 95% confidence interval tNPLowerlimitCeilingFirst and Second0.41569 4.66579 2.458 26 0.021In fact, P<0.05α=and 1/2,0.975,262.458 2.0555n t t α->==, the result falls into Rejection region {}1/2W t t α-=≥.Therefore the overall evaluation criteria of the members of the twogroups of wine critic has a significant difference.Which is trustworthier : The smaller the v ariance,the trustworthier the group’s evaluate ,when we study a single kind of wine sample. In that ,we compare the variance of these two groups to define the trustworthier group which have a smaller variance .Table 4 The credibility test for red wineWine sample sFirstSet ’s Variance Second’sVarianceThetrustworthiergroupWine sample sFirstSet ’s Variance Second’sVarianceThetrustworthiergroup1 236.1 736.9 一 15 770.1 372.1 二2 358.1 146 二 16 112.9 180.9 一3 412.4 276.4 二 17 792.1 82.5 二 4 972.4 371.6 二 18 424.9 452.4 一which is the better,the ratio of the two groups for 8:19;therefore the Second is trustworthier.1 -1 For the evaluation of white wine :Firstly,in a word,only studying the same sample wine,two groups are in small diference., therefore the relationship between the two with a Broken line vividly expressed.Said out as follows:Figure 2 the overall rating of FirstSet and SecondSet for each of the white wine samples Because wo use the same way to answer about the white wines’ question , There is no longer the detailed solution process .In summary,the evaluation results of both show significant differences,and the Second is trustworthier wherever in the red wines or the white wines. At the same time ,we find a standard to measure the quality of wine—the tasing ratings of the trustworthier sommeliers. Task2: According to the physical and chemical indicators of the wine grape and wine quality, how about were these wine grape classified ?Analysis of Model 2:There are a lot of the physical and chemical indicators of wine grapes that include more than 30 level indicators and some secondary indicators in Annex 2.we hope that many high correlation variables in wine grape physicochemical indicators are converted into mutually independent or uncorrelated variables,to choose only a small amount of indicators that can reflect most of the nature of the object of study. There are so-called Principal component which can be used to explain the research object indicators.2-1 The Step of using Principal Component Analisis way:(1) Standardize raw dataThere are m indicator variables that can be used to Principal Component Analisis way,namedas 12,,...,.m x x x There are all (1n or )2n evaluation objects.In there ,128,27m n ==,and 228n =( 1n represents the red wine as a research object, 2nrepresents the white wine as aresearch object ). The value of the j th indicator of the ith evaluation object is i j a ⋅,thereforewe gain the initial matrix of the object of study:1111m n n m a a A a a ⋅⋅⋅⋅⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,The value of each indicator is converted to a standardized indicator value.As follows:,1,2,...,;1,2,...,,i j i i j ja ai n j m s μ⋅⋅-=== Among :11,1,2,...,,n i i j j i a s j m n μ⋅====∑At the same time,j and j srespectively is the sample’s mean and standard deviation Correspondingly ,1,2,...,j j j jx xj m s μ-==It ’s a standardized indicator variable.(2)Calculting the Correlation coefficient matrix R: the Correlation coefficient matrix()i j m n R r ⋅⨯=11122122212m m m m m m m r r r r r r R r r r ⋅⋅⋅⋅⋅⋅⋅⋅⋅⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ TR A A =*,among : A represents A’s standardized matrix .By nature that R is a realsymmetric matrix (j i i j r r ⋅⋅=r ij =r ji ),therefore we only need to calculate on the upper triangle element or lower triangular elements to seek R . The Correlation coefficient matrix of the red wine grapes is R1,and the Correlation coefficient matrix of the white is R2. Specific data, see Annex 1.0 and Annex 3.0.(3)Calculating eigenvalues and eigenvectorsFirstly , we have solved the characteristic equation 0=-R I λ. We usually obtain eigenvalues (1,2,,)i i m λ= by Jacobi method , then arrange its in order of size 12,0m λλλ≥≥≥≥Secondly ,we respectively obtain the eigenvector (1,2,,)i e i m = corresponding to theeigenvalue i λ. Here is a requirement ,means i e =1,211mijj e ==∑,of which ij e represents the j-th component of the vector i e .The eigenvector V1 and eigenvalue D1 of the red wine grapes’ Correlation coefficient matrix , see Annex 2.0.The Characteristic roots of red wine grapes D1 Sequence :-0.0000 0.0000 0.0016 0.0058 0.0112 0.0156 0.0299 0.0504 0.0652 0.0826 0.1764 0.2025 0.2275 0.2350 0.3019 0.3712 0.5499 0.6844 0.7307 0.8076 0.9969 1.2228 1.5217 1.9934 2.8682 3.2615 4.7702 6.8158The eigenvector V2 and eigenvalue D2 of the white wine grapes’ Correlation coefficient matrix , see Annex 4.0.The Characteristic roots of white wine grapes D2 Sequence :-0.0000 0.0008 0.0026 0.0060 0.0250 0.0441 0.0634 0.0790 0.0953 0.1352 0.2719 0.3142 0.3156 0.3798 0.4458 0.6326 0.7267 0.8919 0.9663 1.0753 1.2937 1.4996 1.6175 1.7869 2.0894 2.9810 4.6623 5.5981(4)Calculation of the contribution rate and cumulative contribution rate of the main componentsThe contribution rate of main component i z :1(1,2,,)imkk i m λλ==∑The cumulative contribution rate :11(1,2,,)ikk mkk i m λλ===∑∑We generally take the characteristic values of 85-95% of the cumulatiive contribution rate corresponding to 1-st,2-nd,…,p-th(p≤m) main cpmponent.2-2 The results of principal component analysis :The eigenvalues 123,,,.....p λλλλwhose accumulative contribution rate of 85-95% can be generally selected as principal component parameters . According to theconclusion of the Principal Component Analysis , whenever in red wine or the white wine, the quality of wine is regarded as the first principal component. This shows that the quality of the evaluation of the grade of wine grapes wine share an important role .In addition ,we also gain:1. In the system which the red wine grapes act as study ,the effect of the principal component analysis of the first eleven characteristic roots whose cumulative contribution rate achieves 90% above is very great . Therefore we choose the first fourteen principal components []121314,,...,,y y y yto run a comprehensive evaluation. The contributions of fourteen principal component variables are the weight tobuild principal component comprehensive evaluation model of the red wine grapes , namly:345678910111213112140.116482559y +0.10243608y 0.0711931110.054346623+0.043671585y +0.035603699y +0.02884296y +0.026096522y +0.024442944y +0.019639356y +0.0.243422980.17036401325719y 894y 0.010782181y Z y y y ++++=+Therefore, we put all the objects corresponding to factors of the various principal components into the model ,to gain the comprehensive evaluation and sort results of the red wine grapes.2-3 ConclutionFor the red wine grapes , there are quite difference to various samples of grapes , therefore the red wine grape samples are divided into four grades: "Premium", "Great", "Qualified" and "Bad" .No. 26 sample is classified as "Premium" level by visible quality and particularly high comprehensive evaluation ;No. 17,24,5, and 20 are classified as "Great" level by great quality and high comprehensive evaluation ;No. 23,25,10,12,18,27,6,8,14,9,19,and sample is classified as "Qualified" level ;And , No. 15,3,13,4,21,7,11,2,22,and 16 sample are only classified as "Bad" , because their evaluateons are less than 60.For the white wine grapes,…Task3:Analyze the link between the physical and chemical indicators of wine grapes and wine.3-1 Model preparation :Introduced the idea of canonical correlation analysis In task 3 , we study the correlation relationship between 27 physical and chemical indicators of wine grapes ,10 of the red wines and 9 of the white wines ; the method which is similar to the main component is used, to respectively find the linear combination of the two sets of variables.Can make the number of variables to simplify, and can achieve the purpose of analysis correlation.3-2 Modeling steps :一、According to the purpose of the analysis to establish the original matrixAmong: p is the number of indicators in the wines, q is the wine grape number of indicators11111111p q n np n nq x x y y x x y y ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;二、Standardization of the original data , and calculating a correlation coefficient matrix11212122R R R R R ⎡⎤=⎢⎥⎣⎦Among: 11R ,22R respectively is the correlation coefficient matrix of the first set ofvariables and a second set of variables .三、Seeking canonical correlation coefficient and canonical variablesCalculate the eigenvalues and eigenvectors of the matrix A and B ,to gain the canonical correlation coefficient and canonical variables.Among:1111122221A R R R R --= ,1122211112B R R R R --=.四、Making canonical aorrelation analysis by using SPSS,to analysis of the link between the physical and chemical indicators of the wine grape and wine.The first step, the original data entry wine grapes and wines .As follows : X1,X2, X3 ,X4 ,X5 respectively represents Anthocyanin ,Tannin, Total phenolic , Wine total flavonoids , DPPH half inhibition volume ; Y1 ,Y2 ,Y3 …Y16 respectively represents the original data of the wine grapes of Annex II (Vertical indicators from the total amino acids ). Due to the limited space here is only part of the data is given. Detailed data see Annex Table 5.0(redpu.xls).Run in SPSS results are as follows:between the various indicators are small.If the correlation coefficient of the two indicators, two indicators may reflect the same ,and you can consider the merger.Analyze the physical and chemical index of the wine grape and wine to the influence on the quality of wine, and demonstrate the ability to use the physical and chemical indicators of grape and wine to evaluate the quality of the wine.4-1 The idea of Model 4:In order to analysis of wine grape and wine physical and chemical index to the influence on the quality of wine , we introduce linear regression theory to realize size analysis method . Using the Path Analysis on the basis of multiple regression , correlation coefficient iy r is decomposed into the direct path coefficients and indirect path coefficients .Path Analysis of the theory has been proved that any simple Correlation coefficient (iy r)between an independent variable i x and dependent variable y= Direct path (iy P)coefficient between x and y+ Indirect path coefficients of all the i x and y;Indirect path coefficients ibetween an independent variable any i x and dependent variable any y=Correlation coefficient (iy r)×Path coefficients (jy p) .Making Path Analysis process, it is generally believed that the most difficult part to calculate is the path coefficients. In fact , the path coefficients that we need to can be obtained by liner regression calculation . Then Indirect path coefficients can be multiplied by the correlation coefficient .4-2Problem-solving steps :4.2-1Data entryStart SPSS program, data input SPSS,name of each variable, andset the variable label.Wine quality is acted as the dependent variable y, and the physical and chemical indicators of the wine grape and wine including Anthocyanins, Tannins, Total Phenols, Wine Total Flavonoids, Resveratrol,Trans polydatin,Cis polydatin,Trans-resveratrol,Cis-resveratrol,DPPH half inhibition volume,and Color were the independent variables x1, x2, x3,x4,x5,x6,x7,x8,x9,x10.4.2-2Normality test on the dependent variable yFigure 3y s Standard Q-Q diagramStrengths and Weaknesses1.The strengths of model(1) The model established by the questions one to four are in strict theory based on analysis derived,comparing theoretical calculations with actual background, we have amended ,therefore it makes model more reasonable.(2) The use of paired samples T-test makes the results more reliable . This paper originality is very strong,because of the most of the models in the article derived and established strictly.(3) All calculations are used to specialized mathematical software and processing large amounts of data, such conclusions credibility is higher.We quantitative analysis many influencing factors that model involves, to make the paper more persuasive.2.The weaknesses of modelIn questionI and II ,due to the choice of the numerical inevitably produce a slight error and the complexity of factors affect ,so the calculation results inevitably produce certain error. References[1] Dongyan Chen , Dongmei Li , Shuzhong Wang , Mathematical Model [M].Beijing:Science Press,2007[2] Fengqiu Liu , Shanqiang Li , Zuobao Cao, Mathematical experiment [M].Harbin: HarbinInstitute of Technology Press,2010[3] Shisong Mao,Yiming Cheng,Xiaolong Pu, Probability theory and mathematical statisticstutorial [M].Beijing: Higher Education Press,2004[4] Shoukui Si,Xi Sun, Algorithm and application of mathematical modeling [M].Beijing:National Defence Industry Press,2011[5] Zhixing Zhang, Design and Application of the MATLAB program [M].Beijing: TsinghuaUniversity Press,2002。

2012全国数学建模论文a题(葡萄酒)省一等奖范文

2012全国数学建模论文a题(葡萄酒)省一等奖范文

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):指导组日期:2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):2葡萄酒的评价摘要本文主要根据评酒员对葡萄酒的一系列指标的打分,从而对葡萄酒的质量作出判别。

考虑到酿酒葡萄的好坏、所酿葡萄酒的质量和酿酒工艺、陈酿技术等约束条件,为此我们建立模型来确定影响葡萄酒评价的各种因素。

在这模型中利用excel,spss,matlab等一系列的数学工具对模型进行求解,综合统计分析的应用对所给的结果进行比较,从而得出最终的结果。

首先,对于问题1,分析两组评酒员的评价结果,每个评酒员对外观、口感、香气、平衡/整体四个方面指标得分进行求和,得到其总分,确定葡萄酒的质量。

由于葡萄酒的质量满足正态分布,为了能分辨出两组的差异,所以利用spss进行配对T检验,从而得出两组评酒员有显著的差异。

其次,用excel对两组进行方差分析,根据所得到的P值大小,得出第一组的评价结果更为可信。

对于问题2,在问题1的基础下,根据所给的理化指标和葡萄酒的质量利用spss统计分析软件进行分析,相关性分析对数据进行预备分析,剔除与葡萄酒质量无显著性相关的指标,再利用系统聚类的方法对酿酒葡萄进行分级。

2012国赛A题-葡萄酒

2012国赛A题-葡萄酒

4.1.1 置信区间法 为了降低各评酒员之间的异质性, 先分别计算每一组中所有评酒员对同一酒样的平 均值( s j )和标准差( j ),评酒员 i 对酒样品 j 评价的置信区间为 s j j[1] 。 如果评酒员 i 对酒品 j 的评分( sij )在其置信区间内则保留;如果评酒员 i 对酒品 j 的评分( sij ) 不在其置信区间内则逐步调整,使评分都处于置信区间 s j j 内,具体为: 若 sij <j , 则 Sij =sij + j ; 若 sij >j ,则 Sij =sij - j 。 直接使用 matlab (附录一) 通过置信区间法对两组评酒员对红葡萄酒和白葡萄酒的 评分进行修正, 此时的数据更加可信, 同时对每一个酒样的得分求均值, 结果见表 4.1.2 (只给出第一组的红葡萄酒数据) 。 表 2 红葡萄酒样品经置信区间检验转 zg jx Fjx Yj
四、模型建立及求解
说明:限于篇幅因素,本文说明模型原理时一律用红葡萄(酒)数据说明,白葡萄(酒) 只给出最终结果。 4.1 问题一的求解 首先,将每个评酒员对葡萄酒样品的分类指标打分求和,用得到的总分代表该评酒 员对葡萄酒样品质量的评价结果。然而,由于每个评酒员的评价尺度、评价位置以及评 价方向的差异,在对评价结果进行统计分析时,必须对评酒员的原始数据进行相应的处 理,以降低评酒员的系统误差(即异质性) ,真实反映样品间的差异。 表 1 红葡萄酒样品的原始数据
葡萄酒质量评价方法的研究
摘要
本文给出了判别评价结果显著性差异以及可信度的方法, 建立了模糊综合评价模型 用熵权法对酿酒葡萄进行分级, 根据多元回归分析拟合出了酿酒葡萄与葡萄酒理化指标 间的关系, 问题一:用评酒员对葡萄酒各类指标打分的总分衡量葡萄酒的质量,并利用置信区 间法降低评酒员的异质性,使数据更真实的反映酒样间的差异。再将这些数据进行方差 分析可知两组评酒员评价对红葡萄酒的评价没有显著差异, 对白葡萄酒的评价有显著性 差异。最后根据信度分析可知第一组评酒员更可信。 问题二:首先将酿酒葡萄的理化指标进行主成分分析,将葡萄酒质量和提取的主成 分一起作为衡量酿酒葡萄质量的指标,利用模糊综合评价法的原理及其评价方法,同时 将信息论中的熵值引入模糊综合评价隶属矩阵的确定过程, 利用熵权法构造隶属函数矩 阵, 尽量消除传统权重确定中主观因素的影响, 从而对酿酒葡萄进行了良好的质量评价。 问题三:首先借上问主成分分析法,将葡萄和葡萄酒的理化指标进行处理。然后, 在假设条件下,建立多元线性回归模型,运用多元线性回归分析法分析葡萄和葡萄酒理 化指标,做近似拟合,得出相应的拟合度值。对相关且拟合度高的自、因变量之间进行 分析,最终得到结论。 问题四:先建立因果关系模型,分别对葡萄芳香物质与葡萄酒芳香物质,葡萄酒理 化指标与葡萄酒评价分数进行如上问的分析,综合两者,并在给出的关系模型的基础上 对能否用葡萄及葡萄酒理化指标作为判断方法给予阐述。

2012年数学建模A题一等奖获奖论文

2012年数学建模A题一等奖获奖论文
3
分的差异是否在一定的置信区间内,若不在,则认为评分差异性显著。 考虑到本题的背景,两组评分的差异可体现在对样本酒的排名差异上。由于 该问属于食品评价中的感官评价问题,因此,可结合感官评价中的排序检验与非 参数检验中的符号秩检验,对两组评分的显著性进行评价。 1.1.1 样品秩次和秩和的求解 评酒员对每一个酒样均从四大方面进行了评分。根据题意,葡萄酒的质量由 总分所确定。 因此, 我们将每一个方面的评分加和, 得到 i 品酒员对葡萄酒样品 j 的总评分。 以红葡萄酒的评价为例,对于品酒员 i ,将其对 27 种样品的评分进行排序, 评分最高的酒样秩次为 1,当多个样品有相同秩次时,则取平均秩次。记在 i 品 酒员的评价排序中, j 酒样的秩次为 xij ,可得到秩次矩阵为:
6
秩和得到一个新的排序。由于此排序综合了 20 个评酒员的结果,因此,更能反 应酒样的排序真实性,即认为该综合排序为理想排序。记样品 j 在第一组、第二 组排序内的秩次为 X j (1) , X j (2) ,综合之后排序秩次为 X j 。红葡萄酒三种排序的 比较图如下:
二、问题分析
问题一的分析 问题一中,每个品酒员都要从外观、香气、口感、整体四个大方面对每个酒 样进行评分,可将每个方面的评分相加作为总分确定葡萄酒的质量。问题一涉及 的是葡萄酒感官评价结果的统计检验问题,由于样本量偏小,且葡萄酒质量评分 的分布难以确定,因此,可考虑采取非参数检验的办法。 结合本题的背景,对于问题一中感官评价的问题,可选用排列试验中的排序 检验法对总分进行排序。对于 10 种排序结果,根据每一个排序的秩次求得每个 样品的秩和。最后通过秩和的非参数检验的方法评价有无显著性差异。 要评价哪组的评价结果更可信,主要是检验组内品酒员的评分是否集中,即 比较哪组的方差更小, 亦可以通过该组内所有品酒员与最终得分的差异来确定谁 的可信度更改。 问题二的分析 问题二中,对酿酒葡萄进行分级时,根据题意要将葡萄的理化指标与葡萄酒 的质量统一结合作为参考。 而葡萄酒的质量则是通过问题一中感官评价的得分反 应的。由于理化指标过多,因此在解决本问时,首先应该完成对指标的处理,尤 其是怎样将附表三的芳香物质与附表二中的理化指标结合起来。 由于指标的繁杂,且难以确定指标是偏大型还是偏小型,因此,可考虑将众 多指标数据经过转换,统一成与感官排序一样的排序类型数据,这样,转换后的 指标即可直接用来对葡萄进行分级。 本问的整体思想还是可运用排序检验中的求 秩和的方法。

2012数学建模国赛A题

2012数学建模国赛A题

2012高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):A题我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):北京邮电大学世纪学院参赛队员(打印并签名) : 1. 彭旋2. 储润杰3. 金春阳指导教师或指导教师组负责人(打印并签名):日期: 2012 年 9 月 9 日赛区评阅编号(由赛区组委会评阅前进行编号):2012高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒质量的评价摘要本文对于评酒员给出的数据和葡萄的量化指标分析,建立了对葡萄酒质量评价离散模型。

针对问题一,首先将有效数据进行求平均值和方差,排除了一些有问题的数据。

再用matlab将评酒员进行品尝后打分结果进行综合分析,然后用AHP法将其简化,得出了两组品酒员的评价结果差异,第二组更可信,进而得出了结论。

针对问题二,我们采用AHP法和K-均值聚类法对这些酿酒葡萄进行分级。

先在酿酒葡萄的理化指标和葡萄酒的质量中选择几个重要的指标,再构建判断矩阵,从而对各指标所属各矩阵进行归一化,确定各指标的权重,计算出每种酿酒葡萄的综合得分,然后用K-均值聚类方法将各种酿酒葡萄的综合得分划分等级。

2012年全国大学生数学建模竞赛A题葡萄酒评价分析

2012年全国大学生数学建模竞赛A题葡萄酒评价分析

2012年全国大学生数学建模竞赛A题葡萄酒评价分析葡萄酒是一种古老而神奇的饮品,它不仅有着悠久的历史,还拥有丰富的文化内涵和独特的口感。

在现代,葡萄酒已成为一种高品质、高雅的饮品,备受人们的青睐。

然而,如何准确地评价葡萄酒的品质,成为了学界和业界的一个共同难题。

本文将通过对2012年全国大学生数学建模竞赛A题的分析,探讨葡萄酒评价的数学建模方法。

1. 引言葡萄酒的评价一直以来是一项主观且复杂的任务。

传统的酒评方法主要依赖专业人士的经验和口感,但这种方法存在诸多不足。

为了解决这一问题,数学建模技术应运而生。

2012年的葡萄酒评价竞赛就是一个典型的例子。

2. 问题陈述2012年全国大学生数学建模竞赛A题要求参赛者基于给定的葡萄酒数据,利用数学模型对葡萄酒的品质进行评价。

竞赛提供的数据包括葡萄酒的理化指标、人工评分以及其他相关因素等。

3. 数据处理与分析为了对葡萄酒的品质进行准确评估,我们首先对提供的数据进行处理与分析。

通过统计学方法,我们可以计算出葡萄酒的平均评分、标准差等统计指标,从而评估数据的分布情况和变异程度。

此外,通过数据可视化技术,如散点图、箱线图等,我们可以观察数据的分布情况和异常值等。

4. 评价模型的建立基于提供的数据和问题要求,我们需要构建一个评价模型,来准确衡量葡萄酒的品质。

在建立模型时,我们可以考虑多个因素,如理化指标、人工评分等,并通过数学方法将这些因素进行权重分配、综合计算,从而得到一个综合评价指标。

例如,可以利用线性加权模型、层次分析法等来实现这一目的。

5. 模型求解与结果分析在完成评价模型的建立后,我们可以利用相应的数学算法对模型进行求解,并得到葡萄酒的评价结果。

通过分析结果,我们可以进一步了解葡萄酒品质的特点与变化趋势,为生产和消费提供科学依据和决策支持。

6. 模型的优化与改进为了提高评价模型的准确性和可靠性,我们可以进一步对模型进行优化和改进。

例如,引入更多的因素和数据,采用更复杂的数学方法,对模型进行验证和调整等。

2012国赛A题优秀论文

2012国赛A题优秀论文

葡萄酒的评价模型摘要本文主要解决葡萄酒的评价问题,运用多种数理统计方法通过MATLAB和SPSS软件对可能影响葡萄酒质量的因素进行统计分析,初步得出对葡萄酒的理化指标评价和主观评价具有差异性。

对于问题一中的显著性差异分析,针对两组评酒员对于每一种酒的评分,本文用α=),结果显示两组评酒员对红葡萄酒和白葡萄酒的评分MATLAB进行t检验(0.05都具有显著性差异。

对于可信度的问题,我们用EXCEL进行方差与置信区间的综合分析,得出对红、白葡萄酒的评价结果第二组可信度均较高。

问题二,首先用相关性分析计算出各个理化指标之间以及各理化指标与葡萄酒质量间的Pearson相关系数r,然后选取和葡萄酒质量相关程度较大(0.2r>)的理化指标进行聚类分析,依照指标的不同情况可将其分别分为3、4、5类,得出在每种分类情况下的分类方案。

最后,我们计算每种分类方案下各类酿酒葡萄质量得分的平均值,分值越高则级别越高,确定了最终的分级方案。

问题三,我们先对酿酒葡萄的理化指标进行主成分分析,利用降维技术找出能代表酿酒葡萄的主要理化指标,然后再将得出的主要理化指标与葡萄酒的理化指标进行相关性分析,根据相关系数确定二者理化指标间的关系。

结果表明,葡萄酒的理化指标除了由相对应的酿酒葡萄的理化指标决定外,还可由其它相关性大的理化指标决定。

最后,对问题四建立多元线性回归分析模型,对第一问中计算出了红、白葡萄酒和葡萄的样本相关系数进行比较,发现用葡萄的理化指标衡量葡萄酒的质量是不全面的,芳香物质可能会影响酒的香气从而影响酒的整体质量。

因此在第二小问中,先根据葡萄酒中芳香物质的化学成分将其分类(醛、烃、醇、酯、酸、酮以及其他含氧有机物),再利用多元线性回归模型计算出其样本相关系数,说明芳香物质通过酒的香气来影响酒的品质,从而说明了理化指标分析和主观评分在葡萄酒质量分析中的差异性。

关键词:t检验相关性分析聚类分析主成分分析多元线性回归一、问题重述葡萄酒是世界公认的对人体有益的健康酒精饮品,其生产方式方便, 经济, 且风味极佳. 因而越来越受到广大市民的青睐,同时葡萄酒的质量以及等级划分也越来越受到人们的关注。

2012年全国大学生数学建模竞赛A题(葡萄酒理化指标与质量的评鉴分析,获全国二等奖)

2012年全国大学生数学建模竞赛A题(葡萄酒理化指标与质量的评鉴分析,获全国二等奖)

葡萄酒理化指标与质量的评鉴分析摘要用好的葡萄也许酿不出好酒,但没人能用劣质葡萄酿出好酒。

巧妇难为无米之炊,再优秀的酿酒师,如果没有优质的葡萄,也很难酿出好酒。

不同葡萄品种酿制出的葡萄酒是不同的,但是,除了品种间的差异,葡萄自身的质量是酿制高品质葡萄酒的关键。

本文通过建立meansK-聚类模型、典型相关分析等模型,逐步探求用葡萄和葡萄酒的理化指标来评鉴葡萄酒质量的方法。

问题一要求我们分析附件1中两组评酒员的评价结果是否存在显著性差异,为此我们依据小概率原理建立模型Ⅰ-显著性检验模型。

首先我们利用F检验求解两组评酒员之间是否存在显著性差异,再利用配对t检验对检验样本做再次检验,以提高研究效率,确保评价结果的准确性。

利用Excel软件处理数据后,进行t、F的联合检验,当联合检验均被接受,得到两组评酒员的评价结果有显著性差异的结论。

同时通过对两组品酒员对55种葡萄酒样品评分的稳定性、统一性分析,确定第二组品酒员的评价结果更可信。

针对问题二本文根据附件2提供的数据,利用模糊数学原理[3],建立模型ⅢK-聚类模型,对酿酒葡萄进行分类,再以葡萄酒品尝评分作为质量评价依据,means对酿酒葡萄进行分级。

首先,考虑到酿酒葡萄的理化指标过多,不便分类,我们利用多元统计分析原理对红、白酿酒葡萄进行主成分分析,得出红、白酿酒葡萄分别有8个和11个主成分,从而大大减少了分类指标。

再利用meansK-算法求出最佳聚类数k,建立meansK-聚类模型对各种葡萄样品在各个主成分上的得分进行聚类,将红、白葡萄样品分别划分为3类和4类。

最后,根据每个类别中葡萄样品对应的葡萄酒的品尝评分,对各类酿酒葡萄进行分级。

针对问题三建立模型Ⅳ-典型相关分析模型,定量分析酿酒葡萄与葡萄酒的理化指标之间的联系。

我们首先选取酿酒葡萄与葡萄酒皆含有的花色苷、单宁等成分作为理化指标,然后构建典型相关分析模型,研究酿酒葡萄与葡萄酒两组样品的理化指标之间的相关性。

2012年全国数学建模竞赛A题全国优秀论文

2012年全国数学建模竞赛A题全国优秀论文

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A题葡萄酒的评价摘要随着我国葡萄酒业的逐步发展,葡萄酒生产企业的规模和数量不断扩大,葡萄酒的质量成为大家越来越关心的话题,本文旨在建立数学模型评价葡萄酒和酿酒葡萄的质量。

针对问题一,本文拟采用离散点检验、F检验、τ检验建立综合检验模型,首先利用残差绝对值法剔除原始评分中的异常数据,得出各葡萄酒样品的两组平均得分,然后对两组数据进行F检验知F值大于F分布临界值,确定两组评价结果间存在显著性差异,最后进行τ检验知两组数据间系统误差相当,综合F检验和τ检验知两组评价结果间系统误差相当精密度不同,且第一组标准差大于第二组,因此确定第二组评价结果更可信。

针对问题二,对酿酒葡萄进行分级,采用主成分分析法建立主成分分析模型,首先降多个理化指标为累计贡献率达%73的六个互不相关的主成分,对主成分累计贡献537.率进行归一化处理得各主成分权重,进而确定葡萄样品的主成分理化指标加权综合评分,由matlab数据拟合知理化指标与葡萄酒的质量互不相关,因此根据表2-4准则把酿酒葡萄分为三个等级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n 1
结果的数量, 为两组结果间的泊松相关系数[4], 的计算公式为:
2 2 式中, X 1 , X 2 分别为两组结果的均值, X 、 X 2 分别为两组结果的方差, n 为每组 1

X X X X X X X X
1 1 2 2 2 1 1 2 2
表 1 t-检验: 成对双样本均值分析结果
红 葡 萄 酒
第一组评价结果 第二组评价结果 平均 73.078 70.515 方差 54.183 15.824 泊松相关系数 0.702 df 26 t Stat 2.478 P(T<=t) 双尾 0.020
5
t 双尾临界 2.779 平均 74.011 76.532 方差 23.079 10.055 白 泊松相关系数 0.240 葡 df 27 萄 t Stat -2.625 酒 P(T<=t) 双尾 0.014 t 双尾临界 2.771 在 0.05 时, 若 P 0.05 , 则应拒绝原假设。 0.020 和 0.014 明显小于 0.05, 因此, 可得结论:在 0.05 的置信水平下,两组品酒员对于红葡萄酒和白葡萄酒的评价结果 均具有显著性差异。 5.1.3 两组评价结果的可信度比较 “可信度”即结果的“精密度” ,表示多次评定结果互相接近的程度。对同一对象 的两个评分结果而言,其密集程度越高者,则可信度越高。而对两个评分系统而言,则 还需要比较一个系统对多个对象评分结果的可信度高于另一系统的比例。 (1)变异系数[5]可靠度计算模型 变异系数(又称“标准差率” )是衡量各检测值变异程度的无量纲量。由于其不需要 参照数据的平均值,因此在比较两组量纲不同或均值不同的数据时,应该用变异系数而 不是标准差来作为比较的参考。 变异系数越小则代表其外部一致性越大。 设 C.Vxk 是同一 组品酒员对编号为 k 的酒样品评分结果的变异系数。则:
C.Vxk
x
X Z R Pij
k
G
H1 、 H 2

四、问题分析
题目中已知两组品酒员对各葡萄酒的评分数据, 并给出了酿酒葡萄和葡萄酒的理化 指标,要求分析数据来判断品酒员评分的可信度、以及研究酿酒葡萄和葡萄酒的理化指 标相互之间的联系和对葡萄酒质量的影响。 在问题一中, 判断两组品酒员的评价结果有无显著性差异的关键在于建立一个模型 计算两组结果分布的近似程度。而判断两组评价结果谁更可信,则可从同一组品酒员对 同一酒样品评分时内部意见的统一程度来判断。 在问题二中,为对酿酒葡萄进行分级,可先对酿酒葡萄的众多理化指标进行降维, 筛选其中较为重要的项,并从客观层面得到这些项的权重。之后利用品酒员对葡萄酒质 量的打分,得到一个葡萄酒质量指标主观权重。结合客观权重和主观权重后,再对各葡 萄样品进行打分,根据分值的分布情况进行分类从而完成酿酒葡萄的分级。 在问题三中,要求分析酿酒葡萄与葡萄酒的理化指标之间的联系,即确立葡萄酒理 化指标的酿酒葡萄的理化指标的函数关系。 可先将葡萄酒理化指标与酿酒葡萄理化指标 进行相关性分析,找出与葡萄酒理化指标关系比较显著的酿酒葡萄理化指标,再通过回 归模型便可得到葡萄酒理化指标关于酿酒葡萄理化指标的函数关系式。 在问题四中,为分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,可分别对 酿酒葡萄、 葡萄酒的理化指标与对应的葡萄酒的质量利用统计学方法找到相关特征性指 标,建立相关模型对各指标定权重,再依据权重和指标的相关系数制定一个以酿酒葡萄 和葡萄酒的理化指标为变量, 寻求葡萄酒质量的评价系统, 分别为各红白葡萄酒样打分, 与品酒员的所评葡萄酒分数作比较,论证该评价系统的适用性,即论证能否用葡萄和葡 萄酒的理化指标来评价葡萄酒的质量。
3
五、模型的建立与求解
5.1 问题一模型建立与求解
5.1.1 缺失数据补全及异常数据处理 观察表格发现,附件1中“第一组红葡萄酒品尝评分”表格里品酒员4号对酒样品20 色调的评分数据缺失; “第一组白葡萄酒品尝评分”表格里品酒员7号对酒样品3持久性 的评分为“77” ,已远大于该项满分“8” ,可视其为无效数据,将其去除。 去除异常评分的品酒员数据, 将其他9位品酒员对有异常数据酒样品指标的评分取平 均值, 将该平均值作为异常评分的替代值以减少因补全数据而对酒样品整体评分的影响, 因此附件1中 “第一组红葡萄酒品尝评分” 表格里品酒员4号对酒样品20色调的评分和 “第 一组白葡萄酒品尝评分”表格里品酒员7号对酒样品3持久性的评分分别为6分、6分。 5.1.2 两组评价结果的显著性差异分析 (1)各酒样品评分结果的确定 品酒员对酒样品的评分指标有十项,分别为澄清度、色调、纯正度、浓度、质量、 纯正度、 浓度、 持久性、质量、 平衡/整体评价。按先后顺序设其为第 1, 2,3, ,10 项指标。 设 xijk 为品酒员 j 对酒样品 k 的第 i 项指标的评分,则品酒员 j 对酒样品 k 的总评分
2
(4)
P P{t t df 0.05} ,若其大于 则接受原假设,否则拒绝。
自由度为 df n 1 ,查 t 值表可得到置信水平 0.05 下的临界值 t df 0.05 ,求概率
利用 EXCEL 的“数据分析”工具对两组品酒员对各酒样品的最终评分进行“t-检验: 成对双样本均值分析” ,整理之后得到如下表格(各酒样品表格见附录 2) :
关键词:葡萄酒评价、显著性检验、相关性分析、多元线性回归、样本非参数检验
1
一、问题重述
确定葡萄酒质量时一般是通过聘请一批有资质的品酒员进行品评。 每个品酒员在对 葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。 酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系, 葡萄酒和酿酒葡萄检测的理化指标 会在一定程度上反映葡萄酒和葡萄的质量。 附件 1 给出了某一年份一些葡萄酒的评价结 果,附件 2 和附件 3 分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。请尝试建 立数学模型讨论下列问题: 1. 分析附件 1 中两组品酒员的评价结果有无显著性差异,哪一组结果更可信? 2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。 3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。 4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄 酒的理化指标来评价葡萄酒的质量?
2
X1 、 X 2
X1 、 X 2
2 2 、 X X
1
两组评分结果的方差 同一组品酒员对编号为 k 的酒样品评分结果的变异系数 同一组品酒员对编号为 k 的酒样品评分结果的克隆巴赫系数 酿酒葡萄理化指标的样本阵 酿酒葡萄理化指标的标准阵 酿酒葡萄理化指标的标准阵的相关系数矩阵 样本 i 的第 j 个主成分评分 线性回归回归参数估计值 多元线性回归评价系统变量 多元线性回归评价系统因变量:酿酒葡萄、葡萄酒理化指标
4
图 1 第二组评酒师对红葡萄酒评分的正态分布概率图
由上图可以发现,第二组评酒师对红葡萄酒的评分的概率分布散点图均匀分布在一 条直线的两侧,说明这组数据为正态分布。同理可得其他三组评分同样符合正态分布。 (3)采用 t 检验的两组品酒员评价结果显著性差异分析模型 若两组品酒员评价结果无显著性差异,则其评分均值应大致相等。因此可在检验前 提出如下假设:
葡萄酒的评价
摘要
本文针对葡萄酒的评价问题,建立了差异性分析模型、综合评价模型、多元线性回 归模型、多属性决策模型,对品酒员评价结果差异性进行了分析,对酿酒葡萄进行了分 级,分析了各理化指标之间的联系和对葡萄酒质量的影响,论证了用理化质量评价葡萄 酒质量的可行性。 对于问题一,为了判断两组评分有无显著性差异,首先进行了异常数据处理以及数 据的正态性检验,建立了基于 t-检验的显著性差异分析模型,得到在 0.05 的置信水 平下,两组品酒员对于红葡萄酒和白葡萄酒的评价结果均具有显著性差异的结论。为了 讨论哪组结果更可信,建立了基于差异系数和克隆巴赫系数的可信度计算模型,讨论了 外部一致性和内部一致性的关系,得出了对于外部一致性第二组可信度高于第一组,而 对于内部一致性第一组可信度高于第二组的结论。 对于问题二,为了解决酿酒葡萄的分级问题,将酿酒葡萄的理化指标进行主成分分 析后的主成分作为客观指标,将品酒员对葡萄酒质量的评分视为主观指标,建立了综合 评价模型,并利用差异系数分析得到了客观指标和主观指标之间的权重。利用该评价模 型对酿酒葡萄进行评分后, 参考国际上葡萄酒的常见分类等级数, 利用 K-均值聚类分析 将葡萄分为了四个等级,得出了红葡萄中样品 9 属于一级,样品 23、3、2 属于二级, 样品 14、21、17、1、19、5、8、20、13、24、22、16 属于三级,样品 10、26、27、4、 25、6、15、12、11、7、18 属于四级;白葡萄中样品 27 属于一级,样品 24、15、6、 10、5、9、28、18、23、21、20、3、25、17、22、7 属于二级,样品 14、13、4、1、2、 12、26、11、19 属于三级,样品 8、16 属于四级的结论。 对于问题三,为了分析酿酒葡萄与葡萄酒理化指标间的联系并确定葡萄酒理化指标 与酿酒葡萄理化指标的函数关系, 通过相关性分析筛选出了与葡萄酒理化指标显著相关 的酿酒葡萄理化指标,然后建立了多元线性回归模型,解得到葡萄酒理化指标与相关酿 酒葡萄理化指标的函数关系。以红葡萄酒理化指标“花色苷”为例,其关于红葡萄苏氨 酸、 甘氨酸、 蛋氨酸、 白藜芦醇的函数关系为 y=1+1.8570 z1 0.3033z2 3.6039z3 1.0716z4 。 这说明了葡萄酒理化指标不仅只与酿酒葡萄对应的指标有关, 还与酿酒葡萄其他指标有 联系。 对于问题四,为了分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,利用相 关性分析方法筛选出了各项特征性成分,建立了多属性决策模型,利用信息熵定出各属 性权重并考虑指标的相关系数,确立多元线性评价模型,得到酿酒葡萄、葡萄酒的理化 指标与葡萄酒质量的函数式,即可定量反映二者对葡萄酒质量的影响程度。并分别对各 红白葡萄酒样进行评价,将所得的分数与品酒员所评葡萄酒总分数作出比较,并排序。 采用 Wilcoxoon 符号平均秩检验,得渐进显著性(双侧)为 0.638,远大于显著性水平 0.05,可知评价模型较高的显著性,所建模型合理,论证了用葡萄和葡萄酒的理化指标 来评价葡萄酒的质量的可行性。 本文最大的特色在于针对各问题均从多个方面进行了分析,如判断可信度时讨论了 内部一致性和外部一致性的联系,为酿酒葡萄分级时考虑了客观因素和主观因素。
相关文档
最新文档