2019-2020年九年级9月月考数学试卷及答案

合集下载

2019-2020学年星海实验中学九年级(上)月考数学试卷(9月份)及答案解析

2019-2020学年星海实验中学九年级(上)月考数学试卷(9月份)及答案解析

18.(3 分)如图,把矩形纸片 OABC 放入平面直角坐标系中,使 OA 、 OC 分别落在 x 轴、
y 轴上,连接 OB ,将纸片 OABC 沿 OB 折叠,使点 A 落在点 A 的位置,若 OB = 5 ,
tan BOC = 1 ,则点 A 的坐标为

2
19.(3 分)已知实数 ab 满足等式 a2 + 3a − 2 = 0 ,b2 + 3b − 2 = 0 ,那么求 b + a 的值是 . ab
A. 1 2
B. 2 2
C. 3 2
D. 2 2 3
4.(3 分)如果 ABC 中, sin A = cos B = 2 ,则下列最确切的结论是 (
)
2
A. ABC 是直角三角形
B. ABC 是等腰三角形
C. ABC 是等腰直角三角形
D. ABC 是锐角三角形
5.(3 分)下列关于 x 的一元二次方程中,有两个不相等的实数根的方程是 (
2019-2020 学年江苏省苏州市工业园区星海实验中学九年级(上)
月考数学试卷(9 月份)
一、选择题:(本大题共有 10 小题,每小题 3 分,共 30 分,请将正确选项前的字母代号填 涂在答题纸相应位置上).
1.(3 分)一元二次方程 3x2 − 2x =1 的二次项系数、一次项系数、常数项分别是 ( )
则 AD 的长为 ( )
第1页(共8页)

A.3
B. 16 3
C. 20 3
D. 16 5
9.(3 分)如图,2 条宽为 1 的带子以 角交叉重叠,则重叠部分(阴影部分)的面积为 (
)
A. sin
B. 1 sin
C. 1 cos

2019-2020学年上海市徐汇区西南模范中学九年级(上)月考数学试卷试题及答案(9月份)

2019-2020学年上海市徐汇区西南模范中学九年级(上)月考数学试卷试题及答案(9月份)

2019-2020学年上海市徐汇区西南模范中学九年级(上)月考数学试卷(9月份)一.选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.(4分)已知233m a b =- ,1124n b a =+ ,那么4m n -等于()A .823a b -B .443a b -C .423a b- D .843a b-2.(4分)如果点D 、E 分别在ABC ∆的边AB 和AC 上,那么不能判定//DE BC 的比例式是()A .::AD DB AE EC =B .::BD AB CE AC =C .::DE BC AD AB=D .::AB AC AD AE=3.如图,已知123////l l l ,3AB =,2BC =,1CD =,那么下列式子中不成立的是()A .:5:1EC CG =B .:1:1EF FG =C .:3:2EF FC =D .:3:5EF EG =4.(4分)下列命题中错误的是()A .相似三角形的周长比等于对应中线的比B .相似三角形对应高的比等于相似比C .相似三角形的面积比等于相似比D .相似三角形对应角平分线的比等于相似比5.(4分)如图,ABC ∆中,点D 在AB 上,点E 在AC 上,若ADE C ∠=∠,则下列等式成立的是()A .AD AEAB AC=B .AE ADBC BD=C .DE AEBC AB=D .DE ADBC AB=6.如图,在Rt ABC ∆中,90C ∠=︒,5AB =,4BC =.点P 是边AC 上一动点,过点P 作//PQ AB 交BC 于点Q ,D 为线段PQ 的中点,当BD 平分ABC ∠时,AP 的长度为()A .813B .1513C .2513D .3213二.填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.(4分)在比例尺为1:20000的地图上,相距4厘米的两地A 、B 的实际距离为米.8.(4分)已知23a b =,则232a b a b-=+.9.(4分)已知点P 是线段AB 的黄金分割点,AP BP >,若4AB =,则BP =.10.(4分)在ABC ∆中,经过重心G 作线段//DE BC 交AB 于D ,交AC 于E ,则:DE BC =.11.(4分)D 、E 是ABC ∆的AB 、AC 边上的点,//DE BC ,2AD =,3DB =, 5.5AC =,则AE =.12.(4分)已知ABC ∆∽△111A B C ,且相似比1123AB A B =,ABC ∆的面积为8,那么△111A B C 的面积为.13.(4分)在ABC ∆中,90ACB ∠=︒,CD AB ⊥,垂足为D .若2,3ACD CBDS AD CD S ∆∆==则.14.(4分)点E 是ABCD 边AD 上一点,且:3:2AE ED =,CE 交BD 于点O ,则BOBD=.15.(4分)已知ABC ∆中,4AB AC ==,2BC =,把ABC ∆绕点C 旋转,使点B 落在边AB 上的点E ,则AE =.16.(4分)如图,已知ABC ∆中,60BAC ∠=︒,高BE 、CF 交于点D ,则AEFABCS S ∆∆=.17.(4分)如图,ABC ∆中,4AB AC ==,6BC =,点E 、F 在边BC 上,且EAF C ∠=∠,则BF CE =.18.(4分)如图,在ABC ∆中,90C ∠=︒,5AB =,3BC =,点D 、E 分别在AC 、AB 上,且AD BE =.联结DE ,点A 关于直线DE 的对称点为1A ,联结1A E .若1A E 与ABC ∆的其中一条边垂直,则BE 的长为.三.解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸上]19.(10分)如图,已知梯形ABCD 中,//AB DC ,AOB ∆的面积等于9,AOD ∆的面积等于6,7AB =,求CD 的长.20.(10分)如图,AD 是ABC ∆中BC 边上的中线,点E 是AD 的中点,BA a = ,BC b = ,(1)试用向量a,b 表示向量:AE .(2)在原图上作出BD 在AE 和AC方向上的分向量.21.(10分)如图(1)是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC ,BC 表示铁夹的两个面,O 点是轴,OD AC ⊥于D .已知15AD mm =,24DC mm =,10OD mm =.已知文件夹是轴对称图形,试利用图(2),求图(1)中A ,B 两点的距26=).22.(10分)已知,如图在矩形ABCD 中,AE BD ⊥于点E ,作EP EC ⊥,交AD 于点P .求证:(1)AEP DEC ∆∆∽;(2)BE AB AE AP = .23.(12分)如图,点A 在线段BD 上,在BD 的同侧作等腰Rt ABC ∆和等腰Rt ADE ∆,90ABC ADE ∠=∠=︒,CD 与BE 、AE 分别交于点P 、M .求证:(1)BAE CAD ∆∆∽;(2)22CB CP CM = .24.(12分)如图,一次函数(0)y kx b k =+≠的图象与x 轴,y 轴分别交于(9,0)A -、(0,6)B ,过点(2,0)C 作直线l 与BC 垂直,点E 在直线l 位于x 轴上方的部分.(1)求一次函数(0)y kx b k =+≠的解析式;(2)求直线l 的解析式;(3)若CBE ∆与ABO ∆相似,求点E 的坐标.25.(14分)如图,ABC ∆中,5AB AC ==,6BC =,点D 、E 分别是边AB 、AC 上的动点(点D 、E 不与ABC ∆的顶点重合),AD 和BE 交于点F ,且AFE ABC ∠=∠.(1)求证:ABD BCE ∆∆∽;(2)设AE x =,AD FD y = ,求y 关于x 的函数关系式,并直接写出x 的取值范围;(3)当AEF ∆是等腰三角形时,求DF 的长度.2019-2020学年上海市徐汇区西南模范中学九年级(上)月考数学试卷(9月份)参考答案与试题解析一.选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.(4分)已知233m a b =- ,1124n b a =+ ,那么4m n -等于()A .823a b -B .443a b -C .423a b- D .843a b-【解答】解: 233m a b =- ,1124n b a =+,∴211284(3)4()32232433m n a b b a a b b a a b -=--+=---=-.故选:A .2.(4分)如果点D 、E 分别在ABC ∆的边AB 和AC 上,那么不能判定//DE BC 的比例式是()A .::AD DB AE EC =B .::BD AB CE AC =C .::DE BC AD AB=D .::AB AC AD AE=【解答】解:A 、::AD DB AE EC = ,//DE BC ∴,故本选项能判定//DE BC ;B 、::BD AB CE AC = ,//DE BC ∴,故本选项能判定//DE BC ;C 、由::DE BC AD AB =,不能判定//DE BC ;故本选项不能判定//DE BC ;D 、::AB AC AD AE = ,::AB AD AC AE ∴=,//DE BC ∴,故本选项能判定//DE BC .故选:C .3.如图,已知123////l l l ,3AB =,2BC =,1CD =,那么下列式子中不成立的是()A .:5:1EC CG =B .:1:1EF FG =C .:3:2EF FC =D .:3:5EF EG =【解答】解:123////l l l ,::5:1EC CG AC CD ∴==,所以A 选项成立;::3:31:1EF FG AB BD ===,所以B 选项成立;::3:2EF FC AB BC ==,所以C 选项成立;::3:61:2EF EG AB AD ===,所以D 选项不成立.故选:D .4.(4分)下列命题中错误的是()A .相似三角形的周长比等于对应中线的比B .相似三角形对应高的比等于相似比C .相似三角形的面积比等于相似比D .相似三角形对应角平分线的比等于相似比【解答】解:A 、相似三角形的周长比与对应中线的比等于相似比,故本选项正确;B 、相似三角形对应高的比等于相似比,故本选项正确;C 、相似三角形的面积比等于相似比的平方,故本选项错误;D 、似三角形对应角平分线的比等于相似比,故本选项正确.故选:C .5.(4分)如图,ABC ∆中,点D 在AB 上,点E 在AC 上,若ADE C ∠=∠,则下列等式成立的是()A .AD AEAB AC=B .AE ADBC BD=C .DE AEBC AB=D .DE ADBC AB=【解答】解:ADE C ∠=∠ ,A A ∠=∠,ADE ACB ∴∆∆∽,:::AD AC AE AB DE BC ∴==,故选:C .6.(4分)如图,在Rt ABC ∆中,90C ∠=︒,5AB =,4BC =.点P 是边AC 上一动点,过点P作//PQ AB交BC于点Q,D为线段PQ的中点,当BD平分ABC∠时,AP的长度为()A.813B.1513C.2513D.3213【解答】解:90C∠=︒,5AB=,4BC=,223AC AB BC∴-=,//PQ AB,ABD BDQ∴∠=∠,又ABD QBD∠=∠,QBD BDQ∴∠=∠,QB QD∴=,2QP QB∴=,//PQ AB,CPQ CAB∴∆∆∽,∴CP CQ PQCA CB AB==,即42345CP QB QB-==,解得,2413CP=,1513AP CA CP∴=-=,故选:B.二.填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.(4分)在比例尺为1:20000的地图上,相距4厘米的两地A、B的实际距离为800米.【解答】解:设AB的实际距离为xcm,比例尺为1:20000,4:1:20000x∴=,80000800x cm m∴==.故答案为800.8.(4分)已知23a b =,则232a b a b-=+112.【解答】解:设2a k =,3b k =,则2431326612a b k k a b k k --==++.故答案为:112.9.(4分)已知点P 是线段AB 的黄金分割点,AP BP >,若4AB =,则BP =6-【解答】解: 点P 是线段AB 的黄金分割点,AP BP >,2AP ∴==,42)6BP AB AP ∴=-=-=-,故答案为:6-.10.(4分)在ABC ∆中,经过重心G 作线段//DE BC 交AB 于D ,交AC 于E ,则:DE BC =2:3.【解答】解:连接AG 并延长到BC 边上一点F ,在ABC ∆中,经过重心G 作线段//DE BC 交AB 于D ,交AC 于E ,ADE ABC ∴∆∆∽,AGE AFC ∆∆∽,∴AG AE AF AC =,AE DEAC BC =,∴DE AGBC AF =,2AG GF = ,∴23DE AG BC AF ==故答案为:2:3.11.(4分)D 、E 是ABC ∆的AB 、AC 边上的点,//DE BC ,2AD =,3DB =, 5.5AC =,则AE =2.2.【解答】解://DE BC ,::AD DB AE EC ∴=,即2:3:(5.5)AE AE =-,2.2AE ∴=.故答案为2.2.12.(4分)已知ABC ∆∽△111A B C ,且相似比1123AB A B =,ABC ∆的面积为8,那么△111A B C 的面积为18.【解答】解:ABC ∆ ∽△111A B C ,211112:(:)ABC A B C S S AB A B ∆∴= ,即1118:4:9A B C S = ,解得11118A B C S = .故答案为:18.13.(4分)在ABC ∆中,90ACB ∠=︒,CD AB ⊥,垂足为D .若2,3ACD CBDS AD CD S ∆∆==则49.【解答】解:90ACB ∠=︒ ,CD AB ⊥,90CDA CDB ∴∠=∠=︒,90A ACD ACD BCD ∠+∠=∠+∠=︒ ,A BCD ∴∠=∠,ACD CBD ∴∆∆∽,∴2224((39ACD CBD S AD S CD ∆∆===,故答案为:49.14.(4分)点E 是ABCD 边AD 上一点,且:3:2AE ED =,CE 交BD 于点O ,则BOBD=57.【解答】解::3:2AE ED = ,:2:5DE AD ∴=,四边形ABCD 是平行四边形,:2:5DE BC ∴=,四边形ABCD 是平行四边形,//AD BC ∴,DEF BCF ∴∆∆∽,::2:5DE BC OD OB ∴==.∴57BO BD =,故答案为:57.15.(4分)已知ABC ∆中,4AB AC ==,2BC =,把ABC ∆绕点C 旋转,使点B 落在边AB 上的点E ,则AE =3.【解答】解:如图,作AH BC ⊥于H ,CF AB ⊥于F .AB AC = ,AH BC ⊥,1BH CH ∴==,cos BH BF B AB BC ∠== ,∴142BF =,12BF ∴=,CB CE = ,CF BE ⊥,12BF EF ∴==,413AE AB BE ∴=-=-=,故答案为3.16.(4分)如图,已知ABC ∆中,60BAC ∠=︒,高BE 、CF 交于点D ,则AEF ABC S S ∆∆=14.【解答】解:AB CF ⊥ ,BE AC ⊥,90AEB AFC ∴∠=∠=︒,A A ∠=∠ ,ABE ACF ∴∆∆∽,∴AE AB AF AC =,∴AE AF AB AC=,ABC AEF ∴∆∆∽;在Rt ABE ∆中,60BAC ∠=︒ ,30ABE ∴∠=︒,∴12AE AB =,∴14AEF ABC S S ∆∆=,故答案为:14.17.(4分)如图,ABC ∆中,4AB AC ==,6BC =,点E 、F 在边BC 上,且EAF C ∠=∠,则BF CE = 16.【解答】证明:AEC B BAE EAF BAE BAF ∠=∠+∠=∠+∠=∠ ,又AB AC = ,B C ∴∠=∠,ABF ECA ∴∆∆∽,∴AB BF CE AC=,2BF EC AB AC AB ∴== 4AB = ,16BF CE ∴= .故答案为:16.18.(4分)如图,在ABC ∆中,90C ∠=︒,5AB =,3BC =,点D 、E 分别在AC 、AB 上,且AD BE =.联结DE ,点A 关于直线DE 的对称点为1A ,联结1A E .若1A E 与ABC ∆的其中一条边垂直,则BE 的长为53或52或2512.【解答】解:设BE AD x ==,则5AE x =-,90C ∠=︒ ,5AB =,3BC =,4AC ∴=,分三种情况:①1A E AC ⊥时,连接1A D ,如图1所示:则1//A E BC ,由轴对称的性质得:15A E AE x ==-,1A D AD x ==,1DA E BAC ∠=∠,1//A E BC ,AEF ABC ∴∆∆∽,∴EF AE BC AB =,即535EF x -=,3(5)5EF x ∴=-,在Rt △1A DF 中,1A D x =,1cos cos DA E BAC ∠=∠,∴11A F AC A D AB=,即145A F x =,解得:145A F x =,15A E AE x ==- ,∴34(5)555x x x -+=-,解得:53x =;②1A E BC ⊥时,连接1A D ,如图2所示:则1//A E AC ,1A ED ADE ∴∠=∠,由轴对称的性质得:15A E AE x ==-,1A D AD x ==,1A DE ADE ∠=∠,11A DE A ED ∴∠=∠,11A E A D x ∴==,5x x ∴-=,解得:52x =;③1A E AB ⊥时,连接1A D ,作1DP A E ⊥于P ,如图3所示:则//DP AB ,由轴对称的性质得:15A E AE x ==-,1A D AD x ==,1DA E BAC ∠=∠,1sin sin DA E BAC ∴∠=∠,∴1DP BC A D AB=,即35DP x =,解得:35DP x =,//DP AB ,BAC PDF ∴∠=∠,1//A E BC ,cos cos BAC PDF ∴∠=∠,即AC DP AB DF=,3455x DF =,解得:34DF x =,又cos AE AC BAC AF AB ∠== ,∴545x AF -=,5(5)4AF x ∴=-,∴35(5)44x x x +=-,解得:2512x =;综上所述,若1A E 与ABC ∆的其中一条边垂直,则BE 的长为53或52或2512;故答案为:53或52或2512.三.解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸上]19.(10分)如图,已知梯形ABCD 中,//AB DC ,AOB ∆的面积等于9,AOD ∆的面积等于6,7AB =,求CD 的长.【解答】解://AB DC ,∴CD DO AB BO=,⋯(3分)AOB ∆ 的面积等于9,AOD ∆的面积等于6,∴23DO BO =,(3分)∴23CD DO AB BO ==,7AB = ,143CD ∴=.20.(10分)如图,AD 是ABC ∆中BC 边上的中线,点E 是AD 的中点,BA a = ,BC b = ,(1)试用向量a ,b 表示向量:AE 1142b a - .(2)在原图上作出BD 在AE 和AC 方向上的分向量.【解答】解:(1) AD AB BD =+ ,BD DC =, 12AD a b =-+ ,12AE AD =,∴1142AE b a =- ,故答案为1142b a - .(2)如图,出BD 在AE 和AC 方向上的分向量分别为BM ,BN .21.(10分)如图(1)是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC ,BC 表示铁夹的两个面,O 点是轴,OD AC ⊥于D .已知15AD mm =,24DC mm =,10OD mm =.已知文件夹是轴对称图形,试利用图(2),求图(1)中A ,B 两点的距离(:26)=.【解答】解:如图,连接AB ,与CO 的延长线交于点E ,夹子是轴对称图形,对称轴是CE ,A 、B 为一组对称点,CE AB ∴⊥,AE EB =.在Rt AEC ∆、Rt ODC ∆中,90AEC ODC ∠=∠=︒ ,OCD ∠是公共角,Rt AEC Rt ODC ∴∆∆∽,∴AE OD AC OC=.又26OC ===,39101526AC OD AE OC ⨯∴=== ,230()AB AE mm ∴==.22.(10分)已知,如图在矩形ABCD中,AE BD⊥于点E,作EP EC⊥,交AD于点P.求证:(1)AEP DEC∆∆∽;(2)BE AB AE AP=.【解答】证明:(1)AE BD⊥,PE EC⊥,90AED PEC∴∠=∠=︒,AEP DEC∴∠=∠,90EAD ADE∠+∠=︒,90ADE CDE∠+∠=︒,EAP EDC∴∠=∠,AEP DEC∴∆∆∽;(2)AEP DEC∆∆∽∴AP AE CD ED=,//AB CD,ABE EDC ∴∠=∠,又EAP EDC∠=∠,又AEB AED∠=∠,AEP BEA∴∆∆∽,∴BE AE AE ED=,∴BE APAE CD=,BE CD AE AP∴=,又AB CD=,BE AB AE AP ∴= .23.(12分)如图,点A 在线段BD 上,在BD 的同侧作等腰Rt ABC ∆和等腰Rt ADE ∆,90ABC ADE ∠=∠=︒,CD 与BE 、AE 分别交于点P 、M .求证:(1)BAE CAD ∆∆∽;(2)22CB CP CM = .【解答】(1)证明: 等腰Rt ABC ∆和等腰Rt ADE ∆,90ABC ADE ∠=∠=︒,AC ∴=,AD =,45BAC CAD ∠=∠=︒∴AC AD AB AE=BAC EAD∠=∠ BAE CAD∴∠=∠BAE CAD∴∆∆∽(2)BAE CAD ∆∆ ∽,BEA CDA ∴∠=∠,PME AMD∠=∠ PME AMD∴∆∆∽∴PM ME AM MD=,且PMA DME ∠=∠,PMA EMD ∴∆∆∽,90APD AED ∴∠=∠=︒,18090CAE BAC EAD ∠=︒-∠-∠=︒ ,且ACP ACM ∠=∠,CAP CMA ∴∆∆∽,∴AC CM CP AC=,2AC CP CM ∴= ,AC =22CB CP CM∴= 24.(12分)如图,一次函数(0)y kx b k =+≠的图象与x 轴,y 轴分别交于(9,0)A -、(0,6)B ,过点(2,0)C 作直线l 与BC 垂直,点E 在直线l 位于x 轴上方的部分.(1)求一次函数(0)y kx b k =+≠的解析式;(2)求直线l 的解析式;(3)若CBE ∆与ABO ∆相似,求点E的坐标.【解答】解:(1) 一次函数(0)y kx b k =+≠的图象与x 轴,y 轴分别交于(9,0)A -,(0,6)B 两点,∴906k b b -+=⎧⎨=⎩,解得,236k b ⎧=⎪⎨⎪=⎩,∴一次函数y kx b =+的表达式为263y x =+;(2)如图1,直线l 与y 轴的交点为D ,BC l ⊥ ,90BCD BOC ∴∠=︒=∠,OBC OCB OCD OCB ∴∠+∠=∠+∠,OBC OCD ∴∠=∠,BOC COD ∠=∠ ,OBC OCD ∴∆∆∽,∴OB OC OC OD=,(0,6)B ,(2,0)C ,6OB ∴=,2OC =,∴622OD=,23OD ∴=,2(0,3D ∴-,(2,0)C ,设直线l 的函数解析式为y mx n =+,2320n m n ⎧=-⎪⎨⎪+=⎩,得1323m n ⎧=⎪⎪⎨⎪=-⎪⎩∴直线l 的解析式为1233y x =-;(3)CBE ∆ 与ABO ∆相似,∴当1CBE OAB ∆∆∽时,则1CE BCOB AO =,点(9,0)A -、(0,6)B ,点(2,0)C ,9OA ∴=,6OB =,2OC =,90BOD ∠=︒,BC ∴==∴169CE =,解得,13CE =,设点的1E 坐标为12(,33a a -,则22212(2)()33a a =-+-且0a >,解得,6a =,∴点1E 坐标为4(6,3;当2CBE OBA ∆∆∽时,则2CE BCOA BO =,点(9,0)A -、(0,6)B ,点(2,0)C ,9OA ∴=,6OB =,2OC =,90BOD ∠=︒ ,BC ∴==∴296CE =,解得,2CE =,设点的2E 坐标为12(,)33c c -,则22212(2)()33c c =-+-且0c >,解得,11c =,则点2E 坐标为(11,3);由上可得,E 点坐标为4(6,)3或(11,3).25.(14分)如图,ABC ∆中,5AB AC ==,6BC =,点D 、E 分别是边AB 、AC 上的动点(点D 、E 不与ABC ∆的顶点重合),AD 和BE 交于点F ,且AFE ABC ∠=∠.(1)求证:ABD BCE ∆∆∽;(2)设AE x =,AD FD y = ,求y 关于x 的函数关系式,并直接写出x 的取值范围;(3)当AEF ∆是等腰三角形时,求DF 的长度.【解答】(1)证明:AFE ABC ∠=∠ ,AFE ABF BAF ∠=∠+∠,ABC ABF CBE ∠=∠+∠,BAD CBE ∴∠=∠,AB AC = ,ABD C ∴∠=∠,ABD BCE ∴∆∆∽.(2)解:BDF ADB ∠=∠ ,DBF BAD ∠=∠,BDF ADB ∴∆∆∽,∴BD DF AD BD=,2BD DF AD ∴= ,ABD BCE ∆∆ ∽,∴DB AB EC BC =,∴556BD x =-,5(5)6BD x ∴=-,2225(5)36y AD DF BD x ∴===- ∴225250625(05)36x x y x -+=<<.(3)解:①如图1中,当AE EF =时,AE EF = ,AFE EAF ∴∠=∠,AFE ABC C ∠=∠=∠ ,DCA ABC EAF ∴∆∆∽∽,∴556DC =,256AD DC ∴==,同法可得65AF x =,2511666BD ∴=-=,2BD DF DA = ,∴12125366DF = ,121150DF ∴=.②如图2中,当FA FE =时,作AH BC ⊥于H .FA FE = ,FAE FEA ∴∠=∠,ABD BCE ∆∠ ∽,ADB BEC ∴∠=∠,ADC FEA ∴∠=∠,CDA CAD ∴∠=∠,5CD CA ∴==,AB AC = ,AH BC ⊥,3BH CH ∴==,4AH ∴==,532DH ∴=-=,AD ===1BD = ,2BD DF AD = ,1DF ∴= ,10综上所述,121150DF =.。

人教版2019-2020学年九年级数学上册第二次月考试卷(含答案)

人教版2019-2020学年九年级数学上册第二次月考试卷(含答案)

2019-2020学年九年级(上)第二次月考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D四个备选答案,其中只有一个是正确的,请你将正确答案的序号涂在相应的答题卡上.1.﹣的倒数是()A.B.C.﹣D.﹣2.下列方程中,是一元二次方程的为()A.3x2﹣6xy+2=0B.x2﹣5=﹣2xC.x2+3x﹣1=x2D.x2+=03.近似数3.0×102精确到()A.十分位B.个位C.十位D.百位4.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°5.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.6.一元二次方程x2﹣3x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定7.小张的爷爷每天坚持锻炼身体,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路漫步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象的是()A.B.C.D.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若菱形边长为4,则反比例函数解析式为()A.y=B.y=﹣C.y=﹣D.y=9.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC 于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE 10.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)二、填空题:(本大题共8个小题,每小题4分,共32分)11.9的算术平方根是.12.若方程x2﹣5x+3=0两根为x1,x2,则x1x2=.13.设点P(x,y)在第二象限,且|x|=2,|y|=1,则点P的坐标为.14.函数的自变量x的取值范围是.15.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=.16.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯米.17.在△ABC中,∠A=30°,∠B=45°,AC=,则BC=.18.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为.三、解答题:(本题共4个小题,第19,20,21、22题每题10分,共40分)19.(1)计算:()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°.(2)用公式法解方程:3x2+2x﹣1=0.20.先化简,(﹣)×,再从1,2,3中选取一个适当的数代入求值.21.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.22.某商店商品每件成本20元,按30元销售时,每天可销售100件,根据市场调查:若销售单价每上涨1元,该商品每天销售量就减少5件.若该商店计划该商品每天获利1125元,求该商品的售价?四、(本题满分12分)23.如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C 在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.五、(本题满分12分)24.小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小明此时与地面的垂直距离CD的值;(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588 cos15°≈0.9659 tan≈.0.2677 )六.(本题满分14分)25.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,当EG宽为多少mm时,矩形有最大面积,最大面积是多少?参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A 、B 、C 、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号涂在相应的答题卡上.1.﹣的倒数是( )A .B .C .﹣D .﹣【分析】乘积是1的两数互为倒数,结合选项进行判断即可.【解答】解:﹣的倒数为﹣.故选:D .【点评】本题考查了倒数的定义,属于基础题,注意掌握乘积是1的两数互为倒数. 2.下列方程中,是一元二次方程的为( )A .3x 2﹣6xy +2=0B .x 2﹣5=﹣2xC .x 2+3x ﹣1=x 2D .x 2+=0 【分析】根据判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”进行分析即可.【解答】解:A 、不是一元二次方程,故此选项错误;B 、是一元二次方程,故此选项正确;C 、不是一元二次方程,故此选项错误;D 、不是一元二次方程,故此选项错误;故选:B .【点评】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.近似数3.0×102精确到( )A .十分位B .个位C .十位D .百位【分析】要判断科学记数法表示的数精确到哪一位,应当看最后一个数字在什么位,即精确到了什么位.【解答】解:近似数3.0×102精确到十位,故选:C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.4.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°【分析】根据两直线平行,同位角相等求出∠2的同位角,再根据三角形的外角性质求解即可.【解答】解:如图,∵∠2=50°,并且是直尺,∴∠4=∠2=50°(两直线平行,同位角相等),∵∠1=30°,∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:D.【点评】本题主要考查了两直线平行,同位角相等的性质以及三角形的外角性质,熟练掌握性质定理是解题的关键.5.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.一元二次方程x2﹣3x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】先计算出判别式的值,然后利用判别式的意义判断方程根的情况.【解答】解:∵△=(﹣3)2﹣4×(﹣2)=17>0,∴方程有两个不相等的两个实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.7.小张的爷爷每天坚持锻炼身体,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路漫步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象的是()A.B.C.D.【分析】由爷爷锻炼身体的行程,可得出距离的变化是先增加、中间有段不变后减少,再根据跑步的速度快于漫步的速度,对照选项即可得出结论.【解答】解:∵爷爷跑步去公园,漫步回家,且在公园停留打了一会儿太极拳,∴距离的变化是先增加、中间有段不变后减少,且增加的快,减少的慢.故选:D.【点评】本题考查了函数的图象,根据爷爷锻炼身体的行程找出爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象是解题的关键.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若菱形边长为4,则反比例函数解析式为()A.y=B.y=﹣C.y=﹣D.y=【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为4,∴OC=4,∠COB=60°,∴点C的坐标为(﹣2,2),∵顶点C在反比例函数y=的图象上,∴2=,得k=﹣4,即y=﹣,故选:C.【点评】本题考查待定系数法求反比例函数解析式、菱形的性质,解答本题的关键是明确题意,求出点C的坐标,利用反比例函数的性质解答.9.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC 于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE【分析】根据相似三角形的判定,采用排除法,逐项分析判断.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故C正确.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正确.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正确.而不能证明△BDF∽△BEC,故A错误.故选:A.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.10.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)【分析】作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,根据A的坐标为(﹣4,5),得到A′(4,5),B(﹣4,0),D(﹣2,0),求出直线DA′的解析式为y=x+,即可得到结论.【解答】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,∵四边形ABOC是矩形,∴AC∥OB,AC=OB,∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0),∵D是OB的中点,∴D(﹣2,0),设直线DA′的解析式为y=kx+b,∴,∴,∴直线DA′的解析式为y=x+,当x=0时,y=,∴E(0,),故选:B.【点评】此题主要考查轴对称﹣﹣最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.二、填空题:(本大题共8个小题,每小题4分,共32分)11.9的算术平方根是3.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.12.若方程x2﹣5x+3=0两根为x1,x2,则x1x2=3.【分析】直接由方程根与系数的关系可求得答案.【解答】解:∵方程x2﹣5x+3=0两根为x1,x2,∴x1x2=3,故答案为:3.【点评】本题主要考查根与系数的关系,掌握一元二次方程两根之和等于﹣、两根之积等于是解题的关键.13.设点P(x,y)在第二象限,且|x|=2,|y|=1,则点P的坐标为(﹣2,1).【分析】根据第二象限内点的横坐标是负数,纵坐标是正数结合绝对值的性质求出x、y 的值,然后写出即可.【解答】解:∵点P(x,y)在第二象限,且|x|=2,|y|=1,∴x=﹣2,y=1,∴点P的坐标为(﹣2,1).故答案为:(﹣2,1).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.函数的自变量x的取值范围是x≥2.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.15.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=15°.【分析】由四边形ABCD为正方形,三角形ADE为等比三角形,可得出正方形的四条边相等,三角形的三边相等,进而得到AB=AE,且得到∠BAD为直角,∠DAE为60°,由∠BAD+∠DAE求出∠BAE的度数,进而利用等腰三角形的性质及三角形的内角和定理即可求出∠AEB的度数.【解答】解:∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=90°,∠DAE=60°,∴∠BAE=∠BAD+∠DAE=150°,又∵AB=AE,∴∠AEB==15°.故答案为:15°.【点评】此题考查了正方形的性质,以及等边三角形的性质,利用了等量代换的思想,熟练掌握性质是解本题的关键.16.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯2+2米.【分析】利用直角三角形中30°角对的直角边等于斜边的一半求出BC的长,再根据勾股定理求出AB的长,进而可得出结论.【解答】解:∵△ABC是直角三角形,∠A=30°,斜边AC是4米,∴BC=AC=2米,∴AB===2(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=(2)米.故答案为:2+2【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.17.在△ABC中,∠A=30°,∠B=45°,AC=,则BC=1.【分析】作CD⊥AB,由AC=、∠A=30°知CD=,由∠B=45°知CD=BD=,最后由勾股定理可得答案.【解答】解:如图,过点C作CD⊥AB于点D,在Rt△ACD中,∵AC=,∠A=30°,∴CD=AC=,∵在Rt△BCD中,∠B=45°,∴CD=BD=,则BC==1,故答案为1;【点评】本题主要考查勾股定理、直角三角形的性质,熟练掌握直角三角形的性质和勾股定理是解题的关键.18.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为199.【分析】根据条件第二个比第一个大2,第三个比第二个大3,第四个比第三个大4,依此类推,可以得到:第n个比第n﹣1个大n.则第100个三角形数与第99个三角形数的差100,第99个三角形数与第98个三角形数的差99,∴第100个三角形数与第98个三角形数的差为100+99=199.【解答】解:第100个三角形数与第98个三角形数的差为199.【点评】这是一个探索性问题,是一个经常出现的问题.三、解答题:(本题共4个小题,第19,20,21、22题每题10分,共40分)19.(1)计算:()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°. (2)用公式法解方程:3x 2+2x ﹣1=0.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先求出b 24ac 的值,再代入公式求出即可.【解答】解:(1)()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°=2+1﹣(2﹣)﹣2× =1;(2)3x 2+2x ﹣1=0,a=3,b=2,c=﹣1,∵b 2﹣4ac=22﹣4×3×(﹣1)=16>0,∴x=,∴x 1=,x 2=﹣1.【点评】本题考查了解一元二次方程,零指数幂,负整数指数幂,特殊角的三角函数值等知识点,能求出每一部分的值是解(1)的关键,能选择适当的方法解一元二次方程是解(2)的关键.20.先化简,(﹣)×,再从1,2,3中选取一个适当的数代入求值.【分析】根据分式的减法和乘法可以化简题目中的式子,在从1,2,3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(﹣)×===,当x=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.【分析】证出∠ADE=∠CBF,AD=CB,由AAS证△ADE≌△CBF即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS).【点评】此题考查了平行四边形的性质、全等三角形的判定.熟练掌握平行四边形的性质是解决问题的关键.22.某商店商品每件成本20元,按30元销售时,每天可销售100件,根据市场调查:若销售单价每上涨1元,该商品每天销售量就减少5件.若该商店计划该商品每天获利1125元,求该商品的售价?【分析】设商品售价为每件(30+x)元,则每天销售(100﹣5x)件,根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,将其代入30+x中即可求出该商品的售价.【解答】解:设商品售价为每件(30+x)元,则每天销售(100﹣5x)件,根据题意得:(30+x﹣20)×(100﹣5x)=1125,整理得:x2﹣10x+25=0,解得:x1=x2=5,∴x+30=35.答:该商品的售价为35元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.四、(本题满分12分)23.如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C 在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.【分析】(1)过点A作AD垂直于OC,由AC=AO,得到CD=DO,确定出三角形ADO与三角形ACD面积,即可求出k的值;(2)根据函数图象,找出满足题意x的范围即可.【解答】解:(1)如图,过点A作AD⊥OC,∵AC=AO,∴CD=DO,=S△ACD=6,∴S△ADO∴k=﹣12;(2)联立得:,解得:或,即A(﹣2,6),B(2,﹣6),根据图象得:当y1>y2时,x的范围为x<﹣2或0<x<2.【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握各函数的性质是解本题的关键.五、(本题满分12分)24.小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小明此时与地面的垂直距离CD的值;(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588 cos15°≈0.9659 tan≈.0.2677 )【分析】(1)利用在Rt△BCD中,∠CBD=15°,BD=20,得出CD=BD•sin15°求得答案即可;(2)由图可知:AB=AF+DE+CD,利用直角三角形的性质和锐角三角函数的意义,求得AF即可.【解答】解:(1)在Rt△BCD中,∵∠CBD=15°,BD=20,∴CD=BD•sin15°,∴CD≈5.2m;答:小明与地面的垂直距离CD的值是5.2m;(2)在Rt△AFE中,∵∠AEF=45°,∴AF=EF=BC,由(1)知,BC=BD•cos15°≈19.3(m),∴AB=AF+DE+CD=19.3+1.6+5.2=26.1(m).答:楼房AB的高度是26.1m.【点评】本题考查了解直角三角形的应用,题目中涉及到了仰角和坡角的问题,解题的关键是构造直角三角形.六.(本题满分14分)25.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,当EG宽为多少mm时,矩形有最大面积,最大面积是多少?【分析】(1)根据矩形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.(2)设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,根据EF∥BC,得到△AEF ∽△ABC,根据相似三角形的性质得到比例式,解方程即可得到结果;(3)根据矩形面积公式得到关于a的二次函数,根据二次函数求出矩形的最大值.【解答】解:(1)∵正方形EGHF∴EF∥BC∴△AEF∽△ABC(2)设EG=EF=x∵△AEF∽△ABC∴∴∴x=48∴正方形零件的边长为48mm,(3)设EG=a∵矩形EGHF∴EF∥BC∴△AEF∽△ABC∴∴∴EF=120﹣a∴矩形面积S=a(120﹣a)=﹣a2+120a=﹣(a﹣40)2+2400当a=40时,此时矩形面积最大,最大面积是2400mm2,即:当EG=40时,此时矩形面积最大,最大面积是2400mm2.【点评】此题是相似形综合题,主要考查了正方形的性质,矩形的性质,相似三角形的判定和性质,解本题的关键是判断出△AEF∽△ABC.。

人教版2019----2020学年度第一学期第一次月考九年级数学试卷

人教版2019----2020学年度第一学期第一次月考九年级数学试卷

绝密★启用前人教版2019----2020学年度第一学期第一次月考九年级数学试卷一、单选题1.(3分)下列图形既是轴对称图形,又是中心对称图形的是( )A. B. C. D.2.(3分)下列方程为一元二次方程的是( ) A.ax 2﹣bx+c=0(a 、b 、c 为常数) B.x (x+3)=x 2﹣1 C.x (x ﹣2)=3D.10x x+= 3.(3分)抛物线2y 21x =-+的对称轴是( )A .直线14x =-B .直线1 4x =C .y 轴D .x 轴4.(3分)若0a b c ++=,则关于x 的一元二次方程()200ax bx c a ++=≠有一根是( ) A.1B.-1C.0D.无法判断5.(3分)二次函数y =ax 2+bx ﹣1(a ≠0)的图象经过点(1,1),则a +b +1的值是A .﹣3B .﹣1C .2D .36.(3分)某机械厂一月份生产零件万个,计划通过改革技术,使今后两月的产量都比前一月增长一个相同的百分数,使得三月份生产零件万个.若设这个百分数为,则可列方程为( ) A.50(1+x)²=72 B.50+50(1+x)²=72 C.50(1+x)+50(1+x)²=72D.50+50(1+x)+50(1+x)²=727.(3分)设a 、b 、c 为三角形的三边长,则关于x 的方程a 、b 、c 为三角形的三边长b 2x 2+(b 2+c 2﹣a 2)x+c 2=0的根的情况是( )C .有两个不相等的实数根D .无法确定8.(3分)若α,β是一元二次方程x 2+2x -6=0的两根,则α2+β2等于( )A .-8B .32C .16D .409.(3分)已知二次函数y=a (x ﹣2)2+c (a >0),当自变量x 、3、0时,对应的函数值分别为y 1、y 2、y 3 , 则y 1、y 2、y 3的大小关系是( ) A .y 1>y 2>y 3 B .y 2>y 1>y 3 C .y 3>y 1>y 2 D .y 3>y 2>y 110.(3分)二次函数()20y ax bx c a =++≠的图象如图所示,下列四个结论:①0ac <;②0a b c ++>;③420a b c -+<;④240ac b ->. 其中正确的结论有( )A.1B.2C.3D.4二、填空题11.(4分)函数y=(x ﹣3)2+4的最小值为_____.12.(4分)如果关于x 的方程x 2+4x-k=0有两个相等的实数根,那么实数的值是_________.13.(4分)已知x=1是一元二次方程2x mx n 0-+=的一个根,则22m 2mn n -+的值为 .14.(4分)如图,将Rt AOB 绕点O 逆时针旋转90,得到11A OB ,若点A 的坐标为()2,1,过点A 、O 、1A 的抛物线的解析式为________.15.(4分)点A (1,y 1),B (2,y 2)是抛物线y =﹣(x +1)2+m 上的两点,则y 1_____y 2(填“>”或“=”或“<”“)16.(4分)如果()()56m n m n +++=,则m n +=________.17.(4分)已知关于x 的方程3x 2+mx -8=0有一个根是23,则另一个根及m 的值分别为________.18.(4分)如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x 米,花圃面积为S 平方米,则S 关于x 的函数解析式是______(不写定义域).三、解答题19.(8分)用适当的方法解一元二次方程:(1)24120x x +-= (2)25410x x -+=20.(8分)已知抛物线经过点A (3,0),B (﹣1,0).(1)求抛物线的解析式; (2)求抛物线的顶点坐标.21.(8分)关于x 的一元二次方程x 2+(2m ﹣1)x +m 2=0有实数根.(1)求m 的取值范围;(2)若两根为x 1、x 2且x 12+x 22=7,求m 的值.22.(8分)如图,矩形ABCD 的长BC=5,宽AB=3. (1)若矩形的长与宽同时增加2,则矩形的面积增加 .(2)若矩形的长与宽同时增加x ,此时矩形增加的面积为48,求x 的值.23.(8分)如图所示,要在20米宽,32米长的矩形耕地上修筑同样宽的三条小路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小不等的六块花田,要使花田面积为570m 2,则道路应修多宽?24.(9分)如图,已知抛物线212y x bx c =++与x 轴交于A (-4,0)和B (1,0)两点,与y 轴交于点C .(1)求此抛物线的解析式;(2)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q ,当P 点运动到什么位置时,线段PQ 的值最大,并求此时P 点的坐标.25.(9分)某通讯器材公司销售一种市场需求较大的新型通讯产品, 已知每件产品的进价为40元,每年销售该产品的总开支(不含进价)总计120万元,在销售过程中发现,年销售量y (万件)与销售单价x (元)之间存在如图所示的一次函数关系.(1)求y 关于x 的函数关系;(2)试写出该公司销售该种产品的年获利W (万元)关于销售单价x (元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支),当销售单价为何值时年获利最大?并求这个最大值.本卷由系统自动生成,请参考答案1.D【解析】【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;B、不是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是中心对称图形也是轴对称图形,故此选项正确.故选:D.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.2.C【解析】试题分析:根据一元二次方程的定义可以判断A、B、D选项不是一元二次方程.故选C.考点:一元二次方程的定义.3.C【解析】【分析】直接根据二次函数的性质即可得出结论.【详解】解:∵抛物线y=2x2+1中一次项系数为0,∴抛物线的对称轴是y轴.故选:C.【点睛】本题主要考查的是二次函数的性质,解答此题的关键是熟知二次函数y=ax2+c的对称轴是y 轴.本卷由系统自动生成,请仔细校对4.A【解析】【分析】把a+b+c=0转化为b=-(a+c)代入一元二次方程,再用因式分解法求出方程的根.【详解】解:∵a+b+c=0,∴b=-(a+c)①把①代入一元二次方程ax2+bx+c=0(a≠0)中,得:ax2-(a+c)x+c=0,ax2-ax-cx+c=0,ax(x-1)-c(x-1)=0,(x-1)(ax-c)=0,∴x1=1,x2=ca.故选:A.【点睛】本题考查的是一元二次方程的解,把已知条件代入方程求出方程的解.5.D【解析】试题分析:根据二次函数图象上点的坐标特征,把(1,1)代入解析式可得到a+b ﹣1=1,则a+b=2,所以a+b+1=3.故选:D.考点:二次函数图象上点的坐标特征.6.A【解析】【分析】设平均每月增长率为x,根据等量关系“一月份生产零件的个数×(1+平均每月增长的百分率)2=三月份生产零件的个数”,列出方程即可求解.【详解】设平均每月增长的百分率为x,根据题意,得50(1+x)2=72,本卷由系统自动生成,请故选:A . 【点睛】本题考查了由实际问题抽象出一元二次方程,正确找出等量关系,列出一元二次方程是解题的关键. 7.A 【解析】因为()()()()()222222222222222224422b ac b c a b c b c a bc b c a bc b c a b c a ⎡⎤⎡⎤-=+--=+-++--=+---⎣⎦⎣⎦,根据三角形三边关系可得:()()()()0,0,b c a b c a b c a b c a +++->-+--<所以240b ac -<,所以方程没有实数根,故选A.8.C【解析】试题解析:∵α、β是一元二次方程x 2+2x-6=0的两根,∴α+β=-2,αβ=-6∴∴α2+β2=(α+β)2-2α•β=4+12=16. 故选:C .视频 9.D【解析】试题解析:∵a >0, ∴二次函数图象开口向上, 又∵对称轴为直线x =2,∴x 时,对应的函数值分别为1y 最小3y 最大,321.y y y ∴>>故选D. 10.B 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.本卷由系统自动生成,请仔细校对【详解】∵抛物线开口向下,交y轴于正半轴,∴a<0,c>0,∴ac<0,故①正确;∵x=1时,y<0,∴a+b+c<0,故②错误;由图象可知:当x=−2时,y<0,∴4a−2b+c<0,故③正确;由抛物线交x轴于两点,∴b2−4ac>0,∴4ac−b2<0,故④错误;故选:B.【点睛】考查二次函数与系数的关系.二次项系数a决定抛物线的开口方向,,a b共同决定了对称轴的位置,常数项c决定了抛物线与y轴的交点位置.11.2【解析】【分析】直接利用顶点式得出二次函数的最值.【详解】:y=(x﹣3)2+4的最小值为4.故答案为:4.【点睛】此题主要考查了二次函数的最值,正确掌握二次函数的性质是解题关键.12.-4【解析】分析:若一元二次方程有两相等根,则根的判别式△=b2-4ac=0,建立关于k的等式,求出k 的值.详解:∵方程有两相等的实数根,∴△=b 2−4ac=42+4k=0,解得:k=-4.故答案为:-4.点睛:本题主要考查根的判别式,难度不大,解决该题型题目时,根据方程根的情况结合根的判别式得出方程或不等式是关键.13.1.【解析】试题分析:∵x=1是一元二次方程2x mx n 0-+=的一个根,∴1m n 0m n 1-+=⇒-=. ∴()2222m 2mn n m n 11-+=-==.试题解析:考点:1. 方程的根;2. 求代数式的值;3.整体思想的应用.14.25766y x x =- 【解析】【分析】首先求得A 1的坐标,然后利用待定系数即可求得函数的解析式.【详解】点A 点O 逆时针旋转90,则1A 的坐标是:(−1,2).设抛物线的解析式是:2y ax bx c ,=++ 根据题意得:42120a b c a b c c ++=⎧⎪-+=⎨⎪=⎩, 解得:5 6760a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩则函数的解析式是:25766y x x =- 故答案为:25766y x x =-考查旋转的性质以及待定系数法求二次函数解析式,掌握待定系数法是解题的关键. 15.>【解析】【分析】根据抛物线的性质,抛物线上的点离对称轴越远,对应的函数值就越小,由x 取-3、0、1时,x 取0时所对应的点离对称轴最近,x 取-3与1时所对应的点离对称轴一样近,即可得到答案.【详解】∵抛物线y =﹣(x +1)2+m 开口向下,对称轴是直线x =−1,∴抛物线上的点离对称轴越远,对应的函数值就越小,∵x 取2时所对应的点离对称轴远,x 取1时所对应的点离对称轴近,∴y 1>y 2.故答案为:>【点睛】本题考查了二次函数图象上点的坐标特征,掌握函数值的变换是解决问题的关键16.1或6-【解析】【分析】设m+n=a ,原方程可化为a (a+5)=6,解方程求得a 值即可.【详解】设m+n=a ,∴a (a+5)=6,解得,126,1a a =-=.即m+n=-6或m+n=1.故答案为:-6或1.【点睛】本题考查了一元二次方程的解法,正确设出m+n 为a ,然后转化为解方程求得m+n 的值是解决问题的关键.【解析】【分析】将x=23代入方程求出m,再根据根与系数关系求另一个根. 【详解】当x=23时,3×(23)2+23m-8=0, 解得:m=10,设关于x 的方程3x 2+10x-8=0的另一根为n ,则有23n=-83, 解得:n=-4.故答案为:-4,10【点睛】本题考核知识点:一元二次方程根与系数关系.解题关键点:理解根与系数的关系. 18.【解析】【分析】根据题意列出S 与x 的二次函数解析式即可.【详解】设垂直于墙的一边为x 米,则平行于墙的一边为(10﹣2x )米,根据题意得:S =x (10﹣2x )=﹣2x 2+10x .故答案为:S =﹣2x 2+10x . 【点睛】本题考查了根据实际问题列二次函数关系式,弄清题意是解答本题的关键.19.(1)12x =, 26x =-;(2)原方程无解.【解析】【分析】(1)用因式分解法求解即可;(2)用求根公式法求解即可.【详解】解:(1)原方程变形为()()260x x -+=所以,()20x -=,()60x +=解得,12x =, 26x =-(2)5a =,4b =-, 1c =()224445140b ac ∆=-=--⨯⨯=-<所以,原方程无解.【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.20.(1)(2)(1,4) 【解析】解:(1)∵抛物线经过点A (3,0),B (-1,0), ∴抛物线的解析式为;,即, (2)∵抛物线的解析式为, ∴抛物线的顶点坐标为:(1,4)。

2019-2020学年重庆市九龙坡区九年级(上)第二次月考数学试卷解析版

2019-2020学年重庆市九龙坡区九年级(上)第二次月考数学试卷解析版

2019-2020学年重庆市九龙坡区九年级(上)第二次月考数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(4分)如图是由6个大小相同的正方体组成的几何体,它的左视图是()A.B.C.D.3.(4分)已知反比例函数y=﹣的图象上有两点A(x1,y1),B(x2,y2),且x1<x2<0,则y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.无法确定4.(4分)在函数y=中自变量x的取值范围在数轴上表示正确的为()A.B.C.D.5.(4分)如果两个相似三角形的面积比是1:2,那么它们的周长比是()A.1:2B.1:4C.1:D.2:16.(4分)一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字都是奇数的概率为()A.B.C.D.7.(4分)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系的位置如图所示,则下列结论中:(1)a>0;(2)b>0;(3)a﹣b+c>0;(4)2a+b=0,正确的有()A.1个B.2个C.3个D.4个8.(4分)如图所示,平地上一棵树高为6米,两次观察地面上的影子,第一次是当阳光与地面成60°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长()A.B.C.D.9.(4分)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为()A.51B.70C.76D.8110.(4分)已知y=ax2+bx+c(a≠0)的图象如图所示,则ax2+bx+c=n(a≠0,0<n<2)的方程的两实根x1,x2,则满足()A.1<x1<x2<3B.1<x1<3<x2C.x1<1<x2<3D.0<x1<1,且x2>311.(4分)如图为一座抛物线型的拱桥,AB、CD分别表示两个不同位置的水面宽度,O为拱桥顶部,水面AB宽为10米,AB距桥顶O的高度为12.5米,水面上升2.5米到达警戒水位CD位置时,水面宽为()米.A.5B.2C.4D.812.(4分)如图,A、B是双曲线y=(k≠0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S=3.则k的值为()△AOCA.2B.﹣2C.3D.﹣二、填空题(本大题共6小题,每小题4分,满分24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.(4分)分式的值为1,则m=.14.(4分)在Rt△ABC中,∠C=90°,若AB=5,sin A=,则AC=.15.(4分)育才中学体育文化节中,10个评委对该校初三年级入场式表演的打分情况如下:则初三年级入场式表演得分的中位数为.16.(4分)如图,E是▱ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,=,则CF的长为.17.(4分)有四张正面分别标有﹣1,0,1,2的不透明的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中取出一张,将卡片上的数字记为a,不放回,再取出一张,将卡片上的数字记为b,能使得方程ax2﹣x+=0有解,且直线y=x﹣(a+b)不经过第四象限的概率是.18.(4分)如图,矩形ABCD的边AB=4,BC=7,E为BC上一点,BE=3,连接AE,将矩形ABCD沿AE翻折,翻折后点B与点B′对应,点A与A′对应,再将所得△A′B′E绕着点E 旋转,线段A′B′与线段AE交于点P,当PA′=时,△B′AP为等腰三角形.三、解答题:解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程做在答题卷上.19.(14分)(1)计算:+(﹣2)2﹣(π﹣2015)0×|﹣6|﹣tan60°(2)解方程组:.20.(6分)如图,在△ABC中,AD⊥BC于D,tan∠BAD=,∠ACD=45°,AB=5,求AC的长.21.(10分)先化简,再求值:+÷(2﹣a﹣),其中a是不等式﹣>1的最大整数解.22.(6分)如图,Rt△ABO的顶点A是双曲线y=(k≠0)与直线y=﹣x﹣(k+1)在第二象限=.的交点,AB⊥x轴于B,点C是双曲线与直线的另一个交点,且S△ABO(1)求这两个函数的解析式;(2)直接写出使一次函数的值大于反比例函数的值的x的取值范围.23.(8分)西宁市教育局自实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法列出所有等可能的结果,并求出所选两位同学恰好是一位男同学和一位女同学的概率.24.(10分)某商场经销一种销售成本为每千克40元的化工商品,据市场分析,若每千克50元销售,每月能售出500千克,销售单价每涨1元,月销售量就减少10千克,设销售单价是为每千克x元,月销售利润为y元.(1)求y与x的函数关系式?(不必写出x的取值范围)(2)商场想在月销售成本不超过9000元的情况下,使得月销售利润达到8000元,那么销售单价应定为多少?(3)该商场希望月销售利润达到最大,则销售单价应定为多少?此时最大月销售利润为多少?25.(12分)如图1,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,直线l经过点C,AF⊥l于点F,BE⊥l于点E,点D是AB的中点,连接ED.(1)求证:△ACF≌△CBE;(2)求证:AF=BE+DE;(3)如图2,将直线l旋转到△ABC的外部,其他条件不变,(2)中的结论是否仍然成立,如果成立请说明理由,如果不成立AF、BE、DE又满足怎样的关系?并说明理由.26.(12分)如图,抛物线y=x2+x﹣2与x轴交于A、B两点,(A点在B点左边),与y轴交于点C,连接AC、BC.(1)求点A、B、C的坐标;(2)M为该抛物线对称轴上一点,是否存在以AC为斜边的直角三角形MAC?若存在,求点M 的坐标,并求三角形MAC的面积;若不存在,请说明理由;(3)D为第三象限抛物线上一动点,直线DE∥y轴交线段AC于E点,过D点作DF∥CB交AC 于F点,求△DEF周长的最大值和此时点F的坐标.参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.解:根据相反数的定义,﹣2的相反数是2.故选:A.2.解:从物体左面看,是左边2个正方形,右边1个正方形.故选:A.3.解:∵反比例函数y=﹣的k=﹣2<0,可见函数位于二、四象限,∵x1<x2<0,可见A(x1,y1)、B(x2,y2)位于第二象限,由于在二四象限内,y随x的增大而增大,∴y1<y2.故选:A.4.解:函数y=中自变量x的取值范围x>1,故选:C.5.解:∵两个相似三角形的面积比是1:2,∴这两个相似三角形的相似比是1:,∴它们的周长比是1:.故选:C.6.解:列表如下:所有等可能的情况有12种,其中两个乒乓球都是奇数的情况有:(1,3),(3,1),则P==.故选:B.7.解:∵抛物线开口向下,∴a<0,故①错误;∵﹣>0,a<0,∴a与b异号,∴b>0,故②正确;∵抛物线与y轴交于负半轴,∴c<0,∴abc<0,故①正确;∵当x=﹣1时,y>0,∴a﹣b+c>0,故③正确;∵抛物线的对称轴x=﹣=2,∴b=﹣4a,∴2a+b=2a﹣4a=﹣2a,∵a<0,∴﹣2a>0,∴2a+b>0,故④错误.故选:B.8.解:第一次观察到的影子长为6×cot60°=2(米);第二次观察到的影子长为6×cot30°=6(米).两次观察到的影子长的差=6﹣2=4(米).故选:B.9.方法一:解:观察图形得到第①个图形中棋子的个数为1=1+5×0;第②个图形中棋子的个数为1+5=6;第③个图形中棋子的个数为1+5+10=1+5×3=16;…所以第n个图形中棋子的个数为1+5(1+2+…+n﹣1)=1+,当n=6时,1+=76故选C.方法二:n=1,s=1;n=2,s=12;n=3,s=20,设s=an2+bn+c,∴,∴a=,b=﹣,c=1,∴s=n2﹣n+1,把n=6代入,∴s=76.方法三:,,,,,∴a6=16+15+20+25=76.10.解:根据题意画出图形,如图所示:在图形中作出y=n(0<n<2),两交点的横坐标分别为x1,x2,则0<x1<1,且x2>3.故选:D.11.解:如图,建立如图所示的平面直角坐标系,∵水面AB宽为10米,AB距桥顶O的高度为12.5米,∴B(5,﹣12.5),设抛物线的解析式为:y =ax 2,把B (5,﹣12.5)代入y =ax 2得﹣12.5=25a , ∴a =﹣,∴抛物线的解析式为:y =﹣x 2, ∵水面上升2.5米到达警戒水位CD 位置,∴设D (m ,﹣10),代入y =﹣x 2得:﹣10=﹣x 2,∴x =±2,∴CD =4,∴水面宽为4米.故选:C .12.解:分别过点A 、B 作AF ⊥y 轴于点F ,AD ⊥x 轴于点D ,BG ⊥y 轴于点G ,BE ⊥x 轴于点E , ∵k >0,点A 是反比例函数图象上的点,∴S △AOD =S △AOF =,∵A 、B 两点的横坐标分别是a 、3a , ∴AD =3BE ,∴点B 是AC 的三等分点, ∴DE =2a ,CE =a ,∴S △AOC =S 梯形ACOF ﹣S △AOF =(OE +CE +AF )×OF ﹣=×5a ×﹣=3,解得k =(舍去)或k =﹣. 故选:D .二、填空题(本大题共6小题,每小题4分,满分24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.解:根据题意,可得:,解得:m=5,检验,当m=5时,最简公分母m﹣2≠0,∴m=5是原分式方程的解.故答案为:5.14.解:∵在Rt△ABC中,∠C=90°,AB=5,sin A=,sin A=,∴BC=3.∴AC=.故答案为:4.15.解:处于中间位置的两个数是10和9,那么由中位数的定义可知,这组数据的中位数是(10+9)÷2=9.5.故答案为:9.5.16.解:∵四边形ABCD是平行四边形,∴BC=AD=4,AB∥CD,∴△FEC∽△FAB,∴==,∴=,∴CF=BC=×4=2.故答案为:2.17.解:∵从四张正面分别标有﹣1,0,1,2的不透明的卡片中,取出一张,将卡片上的数字记为a,不放回,再取出一张,将卡片上的数字记为b,∴共有(﹣1,0),(﹣1,1),(﹣1,2),(0,1),(0,2),(1,2)种组合,∵方程ax 2﹣x +=0有解,∴1﹣2ab ≥0,解得:ab ≤,∵直线y =x ﹣(a +b )不经过第四象限,∴﹣(a +b )>0,∴a +b <0,∴满足条件的只有(﹣1,0)一种可能,∴能使得方程ax 2﹣x +=0有解,且直线y =x ﹣(a +b )不经过第四象限的概率是,故答案为:.18.解:∵AB =4,BE =3,∴AE =5,∵△B ′AP 为等腰三角形,∴PA =PB ′,设PA =PB ′=x ,则PA ′=4﹣x ,PE =5﹣x ,作PG ⊥A ′E 于G ,∵∠PA ′G =∠BAE ,∴cos ∠PA ′G =cos ∠BAE ,∴==,∴A ′G =(4﹣x ),∵A ′E =AE =5,∴GE =5﹣(4﹣x ),∵PA ′2﹣A ′G 2=PE 2﹣GE 2,∴(4﹣x )2﹣[(4﹣x )]2=(5﹣x )2﹣[5﹣(4﹣x )]2解得x =2.4,故当PA ′=2.4时,△B ′AP 为等腰三角形.故答案为2.4.三、解答题:解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程做在答题卷上.19.解:(1)原式=3+4﹣6﹣=2﹣2;(2),①+②×4得:9x=63,即x=7,把x=7代入①得:y=2,则方程组的解为.20.解:∵AD⊥BC于D,∴∠ADB=∠ADC=90°,∵tan∠BAD=,∴设BD=x,AD=2x,∴AB==x=5,∴x=,2x=2,∴AD=2,∵∠ACD=45°,∴AD=CD=2,∴AC==2.21.解:解不等式式﹣>1,去分母,得2(x﹣1)﹣(3x+2)>6,去括号,得2x﹣2﹣3x﹣2>6,移项,得2x﹣3x>6+2+2,合并同类项,得﹣x>10,系数化为1得x<﹣10.则a=﹣11.原式=+÷=+÷=﹣•=﹣==﹣.当a=﹣11时,原式=﹣=﹣.22.解:(1)∵反比例函数y=的图象在二、四象限,∴k<0,=|k|=,∵S△ABO∴k=﹣3,∴双曲线的解析式为:y=﹣,直线y=﹣x﹣(k+1)的解析式为:y=﹣x﹣(﹣3+1),即y=﹣x+2;(2)∵把一次函数与反比例函数的解析式组成方程组,得,解得,,∴A(﹣1,3),C(3,﹣1);∵一次函数的解析式为:y=﹣x+2,∴令y=0,则﹣x+2=0,即x=2,∴直线AC与x轴的交点D(2,0),∵A(﹣1,3),C(3,﹣1),∴当x<﹣1或0<x<3时,一次函数的值大于反比例函数的值.23.解:(1)(1+2)÷15%=20人;(2)C组人数为:20×25%=5人,所以,女生人数为5﹣3=2人,D组人数为:20×(1﹣15%﹣50%﹣25%)=20×10%=2人,所以,男生人数为2﹣1=1人,补全统计图如图;(3)画树状图如图:所有等可能结果:男男、男女、女男、女女、女男、女女,P(一男一女)==.24.解:(1)当销售单价定为每千克x元时,月销售量为:[500﹣(x﹣50)×10]千克.每千克的销售利润是:(x﹣40)元,所以月销售利润为:y=(x﹣40)[500﹣(x﹣50)×10]=(x﹣40)(1000﹣10x)=﹣10x2+1400x ﹣40000,∴y与x的函数解析式为:y=﹣10x2+1400x﹣40000;(2)设销售单价为x元,根据题意得:(x﹣40)[500﹣10(x﹣50)]=8000,即x2﹣140x+4800=0,解得x1=60,x2=80,当x=60时,月销售成本40×[500﹣(60﹣50)×10]=16000>9000元,∴x=60元不合题意,舍去;当x=80月销售成本40×[500﹣(80﹣50)×10]=8000元<9000元,∴销售单价应定为每千克80元;则月销售利润达到8000元,销售单价应定为80元;(3)由(1)的函数可知:y=﹣10(x﹣70)2+9000因此:当x=70时,y max=9000元,即:当售价是70元时,利润最大为9000元.25.证明:(1)∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠ACF,∵AF⊥l于点F,∴∠AFC=90°,在△BCE与△ACF中,,∴△ACF≌△CBE;(2)如图1,连接DF,CD,∵点D是AB的中点,∴CD=BD,∠CDB=90°,∵△ACF≌△CBE,∴BE=CF,CE=AF,∵∠EBD=∠DCF,在△BDE与△CDF中,,∴△BDE≌△CDF,∴∠EDB=∠FDC,DE=DF,∵∠CDF+∠FDB=90°,∠EDB+∠BDF=90°,∴∠EDF=90°,∴△EDF是等腰直角三角形,∴EF=DE,∴AF=CE=EF+CF=BE+DE;(3)不成立,BE+AF=DE,连接CD,DF,由(1)证得△BCE≌△ACF,∴BE=CF,CE=AF,由(2)证得△DEF是等腰直角三角形,∴EF=DE,∵EF=CE+CF=AF+BE=DE.即AF+BE=DE.26.解:(1)令y=0,则x2+x﹣2=0,解得x1=﹣4,x2=1.令x=0,则y=﹣2,所以A、B、C的坐标分别是A(﹣4,0)、B(1,0)、C(0,﹣2);(2)∵y=x2+x﹣2=(x+)2﹣,∴对称轴为x=﹣,设M(﹣,n),∵A(﹣4,0)、C(0,﹣2);∴MA2=(﹣+4)2+n2=+n2,MC2=(﹣)2+(n+2)2=n2+4n+,AC2=42+22=20,∵△MAC是以AC为斜边的直角三角形,∴MA2+MC2=AC2,即+n2+n2+4n+=20,解得n=﹣1±,∴M(﹣,﹣1+)或(﹣,﹣1﹣);由A(﹣4,0)、C(0,﹣2)可知直线AC的解析式为y=﹣x﹣2,把x=﹣代入得,y=﹣,∴直线AB与对称轴的交点为(﹣,﹣),当M(﹣,﹣1+)时,S=(﹣1++)×4=;△MAC当M(﹣,﹣1﹣)时,S=(﹣+1+)×4=;△MAC(3)∵直线AC的解析式为y=﹣x﹣2,设点D的横坐标为t,∴D(t,t2+t﹣2),E(t,﹣t﹣2),∴DE=(﹣t﹣2)﹣(t2+t﹣2)=﹣t2﹣2t,∵A(﹣4,0)、B(1,0)、C(0,﹣2);∴OA=4,OC=2,OB=1,∴AC=,BC=,AB=5,∵AC2+BC2=AB2=25,∴∠ACB=90°,∵DF∥CB,∴∠DFE=90°,∵DE∥y轴,∴∠ACO=∠DEF,∵∠DFE=∠AOC=90°,∴△DEF∽△ACO,∴==,∵△ACO的周长=OA+OC+AC=4+2+=6+2,∴△DEF的周长=(﹣t2﹣2t)=﹣(t+2)2+,∴当t=﹣2时,△DEF周长的最大值=,此时D(﹣2,﹣3),∵直线AC的解析式为y=﹣x﹣2,∴设直线DF的解析式为y=2x+b,把D(﹣2,﹣3)代入得,﹣3=﹣4+b,∴b=1,∴线DF的解析式为y=2x+1解得,∴F(﹣,﹣).。

九年级(上)月考数学试卷(9月份)

九年级(上)月考数学试卷(9月份)

2019-2020年九年级(上)月考数学试卷(9月份)一、选择题1.下列运算正确的是()A.B.C.D.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=93.下列二次根式中与是同类二次根式的是()A.B.C.D.4.若,则=()A.B.C.D.5.如图,已知D、E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE :S四边形DBCE=1:8,那么AE:AC等于()A.1:9 B.1:3 C.1:8 D.1:26.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.07.如图,等边三角形ABC的边长为4,点P为BC边上一点,且BP=1,点D为AC边上一点.若∠APD=60°,则CD的长为()A. B. C. D.18.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.4二、填空题9.=2x﹣3,x的取值范围是.10.如图,△ABC是一块锐角三角形材料,边BC=80mm,高AD=60mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是mm.11.如图所示,在四边形ABCD中,AD∥BC,如果要使△ABC∽△DCA,那么还要补充的一个条件是.(只要求写出一个条件即可)12.小亮的身高是1.6米,某一时刻他在水平面上的影长是2米,若同一时刻测得附近一古塔在水平地面上的影长为20米,则古塔的高度是米.13.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是.14.如图,在△ABC中,∠B=90°,AB=3厘米,BC=4厘米,点P从A沿AB边向点B以1厘米/秒的速度移动,点Q从B沿BC边向点C以2厘米/秒的速度移动,如P与Q同时出发,且当一点移动到端点并停止时,另一点也同时停下,秒后三角形PBQ的面积为2平方厘米.三、解答题15.(1)计算:﹣﹣;(2)计算:()﹣2﹣|2﹣3|+.16.解方程:(1)x2﹣2x=0;(2)30x2﹣45=0.17.解方程:x2+3x+1=0.18.解方程:(x﹣5)(x﹣6)=x﹣5.19.已知y=++3,求﹣的值.20.某企业xx年盈利3000万元,xx年克服全球金融危机的不利影响,仍实现盈利4320万元,从xx年到xx年,如果该企业每年盈利的年增长率相同,求:(1)该企业每年盈利的年增长率?(2)若该企业盈利的年增长率继续保持不变,预计xx年盈利多少万元?21.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.22.已知▱ABCD的两边AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,当m 为何值时,四边形ABCD是菱形?求出这时菱形的边长.23.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.24.如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF ⊥AE于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.xx吉林省长春108中学九年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题1.下列运算正确的是()A. B. C. D.【考点】二次根式的混合运算.【分析】根据二次根式的混合运算的相关知识进行解答.需要注意的是,无论怎么化简、变形,原式值的符号不能改变.【解答】解:A、原式=6×=3,故A错误;B、原式=﹣,故B错误;C、a2=a2×=a,故C错误;D、原式=3﹣2=,故D正确.故选D.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.3.下列二次根式中与是同类二次根式的是()A. B. C. D.【考点】同类二次根式.【分析】根据同类二次根式的定义,先化简,再判断.【解答】解:A、=2,与的被开方数不同,不是同类二次根式,故A选项错误;B、=,与的被开方数不同,不是同类二次根式,故B选项错误;C、=,与的被开方数不同,不是同类二次根式,故C选项错误;D、=3,与的被开方数相同,是同类二次根式,故D选项正确.故选:D.4.若,则=()【考点】比例的性质.【分析】由题干可得2b=3a ﹣3b ,根据比等式的性质即可解得a 、b 的比值.【解答】解:∵,∴5b=3a ,∴,故选D .5.如图,已知D 、E 分别是△ABC 的AB ,AC 边上的点,DE ∥BC ,且S △ADE :S 四边形DBCE =1:8,那么AE :AC 等于( )A .1:9B .1:3C .1:8D .1:2【考点】相似三角形的判定与性质.【分析】由题可知:△ADE ∽△ABC ,相似比为AE :AC ,由S △ADE :S 四边形DBCE =1:8,得S △ADE :S △ABC =1:9,根据相似三角形面积的比等于相似比的平方.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴S △ADE :S △ABC =AE 2:AC 2,∵S △ADE :S 四边形DBCE =1:8,∴S △ADE :S △ABC =1:9,∴AE :AC=1:3.故选B .6.关于x 的一元二次方程(m ﹣1)x 2+5x +m 2﹣3m +2=0的常数项为0,则m 等于( ) A .1 B .2 C .1或2 D .0【考点】一元二次方程的一般形式.【分析】根据一元二次方程成立的条件及常数项为0列出方程组,求出m 的值即可.【解答】解:根据题意,知,,解方程得:m=2.故选:B .7.如图,等边三角形ABC 的边长为4,点P 为BC 边上一点,且BP=1,点D 为AC 边上一点.若∠APD=60°,则CD 的长为( )【考点】相似三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形性质求出AB=BC=AC=4,∠B=∠C=60°,推出∠BAP=∠DPC,证△BAP∽△CPD,得出=,代入求出即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∴∠BAP+∠APB=180°﹣60°=120°,∵∠APD=60°,∴∠APB+∠DPC=180°﹣60°=120°,∴∠BAP=∠DPC,即∠B=∠C,∠BAP=∠DPC,∴△BAP∽△CPD,∴=,∵AB=BC=4,CP=BC﹣BP=4﹣1=3,BP=1,即=,解得:CD=,故选C.8.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.4【考点】相似三角形的判定.【分析】由图可知△ABC与△ACD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【解答】解:有三个.①∠B=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中∠A不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选:C.二、填空题9.=2x﹣3,x的取值范围是x≥.【考点】二次根式的性质与化简.【分析】根据公式=|a|,可得出x的取值范围.【解答】解:∵=2x﹣3,∴3﹣2x≤0,解得x≥,∴x的取值范围是x≥,故答案为x≥.10.如图,△ABC是一块锐角三角形材料,边BC=80mm,高AD=60mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是mm.【考点】相似三角形的应用.【分析】如图,设正方形EFGH的边长为x,EF与AD交于点K.由EF∥BC,得到△AEF ∽△ABC,得到=,得=,列方程即可.【解答】解:如图,设正方形EFGH的边长为x,EF与AD交于点K.∵EF∥BC,∴△AEF∽△ABC,∴=,∴=,∴x=,故答案为.11.如图所示,在四边形ABCD中,AD∥BC,如果要使△ABC∽△DCA,那么还要补充的一个条件是∠B=∠DCA或∠BAC=∠D或.(只要求写出一个条件即可)【考点】相似三角形的判定.【分析】本题主要根据平行推出角的等量关系,再根据对应边的关系,利用两三角形相似的判定定理,做题即可.【解答】解:∵AD∥BC∴∠DAC=∠ACB∴当∠B=∠DCA或∠BAC=∠D或AD:AC=AC:BC∴都可得相似.答案不唯一,如∠B=∠DCA或∠BAC=∠D或AD:AC=AC:BC.12.小亮的身高是1.6米,某一时刻他在水平面上的影长是2米,若同一时刻测得附近一古塔在水平地面上的影长为20米,则古塔的高度是16米.【考点】相似三角形的应用;平行投影.【分析】利用相似及投影知识解题,因为某一时刻,实际高度和影长之比是一定的,进而得出答案.【解答】解:由题意可得:=,解得:古塔的高=16,故答案为:16.13.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是(32﹣2x)(20﹣x)=570.【考点】由实际问题抽象出一元二次方程.【分析】设宽为xm,从图(2)可看出剩下的耕田面积可平移成长方形,且能表示出长和宽,从而根据面积可列出方程.【解答】解:设宽为xm,(32﹣2x)(20﹣x)=570.故答案为:(32﹣2x)(20﹣x)=570.14.如图,在△ABC中,∠B=90°,AB=3厘米,BC=4厘米,点P从A沿AB边向点B以1厘米/秒的速度移动,点Q从B沿BC边向点C以2厘米/秒的速度移动,如P与Q同时出发,且当一点移动到端点并停止时,另一点也同时停下,1秒或2秒后三角形PBQ 的面积为2平方厘米.【考点】一元二次方程的应用.【分析】根据题意表示出BP,BQ的长,进而利用三角形面积求出答案.【解答】解:设x秒后三角形PBQ的面积为2平方厘米,根据题意可得:BP=3﹣x,BQ=2x,故×2x(3﹣x)=2,解得:x1=1,x2=2,故1或2秒后三角形PBQ的面积为2平方厘米.故答案为:1或2.三、解答题15.(1)计算:﹣﹣;(2)计算:()﹣2﹣|2﹣3|+.【考点】实数的运算;负整数指数幂.【分析】(1)原式化简后,合并即可得到结果;(2)原式利用负整数指数幂法则,绝对值的代数意义,以及分母有理化计算即可得到结果.【解答】解:(1)原式=3﹣﹣2=﹣;(2)原式=4﹣3+2+=1+.16.解方程:(1)x2﹣2x=0;(2)30x2﹣45=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)原方程有公因式x,先提取公因式,然后再分解因式求解;(2)系数化为1后,利用直接开平方法求出方程的解.【解答】解:(1)∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.(2)∵30x2﹣45=0,∴x2=,∴x=±,∴x1=,x2=﹣17.解方程:x2+3x+1=0.【考点】解一元二次方程-公式法.【分析】先找出a,b,c,再求出△,代入求根公式即可.【解答】解:a=1,b=3,c=1,…∴△=b2﹣4ac=9﹣4×1×1=5>0,…∴x=﹣3±,…∴x1=﹣3+,x2=﹣3﹣….18.解方程:(x﹣5)(x﹣6)=x﹣5.【考点】解一元二次方程-因式分解法.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:(x﹣5)(x﹣6)﹣(x﹣5)=0,分解因式得:(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7.19.已知y=++3,求﹣的值.【考点】分式的化简求值;二次根式有意义的条件.【分析】先算括号里面的,再算除法,最后求出x、y的值代入进行计算即可.【解答】解:原式=﹣==,∵与有意义,∴,解得x=2,∴y=3,∴原式==﹣9.20.某企业xx年盈利3000万元,xx年克服全球金融危机的不利影响,仍实现盈利4320万元,从xx年到xx年,如果该企业每年盈利的年增长率相同,求:(1)该企业每年盈利的年增长率?(2)若该企业盈利的年增长率继续保持不变,预计xx年盈利多少万元?【考点】一元二次方程的应用.【分析】(1)设每年盈利的年增长率为x,就可以表示出xx年的盈利,根据xx年的盈利为4320万元建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.【解答】解:(1)设每年盈利的年增长率为x,根据意,得3000(1+x)2=4320解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得4320(1+0.2)=5184万元答:预计xx年该企业盈利5184万元.21.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.【考点】相似三角形的判定与性质;三角形内角和定理.【分析】(1)从图中得到AC=3,CD=2,BC=6,CE=4,∠ACB=∠DCE=90°,故有,所以△ACB∽△DCE;(2)由1知,∠B=∠E,可得∠B+∠A=∠E+A=180°﹣∠AFE=90°,即∠EFA=90°,故EF ⊥AB.【解答】证明:(1)∵,,∴.又∵∠ACB=∠DCE=90°,∴△ACB∽△DCE.(2)∵△ACB∽△DCE,∴∠ABC=∠DEC.又∵∠ABC+∠A=90°,∴∠DEC+∠A=90°.∴∠EFA=90°.∴EF⊥AB.22.已知▱ABCD的两边AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,当m 为何值时,四边形ABCD是菱形?求出这时菱形的边长.【考点】菱形的判定;根的判别式.【分析】由题意可知:AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,也就是方程有两个相等的实数根,利用根的判别式为0即可求得m,进而求得方程的根即为菱形的边长.【解答】解:∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5.故当m=1时,四边形ABCD是菱形,菱形的边长是0.5.23.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.【考点】一元二次方程的应用.【分析】可设矩形草坪BC边的长为x米,则AB的长是,根据长方形的面积公式列出一元二次方程求解.【解答】解:设BC边的长为x米,则AB=CD=米,根据题意得:×x=120,解得:x1=12,x2=20,∵20>16,∴x2=20不合题意,舍去,答:矩形草坪BC边的长为12米.24.如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF ⊥AE于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.【考点】相似三角形的判定;正方形的性质.【分析】(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.【解答】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)解:若△EFP∽△ABE,则∠PEF=∠EAB.∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE==2,∴EF=AE=.∵,即,∴PE=5,即x=5.∴满足条件的x的值为2或5.xx年12月12日23216 5AB0 媰29913 74D9 瓙33039 810F 脏40267 9D4B 鵋R20983 51F7 凷30721 7801 码23662 5C6E 屮Y32954 80BA 肺9?39290 997A 饺!20537 5039 倹。

湖北省武汉二中广雅中学2019-2020学年九年级(上)月考数学试卷(9月份)解析版

湖北省武汉二中广雅中学2019-2020学年九年级(上)月考数学试卷(9月份)解析版

湖北省武汉二中广雅中学2019-2020学年九年级(上)月考数学试卷(9月份)一、选择题(共10小题,每小题3分,共30分)1.(3分)下列四个图案中,是中心对称图案的是( )A .B .C .D . 2.(3分)点P (2,3)关于原点的对称点Q 的坐标是( )A .(﹣2,3)B .(2,﹣3)C .(3,2)D .(﹣2,﹣3)3.(3分)抛物线y =﹣(x +)2﹣3的顶点坐标是( )A .(,﹣3)B .(﹣,﹣3)C .(,3)D .(﹣,3) 4.(3分)用配方法解方程x 2+2x ﹣1=0时,配方结果正确的是( )A .(x +2)2=2B .(x +1)2=2C .(x +2)2=3D .(x +1)2=3 5.(3分)如图,已知△OAB 是正三角形,OC ⊥OA ,OC =OA .将△OAB 绕点O 按逆时针方向旋转,使得OB 与OC 重合,得到△OCD ,则旋转的角度是( )A .150°B .120°C .90°D .60°6.(3分)如图所示的Rt △ABC 向右翻滚,下列说法正确的有( )(1)①⇒②是旋转(2)①⇒③是平移(3)①⇒④是平移(4)②⇒③是旋转.A .1种B .2种C .3种D .4种7.(3分)已知函数y =(k ﹣3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠38.(3分)已知A(x1,﹣1)、B(x2,﹣2)两点都在抛物线y=﹣x2+2x+3上,且x1>1,x2>1,则x1、x2的大小关系为()A.x1>x2B.x1<x2C.x1=x2D.无法确定9.(3分)宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A.(180+x﹣20)(50﹣)=10890B.(x﹣20)(50﹣)=10890C.x(50﹣)﹣50×20=10890D.(x+180)(50﹣)﹣50×20=1089010.(3分)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)抛物线y=4x2﹣8x+3的对称轴是直线.12.(3分)x1、x2是方程x2+5x﹣3=0的两个根,则x1﹣x1x2+x2=.13.(3分)已知点A(a,b)绕着(0,﹣1)旋转180°得到B(﹣4,1),则A点坐标为.14.(3分)将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是.15.(3分)将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是cm2.16.(3分)如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC=.三、解答题(共8题,共72分)17.(8分)解方程:(1)x2﹣4x﹣7=0(用公式法)(2)x2﹣2x﹣24=018.(8分)如图,△AEC绕A点顺时针旋转60°得△APB,∠PAC=20°,求∠BAE.19.(8分)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值,并求此时该方程的根.20.(8分)参加足球联赛的每两队之间都进行两场比赛.共要比赛90场.共有多少个队参加比赛?21.(8分)如图,在平面直角坐标系中,已知A(﹣2,﹣4)、B(0,﹣4)、C(1,﹣1)(1)画出△ABC绕O点逆时针旋转90°后的图形△A1B1C1,并写出C1的坐标;(2)将(1)中所得△A1B1C1先向左平移4个单位,再向上平移2个单位得到△A2B2C2,画出△A2B2C2,则C2(,)(3)若△A2B2C2可以看作△ABC绕某点旋转得来,则旋转中心的坐标为.22.(10分)如图,有长为24米的篱笆,一面利用长为10m的墙,围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2(1)设BC=y,求y与x的关系式,并写出自变量x的取值范围;(2)如果要围成面积为45m2的花圃,AB的长是多少?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法,如果不能,请说明理由.23.(10分)如图,点E是正方形ABCD中CD边上任意一点,AB=4,以点A为中心,把△ADE 顺时针旋转90°得到△AD′F(1)画出旋转后的图形,求证:点C、B、F三点共线;(2)AG平分∠EAF交BC于点G.①如图2,连接EF.若BG:CE=5:6,求△AEF的面积;②如图3,若BM、DN分别为正方形的两个外角角平分线,交AG、AE的延长线于点M、N.当MM∥DC时,直接写出DN的长.24.(12分)如图,已知直线y=x+2交x轴、y轴分别于点A、B,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣,且抛物线经过A、B两点,交x轴于另一点C.(1)求抛物线的解析式;(2)点M是抛物线x轴上方一点,∠MBA=∠CBO,求点M的坐标;(4)过点A作AB的垂线交y轴于点D,平移直线AD交抛物线于点E、F两点,连结EO、FO.若△EFO为以EF为斜边的直角三角形,求平移后的直线的解析式.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.解:A、该图形不是中心对称图形,故本选项错误;B、该图形是中心对称图形,故本选项正确;C、该图形不是中心对称图形,故本选项错误;D、该图形旋转180度,阴影部分不能重合,故不是中心对称图形,故本选项错误;故选:B.2.解:根据中心对称的性质,可知:点P(2,3)关于原点O的对称点的坐标为(﹣2,﹣3).故选:D.3.解:y=﹣(x+)2﹣3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3).故选:B.4.解:∵x2+2x﹣1=0,∴x2+2x+1=2,∴(x+1)2=2.故选:B.5.解:∵△OAB是正三角形,∴∠BOA=60°,∵OC⊥OA,∴∠AOC=90°,∴∠BOC=∠BOA+∠AOC=60°+90°=150°,即旋转角是150°,故选:A.6.解:观察图形可知,(1)(3)(4)说法正确;(2)①⇒③需要改变旋转中心,经过两次旋转得到,不属于平移,错误;正确的有三种,故选C.7.解:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,△=b2﹣4ac=22﹣4(k﹣3)×1=﹣4k+16≥0,k≤4;②当k﹣3=0时,y=2x+1,与x轴有交点.故选:B.8.解:∵抛物线y=﹣x2+2x+3的对称轴x=1,x1>1,x2>1,∴A、B在对称轴的右侧,抛物线开口向下,∵﹣1>﹣2,∴x1<x2,故选:B.9.解:设房价定为x元,根据题意,得(x﹣20)(50﹣)=10890.故选:B.10.解:抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∵y=a(x﹣1)2﹣4a,∴当x=1时,二次函数有最小值﹣4a,所以①正确;当x=4时,y=a•5•1=5a,∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,所以②错误;∵点C(4,5a)关于直线x=1的对称点为(﹣2,5a),∴当y2>y1,则x2>4或x<﹣2,所以③错误;∵b=﹣2a,c=﹣3a,∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正确.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.解:∵y=4x2﹣8x+3,∴抛物线对称轴为x=﹣=1,故答案为:x=1.12.解:∵x1、x2是方程x2+5x﹣3=0的两个根,∴x1+x2=﹣5,x1x2=﹣3,∴x1﹣x1x2+x2=x1+x2﹣x1x2=﹣5﹣(﹣3)=﹣2.故答案是:﹣2.13.解:∵点A(a,b)绕着(0,﹣1)旋转180°得到B(﹣4,1),∴点(0,﹣1)为AB的中点,∴0=,1=,解得a=4,b=﹣3,∴A点坐标为(4,﹣3).故答案为(4,﹣3).14.解:抛物线y=(x﹣1)2+3的顶点坐标为(1,3),把点(1,3)向左平移1个单位得到点的坐标为(0,3),所以平移后抛物线解析式为y=x2+3,所以得到的抛物线与y轴的交点坐标为(0,3).故答案为(0,3).15.解:∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴阴影部分的面积=×5×tan30°×5=.16.解:如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∵AB=AC,AH⊥BC,∴∠BAP=∠CAP,∵PA=PA,∴△BAP≌△CAP(SAS),∴PC=PB,∵MG=PB,AG=AP,∠GAP=60°,∴△GAP是等边三角形,∴PA=PG,∴PA+PB+PC=CP+PG+GM,∴当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,∵AP+BP+CP的最小值为2,∴CM=2,∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,作BN⊥AC于N.则BN=AB=1,AN=,CN=2﹣,∴BC===﹣.故答案为﹣.三、解答题(共8题,共72分)17.解:(1)∵a=1,b=﹣4,c=﹣7,∴△=16﹣4×1×(﹣7)=44>0,则x==2±,∴x1=2+,x2=2﹣;(2)∵x2﹣2x﹣24=0,∴(x+4)(x﹣6)=0,则x+4=0或x﹣6=0,解得:x1=﹣4,x2=6.18.解:根据旋转的性质可得△ABP≌△ACE,AC与AB是对应边,∠BAC=∠BAP+∠PAC=60°,∵∠PAC=20°,∴∠CAE=∠BAP=40°,∴∠BAE=∠BAC+∠CAE=100°.19.解:∵关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,∴,即,解得:k=2.当k=2时,原方程为x2﹣x+==0,解得:x1=x2=.20.解:设共有x个队参加比赛,根据题意得:2×x(x﹣1)=90,整理得:x2﹣x﹣90=0,解得:x=10或x=﹣9(舍去).故共有10个队参加比赛.21.解:(1)△A1B1C1如图所示,C1(1,1);(2)△A2B2C2如图所示;故答案为:﹣3,3.(3)如图所示,旋转中心为P(﹣3,﹣1).故答案为:(﹣3,﹣1).22.解:(1)由题可知,花圃的宽AB为x米,则BC为(24﹣3x)米这时面积y=24﹣3x(0<x<8).(2)由条件﹣3x2+24x=45化为x2﹣8x+15=0解得x1=5,x2=3∵0<24﹣3x≤10得≤x<8∴x=3不合题意,舍去即花圃的宽为5米.(3)S=﹣3x2+24x=﹣3(x2﹣8x)=﹣3(x﹣4)2+48(≤x<8)∴当x=时,S有最大值48﹣3(﹣4)2=46故能围成面积比45米2更大的花圃.围法:24﹣3×=10,花圃的长为10米,宽为4米,这时有最大面积46平方米.23.(1)证明:旋转后的图形如图1中所示,∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,∵∴点D′与点B重合,∵∠AD′F=90°,∴∠AD′F+′AD′C=180°,∴C,B,F共线.(2)①解:如图2中,连接EG.∵∠BAF=∠DAE,∴∠EAF=∠DAB=90°,∵AG平分∠EAF,∴∠EAG=×90°=45°,∴∠FAG=∠FAB+∠BAG=∠BAG+∠DAE=45°,∴∠FAG=∠EAG,∵AG=AG,AF=AE,∴△GAE≌△GAF(SAS),∴FG=EG,∴EG=BF+BG=DE+BG,∵BG:CE=5:6,∴可以假设BG=5k,CE=6k,则DE=4﹣6k,CG=4﹣5k,EG=4﹣k,在Rt△EGC中,∵EG2=EC2+CG2,∴(4﹣k)2=(6k)2+(4﹣5k)2,∴k=,∴DE=,∴AE=AF==,=•AE•AF=.∴S△AEF②解:如图3中,连接EG,延长MN交AD的延长线于点P,作MQ⊥AB交AB的延长线于点Q.由题意可知:△PDN,△BMQ都是等腰直角三角形,设DP=PN=x,BG=a,DE=b.∵四边形AQMP是矩形,∴MQ=BQ=AP=4+x,∵DE∥PN,∴=,即=①,∵BG∥MQ,∴=,即=②在Rt△BCG中,∵EG2=EC2+CG2,∴(a+b)2=(4﹣a)2+(4﹣b)2③,由①②③可得x=2﹣2或﹣2﹣2(舍弃)∴DN=x=2﹣2.24.解:(1)∵直线y=x+2交x轴、y轴分别于点A、B,∴A(﹣2,0),B(0,2),∵抛物线的对称轴x=﹣,A,C关于对称轴对称,∴C(1,0),设抛物线的解析式为y=a(x+2)(x﹣1),把(0,2)代入得到a=﹣1,∴抛物线的解析式为y=﹣x2﹣x+2.(2)如图1中,作EA⊥AB交BM的延长线于E,作EF⊥x轴于F.∵∠ABE=∠OBC,∠BAE=∠BOC=90°,∴△BAE∽△BOC,∴=,∴=,∴AE=,∵∠EAF+∠BAO=90°,∠BAO=45°,∴∠EAF=45°,∴EF=AF=1,∴E(﹣3,1),∴直线BE的解析式为y=x+2,由,解得或,∴M(﹣,).(3)如图2中,当直线AD向下平移时,设E(x1,y1),F(x2,y2),作EH⊥x轴于H,FG ⊥x轴于G.∵∠EOF=90°=∠PHE=∠OGF,由△EHO∽△OGF得到:=,∴=,∴x1x2+y1y2=0,由,消去y得到:x2+b﹣2=0,∴x1x2=b﹣2,x1+x2=0,y1y2=(﹣x1+b)(﹣x2+b)=x1x2+b2,∴2(b﹣2)+b2=0,解得b=﹣1﹣或﹣1+(舍弃),当直线AD向上平移时,同法可得b=﹣1+,综上所述,平移后的解析式为y=﹣x﹣1+或y=﹣x﹣1﹣.。

广西柳州市龙城中学2019-2020学年第一学期九年级数学第一次月考试题

广西柳州市龙城中学2019-2020学年第一学期九年级数学第一次月考试题

龙城中学教育集团2019年秋季学期初三年级教学过关检测试卷一、选择题(每题3分,共12题)1.下列图形中,既是轴对称图形又是中心对称图形的是().A.B.C.D.2.抛物线y=—(x+2)2—3的顶点坐标是()A.(-2,3)B.(-2,-3)C.(2,3)D.(2,-3)3.函数y=-x2+1的图象大致为()A. B. C. D. 第4题4.如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′的长度为()A.2B.3C.4D.1.55.关于抛物线 y=x2-2x+1下列说法错误的是()A.开口向上B.与x轴有两个交点C.对称轴是直线x=1D.当x>1时,y随x的增大而增大6.已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于()A.-1B.0C.1D.27.若将抛物线y=3x2平移,得到抛物线y=3(x-2)2-1采用的办法是()A.向左平移2个单位,再向上平移1个单位 B.向左平移2个单位,再向下平移1个单位C .向右平移2个单位,再向上平移1个单位D .向右平移2个单位,再向下平移1个单位8.竖直向上发射的小球的高度h (m )关于运动时间t (s )的函数表达式为h =at 2+bt ,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )A .第3秒B .第3.5秒C .第4.2秒D .第6.5秒9.如图,公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18,求原正方形空地的边长.设原正方形的空地的边长为x m ,则可列方程为( ).A .=18B .﹣3x+16=0C .=18D .+3x+16=0 10.如图,在直角坐标系中,将△ABC 绕A 点逆时针旋转90°后,B 点对应点的坐标为( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)11.二次函数y =x 2-2x+3,当-2≤x ≤3时,函数最值情况说法正确的是( ) A .函数值最小为2,最大为11 B .函数值最小为6,最大为11C .函数值最小为2,最大为6D .函数值最小为6,无最大值12. 在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y 1≠y 2时,取y 1,y 2中的较大值记为N ;当y 1=y 2时,N=y 1=y 2.则下列说法:①当0<x <2时,N=y 1;②N 随x 的增大而增大的取值范围是x <0;③取y 1,y 2中的较小值记为M ,则使得M 大于4的x 值不存在;④若N=2,则x=2﹣或x=1.其中正确的有( )A. 1个B. 2个C. 3个D. 4个第8题 第9题 第10题 第12題二、填空题(每题3分,共6题) 13.方程02=+x x 的根是_________.14.已知点A (a ,2)和点B (-1,b )关于原点对称,则a+b=________.15. 某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为__________________.16. 根据下列表格的对应值,判断方程一个解x 的范围是_______.-017. 若规定两数a ,b 通过*运算得2ab ,即a*b=2ab ,若x*x+2*x-1*3=0,则x=______.18. 在平面直角坐标系中,Rt △AOB 的两条直角边OA 、OB 分别在x 轴和y 轴上,OA=3,OB=4.把△AOB 绕点A 顺时针旋转120°,得到△ADC .边OB 上的一点M 旋转后的对应点为M ′,当AM ′+DM 取得最小值时,点M 的坐标为_________.三、解答题(共66分)19.解方程(每题4分,共8分)(1)0342=+-x x (2)x (x-3)=2(3-x )20. (6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点都在格点上,在方格纸中建立平面直角坐标系如图所示.(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1,并写出C 1点的坐标.(2)画出△ABC 关于点O 对称得到的△A 2B 2C 2, 并写出C 2 的坐标.21.(6分) 已知关于x 的方程x 2-mx-3x+m-4=0(m 为常数).(1)求证:方程有两个不相等的实数根;(2)设x 1,x 2是方程的两个实数根,求(x 1-1)(x 2-1)的值.22. (8分)如图,△ABC 中,∠B=10°,∠ACB=20°,AB=4cm ,△ABC 逆时针旋转一定角度后与△ADE 重合,且点C 恰好成为AD 的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE 的度数和AE 的长.23.(8分)汽车产业的发展,有效促进我国现代化建设,某汽车销售公司2012年盈利1500万元,到2014年盈利2160万元,且从2012年到2014年,每年盈利的年增长率相同.(1)求该公司盈利的年增长率;(2)若该公司盈利的年增长率继续保持不变,预计2016年盈利多少万元?24.(10分)如图,在某场足球比赛中,球员甲从球门底部中心点O的正前方10m处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高OA为2.44m.(1)在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)(2)守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?25.(10分)某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低元(为偶数),每周销售量为个.(1)直接写出销售量个与降价元之间的函数关系式;(2)设商户每周获得的利润为元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?26.(10分)如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y 轴交于点C,且OC=OB.(1)求此抛物线的解析式;(2)如图1,若点E为第二象限抛物线上一动点,连接BC,求△BCE面积的最大值,并求出此时的E点坐标;(3)如图2,点P在抛物线对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A'恰好也落在抛物线上,求点P坐标.图1 图2。

沪科版九年级数学下学期第一次月考试卷及答案(2020年安徽版)

沪科版九年级数学下学期第一次月考试卷及答案(2020年安徽版)

2019—2020学年度第二学期九年级质量检测试卷(一)数学注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。

2.本试卷包括“试题卷”和“答题卷”两部分。

“试题卷”共4页,“答题卷”共6页。

3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

4.考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共10小题,每小题4分,共40分) 1.下列事件中的不可能事件是( )A.三角形的两个内角的和小于第三个内角B.未来3天内将下雨C.经过交通信号灯的路口遇到红灯D.三根长度分别为2cm 、3cm 、5cm 的木棒摆成三角形2.二次函数y =2x 2的图象向右平移3个单位,得到新的图象的函数表达式是( ) A.y =2x 2+3 B.y =-2x 2+3 C.y =2(x -3)2 D.y =-2(x -3)23.如图所示的几何体,从上边看得到的图形是( )4.如图,一个小球由地面沿着坡角为30°的坡面向上前进了10m ,此时小球距离地面的 高度为( ) A.5mB.35mC.355 D.3510 5.下列说法中,不正确的是( )A.圆既是轴对称图形又是旋转对称图形B.一个圆的直径的长是它半径的2倍C.圆的每一条直径都是它的对称轴D.直径是圆的弦,但半径不是弦6.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠ADE =∠B ,已知AE =6,73AB AD , 则EC 的长是( ) A.4.5 B.8 C.10.5 D.147.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BAC=20°,则∠D的度数为()A.100°B.110°C.120°D.130°8.从-2,3,-8,10,12中任意选两个数,记作a和b,那么点(a,b)在函数y=x24-的图象上的概率是()A.41B.51C.52D.619.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为25,AC=4,则sinB的值是()A.53B.54C.85D.6110.如图,在△ABC中,LACB=90°,AC=BC=4,P是△ABC的高CD上一个动点,以B点为旋转中心把线段BP逆时针旋转45°得到BP’,连接DP’,则DP’的最小值是()A.222- B.224- C.222- D.12-二、填空题(本大题共4小题,每小题5分,满分20分)11.已知A(-1,6)与B(2,m-3)是反比例函数xky=图象上的两个点,则m的值是_______。

_湖北省黄冈市红安县永河中心校2020届九年级上学期数学9月月考试卷

_湖北省黄冈市红安县永河中心校2020届九年级上学期数学9月月考试卷

第1页,总13页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………湖北省黄冈市红安县永河中心校2020届九年级上学期数学9月月考试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共8题)1. 某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( )A . 4个B . 5个C . 6个D . 7个2. 下列方程中,关于x 的一元二次方程是( ) A . ax 2+bx +c =0 B . +x =2 C . x 2+2x =x 2+1 D . 2+x 2=03. 下列是方程3x 2+x -2=0的解的是( )A . x =-1B . x =1C . x =-2D . x =24. 下表是某同学求代数式x 2-x 的值的情况,根据表格可知方程x 2-x =2的根是( )x -2 -1 0 1 2 3 … x 2-x6 2 0 0 2 6 …A . x =-1B . x =0C . x =2D . x =-1或x =25. 下列一元二次方程两实数根和为-4的是( )A . x 2+2x -4=0B . x 2-4x +4=0C . x 2+4x +10=0D . x 2+4x -5=06. 已知y =ax 2+k 的图象上有三点A(-3,y 1),B(1,y 2),C(2,y 3),且y 2<y 3<y 1 , 则a 的取值范围是( )答案第2页,总13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . a>0B . a<0C . a≥0D . a≤07. 二次函数y =x 2+1的图象大致是( )A .B .C .D .8. 2006年1月,武汉《政府工作报告》指出:过去的五年,是经济实现新跨越的五年,生产总值由2000年的1207亿元增加到2005年的2238亿元,年均增长13%,按以上数据,下列说法:①2002年的生产总值为1207(1+13%) 亿元:②2003年的生产总值为2238(1-13%)亿元:③2004年的生产总值为 亿元 : ④按2005年武汉市总人口850万计算,2005年武汉市人均生产总值超过2.6万元,其中正确的是( )A . ②③④B . ①③④C . ①②③D . ①②④第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共8题)1. 一元二次方程x 2-x =0的根是 .2. 若(a 2+b 2-2)2=25,则a 2+b 2= .3. 若一元二次方程ax 2=b(ab >0)的两个根分别是m +1与2m -4,则= .4. 若方程4x 2-(m -2)x +1=0的左边是一个完全平方式,则m = .5. 设m ,n 分别为一元二次方程x 2+2x -2018=0的两个实数根,则m 2+3m +n == .6. 一个直角三角形的两条直角边相差5 cm , 面积是7 cm 2 , 则它的两条直角边长分别为= .。

江苏省连云港市赣榆实验中学2019-2020学年九年级(上)月考数学试卷(9月份)解析版

江苏省连云港市赣榆实验中学2019-2020学年九年级(上)月考数学试卷(9月份)解析版

2019-2020学年江苏省连云港市赣榆实验中学九年级(上)月考数学试卷(9月份)一、选择题(本大题有8小题,每小题3分,共24分.每小题只有一个选项是正确的,请把你认为正确的选项代号填涂在答题卡上)1.(3分)(2017秋•城关区校级期中)关于x 的方程2320ax x -+=是一元二次方程,则( )A .0a >B .0a …C .0a ≠D .1a =2.(3分)(2015•衡阳)若关于x 的方程230x x a ++=有一个根为1-,则另一个根为( )A .2-B .2C .4D .3-3.(3分)(2015•响水县一模)下列关于x 的方程有实数根的是( )A .210x x -+=B .210x x ++=C .210x x --=D .2(1)10x -+=4.(3分)“五一”节老同学聚会,每两个人都握一次手,所有人共握手28次,则参加聚会的人数是( )A .7B .8C .9D .105.(3分)(2014•宁波)圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是( )A .6πB .8πC .12πD .16π6.(3分)(2013•中山一模)如图,ABC ∆内接于O e ,AD 是O e 的直径,25ABC ∠=︒,则CAD ∠的度数为( )A .25︒B .50︒C .65︒D .75︒7.(3分)(2014•白银)已知O e 的半径是6cm ,点O 到同一平面内直线l 的距离为5cm ,则直线l 与O e 的位置关系是( )A .相交B .相切C .相离D .无法判断8.(3分)(2017秋•盐都区期中)如图,点A 、B 、C 、D 都在O e 上,O 点在D ∠的内部,四边形OABC 为平行四边形,则ADC ∠的度数为( )A .30︒B .45︒C .60︒D .90︒二、填空题(本大题有10小题,每小题3分,共30分.将结果直接填写在答题卡上)9.(3分)(2013•广东模拟)一元二次方程22x x =的根是 . 10.(3分)(2015•江西样卷)若关于x 的一元二次方程2(2)310m x x ---=有实数根, 则m 应满足的条件是 .11.(3分)某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为7600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为 .12.(3分)(2019秋•赣榆区校级月考)Rt ACB ∆中,90C ∠=︒,8AC cm =,6BC cm =,则Rt ACB ∆的外接圆与内切圆半径之比为 .13.(3分)(2008•南充)如图,从O e 外一点P 引O e 的两条切线PA 、PB ,切点分别是A 、B ,若8PA cm =,C 是¶AB 上的一个动点(点C 与A 、B 两点不重合),过点C 作O e 的切线,分别交PA 、PB 于点D 、E ,则PED ∆的周长是 cm .14.(3分)已知a 、b 为一元二次方程2320170x x +-=的两个根,那么22a a b +-的值为 .15.(3分)(2017秋•盐都区期中)如图,四边形ABCD 中,AB AD =,连接对角线AC 、BD ,若AC AD =,76CAD ∠=︒,则CBD ∠= ︒.16.(3分)(2017秋•东台市期中)如图,Oe的半径为2,点O到直线l的距离为4,过l上任一点P作Oe的切线,切点为Q;若以PQ为边作正方形PQRS,则正方形PQRS的面积最小值为.三、解答题(本题有10小题,共102分.解答时应写出必要的步骤、过程或文字说明)17.(10分)(2019秋•赣榆区校级月考)解下列方程:(1)2340-=;x x(2)2-+=.2520x x18.(8分)(2019秋•赣榆区校级月考)如图,90e与AB相交于点D,6AC=,∠=︒,CCCB=.求AD的长.819.(10分)(2018•玉林)已知关于x的一元二次方程:2220---=有两个不相等的x x k实数根.(1)求k的取值范围;(2)给k取一个负整数值,解这个方程.20.(8分)(2019秋•赣榆区校级月考)如图,AB是半圆的直径,点D是¶AC的中点,∠的度数.∠=︒,求BADABC5021.(10分)(2017秋•凉山州期末)如图,ABC∆内接于半圆,AB为直径,过点A作直线MN,若MAC ABC∠=∠(1)求证:MN是该圆的切线(2)设D是弧AC的中点,连接BD交AC于G,过D作DE AB⊥于E,交AC于F,求证:FD FG=.22.(10分)(2019秋•赣榆区校级月考)学校为了美化校园环境,计划在一块长16m,宽10m 的矩形空地上,修建一个矩形花坛,要求在花坛中修两条纵向平行和横向弯折的小道(如图),剩余的地方种植花草.要使种植花草的面积为2126m,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)23.(10分)(2019秋•赣榆区校级月考)已知:如图,点C在以AB为直径的Oe上,过C 点的切线与AB的延长线交于点D.(1)求证:BCD A∠=∠;(2)若Oe的半径为2,30∠=︒,求图中阴影部分的面积.A24.(10分)(2019•曹县三模)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件,(1)若降价a元,则平均每天销售数量为件(用含a的代数式表示):(2)当每件商品降价多少元时,该商店每天销售利润为1200元?25.(12分)(2017秋•盐都区期中)如图,在扇形AOB中,OA、OB是半径,且4OA=,120AOB ∠=︒.点P 是弧AB 上的一个动点,连接AP 、BP ,分别作OC PA ⊥,OD PB ⊥,垂足分别为C 、D ,连接CD .(1)如图①,在点P 的移动过程中,线段CD 的长是否会发生变化?若不发生变化,请求出线段CD 的长;若会发生变化,请说明理由;(2)如图②,若点M 、N 为¶AB 的三等分点,点I 为DOC ∆的外心.当点P 从点M 运动到N 点时,点I 所经过的路径长为 .(直接写出结果)26.(14分)在Rt ABC ∆中,90B ∠=︒,12AB BC cm ==,点D 从点A 出发沿边AB 以2/cm s 的速度向点B 移动,移动过程中始终保持//DE BC ,//DF AC (点E 、F 分别在AC 、BC 上).设点D 移动的时间为t 秒. 试解答下列问题:(1)如图1,当t 为多少秒时,四边形DFCE 的面积等于220cm ?(2)如图1,点D 在运动过程中,四边形DFCE 可能是菱形吗?若能,试求t 的值;若不能,请说明理由;(3)如图2,以点F 为圆心,FC 的长为半径作F e .①在运动过程中,是否存在这样的t 值,使F e 正好与四边形DFCE 的一边(或边所在的直线)相切?若存在,求出t 值;若不存在,请说明理由;②若F e 与四边形DFCE 至多有两个公共点,请直接写出t 的取值范围.2019-2020学年江苏省连云港市赣榆实验中学九年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题(本大题有8小题,每小题3分,共24分.每小题只有一个选项是正确的,请把你认为正确的选项代号填涂在答题卡上)1.(3分)(2017秋•城关区校级期中)关于x 的方程2320ax x -+=是一元二次方程,则( )A .0a >B .0a …C .0a ≠D .1a =【考点】1A :一元二次方程的定义【分析】根据一元二次方程的定义解答:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:由x 的方程2320ax x -+=是一元二次方程,得0a ≠.故选:C .【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.(3分)(2015•衡阳)若关于x 的方程230x x a ++=有一个根为1-,则另一个根为( )A .2-B .2C .4D .3-【考点】AB :根与系数的关系【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a 的值和另一根.【解答】解:设一元二次方程的另一根为1x ,则根据一元二次方程根与系数的关系,得113x -+=-,解得:12x =-.故选:A .【点评】本题考查了一元二次方程根与系数的关系,方程20ax bx c ++=的两根为1x ,2x ,则12b x x a +=-,12c x x a=g . 3.(3分)(2015•响水县一模)下列关于x 的方程有实数根的是( )A .210x x -+=B .210x x ++=C .210x x --=D .2(1)10x -+=【考点】AA :根的判别式【分析】由于一元二次方程的判别式△24b ac =-,首先逐一求出△的值,然后根据其正负情况即可判定选择项.【解答】解:A 、△241430b ac =-=-=-<,此方程没有实数根;B 、△241430b ac =-=-=-<,此方程没有实数根;C 、△241450b ac =-=+=>,此方程有两个不相等的实数根;D 、△244840b ac =-=-=-<,此方程没有实数根.故选:C .【点评】此题主要考查了一元二次方程的判别式,其中△240b ac =->,则方程有两个不相等的实数根;△240b ac =-=,则方程有两个相等的实数根;△240b ac =-<,则方程没有实数根.4.(3分)“五一”节老同学聚会,每两个人都握一次手,所有人共握手28次,则参加聚会的人数是( )A .7B .8C .9D .10【考点】AD :一元二次方程的应用【分析】设参加聚会的人数是x 人,每个人都与另外的人握手一次,则每个人握手(1)x -次,且其中任何两个人的握手只有一次,因而共有1(1)2x x -次,设出未知数列方程解答即可. 【解答】解:设参加聚会的人数是x 人,根据题意列方程得,1(1)282x x -=, 解得18x =,27x =-(不合题意,舍去).答:参加聚会的人数是8人.故选:B .【点评】此题主要考查了一元二次方程的应用,理解:设参加聚会的人数是x 人,每个人都与另外的人握手一次,则每个人握手(1)x -次是关键.5.(3分)(2014•宁波)圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是( )A .6πB .8πC .12πD .16π【考点】MP :圆锥的计算【专题】11:计算题【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:此圆锥的侧面积142282ππ==g g g . 故选:B .【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.(3分)(2013•中山一模)如图,ABC ∆内接于O e ,AD 是O e 的直径,25ABC ∠=︒,则CAD ∠的度数为( )A .25︒B .50︒C .65︒D .75︒【考点】5M :圆周角定理【专题】11:计算题;16:压轴题【分析】根据圆周角定理,得25ADC ∠=︒,再根据AD 是O e 的直径,则90ACD ∠=︒,由三角形的内角和定理求得CAD ∠的度数.【解答】解:25ABC ∠=︒Q ,25ADC ∴∠=︒,AD Q 是O e 的直径,90ACD ∴∠=︒,902565CAD ∴∠=︒-︒=︒.故选:C .【点评】本题考查了圆周角定理,直径所对的圆周角等于90︒,以及三角形的内角和定理.7.(3分)(2014•白银)已知Oe的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与Oe的位置关系是()A.相交B.相切C.相离D.无法判断【考点】MB:直线与圆的位置关系【分析】设圆的半径为r,点O到直线l的距离为d,若d r<,则直线与圆相交;若d r=,则直线与圆相切;若d r>,则直线与圆相离,从而得出答案.【解答】解:设圆的半径为r,点O到直线l的距离为d,5d=Q,6r=,d r∴<,∴直线l与圆相交.故选:A.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.8.(3分)(2017秋•盐都区期中)如图,点A、B、C、D都在Oe上,O点在D∠的内部,四边形OABC为平行四边形,则ADC∠的度数为()A.30︒B.45︒C.60︒D.90︒【考点】5L:平行四边形的性质;5M:圆周角定理;6M:圆内接四边形的性质【专题】55C:与圆有关的计算【分析】由“平行四边形的对角相等”推知AOC B∠=∠;然后根据“圆内接四边形的对角互补”求得180D B∠+∠=︒;最后由圆周角定理、等量代换求得2180D D∠+∠=︒.【解答】解:如图,在平行四边形OABC中,AOC B∠=∠.Q点A、B、C、D在Oe上,180ADC B∴∠+∠=︒.又12ADC AOC ∠=∠Q,2180 ADC ADC∴∠+∠=︒,60ADC ∴∠=︒.故选:C .【点评】本题考查了圆周角定理、平行四边形的性质.解题时,借用了圆内接四边形的性质.二、填空题(本大题有10小题,每小题3分,共30分.将结果直接填写在答题卡上)9.(3分)(2013•广东模拟)一元二次方程22x x =的根是 10x =,22x = .【考点】8A :解一元二次方程-因式分解法【专题】11:计算题【分析】先移项,再提公因式,使每一个因式为0,从而得出答案.【解答】解:移项,得220x x -=,提公因式得,(2)0x x -=,0x =或20x -=,10x ∴=,22x =.故答案为:10x =,22x =.【点评】本题考查了一元二次方程的解法:解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.10.(3分)(2015•江西样卷)若关于x 的一元二次方程2(2)310m x x ---=有实数根, 则m 应满足的条件是 14m -…且2m ≠ . 【考点】1A :一元二次方程的定义;AA :根的判别式【分析】根据一元二次方程的定义以及根的判别式的定义得到94(2)(1)0m ---…且2m ≠,求出m 的取值范围即可 .【解答】解:Q 关于x 的一元二次方程2(2)310m x x ---=有实数根, ∴△0…且20m -≠,94(2)(1)0m ∴---…且2m ≠,14m ∴-…且2m ≠, 故答案为:14m -…且2m ≠. 【点评】本题主要考查了根的判别式以及一元二次方程的意义的知识, 解答本题的关键是熟练掌握方程有实数根, 则根的判别式△0…,此题难度不大 .11.(3分)某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为7600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为 28100(1)7600x ⨯-= .【考点】AC :由实际问题抽象出一元二次方程【专题】123:增长率问题【分析】该楼盘这两年房价平均降低率为x ,则第一次降价后的单价是原价的1x -,第二次降价后的单价是原价的2(1)x -,根据题意列方程解答即可.【解答】解:设该楼盘这两年房价平均降低率为x ,根据题意列方程得:28100(1)7600x ⨯-=,故答案为:28100(1)7600x ⨯-=.【点评】此题考查了一元二次方程的应用,注意第二次降价后的价格是在第一次降价后的价格的基础上进行降价的.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.12.(3分)(2019秋•赣榆区校级月考)Rt ACB ∆中,90C ∠=︒,8AC cm =,6BC cm =,则Rt ACB ∆的外接圆与内切圆半径之比为 5:2 .【考点】MI :三角形的内切圆与内心;MA :三角形的外接圆与外心【专题】554:等腰三角形与直角三角形;55A :与圆有关的位置关系;556:矩形 菱形 正方形;55C :与圆有关的计算;66:运算能力【分析】作ABC ∆的内切圆M e ,过点M 作MD BC ⊥于D ,ME AC ⊥于E ,先根据勾股定理求出10AB =,得到ABC ∆的外接圆半径5AO =,再证明四边形MECD 是正方形,根据内心的性质和切线长定理,求出M e 的半径2r =,即可得出答案.【解答】解:设ABC ∆的内切圆M e ,O 为ACB ∆的外接圆的圆心,过点M 作MD BC ⊥于D ,ME AC ⊥于E ,在Rt ABC ∆中,90ACB ∠=︒Q ,6AC =,8BC =,2210AB AC BC ∴=+=,Q 点O 为ABC ∆的外心,AO ∴为外接圆半径,152AO AB ==, 设M e 的半径为r ,则MD ME r ==,又90MDC MEC C ∠=∠=∠=︒Q ,∴四边形IECD 是正方形,CE CD r ∴==,6AE AN r ==-,8BD BN r ==-,10AB =Q ,解得:2r =,即Rt ACB ∆的外接圆与内切圆半径之比为5:2,故答案为:5:2.【点评】此题考查了直角三角形的外心与内心的概念及性质,勾股定理,正方形的判定与性质,切线长定理,综合性较强,难度适中.求出ABC ∆的内切圆半径是解题的关键.13.(3分)(2008•南充)如图,从O e 外一点P 引O e 的两条切线PA 、PB ,切点分别是A 、B ,若8PA cm =,C 是¶AB 上的一个动点(点C 与A 、B 两点不重合),过点C 作O e 的切线,分别交PA 、PB 于点D 、E ,则PED ∆的周长是 16 cm .【考点】MH :切割线定理【专题】16:压轴题;25:动点型【分析】根据切线长定理得CD AD =,CE BE =,PA PB =,整理即可求得PED ∆的周长.【解答】解:由切线长定理得CD AD =,CE BE =,PA PB =;所以PED ∆的周长216PD DC CE PE PD AD BE PE PA PB PA cm =+++=+++=+==.【点评】此题主要是运用了切线长定理.14.(3分)已知a 、b 为一元二次方程2320170x x +-=的两个根,那么22a a b +-的值为 2020 .【考点】AB :根与系数的关系【专题】17:推理填空题【分析】根据一元二次方程的解以及根与系数的关系可得出232017a a +=、3a b +=-,将其代入2223()a a b a a a b +-=+-+中即可求出结论.【解答】解:a Q 、b 为一元二次方程2320170x x +-=的两个根,232017a a ∴+=,3a b +=-,2223()2017(3)2020a a b a a a b ∴+-=+-+=--=.故答案为:2020.【点评】本题考查了一元二次方程的解以及根与系数的关系,根据一元二次方程的解以及根与系数的关系找出232017a a +=、3a b +=-是解题的关键.15.(3分)(2017秋•盐都区期中)如图,四边形ABCD 中,AB AD =,连接对角线AC 、BD ,若AC AD =,76CAD ∠=︒,则CBD ∠= 38 ︒.【考点】5M :圆周角定理【专题】11:计算题;66:运算能力;559:圆的有关概念及性质【分析】由已知我们可以将点B ,C ,D 可以看成是以点A 为圆心,AB 为半径的圆上的三个点,从而根据同弧所对的圆周角等于圆心角的一半求得即可.【解答】解:AB AC AD ==Q ,∴点B ,C ,D 可以看成是以点A 为圆心,AB 为半径的圆上的三个点,CBD ∴∠是弧CD 对的圆周角,CAD ∠是弧CD 对的圆心角; 76CAD ∠=︒Q ,11763822CBD CAD ∴∠=∠=⨯︒=︒. 故答案为:38︒.【点评】本题考查了圆周角定理,利用了同弧对的圆周角是圆心角的一半的性质求解.16.(3分)(2017秋•东台市期中)如图,O e 的半径为2,点O 到直线l 的距离为4,过l 上任一点P 作O e 的切线,切点为Q ;若以PQ 为边作正方形PQRS ,则正方形PQRS 的面积最小值为 12 .【考点】LE :正方形的性质;MC :切线的性质【专题】11:计算题【分析】连接OQ 、OP ,如图,根据切线的性质得OQ PQ ⊥,则利用勾股定理得到22224PQ OP OQ OP =-=-,也是判断OP 取最小值时,2PQ 的值最小,此时正方形PQRS 的面积有最小值,根据垂线段最短得到OP 的最小值为4,于是得到2PQ 的最小值,从而确定正方形PQRS 的面积的最小值.【解答】解:连接OQ 、OP ,如图,PQ Q 为切线,OQ PQ ∴⊥,在Rt OPQ ∆中,22224PQ OP OQ OP =-=-,当OP 取最小值时,2PQ 的值最小,此时正方形PQRS 的面积有最小值,而当OP l ⊥时,OP 取最小值,OP ∴的最小值为4,2PQ ∴的最小值为16412-=,∴正方形PQRS 的面积最小值为12.故答案为12.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.充分利用垂线段最短解决最小值问题.三、解答题(本题有10小题,共102分.解答时应写出必要的步骤、过程或文字说明)17.(10分)(2019秋•赣榆区校级月考)解下列方程:(1)2340x x -=;(2)22520x x -+=.【考点】8A :解一元二次方程-因式分解法【专题】11:计算题【分析】两方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:(1)分解因式得:(34)0x x -=,可得0x =或340x -=,解得:10x =,243x =; (2)分解因式得:(21)(2)0x x --=,可得210x -=或20x -=,解得:112x =,22x =. 【点评】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键. 18.(8分)(2019秋•赣榆区校级月考)如图,90C ∠=︒,C e 与AB 相交于点D ,6AC =,8CB =.求AD 的长.【考点】2M :垂径定理【专题】55C :与圆有关的计算;66:运算能力【分析】作CE AD ⊥于E ,先根据勾股定理计算出10AB =,再利用面积法计算出245CE =,在Rt ACE ∆中,再利用勾股定理计算出185AE =,由CE AD ⊥,根据垂径定理得AE DE =,所以3625AD AE ==. 【解答】解:作CE AD ⊥于E ,如图,90C ∠=︒Q ,6AC =,8CB =,2210AB AC BC ∴=+=, Q 1122CE AB AC BC =g g , 6824105CE ⨯∴==, 在Rt ACE ∆中,222224186()55AE AC CE =-=-=, CE AD ⊥Q ,AE DE ∴=,3625AD AE ∴==. 【点评】本题考查了垂径定理:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.19.(10分)(2018•玉林)已知关于x 的一元二次方程:2220x x k ---=有两个不相等的实数根.(1)求k 的取值范围;(2)给k 取一个负整数值,解这个方程.【考点】AA :根的判别式【专题】11:计算题【分析】(1)利用判别式的意义得到△2(2)4(2)0k =---->,然后解不等式即可;(2)在(1)中的k 的范围内取2-,方程变形为220x x -=,然后利用因式分法解方程即可.【解答】解:(1)根据题意得△2(2)4(2)0k =---->,解得3k >-;(2)取2k =-,则方程变形为220x x -=,解得10x =,22x =.【点评】本题考查了根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与△24b ac =-有如下关系:当△0>时,方程有两个不相等的实数根;当△0=时,方程有两个相等的实数根;当△0<时,方程无实数根.20.(8分)(2019秋•赣榆区校级月考)如图,AB 是半圆的直径,点D 是¶AC 的中点,50ABC ∠=︒,求BAD ∠的度数.【考点】4M :圆心角、弧、弦的关系;5M :圆周角定理【专题】11:计算题【分析】连结BD ,由于点D 是AC 弧的中点,即弧CD =弧AD ,根据圆周角定理得ABD CBD ∠=∠,则25ABD ∠=︒,再根据直径所对的圆周角为直角得到90ADB ∠=︒,然后利用三角形内角和定理可计算出DAB ∠的度数.【解答】解:连结BD ,如图,Q 点D 是¶AC 的中点,即弧CD =弧AD ,ABD CBD ∴∠=∠,而50ABC ∠=︒, 150252ABD ∴∠=⨯︒=︒, AB Q 是半圆的直径,90ADB ∴∠=︒,902565BAD ∴∠=︒-︒=︒.【点评】本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.21.(10分)(2017秋•凉山州期末)如图,ABC ∆内接于半圆,AB 为直径,过点A 作直线MN ,若MAC ABC ∠=∠(1)求证:MN 是该圆的切线(2)设D 是弧AC 的中点,连接BD 交AC 于G ,过D 作DE AB ⊥于E ,交AC 于F ,求证:FD FG =.【考点】2M :垂径定理;ME :切线的判定与性质【专题】55:几何图形【分析】(1)根据圆周角定理推论得到90ACB ∠=︒,即90ABC CAB ∠+∠=︒,而MAC ABC ∠=∠,则90MAC BCA ∠+∠=︒,即90MAB ∠=︒,根据切线的判定即可得到结论;(2)连AD ,根据圆周角定理推论得到90ABC ∠=︒,由DE AB ⊥得到90DEB ∠=︒,则1590∠+∠=︒,3490∠+∠=︒,又D 是弧AC 的中点,即弧CD =弧DA ,得到35∠=∠,于是14∠=∠,利用对顶角相等易得12∠=∠,则有FD FG =.【解答】证明:(1)AB Q 为直径,90ACB ∴∠=︒,90ABC CAB ∴∠+∠=︒,而MAC ABC ∠=∠,90MAC CAB ∴∠+∠=︒,即90MAB ∠=︒,MN ∴是半圆的切线;(2)如图AB Q 为直径,90ACB ∴∠=︒,而DE AB ⊥,90DEB ∴∠=︒,1590∴∠+∠=︒,3490∠+∠=︒,D Q 是弧AC 的中点,即弧CD =弧DA ,35∴∠=∠,∴∠=∠,14而24∠=∠,∴∠=∠,12∴=.FD FG【点评】本题考查了切线的判定:经过半径的外端点,并且与半径垂直的直线是圆的切线.也考查了圆周角定理及其推论、三角形外角的性质以及等腰三角形的判定.22.(10分)(2019秋•赣榆区校级月考)学校为了美化校园环境,计划在一块长16m,宽10m 的矩形空地上,修建一个矩形花坛,要求在花坛中修两条纵向平行和横向弯折的小道(如图),剩余的地方种植花草.要使种植花草的面积为2126m,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)【考点】AD:一元二次方程的应用;5L:平行四边形的性质【专题】69:应用意识;523:一元二次方程及应用;34:方程思想【分析】设小道进出口的宽度为x米,由平行四边形的面积=底⨯高可将出两个平行四边形的面积转化为矩形的面积,将图中小道移到边上可得出剩余部分为长(162)x-米、宽为-米的矩形,再利用矩形的面积公式即可得出关于x的一元二次方程,解之取其较小(10)x值即可得出结论.【解答】解:设小道进出口的宽度为x米,依题意,得:(162)(10)126--=,x x整理,得:218170-+=,x x解得:11x=,217x=(不合题意,舍去).答:小道进出口的宽度应为1米.【点评】本题考查了一元二次方程的应用以及平行四边形的性质,找准等量关系,正确列出一元二次方程是解题的关键.23.(10分)(2019秋•赣榆区校级月考)已知:如图,点C在以AB为直径的Oe上,过C 点的切线与AB的延长线交于点D.(1)求证:BCD A∠=∠;(2)若Oe的半径为2,30A∠=︒,求图中阴影部分的面积.【考点】5M:圆周角定理;MO:扇形面积的计算;MC:切线的性质【专题】55A:与圆有关的位置关系;67:推理能力【分析】(1)连接OC,根据切线的性质和等腰三角形的性质以及直角三角形的性质即可得到结论;(2)根据圆周角定理得到60DOC∠=︒,求得322CD OC=积公式即可得到结论.【解答】(1)证明:连接OC,CDQ是Oe的切线,90DCO∴∠=︒,90OCB DCB∴∠+∠=︒,ABQ为Oe的直径;90ACB∴∠=︒,90ACO OCB∴∠+∠=︒,ACO BCD∴∠=∠,OA OC=Q,A ACO∴∠+∠,BCD A∴∠=∠;(2)解:30A∠=︒Q,60DOC∴∠=︒,90OCD∠=︒Q,30D∴∠=︒,322 CD OC∴==,∴图中阴影部分的面积2160222232323603 OCD BOCS Sππ∆⋅⨯=-=⨯⨯-=-扇形.【点评】本题考查了切线的性质,圆周角定理,直角三角形的性质,扇形的面积的计算,熟练掌握确定的判定定理是解题的关键.24.(10分)(2019•曹县三模)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件,(1)若降价a元,则平均每天销售数量为220a+件(用含a的代数式表示):(2)当每件商品降价多少元时,该商店每天销售利润为1200元?【考点】AD:一元二次方程的应用【专题】523:一元二次方程及应用【分析】(1)根据“平均每天可售出20件,每件盈利40元,销售单价每降低1元,平均每天可多售出2件,若降价a元”,列出平均每天销售的数量即可,(2)设每件商品降价x元,根据“平均每天可售出20件,每件盈利40元,销售单价每降低1元,平均每天可多售出2件,每件盈利不少于25元”列出关于x的一元二次方程,解之,根据实际情况,找出盈利不少于25元的答案即可.【解答】解:(1)根据题意得:若降价a元,则多售出2a件,平均每天销售数量为:220a+,故答案为:220a+,(2)设每件商品降价x元,根据题意得:(40)(202)1200x x -+=,解得:110x =,220x =,40103025-=>,(符合题意), 40202025-=<,(舍去), 答:当每件商品降价10元时,该商店每天销售利润为1200元.【点评】本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.25.(12分)(2017秋•盐都区期中)如图,在扇形AOB 中,OA 、OB 是半径,且4OA =,120AOB ∠=︒.点P 是弧AB 上的一个动点,连接AP 、BP ,分别作OC PA ⊥,OD PB ⊥,垂足分别为C 、D ,连接CD .(1)如图①,在点P 的移动过程中,线段CD 的长是否会发生变化?若不发生变化,请求出线段CD 的长;若会发生变化,请说明理由;(2)如图②,若点M 、N 为¶AB 的三等分点,点I 为DOC ∆的外心.当点P 从点M 运动到N 点时,点I 所经过的路径长为 49π .(直接写出结果)【考点】4M :圆心角、弧、弦的关系;MA :三角形的外接圆与外心;4O :轨迹【专题】559:圆的有关概念及性质【分析】(1)连接AB ,根据三角形的中位线定理即可解决问题;(2)取OM 的中点I ,连接IC 、ID .由90OCM ODM ∠=∠=︒,提出OI IC IM ID ===,提出点I 是ODC ∆的外心,122OI OM ==,利用弧长公式计算即可; 【解答】解:(1)线段CD 的长不会发生变化.理由:连接AB ,过O 作OH AB ⊥于H .OC PA ⊥Q ,OD PB ⊥,AC PC ∴=,BD PD =. 12CD AB ∴=, OA OB =Q ,OH AB ⊥,12AH BH AB ∴==,1602AOH AOB ∠=∠=︒, 在Rt AOH ∆中,30OAH ∠=︒Q ,122OH OA ∴==, ∴在Rt AOH ∆,由勾股定理得224223AH =-=,43AB ∴=.23CD ∴=.(2)如图②中,取OM 的中点I ,连接IC 、ID .90OCM ODM ∠=∠=︒Q ,OI IC IM ID ∴===,∴点I 是ODC ∆的外心,122OI OM ==, 40MON ∠=︒Q ,∴当点P 从点M 运动到N 点时,点I 所经过的路径长为40241809ππ=g g . 故答案为49π. 【点评】本题考查轨迹,圆心角、弧、弦之间的关系,三角形的外心等知识,解题的关键是灵活运用所学知识解决问题,第二个问题的突破点正确寻找点I 的运动轨迹,属于中考常考题型.26.(14分)在Rt ABC ∆中,90B ∠=︒,12AB BC cm ==,点D 从点A 出发沿边AB 以2/cm s 的速度向点B 移动,移动过程中始终保持//DE BC ,//DF AC (点E 、F 分别在AC 、BC 上).设点D 移动的时间为t 秒. 试解答下列问题:(1)如图1,当t 为多少秒时,四边形DFCE 的面积等于220cm ?(2)如图1,点D 在运动过程中,四边形DFCE 可能是菱形吗?若能,试求t 的值;若不能,请说明理由;(3)如图2,以点F 为圆心,FC 的长为半径作F e .①在运动过程中,是否存在这样的t 值,使F e 正好与四边形DFCE 的一边(或边所在的直线)相切?若存在,求出t 值;若不存在,请说明理由;②若F e 与四边形DFCE 至多有两个公共点,请直接写出t 的取值范围.【考点】MR :圆的综合题【分析】(1)设点D 出t 秒后四边形DFCE 的面积为220cm ,利用BD CF ⨯=四边形DFCE 的面积,列方程解答即可.(2)因为四边形DECF 是平行四边形,所以当DE DF =时,四边形DECF 是菱形.列出方程即可解决问题.(3))①存在.当DB CF =时,F e 与DE 相切.列出方程即可解决.②如图2中,当点D 在F e 上时,F e 与四边形DECF 有两个公共点,求出此时t 的值,根据图象即可解决问题.【解答】解:(1)如图1中,设点D 出发t 秒后四边形DFCE 的面积为220cm ,根据题意得, 2DE AD t ==,122BD t =-,2CF DE t ==,又BD CF ⨯=Q 四边形DFCE 的面积,2(122)20t t ∴-=,2650t t -+=,(1)(5)0t t --=,解得11t =,25t =;答:点D 出发1秒或5秒后四边形DFCE 的面积为220cm .(2)可能是菱形.理由:如图1中,//DE CF Q ,//DF EC ,∴四边形DECF 是平行四边形,∴当DE DF =时,四边形DECF 是菱形.ADE ∆Q ,DFB ∆都是等腰直角三角形,2DE t ∴=,2)DF t =-,22)t t ∴=-,12t ∴=-,答:(12t s =-时,四边形DECF 是菱形,(3)①存在.如图1中,当DB CF =时,F e 与DE 相切.则有1222t t -=,3t ∴=,答:当3t s =时,F e 与DE 相切.。

2019-2020学年成都市青羊区树德中学外国语校区九年级(上)9月月考数学试卷(含解析)

2019-2020学年成都市青羊区树德中学外国语校区九年级(上)9月月考数学试卷(含解析)

2019-2020学年成都市树德中学外国语校区九年级(上)9月月考数学试卷(考试时间:110分钟满分:120分)一.选择题(每小题3分,共36分)四个答案中有且只有一个答案是正确的.1.下列计算正确的是()A.B.C.D.2.方程x(x﹣2)=x的根是()A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=33.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是34.若a﹣b+c=0,则方程ax2+bx+c=0(a≠0)必有一个根是()A.0 B.1 C.﹣1 D.5.下列式子化为最简二次根式后和是同类二次根式的为()A.B.C.D.6.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m的值为()A.1 B.﹣1 C.1或﹣1 D.7.对于任意实数x,多项式x2﹣6x+10的值是一个()A.负数B.非正数C.正数D.无法确定正负的数8.使分式的值等于零的x是()A.6 B.﹣1或6 C.﹣1 D.﹣69.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=910.已知一次函数y=ax+b随x的增大而减小,且与y轴的正半轴相交,则关于x的方程ax2﹣2x+b=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定11.如图所示,某小区规划在一个长为40m、宽为26m的矩形场地ABCD上修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使每一块草坪的面积为144m2,求道路的宽度.若设道路的宽度为x m,则x满足的方程为()A.(40﹣x)(26﹣x)=144×6B.40×26﹣40x﹣26x=144×6C.40×26﹣40x﹣2×26x+2x2=144×6D.(40﹣2x)(26﹣2x)=144×612.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定二、填空题(每小题3分,共18分)请将最后答案直接填在题中横线上.)13.在二次根式中,x的取值范围是.14.若,则x2012+y2013的值为.15.方程x2﹣2ax+3=0有一个根是1,则另一根为,a的值是.16.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m的值等于.17.将4个数a、b、c、d排成2行、2列,两边各加一条竖直线记成,这个记号叫做2阶行列式.定义,若,则x=.18.已知△ABC的三边a、b、c满足a2+b+=10a+2﹣22,则△ABC的形状是.三、解答题(共66分)19.(18分)计算求值①(3+﹣)÷②③先化简,再求值:,其中x=.20.(12分)解方程①x2+2x﹣3=0(用配方法)②2x2+5x﹣1=0(用公式法)21.(6分)阅读下面例题:请参照例题解方程x2﹣|x﹣1|﹣1=0.例:解方程x2﹣|x|﹣2=0.解:①当x≥0,原方程化为x2﹣x﹣2=0;解得:x1=2,x2=﹣1(不合题意,舍去)②当x<0时,原方程化为x2+x﹣2=0;解得:x1=1(不合题意,舍去),x2=﹣2;∴原方程的根是x1=2,x2=﹣2.22.(6分)已知关于x的一元二次方程(a+1)x2﹣x+a2﹣3a﹣3=0有一根是1.(1)求a的值;(2)求方程的另一根.23.(7分)某商场今年一月份销售额100万元,二月份销售额下降了10%,该商场采取措施,经营管理,使月销售额大幅上升,四月份的销售额达到129.6万元,求三、四月份平均每月销售额增长的百分率.24.(6分)已知x1,x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=成立?若存在,求出k的值;若不存在,请说明理由.(2)求使的值为整数的实数k的整数值.25.(11分)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元.(1)设销售单价为每千克a元,每天平均获利为y元,请解答下列问题:①每天平均销售量可以表示为;②每天平均销售额可以表示为;③每天平均获利可以表示为y=;(2)该经营户要想每天盈利200元,应将每千克小型西瓜的售价降多少元?参考答案与试题解析一.选择题(每小题3分,共36分)四个答案中有且只有一个答案是正确的.1.【解答】解:A、==×=3,故选项A错误;B、不符合二次根式的运算规则,故选项B错误;C、=×=2×3=6,故选项C错误;D、=×=2×3=6,故选项D正确;故选:D.2.【解答】解:x(x﹣2)=x,x(x﹣2)﹣x=0,x(x﹣3)=0,x﹣3=0或x=0,解得:x1=3,x2=0;故选:D.3.【解答】解:∵x2+9总是正数,∴当x=0时,二次根式==3,是个有理数,∴B错.故选:B.4.【解答】解:由a﹣b+c=0则令x=﹣1,方程ax2+bx+c=0代入方程得:a﹣b+c=0.所以x=﹣1是方程的解.故选:C.5.【解答】解:A、=3,故本选项错误;B、=3,故本选项正确;C、=2,故本选项错误;D、=,故本选项错误.故选:B.6.【解答】解:根据题意得:m2﹣1=0且m﹣1≠0解得m=﹣1故选:B.7.【解答】解:∵x2﹣6x+10=x2﹣6x+9+1=(x﹣3)2+1而(x﹣3)2≥0,∴(x﹣3)2+1>0,故选C.8.【解答】解:∵=0∴x2﹣5x﹣6=0即(x﹣6)(x+1)=0∴x=6或﹣1又x+1≠0∴x=6故选:A.9.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B.10.【解答】解:∵一次函数y=ax+b随x的增大而减小,∴a<0,∵一次函数与y轴的正半轴相交,∴b>0,∴ab<0,在方程ax2﹣2x+b=0中,△=(﹣2)2﹣4ab=4﹣4ab>0.∴方程有两个不相等的实数根.故选:A.11.【解答】解:设道路的宽度为x m,由题意得:40×26﹣2×26x﹣40x+2x2=144×6.故选:C.12.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选:C.二、填空题(每小题3分,共18分)请将最后答案直接填在题中横线上.)13.【解答】解:根据题意,得,解得x≥﹣1,且x≠3.14.【解答】解:∵,∴x=1,x+y=0,解得,x=1,y=﹣1,∴x2012+y2013=12012+(﹣1)2013=0.故答案为:0.15.【解答】解:设方程的另一根为x2,根据题意得1•x2=3,则x2=3;∵1+x2=2a,∴1+3=2a,∴a=2;故答案为3,2.16.【解答】解:∵方程(m﹣1)x2+5x+m2﹣3m+2=0是一元二次方程且常数项为0,∴,解得:m=2.故答案为:217.【解答】解:由题意,得:(x+1)(x+1)﹣(x﹣1)(1﹣x)=6,∴x2+2x+1+x2﹣2x+1=6,∴2x2+2=6,∴x=±.18.【解答】解:∵a2+b+|﹣2|=10a+2,∴a2﹣10a+25+b﹣4﹣2+1+|﹣2|=0,即(a﹣5)2+(﹣1)2+|﹣2|=0,根据几个非负数的和为0,则这几个非负数同时为0,得a=5,b=5,c=5.故该三角形是等边三角形.故答案为:等边三角形.三、解答题(共72分)19.【解答】解:(1)原式=(12+2﹣6)÷=8÷=8;(2)原式=3﹣﹣(1+)+1+﹣1=﹣1;(3)原式=﹣===,当x=﹣3时,原式==.20.【解答】解:①方程变形得:x2+2x=3,配方得:x2+2x+1=4,即(x+1)2=4,可得x+1=±2,则x1=1,x2=﹣3;②这里a=2,b=5,c=﹣1,∵△=25+8=33,∴x=,则x1=,x2=.21.【解答】解方程x2﹣|x﹣1|﹣1=0,解:①当x﹣1≥0即x≥1时,原方程化为x2﹣(x﹣1)﹣1=0解得:x1=1,x2=0(不合题意,舍去)②当x﹣1<0即x<1时,原方程化为x2+(x﹣1)﹣1=0解得:x1=1(不合题意,舍去),x2=﹣2故原方程的根是x1=1,x2=﹣2.22.【解答】解:(1)将x=1代入方程(a+1)x2﹣x+a2﹣3a﹣3=0可得(a+1)﹣1+a2﹣3a﹣3=0,解可得:a=﹣1,a=3;a=﹣1时,原方程是一元一次方程,故舍去;则a=3;(2)由(1)得:a=3,则原方程为4x2﹣x﹣3=0,且其中有一根为1,设另一根是m,则m•1=m=﹣,故m=﹣.23.【解答】解:设三、四月份平均每月销售额增长的百分率是x.100(1﹣10%)(1+x)2=129.6,1+x=±x==20%或x=﹣(负值舍去).答:三、四月份平均每月销售额增长的百分率是20%.24.【解答】解:(1)根据题意,得△=(﹣4k)2﹣4×4k(k+1)=﹣16k≥0.解得k≤0.又∵k≠0,∴k<0.由(2x1﹣x2)(x l﹣2x2)=得2(x12+x22)﹣5x1x2=﹣1.5.2(x1+x2)2﹣9x1x2=﹣1.5.2﹣9×=﹣1.518k+18=28k,解得k=1.8.经检验k=1.8是方程2﹣9×=﹣1.5的解.∵k<0,∴不存在实数k.(2)原式=﹣2=﹣2=﹣4=﹣,∴k+1=1或﹣1,或2,或﹣2,或4,或﹣4解得k=0或﹣2,1,﹣3,3,﹣5.∵k<0.∴k=﹣2,﹣3或﹣5.25.【解答】解:(1)由题意,得①(1400﹣400a)千克②(1400﹣400a)a元③y=(a﹣2)(1400﹣400a)﹣24(元)故答案为:(1400﹣400a)千克,(1400﹣400a)a元,(a﹣2)(1400﹣400a)﹣24(元)(2)当y=200时,(a﹣2)(1400﹣400a)﹣24=200整理得:a2+5.5a﹣7.56=0解得:a1=2.7,a2=2.8当a=2.7时,降价为:3﹣a=0.3元当a=2.8时,降价为:3﹣a=0.2元∴应将每千克小型西瓜的售价降低0.2元或0.3元。

最新2019-2020年度人教版九年级(上)第二次月考数学试卷及答案解析-精品试卷

最新2019-2020年度人教版九年级(上)第二次月考数学试卷及答案解析-精品试卷

九年级(上)第二次月考数学试卷一.选择题(每小题3分,共30分)1.如图所示几何体的左视图是()A.B.C.D.2.下列说法正确的是()A.等腰梯形既是中心对称图形,又是轴对称图形B.矩形是轴对称图形,有四条对称轴C.等腰三角形一腰上的高与底边的夹角等于顶角的一半D.有一个角的平分线平分对边的三角形是等腰直角三角形3.某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号、7号题,第3位选手抽中8号题的概率是()A.B.C.D.4.某工厂计划经过两年的时间将某种产品的产量从每年144万台提高到169万台,则每年平均约增长()A.5% B.8% C.10% D.15%5.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是()A.15°B.30°C.50°D.65°6.如图,在△MBN中,BM=6,点A、C、D分别在MB、NB、MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则▱ABCD的周长是()A.24 B.18 C.16 D.127.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.8.如图,它们是一个物体的三视图,该物体的形状是()A.圆柱B.正方体C.圆锥D.长方体9.在函数的图象上有三点A1(x1,y1)、A2(x2,y2)、A3(x3,y3),若x1<0<x2<x3,则下列正确的是()A.y1<0<y2<y3B.y2<y3<0<y1C.y2<y3<y1<0 D.0<y2<y1<y310.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种二.填空题(每小题3分,共18分)11.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是.12.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP 的长为.13.已知x是一元二次方程x2+3x﹣1=0的实数根,那么代数式的值为.14.已知函数y=(m+1)是反比例函数,则m的值为.15.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是.16.如图,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,PC ⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为.三.解答题(共72分)17.解方程(1)(x﹣8)(x﹣1)=﹣12(2)x2﹣6x+2=0.18.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.19.甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜.请你解决下列问题:(1)利用树状图(或列表)的方法表示游戏所有可能出现的结果;(2)求甲、乙两人获胜的概率.20.如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C′处,折痕DE交BC于点E,连接C′E,试判断四边形CDC′E是什么特殊四边形,并说明理由.21.新苑小区的物业管理部门为了美化环境,在小区靠墙的一侧设计了一处长方形花圃(墙长25m),三边外围用篱笆围起,栽上蝴蝶花,共用篱笆40m,(1)花圃的面积能达到180m2吗?(2)花圃的面积能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.22.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.23.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.24.为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:(1)从消毒开始,经多长时间,教室内每立方米空气含药量为4mg.(2)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?25.将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=,P是AC上的一个动点.(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时▱DPBQ的面积.参考答案与试题解析一.选择题(每小题3分,共30分)1.如图所示几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形.故选:D.点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.2.下列说法正确的是()A.等腰梯形既是中心对称图形,又是轴对称图形B.矩形是轴对称图形,有四条对称轴C.等腰三角形一腰上的高与底边的夹角等于顶角的一半D.有一个角的平分线平分对边的三角形是等腰直角三角形考点:等腰梯形的性质;等腰三角形的性质;等腰直角三角形;矩形的性质;轴对称图形;中心对称图形.分析:根据等腰梯形的对称性,矩形的对称轴,等腰三角形三线合一的性质,对各选项分析判断后利用排除法.解答:解:A、等腰梯形不是中心对称图形,是轴对称图形,故本选项错误;B、矩形是轴对称图形,对称轴是过对边中点的直线,共2条,故本选项错误;C、如图,过点A作AE⊥BC,则AE平分∠BAC,∴∠2=∠A,∵BD⊥AC,∴∠1+∠C=90°,又∠2+∠C=90°,∴∠1=∠2,∴∠1=∠A,即等腰三角形一腰上的高与底边的夹角等于顶角的一半,故本选项正确;D、有一个角的平分线平分对边的三角形是等腰三角形,不一定是等腰直角三角形,故本选项错误.故选C.点评:本题考查了等腰梯形的对称性,轴对称图形的性质,等腰三角形的性质,是小综合题,难度不大,熟练掌握各种图形的性质是解题的关键.3.某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号、7号题,第3位选手抽中8号题的概率是()A.B.C.D.考点:概率公式.分析:先求出题的总号数及8号的个数,再根据概率公式解答即可.解答:解:前两位选手抽走2号、7号题,第3位选手从1、3、4、5、6、8、9、10共8位中抽一个号,共有8种可能,每个数字被抽到的机会相等,所以抽中8号的概率为.故选B.点评:考查概率的求法,关键是真正理解概率的意义,正确认识到本题是八选一的问题,不受前面叙述的影响.4.某工厂计划经过两年的时间将某种产品的产量从每年144万台提高到169万台,则每年平均约增长()A.5% B.8% C.10% D.15%考点:一元二次方程的应用.专题:增长率问题.分析:设每年平均增长的百分数是x,根据某工厂计划经过两年的时间,把某种产品从现在的年产量144万台提高到169万台,可列方程求解.解答:解:设每年平均增长的百分数是x,144(1+x)2=169,x≈8%或x≈﹣208%(舍去).故每年平均增长的百分数约是8%.故选B.点评:本题考查理解题意的能力,关键是设出增长率,根据两年前和两年后的产量,列方程求解.5.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是()A.15°B.30°C.50°D.65°考点:线段垂直平分线的性质;等腰三角形的性质.专题:计算题.分析:首先由AB=AC可得∠ABC=∠ACB,再由DE垂直平分AC可得DC=AD,推出∠DAC=∠DCA.易求∠DCB.解答:解:AB=AC,∠A=50°⇒∠ABC=∠ACB=65°.∵DE垂直平分AC,∴∠DAC=∠DCA.∴∠DCB=∠ACB﹣∠DCA=65°﹣50°=15°.故选A.点评:本题考查的是线段垂直平分线的性质以及等腰三角形的性质,考生主要了解线段垂直平分线的性质即可求解.6.如图,在△MBN中,BM=6,点A、C、D分别在MB、NB、MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则▱ABCD的周长是()A.24 B.18 C.16 D.12考点:相似三角形的判定与性质;平行四边形的性质.分析:首先根据平行四边形的性质可得AB∥DC,AD∥BN,根据平行线的性质可得∠N=∠ADM,∠M=∠NDC,再由∠NDC=∠MDA,可得∠N=∠NDC,∠M=∠MDA,∠M=∠N,根据等角对等边可得CN=DC,AD=MA,NB=MB,进而得到答案.解答:解:∵四边形ABCD为平行四边形,∴AD=BC,DC=AB,AB∥DC,AD∥BN,∴∠N=∠ADM,∠M=∠NDC,∵∠NDC=∠MDA,∴∠N=∠NDC,∠M=∠MDA,∠M=∠N,∴CN=DC,AD=MA,NB=MB,∴平行四边形ABCD的周长是BM+BN=6+6=12,故答案为:12.点评:此题主要考查了平行四边形的性质,关键是掌握平行四边形对边相等.7.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:数形结合.分析:根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.解答:解:解法一:系统分析①当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的y=(k≠0)的图象经过一三象限,选项中没有符合条件的图象,②当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的y=(k≠0)的图象经过二四象限,故D选项的图象符合要求,解法二:具体分析A、由一次函数的图象得出k<0,而反比例函数的开口方向也应该是在第二、四象限即:k<0,不符合题意,故A选项错误;B、由一次函数的图象得出k>0,而反比例函数的开口方向也应该是在第一、三象限即:k>0,不符合题意,故B选项错误;C、由一次函数的图象得出k>0,即与y轴的交点在y轴负半轴,不符合题意,故C选项错误;D、由一次函数的图象得出k<0,与y轴的交点也在正半轴,反比例函数图象也是在第二四象限,符合题意,故D选项正确;故选:D.点评:此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k值相同,则两个函数图象必有交点;一次函数与y轴的交点与一次函数的常数项相关.8.如图,它们是一个物体的三视图,该物体的形状是()A.圆柱B.正方体C.圆锥D.长方体考点:由三视图判断几何体.分析:根据题意,正视图与左视图均为三角形,俯视图为圆形故可以看出该几何体为圆锥.解答:解:本题中,圆柱的三视图不可能由三角形,正方体的三视图均为正方形,长方体的三视图不可能由圆和三角形,因此只有圆锥符合条件.故选:C.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.9.在函数的图象上有三点A1(x1,y1)、A2(x2,y2)、A3(x3,y3),若x1<0<x2<x3,则下列正确的是()A.y1<0<y2<y3B.y2<y3<0<y1C.y2<y3<y1<0 D.0<y2<y1<y3考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象的性质,点A1在第二象限,y1>0,所以,A2、A3在第四象限,因为在每个象限内,y随x的增大而增大,所以y2<y3.解答:解:∵k=﹣<0,∴点A1在第二象限,点A2、A3在第四象限,如图,y2<y3<0<y1.故选B.点评:本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.10.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种考点:平行四边形的判定.专题:压轴题.分析:根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.解答:解:依题意得有四种组合方式:(1)①③,利用两组对边平行的四边形是平行四边形判定;(2)②④,利用两组对边相等的四边形是平行四边形判定;(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.故选:C.点评:此题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.二.填空题(每小题3分,共18分)11.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是.考点:概率公式;一次函数图象与系数的关系.分析:从﹣1,1,2三个数中任取一个,共有三种取法,其中函数y=﹣1•x+3是y随x增大而减小的,函数y=1•x+3和y=2•x+3都是y随x增大而增大的,所以符合题意的概率为.解答:解:P(y随x增大而增大)=.故本题答案为:.点评:用到的知识点为:概率=所求情况数与总情况数之比;一次函数未知数的比例系数大于0,y 随x的增大而增大.12.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为或.考点:菱形的性质.专题:压轴题;分类讨论.分析:根据题意得,应分P与A在BD的同侧与异侧两种情况进行讨论.解答:解:当P与A在BD的异侧时:连接AP交BD于M,∵AD=AB,DP=BP,∴AP⊥BD(到线段两端距离相等的点在垂直平分线上),在直角△ABM中,∠BAM=30°,∴AM=AB•cos30°=3,BM=AB•sin30°=3,∴PM==,∴AP=AM+PM=4;当P与A在BD的同侧时:连接AP并延长AP交BD于点MAP=AM﹣PM=2;当P与M重合时,PD=PB=3,与PB=PD=2矛盾,舍去.AP的长为4或2.故答案为4或2.点评:本题注意到应分两种情况讨论,并且注意两种情况都存在关系AP⊥BD,这是解决本题的关键.13.已知x是一元二次方程x2+3x﹣1=0的实数根,那么代数式的值为.考点:一元二次方程的解;分式的化简求值.分析:利用方程解的定义找到等式x2+3x=1,再把所求的代数式利用分式的计算法则化简后整理出x2+3x的形式,再整体代入x2+3x=1,即可求解.解答:解:∵x是一元二次方程x2+3x﹣1=0的实数根,∴x2+3x=1,∴=÷=•==.故填空答案:.点评:此题主要考查了方程解的定义和分式的运算,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.14.已知函数y=(m+1)是反比例函数,则m的值为 1 .考点:反比例函数的定义.分析:根据反比例函数的定义知m2﹣2=﹣1,且m+1≠0,据此可以求得m的值.解答:解:∵y=(m+1)x m2﹣2是反比例函数,∴m2﹣2=﹣1,且m+1≠0,∴m=±1,且m≠﹣1,∴m=1;故答案是:1.点评:本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx﹣1(k≠0)的形式.15.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是对角线互相垂直.考点:矩形的判定;三角形中位线定理.分析:可连接AC、BD,利用三角形中位线定理及矩形的性质求解.解答:解:连接BD、AC;∵H、G分别是AD、CD的中点,∴HG是△DAC的中位线;∴HG∥AC;同理可证得EF∥AC,HE∥BD∥FG;若四边形EHGF是矩形,则∠FEH=∠EHG=∠HGF=∠EFG=90°;∴DB⊥AC.故四边形ABCD应具备的条件为对角线互相垂直.点评:本题考查的是矩形的判定和性质以及三角形中位线定理的应用.16.如图,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,PC ⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为 4 .考点:反比例函数系数k的几何意义.专题:数形结合.分析:四边形PAOB的面积=矩形OCPD的面积﹣△ODB的面积﹣△OAC的面积,根据反比例函数中k的几何意义即可求出.解答:解:根据题意可得四边形PAOB的面积=S矩形OCPD﹣S△OBD﹣S△OAC,由反比例函数中k的几何意义,可知其面积为四边形PAOB的面积=8﹣2﹣2=4.故答案为:4.点评:主要考查了反比例函数中k的几何意义,即在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.三.解答题(共72分)17.解方程(1)(x﹣8)(x﹣1)=﹣12(2)x2﹣6x+2=0.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.专题:计算题.分析:(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用配方法得到(x﹣3)2=7,然后利用直接开平方法解方程.解答:解:(1)x2﹣9x+20=0,(x﹣5)(x﹣4)=0,x﹣5=0或x﹣4=0,所以x1=5,x2=4;(2)x2﹣6x=2,x2﹣6x+9=7,(x﹣3)2=7,x﹣3=±,所以x1=3+,x2=3﹣.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.18.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.考点:全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可证出BC=AD,(2)根据Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.解答:证明:(1)∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,(2)∵Rt△ABC≌Rt△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形.点评:本题考查了全等三角形的判定及性质;用到的知识点是全等三角形的判定及性质、等腰三角形的判定等,全等三角形的判定是重点,本题是道基础题,是对全等三角形的判定的训练.19.甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜.请你解决下列问题:(1)利用树状图(或列表)的方法表示游戏所有可能出现的结果;(2)求甲、乙两人获胜的概率.考点:列表法与树状图法.分析:先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解答:解:(1)树状图法:或列表法:× 1 2 34 4 8 125 5 10 15(2)根据列出的表,P(甲)==,P(乙)==.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C′处,折痕DE交BC于点E,连接C′E,试判断四边形CDC′E是什么特殊四边形,并说明理由.考点:翻折变换(折叠问题).分析:首先由折叠的性质可得:CD=C′D,∠C′DE=∠CDE,CE=C′E,又由AD∥BC,即可证得△CDE是等腰三角形,可得CD=CE,然后根据四条边都相等的四边形是菱形,即可证得四边形CDC′E为菱形.解答:解:四边形CDC′E是菱形.理由:根据折叠的性质,可得:CD=C′D,∠C′DE=∠CDE,CE=C′E,∵AD∥BC,∴∠C′DE=∠CED,∴∠CDE=∠CED,∴CD=CE,∴CD=C′D=C′E=CE,∴四边形CDC′E为菱形.点评:此题考查了折叠的性质,等腰三角形的判定与性质以及菱形的判定等知识.此题难度适中,解题的关键是注意数形结合思想的应用,注意根据折叠的性质找到对应边与对应角.21.新苑小区的物业管理部门为了美化环境,在小区靠墙的一侧设计了一处长方形花圃(墙长25m),三边外围用篱笆围起,栽上蝴蝶花,共用篱笆40m,(1)花圃的面积能达到180m2吗?(2)花圃的面积能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.考点:一元二次方程的应用.专题:几何图形问题.分析:设BC=xm,则AB=(40﹣x)m,花圃的面积为x(40﹣x).(1)(2)假设花圃的面积能达到180 m2,250m2,只需令x(40﹣x)等于200或250,判断所列方程是否有解,若有解求出x的值,即花圃的面积能达到,否则不能达到;解答:解:(1)设BC=xm,则AB=(40﹣x)=(20﹣x)m①由题意得:x(20﹣x)=180,x2﹣40x+360=0,△=402﹣4×360=0,解之得,x=20m答:能达到200m2.(2)x(20﹣x)=250,x2﹣40x+500=0,△=402﹣4×500=﹣400<0,即:此方程无解,答:不能达到250m2点评:本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解.22.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.考点:反比例函数综合题.专题:计算题;综合题;数形结合.分析:(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为3且为负数,由此即可求出k;(2)交点A、C的坐标是方程组的解,解之即得;(3)从图形上可看出△AOC的面积为两小三角形面积之和,根据三角形的面积公式即可求出.解答:解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.点评:此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.23.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.考点:平行投影;相似三角形的性质;相似三角形的判定.专题:计算题;作图题.分析:(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).解答:解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.点评:本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.24.为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:(1)从消毒开始,经多长时间,教室内每立方米空气含药量为4mg.(2)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?考点:反比例函数的应用;一次函数的应用.分析:(1)首先根据题意,药物燃烧阶段,室内每立方米空气中的含药量y与燃烧时间x成正比例;燃烧后,y与x成反比例,且其图象都过点(10,8),将数据代入用待定系数法可得反比例函数的关系式,分别求出函数解析式,再计算出y=4时,x的值即可;(2)根据题意可知得<1.6,解不等式即可.解答:解:(1)设药物燃烧阶段函数解析式为y=k1x(k1≠0),由题意得:8=10k1,∴k1=,∴此阶段函数解析式为y=x(0≤x≤10).当y=4时,x=5;设药物燃烧结束后函数解析式为y=(k2≠0),由题意得:,∴k2=80,∴此阶段函数解析式为y=(x≥10).,当y=4时,x=20,答:从消毒开始,经5分钟和20分钟,教室内每立方米空气含药量为4mg;(2)当y<1.6时,得<1.6,∵x>0,∴1.6x>80,解得x>50.答:从消毒开始经过50分钟学生才可返回教室.点评:本题主要考查了一次函数、反比例函数的应用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.25.将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=,P是AC上的一个动点.(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时▱DPBQ的面积.考点:解直角三角形;平行四边形的性质.专题:压轴题;动点型.分析:(1)作DF⊥AC,由AB的长求得BC、AC的长.在等腰Rt△DAC中,DF=FA=FC;在Rt△BCP中,求得PC的长.则由勾股定理即可求得DP的长.(2)由(1)得BC与DF的关系,则DP与DF的关系也已知,先求得∠PDF的度数,则∠PDA的度数也可求出,需注意有两种情况.(3)由于四边形DPBQ为平行四边形,则BC∥DF,P为AC中点,作出平行四边形,求得面积.解答:解:在Rt△ABC中,AB=2,∠BAC=30°,∴BC=,AC=3.(1)如图(1),作DF⊥AC.∵Rt△ACD中,AD=CD,∴DF=AF=CF=.∵BP平分∠ABC,∴∠PBC=30°,∴CP=BC•tan30°=1,∴PF=,∴DP==.(2)当P点位置如图(2)所示时,根据(1)中结论,DF=,∠ADF=45°,又∵PD=BC=,∴cos∠PDF==,。

2019-2020学年辽宁省沈阳126中九年级(上)月考数学试卷(9月份)

2019-2020学年辽宁省沈阳126中九年级(上)月考数学试卷(9月份)

2019-2020学年辽宁省沈阳126中九年级(上)月考数学试卷(9月份)一、选择题(本大题共10小题,共20.0分)1.-3的倒数是()A. 3B. -3C. 13D. -132.如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的()A. B. C. D.3.下列各图形中,可以是一个正方体的平面展开图的是()A. B. C. D.4.下列说法正确的是()A. 最大的负整数是-1B. 最小的正数是0C. 绝对值等于3的数是3D. 任何有理数都有倒数5.用一个平面按照如图所示的位置与正方体相截,则截面图形是()A. B.C. D.6.下列运算错误的是()A. 2+(-7)=-5B. 8-(-2)=8+2=10C. -3÷23=-3×32=-92D. (-15)×(-4)×(+15)×(-12)=67.有理数a ,b 在数轴上的位置如图所示,以下说法正确的是()A. +??=0B. ??-??>0C. >0D. |??|<|??|8.有一个正方体的六个面上分别标有数字1、2、3、4、5、6,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字6的面所对面上的数字记为a ,2的面所对面上数字记为b ,那么??+??的值为()A. 6B. 7C. 8D. 99.定义新运算:对任意有理数a 、b ,都有?????=??(1-1??),例如3?4=3×(13-14)=14,那么(-2)?5的值是()A. -35B. 35C. -75D. 7510.已知数轴上两点A 、B 对应的数分别为-1,3,点P 为数轴上一动点,其对应的数为??.当P 到点A 、B 的距离之和为7时,则对应的数x 的值为()A. 92B. -92和52C. 92和-52D. 92和52二、填空题(本大题共8小题,共24.0分)11.如果水位升高3m 时,水位变化记作+3??,那么水位下降5m 时,水位变化记作:______ m .12.气象资料表明,高度毎增加1千米,气温大约下降6℃,我国著名风景区黄山的天都峰高1700米,当地面温度约为18℃时,山顶气温是______.13.一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这个几何体的形状如图所示,则这个几何体中小正方体的个数最少是______个.14.小于2013且大于-2012的所有整数的和是______.15.已知一个n 棱柱有36条棱,那么这个n 棱柱共有______个面.16.纽约与太原的时差为-13?,小明在太原乘坐早晨10:00的航班飞行约20h 到达纽约,那么小明到达纽约时间是______.17.若|??|=5,|??|=2,且|??-??|=??-??,则??+??=______.18.下列说法正确的是______(填序号).①若|??|=??,则一定有??=±??;②若a ,b 互为相反数,则=-1;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0;⑥若|??-3|+|??+2|=5,则-2≤??≤3.三、计算题(本大题共1小题,共 6.0分)19.已知a与b是互为倒数,c与d是互为相反数,m的绝对值是3,求2??3+2+??+??4??.四、解答题(本大题共5小题,共50.0分)20.计算(1)-12+6+5-10(2)725×(-56)÷(-145)(3)42×(-23)+(-34)÷(-14)(4)(47-118-314)×(-56)21.在数轴上表示下列各数,并把它们用“<”连接起来.-5,-213,0,112,-|- 3.5|,+222.201年9月1日,长春首届航空开放日在长春大房身机场正式举行,空军八一飞行表演队的新换装歼-10飞机,进行了精彩的特技飞行表演,其中一架飞机起飞0.5千米后的高度变化如下表:高度变化上升4.2下降3.5??上升1.4下降1.2记作+4.2-3.5+1.4-1.2(1)此时这架飞机飞离地面的高度是多少千米.(2)如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.6千米,下降2.8千米,再上升 1.5千米,最后下降0.9千米.若飞机平均上升1千米需消耗6升燃油,平均下降1千米需消耗4升燃油,那么这架飞机在这4个特技表演过程中,一共消耗了多少升燃油?23.如图所示,是由几个小立方块所搭几何体的俯视图,小立方块中的数字表示在该位置小立方块的个数.(1)请在网格内画出从正面和从左面看到的这个几何体的形状图;(2)如图1,是小明用9个棱长为lcm 的小立方块积木搭成的几何体的俯视图,小立方块中的数字表示在该位置小立方块的个数他请小亮用尽可能少的同样大小的立方块在旁边再搭建一个几何体使小亮所搭建的几何体恰好可以和小明所搭建的几何体拼成一个大的正方体(即拼大正方体时将其中一个几何体翻转,且假定组成每个几何体的立方块粘合在一起),则:①小亮至少还需要______个小正方体;②上面①中小亮所搭几何体的表面积为______2.24.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边的长为3.(1)数轴上点A 表示的数为______.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为,设长方形OABC 移动的距离为x ,移动后的长方形与原长方形OABC 重叠部分的面积记为S .①当S 等于原长方形OABC 面积的14时,则点A 的移动距离′=______,此时数轴上点??′表示的数为______.②??为线段′的中点,点E 在线段′上,且=13′,当点D ,E 所表示的数互为相反数时,求x 的值.答案和解析1.【答案】 D【解析】解:∵(-3)×(-13)=1,∴-3的倒数是-13.故选:D.直接根据倒数的定义进行解答即可.本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.【答案】 A【解析】解:根据面动成体结合常见立体图形的形状得出只有A选项符合,故选A根据面动成体结合常见立体图形的形状解答即可.本题考查了点、线、面、体的知识,是基础题,熟悉常见几何体的形成是解题的关键.3.【答案】 D【解析】解:选项A,C折叠后缺少一个底面,而B折叠后缺少一个侧面,所以可以是一个正方体的平面展开图的是D.故选:D.由平面图形的折叠及立体图形的表面展开图的特点解题.熟练掌握正方体的表面展开图是解题的关键.4.【答案】 A【解析】解:既是整数又是负数中最大的数是-1,故A正确.0既不是整数也不是负数,故B错误.绝对值等于3的数是3和-3,故C错误.0是有理数,但是0没有倒数,故D错误.故选:A.根据有理数的分类和绝对值的非负性进行分析即可.本题考查了有理数的定义及相关的基本性质5.【答案】 A【解析】解:用一个平面按如图所示方法去截一个正方体,则截面是三角形,故选:A.用平面去截正方体时与三个面相交得三角形.此题主要考查了正方体的截面.解决本题的关键是理解截面经过几个面得到的截面就是几边形.6.【答案】 D【解析】解:∵2+(-7)=-5,∴选项A不符合题意;∵8-(-2)=8+2=10,∴选项B不符合题意;∵-3÷23=-3×32=-92,∴选项C不符合题意;∵(-15)×(-4)×(+15)×(-12)=-6,∴选项D符合题意.故选:D.根据有理数加减乘除法的运算方法,以及有理数混合运算的方法,逐项判断即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.7.【答案】 D【解析】解:由图可知:??<0<??,|??|>|??|,∴??+??<0,|??|>|??|,<0,??-??<0.所以只有选项D成立.故选:D.由图可判断a、b的正负性,a、b的绝对值的大小,即可解答.此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.8.【答案】 B【解析】解:从图可以看出1和6、4、3、2都相邻,所以1的对面只能是5,4和1、6、5、3相邻,那么4的对面是2,即2的对面是4,由以上两项可知6和3相对,即6的对面是3,所以??+??=3+4=7.故选:B.从图中相邻的面来判断对面的数字:1和6、4、3、2都相邻,所以1的对面只能是5,4和1、6、5、3相邻,那么4的对面是2,即2的对面是4,最后可知6的对面是3.那么??+??的值可求.本题考查灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.9.【答案】 D【解析】解:(-2)?5=-2×(-12-15)=1+25=75,故选:D.根据新定义列出算式,再利用乘法分配律计算可得.本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键10.【答案】 C【解析】解:由题意得:当P到点A、B的距离之和为7时,有|??-(-1)|+|??-3|=7∵当点P位于点A、B之间时,|??-(-1)|+|??-3|=4∴将x从-1向左1.5个单位或从3向右1.5个单位,则有|??-(-1)|+|??-3|=7此时=-1- 1.5=-52,或??=3+1.5=92故选:C.比较:当P在点A、B之间时的距离、当点P到点A和点B的距离之和为7的点P的位置,借助含绝对值的式子分析求解即可.本题考查了数轴上的点与点之间的距离及数轴的应用,明确如何借助用数轴上的点表示距离,是解题的关键.11.【答案】-5【解析】解:因为升高记为+,所以下降记为-,所以水位下降5m时水位变化记作-5??.故答案为:-5.首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.此题考查的知识点是正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.【答案】7.8℃【解析】解:根据题意知天都峰山顶气温是:18-6×(1700÷1000)=18-6×1.7=18-10.2=7.8(℃).故答案为:7.8℃.根据题意列出算式,利用有理数混合运算顺序和运算法则计算可得.此题考查了有理数混合运算的应用,弄清题中的等量关系是解本题的关键.13.【答案】 5【解析】解:搭这样的几何体最少需要4+1=5个小正方体,最多需要4+2=6个小正方体,故答案为: 5易得这个几何体共有2层,第一层有4,第二层最少有1个,最多有2个.此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.14.【答案】2012【解析】解:小于2013而大于-2012的所有整数有:-2011,-2010,-2009,...,-1,0,1, (2012)和为-2011-2010-2009-?-1+0+1+?+2012=(-2011+2011)+(-2010+2010)+?+(-1+1)+2012=2012.故答案为:2012.写出所有满足题意的整数,利用互为相反数两数之和为0即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.15.【答案】14【解析】解:一个棱柱有36条棱,这是一个12棱柱,它有14个面.故答案为:14.根据棱柱的概念和定义,可知有36条棱的棱柱是12棱柱,据此解答.本题考查了认识立体图形,棱柱由上下两个底面及侧面组成,十二棱柱上下底面共有24条棱,侧面有12条棱.16.【答案】17:00【解析】解:10+20-13=17(时),即小明到达纽约时间是17时,故答案为:17:00.用飞机起飞的时间加上飞行的时间就是到达的时间,再加上时差即可.本题考查了正数与负数和有理数的加减混合运算,能熟记有理数的加减混合运算法则是解此题的关键.17.【答案】-7或-3【解析】【分析】由题意利用绝对值的代数意义求出x与y的值,即可求出??+??的值.此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.【解答】解:∵|??|=5,|??|=2,且|??-??|=??-??,∴??=±5,??=±2,??-??≤0,∴??=-5,??=2或??=-5,??=-2,则??+??=-7或-3,故答案为:-7或-318.【答案】④⑥【解析】解:①若|??|=??,则有??=??或有??=-??,并不一定是??=±??,故①不正确;②若a,b互为相反数,若??=??=0,此时a,b互为相反数,但是对于等式=-1不成立,故②不正确;③几个有理数相乘,若负因数有偶数个,若其中有因数0,那么他们的积为0,故③不正确;④两数相加,分为两个正数相加,此时和大于每一个加数;一正一负两数相加,此时和大于负数;一个数和0相加,都等于这个数;只有两个负数相加,其和小于每一个加数,故④正确;⑤0除以0没有意义,故⑤不正确;⑥若|??-3|+|??+2|=5,则-2≤??≤3,正确,当??<-2或??>3时,|??-3|+|??+ 2|>5,故⑥正确.综上,正确的有④⑥.故答案为:④⑥.利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可.本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.19.【答案】解:∵??与b是互为倒数,c与d是互为相反数,m的绝对值是3,∴=1,??+??=0,??=±3.当??=3时,原式=2+2+0=4;当=-3时,原式=-2+2+0=0.【解析】由题意可知=1,??+??=0,??=±3,然后代入计算即可.本题主要考查的是有理数的混合运算,求代数式的值,根据题意求得=1,??+??=0,=±3是解题的关键.20.【答案】解:(1)-12+6+5-10=-22+11 =-11;(2)725×(-56)÷(-145)=725×(-56)×(-514)=112;(3)42×(-23)+(-34)÷(-14)=-28+3 =-25;(4)(47-118-314)×(-56)=47×(-56)-118×(-56)-314×(-56)=-32+63+12=43.【解析】(1)先同号相加,再异号相加;(2)将除法变为乘法,再约分计算即可求解;(3)先算乘除,再算加法;(4)根据乘法分配律简便计算.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化21.【答案】解:-|- 3.5|=-3.5,+2=2,在数轴上表示为:用“<”把这些数连接起来为:-5<-|- 3.5|<-213<0<112<+2.【解析】先在数轴上表示各个数,再根据在数轴上表示的数,右边的数总比左边的数大比较即可.本题考查了数轴和有理数的大小比较的应用,注意:在数轴上表示的数,右边的数总比左边的数大.22.【答案】解:(1)0.5+ 4.2- 3.5+1.4- 1.2= 1.4千米,答:此时这架飞机飞离地面的高度是 1.4千米;(2)(3.6+1.5)×6+(2.8+0.9)×4=45.4(升)答:一共消耗了45.4升燃油.【解析】(1)求得各数的和,根据结果的符号和绝对值即可判断位置;(2)根据题意列式计算即可.此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际.23.【答案】18 56【解析】解:(1)如图所示:(2)①图中给了9个立方块,最小的正方体需要27块,27-9=18,②表面积=(9+9+8)×2+4=56.故答案为:18;56.(1)根据三视图的定义画出图形即可;(2)①根据题意画出俯视图即可解问题;②根据三视图的定义画出图形即可,求出6个方向的表面积即可.本题考查三视图,几何体的表面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】 4 3 1或7【解析】解:(1)∵长方形OABC的面积为12,OC边长为3,∴=12÷3=4,∴数轴上点A表示的数为4,故答案为:4.(2)①∵??等于原长方形OABC面积的14,∴重叠部分的面积为3,即′×??′??′=3,∵??′??′=3,∴′=1,则点A的移动距离′=3;当向左运动时,如图1,??′表示的数为4-3=1,当向右运动时,如图2,∵??′??′==4,∴′=4+3=7,∴??′表示的数为7,故答案为:1或7.②如图1,当原长方形OABC向左移动时,点D表示的数为4-12,点E表示的数为-13??,由题意可得方程:4-12??-13??=0,解得:=245,如图2,当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意.综上x的值为245.(1)利用面积÷可得AO长,进而可得答案;(2)①首先计算出S的值,再根据矩形的面积表示出??′??的长度,再分两种情况:当向左运动时,当向右运动时,分别求出??′表示的数;②此题分两种情况:当原长方形OABC向左移动时,点D表示的数为4-12,点E表示的数为-13??,再根据题意列出方程;当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意.本题主要考查四边形的综合问题,解题的关键是掌握矩形的性质、一元一次方程的应用,正确理解题意,利用数形结合列出方程,注意要分类讨论,不要漏解.。

重庆市北碚区西南大学附中2019-2020学年九年级数学(上)第一次月考试卷 含答案解析

 重庆市北碚区西南大学附中2019-2020学年九年级数学(上)第一次月考试卷 含答案解析

重庆市北碚区西南大学附中2019-2020学年九年级数学(上)第一次月考试卷含答案解析一.选择题(共12小题)1.在﹣2.4,0,﹣2,2这四个数中,是负整数的是()A.﹣2.4 B.﹣2 C.0 D.22.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.如图,△ABC∽△ADE,若AB=9,AD=3,DE=2,则BC的长是()A.4 B.6 C.8 D.74.如图,点A、B、C、D在⊙O上,∠AOC=112°,点B是弧AC的中点,则∠D的度数是()A.56°B.35°C.38°D.28°5.下列命题正确的是()A.有一组邻边相等的平行四边形是正方形B.有一个角是直角的平行四边形是正方形C.对角线相等的菱形是正方形D.对角线互相平分的矩形是正方形6.估计的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.8.按如图所示的运算程序,能使输出结果的值为11的是()A.x=3,y=1 B.x=2,y=2 C.x=2,y=3 D.x=0,y=1.5 9.小蓉从格致楼底楼点A处沿立人大礼堂旁的台阶AB拾阶而上,步行20米后到达万象楼楼底点B,再从点B直线行进15米到达直通博雅楼的台阶底端C,然后沿台阶CD步行至博雅楼底楼的小平台D.在D点处测得竖立于百汇园旁的万象楼BE的楼顶点E的仰角为30°.如图所示,已知台阶AB与水平地面夹角为45°,台阶CD与水平地面夹角为60°,CD=12米,点A,B,C,D,E在同一平面.则格致楼楼底点A到万象楼楼顶点E的垂直高度约为()(参考数据:≈1.7,≈1.4)A.22.1米B.35.2米C.27.3米D.36.1米10.如图,在平面直角坐标系中,直角△AOB的直角顶点O在坐标原点,OB=5,OA=10,斜边AB的中点C恰在y轴上,反比例函数y=(k>0)的图象经过点B,则k的值为()A.10 B.C.D.4011.已知数m使关于x的不等式组至少有一个非负整数解,且使关于x的分式方程有不大于5的整数解,则所有满足条件的m的个数是()A.1 B.2 C.3 D.412.如图,在四边形ABCD中,AD∥BC,∠A=90°,∠ADC=120°,连接BD,把△ABD沿BD翻折,得到△A′BD,连接A′C,若AB=3,∠ABD=60°,则点D到直线A′C的距离为()A.B.C.D.二.填空题(共6小题)13.2019年9月6日重庆来福士购物中心优雅启幕,开业首日客流达35000人次,请把数35000科学记数法表示为.14.计算:=.15.一个不透明的袋中装有四张形状大小质地完全相同的卡片,它们上画分别标有数字0,1,2,3,随机抽取一张不放回,再随机抽取一张,两次抽取的卡片数字同奇偶的概率是.16.如图,在矩形ABCD中,AD=6,以点C为圆心,以CB的长为半径画弧交AD于E,点E 恰好是AD中点,则图中阴影部分的面积为(结果保留π)17.暑假假期,小明和小亮两家相约自驾车从重庆出发前往相距172千米的景区游玩两家人同时同地出发,以各自的速度匀速行驶,出发一段时间后,小明家因故停下来休息了15分钟,为了尽快追上小亮家,小明家提高速度后仍保持匀速行驶(加速的时间忽略不计),小明家追上小亮家后以提高后的速度直到景区,小亮家保持原速,如图是小明家、小亮家两车之间的距离s(km)与出发时间t(h)之间的函数关系图象,则小明家比小亮家早到景区分钟.18.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书本.三.解答题(共8小题)19.计算:(1)(a+2b)2﹣(a+b)(a﹣b).(2).20.如图,在△ABC中,AB=AC,D是BC边的中点,连接AD,过点D作DE∥AB (1)若∠C=70°,求∠BAD的度数;(2)求证:AE=DE.21.为加强学生对“垃圾分类知识”的重视程度,某学校组织了“垃圾分类知识”比赛.现七、八年级各抽取10名同学的成绩进行统计分析(成绩得分用x表示,共分成四组:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100),绘制了如下的图表,请根据图中的信息解答下列问题:七年级10名学生的成绩是:69,78,96,77,68,95,86,100,85,86八年级10名学生的成绩在C组中的数据是:86,87,87七、八年级抽取学生比赛成绩统计表年级平均数中位数众数方差七年级84 85.5 b109.6八年级84 c92 102.6(1)直接写出上述图表中a,b,c的值:a=,b=,c=.(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(一条理由即可):.(3)若两个年级共680人参加了此次比赛,估计参加此次比赛成绩优秀(90≤x≤100)的学生人数是多少?22.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣利用函数图象研究其性质﹣应用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了一个陌生函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:在函数y=|中,当x=0时,y=1;当x=2时,y=.(1)求这函数的表达式;(2)在给出的平面直角坐标系中画出这个函数的大致图象并写出这个函数的一条性质;(3)结合你所画的函数图象与y=x+的图象,直接写出不等式组的解集.23.如果一个六位正整数由一个三位正整数循环组成,则称这个六位正整数为“六位循环数”如123123、484484.(1)猜想任意一个六位循环数能否被91整除,并说明理由;(2)已知一个六位循环数能被17整除且百位数字与个位数字之和等于十位数字,求满足要求的所有六位循环数.24.“中秋节”是我国的传统佳节,中秋赏月吃月饼.某蛋糕店销售“杏花楼”和“元祖”两个品牌的月饼,每个“杏花楼”月饼的售价是15元,每个“元祖”月饼的售价是12元.(1)8月份,两个品牌的月饼一共销售180个,且总销售额不低于2460,则卖出“杏花楼”月饼至少多少个?(2)9月份,月饼大量上市,受此影响,“杏花楼”月饼的售价降低了a%(a%<30%),销售量在八月份的最低销售量的基础上增加了5a个,“元祖”月饼的售价降低a元,销售量在八份的最高销售量的基础上增加了a%,结果9月份的总销售额比8月最低销售额增加了1020元,求a的值.25.如图,在平行四边形ABCD中,连接AC,AD=AC,过点D作DF⊥AC交BC于点F,交AC 于点E,连接AF.(1)若AE=4,DE=2EC,求EC的长.(2)延长AC至点H,连接FH,使∠H=∠EDC,若AB=AF=FH,求证:FD+FC=AD.26.如图,抛物线y=与x轴交于A、B两点,与y轴交于C点.(1)点P是线段BC下方的抛物线上一点,过点P作PD⊥BC交BC于点D,过点P作EP ∥y轴交BC于点E.点MN是直线BC上两个动点且MN=AO(x M<x N).当DE长度最大时,求PM+MN﹣BN的最小值.(2)将点A向左移动3个单位得点G,△GOC延直线BC平移运动得到三角形△G'O′C'(两三角形可重合),则在平面内是否存在点G',使得△G′BC为等腰三角形,若存在,直接写出满足条件的所有点G′的坐标,若不存在请说明理由.参考答案与试题解析一.选择题(共12小题)1.在﹣2.4,0,﹣2,2这四个数中,是负整数的是()A.﹣2.4 B.﹣2 C.0 D.2【分析】首先找出这四个数中的负数,然后找出负数中的整数,即可得出答案.【解答】解:在﹣2.4,0,﹣2,2这四个数中负数有﹣2.4和﹣2,因为﹣2.4是小数而不是整数,所以只有﹣2是负整数.故选:B.2.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有一个正方形.故选:D.3.如图,△ABC∽△ADE,若AB=9,AD=3,DE=2,则BC的长是()A.4 B.6 C.8 D.7【分析】由题可知△ADE∽△ABC,可根据相似三角形的对应边成比例求解.【解答】解:∵△ADE∽△ABC,∴=,即=,解得:BC=6,故选:B.4.如图,点A、B、C、D在⊙O上,∠AOC=112°,点B是弧AC的中点,则∠D的度数是()A.56°B.35°C.38°D.28°【分析】根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.【解答】解:连接OB,∵点B是弧AC的中点,∴∠AOB=∠AOC=56°,由圆周角定理得,∠D=∠AOB=28°,故选:D.5.下列命题正确的是()A.有一组邻边相等的平行四边形是正方形B.有一个角是直角的平行四边形是正方形C.对角线相等的菱形是正方形D.对角线互相平分的矩形是正方形【分析】根据正方形的判定判断即可.【解答】解:A、有一组邻边相等的平行四边形是菱形,原命题是假命题;B、有一个角是直角的平行四边形是矩形,原命题是假命题;C、对角线相等的菱形是正方形,是真命题;D、对角线互相垂直的矩形是正方形,原命题是假命题;故选:C.6.估计的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】原式利用二次根式乘法法则计算得到结果,估算即可.【解答】解:原式=2﹣2,∵36<40<49,即62<()2<72,∴6<2<7,即4<2﹣2<5,故选:B.7.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【解答】解:设大马有x匹,小马有y匹,由题意得:,故选:C.8.按如图所示的运算程序,能使输出结果的值为11的是()A.x=3,y=1 B.x=2,y=2 C.x=2,y=3 D.x=0,y=1.5 【分析】把各项中的x与y的值代入运算程序中计算得到结果,即可作出判断.【解答】解:A、把x=3,y=1代入运算程序中得:输出结果为9+2=11,符合题意;B、把x=2,y=2代入运算程序中得:4﹣4=0,不符合题意;C、把x=2,y=3代入运算程序中得:4﹣6=﹣2,不符合题意;D、把x=0,y=1.5代入运算程序得:0﹣3=﹣3,不符合题意,故选:A.9.小蓉从格致楼底楼点A处沿立人大礼堂旁的台阶AB拾阶而上,步行20米后到达万象楼楼底点B,再从点B直线行进15米到达直通博雅楼的台阶底端C,然后沿台阶CD步行至博雅楼底楼的小平台D.在D点处测得竖立于百汇园旁的万象楼BE的楼顶点E的仰角为30°.如图所示,已知台阶AB与水平地面夹角为45°,台阶CD与水平地面夹角为60°,CD=12米,点A,B,C,D,E在同一平面.则格致楼楼底点A到万象楼楼顶点E的垂直高度约为()(参考数据:≈1.7,≈1.4)A.22.1米B.35.2米C.27.3米D.36.1米【分析】作DH⊥BC交BC的延长线于H,作DG⊥BE于G,作AF⊥BE交BE的延长线于F,根据正弦的定义BF,根据正弦和余弦的定义分别求出CH、DH,根据正切的定义求出EG,结合图形计算,得到答案.【解答】解:作DH⊥BC交BC的延长线于H,作DG⊥BE于G,作AF⊥BE交BE的延长线于F,则四边形BGDH为矩形,∴DH=BG,DG=BH,在Rt△ABF中,sin A=,则BF=AB•sin A=10,在Rt△DCH中,DH=CD•sin∠DCH=6,CH=CD=6,∴BH=BC+CH=15+6=21,在Rt△DEG中,tan∠EDG=,则EG=DG•tan∠EDG=7,∴EF=7+6+10≈36.1(米)故选:D.10.如图,在平面直角坐标系中,直角△AOB的直角顶点O在坐标原点,OB=5,OA=10,斜边AB的中点C恰在y轴上,反比例函数y=(k>0)的图象经过点B,则k的值为()A.10 B.C.D.40【分析】先利用勾股定理计算出AB=5,再利用直角三角形斜边上的中线性质得OC =,则C点坐标为(0,),设B(m,n),利用两点间的距离公式得到m2+n2=52,m2+(n﹣)2=()2,利用加减消元法解得n=,m=2,从而得到B点坐标为(2,),然后把B点坐标代入y=中可求出k的值.【解答】解:在Rt△AOB中,AB===5,∵点C为斜边AB的中点,∴OC=AB=,∴C点坐标为(0,),设B(m,n),∴m2+n2=52,m2+(n﹣)2=()2,∴n=,m=2,∴B点坐标为(2,),把B(2,)代入y=得k=2×=10.故选:A.11.已知数m使关于x的不等式组至少有一个非负整数解,且使关于x的分式方程有不大于5的整数解,则所有满足条件的m的个数是()A.1 B.2 C.3 D.4【分析】分别解不等式组的两个不等式,根据“关于x的不等式组至少有一个非负整数解”,得到关于m的一元一次不等式,解之,解分式方程,结合“该分式方程有不大于5的整数解”,得到关于m的不等式,解之,经判断后即可得到m的值,即可得到答案.【解答】解:解不等式﹣11x﹣5≤6得:x≥﹣1,解不等式>x﹣m得:x<2m,∵关于x的不等式组至少有一个非负整数解,∴2m>﹣1,解得:m,解分式方程得:x=,且x≠2,∵关于x的分式方程有不大于5的整数解,≤5且≠2,解得:m≤13且m≠1,则符合要求的m的值为:5,9,13,共3个,故选:C.12.如图,在四边形ABCD中,AD∥BC,∠A=90°,∠ADC=120°,连接BD,把△ABD沿BD翻折,得到△A′BD,连接A′C,若AB=3,∠ABD=60°,则点D到直线A′C的距离为()A.B.C.D.【分析】过点D作DE⊥A′C于E,过A'作A'F⊥CD于F,由直角三角形的性质得出BD =2AB=6,AD=AB=3,求出∠BDC=90°,由三角函数得出CD=tan∠DBC•BD=2,由折叠的性质得∠A'DB=∠ADB=30°,A'D=AD=3,求出∠DA'F=30°,由直角三角形的性质得出DF=A'D=,A'F=DF=,得出CF=CD﹣DF=,由勾股定理得出A'C==,再由面积法求出DE即可.【解答】解:过点D作DE⊥A′C于E,过A'作A'F⊥CD于F,如图所示:∵AD∥BC,∴∠ADB=∠DBC,∠ADC+∠BCD=180°,∠BCD=180°﹣120°=60°,∵∠ABD=60°,∴∠ADB=30°,∴BD=2AB=6,AD=AB=3,∠BDC=∠ADC﹣∠ADB=120°﹣30°=90°,∠DBC=30°,∴CD=tan∠DBC•BD=tan30°×6=×6=2,由折叠的性质得:∠A'DB=∠ADB=30°,A'D=AD=3,∴∠A'DC=120°﹣30°﹣30°=60°,∵A'F⊥CD,∴∠DA'F=30°,∴DF=A'D=,A'F=DF=,∴CF=CD﹣DF=2﹣=,∴A'C===,∵△A'CD的面积=A'C×DE=CD×A'F,∴DE===,即D到直线A′C的距离为;故选:C.二.填空题(共6小题)13.2019年9月6日重庆来福士购物中心优雅启幕,开业首日客流达35000人次,请把数35000科学记数法表示为 3.5×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于35000有5位,所以可以确定n=5﹣1=4.【解答】解:35000=3.5×104.故答案为:3.5×104.14.计算:=﹣1 .【分析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:原式=2﹣4+1=﹣1.故答案为:﹣1.15.一个不透明的袋中装有四张形状大小质地完全相同的卡片,它们上画分别标有数字0,1,2,3,随机抽取一张不放回,再随机抽取一张,两次抽取的卡片数字同奇偶的概率是.【分析】先根据题意画出树状图,据此得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中两次抽取的卡片数字同奇偶的有4种结果,所以两次抽取的卡片数字同奇偶的概率为=,故答案为:.16.如图,在矩形ABCD中,AD=6,以点C为圆心,以CB的长为半径画弧交AD于E,点E 恰好是AD中点,则图中阴影部分的面积为6π+(结果保留π)【分析】如图,连接EC.首先证明∠ECD=30°,解直角三角形求出DE=EC,利用分割法求解即可.【解答】解:如图,连接EC.在Rt△ECD中,∵∠D=90°,EC=BC=2DE,∴∠ECD=30°,∵∠DCB=90°,∴∠ECB=60°,∵AD=EC=6,∴DE=3,DC=3,∴S阴=S扇形BCE+S△EDC=+×3×=6π+,故答案为6π+.17.暑假假期,小明和小亮两家相约自驾车从重庆出发前往相距172千米的景区游玩两家人同时同地出发,以各自的速度匀速行驶,出发一段时间后,小明家因故停下来休息了15分钟,为了尽快追上小亮家,小明家提高速度后仍保持匀速行驶(加速的时间忽略不计),小明家追上小亮家后以提高后的速度直到景区,小亮家保持原速,如图是小明家、小亮家两车之间的距离s(km)与出发时间t(h)之间的函数关系图象,则小明家比小亮家早到景区 6 分钟.【分析】设出发时小明家的速度是a千米/小时,小亮家的速度是b千米/小时,由图象可知:小明的速度大于小亮的速度,即a>b,由OB段可知:0.8小时两人距离为8千米,列方程可得a=b+10,由BC和AC段可知是小明休息15分时段,此时可知小亮路程为12+8=20千米,根据时间列等式可得小亮的速度,从而得小明家的速度是90千米/小时,设小明加速后的速度为m千米/小时,根据点D的横坐标列方程可得m的值,即可解决问题.【解答】解:设出发时小明家的速度是a千米/小时,小亮家的速度是b千米/小时,且a>b,由题意得:0.8(a﹣b)=8,a=b+10,小明家因故停下来休息了15分钟,可知A(1.05,12),小亮的速度为:=80(千米/小时),∴小明家的速度是90千米/小时,设小明加速后的速度为m千米/小时,根据题意得:×80=(﹣1.05)m+0.8×90,m=100,﹣﹣1.05,=0.1(小时),=6(分),即小明家比小亮家早到景区6分钟.故答案为:6.18.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书1080本.【分析】根据设间接未知数列三元一次方程组求各班人均捐书数,然后再求三个班共捐书即可解答.【解答】解:设甲班的人均捐书数量为x本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本,设甲班有y人,乙班有(80﹣y)人.根据题意,得xy+(x+5)(80﹣y)+•40=解得:y=可知x为2且5的倍数,故x=10,y=64共捐书10×64+15×16+5×40=1080.答:甲、乙、丙三班共捐书1080本.故答案为1080.三.解答题(共8小题)19.计算:(1)(a+2b)2﹣(a+b)(a﹣b).(2).【分析】(1)原式利用完全平方公式,以及平方差公式计算,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=a2+4ab+4b2﹣a2+b2=4ab+5b2;(2)原式=•=•=.20.如图,在△ABC中,AB=AC,D是BC边的中点,连接AD,过点D作DE∥AB (1)若∠C=70°,求∠BAD的度数;(2)求证:AE=DE.【分析】(1)由“SSS”可证△ABD≌△ACD,可得∠BAD=∠CAD,∠BDA=∠CDA=90°,即可求解;(2)由平行线的性质可得∠ADE=∠CAD,可得AE=DE.【解答】解:(1)∵D是BC边的中点,∴BD=CD,且AB=AC,AD=AD,∴△ABD≌△ACD(SSS)∴∠BAD=∠CAD,∠BDA=∠CDA=90°,∵∠C=70°,∴∠CAD=20°=∠BAD;(2)∵DE∥AB,∴∠BAD=∠ADE,∴∠ADE=∠CAD,∴AE=DE.21.为加强学生对“垃圾分类知识”的重视程度,某学校组织了“垃圾分类知识”比赛.现七、八年级各抽取10名同学的成绩进行统计分析(成绩得分用x表示,共分成四组:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100),绘制了如下的图表,请根据图中的信息解答下列问题:七年级10名学生的成绩是:69,78,96,77,68,95,86,100,85,86八年级10名学生的成绩在C组中的数据是:86,87,87七、八年级抽取学生比赛成绩统计表年级平均数中位数众数方差七年级84 85.5 b109.6八年级84 c92 102.6(1)直接写出上述图表中a,b,c的值:a=40 ,b=86 ,c=87 .(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(一条理由即可):两个年级的平均数一样,但是八年级学生的中位数高于七年级.(3)若两个年级共680人参加了此次比赛,估计参加此次比赛成绩优秀(90≤x≤100)的学生人数是多少?【分析】(1)根据统计图中的数据可以计算出a、b、c的值,本题得以解决;(2)根据统计图中的数据可以解答本题;(3)根据统计图中的数据可知七年级的优秀率是30%,八年级是40%,两个年级一起的话,可以预估为35%,从而可以解答本题.【解答】解:(1)∵八年级C组有三个数字,故C组所占的百分比是:3÷10×100%=30%,∴a%=1﹣10%﹣20%﹣30%=40%,∴a=40,由七年级的成绩可知,b=86,由统计图中的数据可知,c==87,故答案为:40,86,87;(2)根据以上数据,该校八年级学生掌握垃圾分类知识较好,理由:两个年级的平均数一样,但是八年级学生的中位数高于七年级,方差小于七年级,说明八年级成绩波动小,成绩好于七年级,故该校八年级学生掌握垃圾分类知识较好,故答案为:两个年级的平均数一样,但是八年级学生的中位数高于七年级;(3)由统计图可知,七年级的优秀率是30%,八年级的优秀率是40%,则参加此次比赛成绩优秀(90≤x≤100)的学生人数是680×()=238,答:参加此次比赛成绩优秀(90≤x≤100)的学生有238人.22.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣利用函数图象研究其性质﹣应用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了一个陌生函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:在函数y=|中,当x=0时,y=1;当x=2时,y=.(1)求这函数的表达式y=;(2)在给出的平面直角坐标系中画出这个函数的大致图象并写出这个函数的一条性质关于y轴对称;(3)结合你所画的函数图象与y=x+的图象,直接写出不等式组的解集.【分析】(1)根据在函数y=中,当x=0时,y=1;当x=2时,y=,可以求得该函数的表达式;(2)根据(1)中的表达式列表、描点,连线可以画出该函数的图象并得到函数的性质;(3)根据图象可以直接写出所求不等式组的解集.【解答】解:(1)∵在函数y=中,当x=0时,y=1;当x=2时,y=.∴,得,∴这个函数的表达式是y=,故答案为y=;(2)∵y=,∴y=,列表:x﹣5 ﹣2 ﹣1 0 1 2 5 …y 4 2 1 2 4 …描点、连线画出该函数的图象如图所示:函数的性质:关于y轴对称,故答案为关于y轴对称;(3)由函数图象可得,y=是0≤x≤1.23.如果一个六位正整数由一个三位正整数循环组成,则称这个六位正整数为“六位循环数”如123123、484484.(1)猜想任意一个六位循环数能否被91整除,并说明理由;(2)已知一个六位循环数能被17整除且百位数字与个位数字之和等于十位数字,求满足要求的所有六位循环数.【分析】(1)设三位正数百位a,十位b,个位c,将“六位循环数”表示为91(1100a+110b+11c);(2)由(1)结合题意,可得11(100a+10b+c)能被17整除,即100a+10b+c能被17整除,再结合a+c=b,转化为10a+c能被17整除即可求解.【解答】解:(1)设三位正数百位a,十位b,个位c,则“六位循环数”为100000a+10000b+1000c+100a+10b+c=100100a+10010b+1001c=91(1100a+110b+11c),∴任意一个六位循环数能被91整除;(2)由(1)可知任意一个任意一个六位循环数为100100a+10010b+1001c,∵六位循环数能被17整除,∴1100a+110b+11c=11(100a+10b+c)能被17整除,∵百位数字与个位数字之和等于十位数字,∴a+c=b,∴100a+10b+c=110a+11c=11(10a+c)能被17整除,∴10a+c能被17整除,∴a=1,c=7或a=3,c=4或a=5,c=1或a=6,c=8或a=8,c=5,∵0≤b≤9,∴a=1,c=7或a=3,c=4或a=5,c=1,∴满足要求的六位循环数是187187,374374,565565.24.“中秋节”是我国的传统佳节,中秋赏月吃月饼.某蛋糕店销售“杏花楼”和“元祖”两个品牌的月饼,每个“杏花楼”月饼的售价是15元,每个“元祖”月饼的售价是12元.(1)8月份,两个品牌的月饼一共销售180个,且总销售额不低于2460,则卖出“杏花楼”月饼至少多少个?(2)9月份,月饼大量上市,受此影响,“杏花楼”月饼的售价降低了a%(a%<30%),销售量在八月份的最低销售量的基础上增加了5a个,“元祖”月饼的售价降低a元,销售量在八份的最高销售量的基础上增加了a%,结果9月份的总销售额比8月最低销售额增加了1020元,求a的值.【分析】(1)设卖出“杏花楼”月饼x个,则卖出“元祖”月饼(180﹣x)个,根据总价=单价×数量结合总销售额不低于2460,即可得出关于x的一元一次不等式,解之取其中最小值即可得出结论;(2)根据总价=单价×数量,即可得出关于a的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设卖出“杏花楼”月饼x个,则卖出“元祖”月饼(180﹣x)个,依题意,得:15x+12(180﹣x)≥2460,解得:x≥100.答:卖出“杏花楼”月饼至少100个.(2)依题意,得:15(1﹣a%)×(100+5a)+(12﹣a)×(180﹣100)(1+a%)=2460+1020,整理,得:1.05a2﹣72a+1020=0,解得:a1=20,a2=(不合题意,舍去).答:a的值为20.25.如图,在平行四边形ABCD中,连接AC,AD=AC,过点D作DF⊥AC交BC于点F,交AC 于点E,连接AF.(1)若AE=4,DE=2EC,求EC的长.(2)延长AC至点H,连接FH,使∠H=∠EDC,若AB=AF=FH,求证:FD+FC=AD.【分析】(1)设EC=x,则DE=2x,AD=AC=AE+EC=4+x,在Rt△ADE中,由勾股定理得出方程,解方程即可;(2)证明△DEC≌△HEF(AAS),得出EC=EF,DE=EH,得出△CEF是等腰直角三角形,得出∠ECF=45°,再证明△ADE是等腰直角三角形,得出∠DAC=45°,DE=AD,由等腰三角形的性质得出∠ADC=∠ACD=67.5°,求出∠EDC=∠H=22.5°,得出∠CFH =∠EF﹣∠H=22.5°=∠H,证出CF=CH,即可得出结论.【解答】(1)解:设EC=x,则DE=2x,AD=AC=AE+EC=4+x,∵DF⊥AC,∴∠AED=90°,在Rt△ADE中,由勾股定理得:(2x)2+42=(4+x)2,解得:x=,或x=0(舍去),∴EC=;(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,∵AB=AF=FH,∴CD=FH,∵DF⊥AC,∴∠DEC=∠HEF=90°,在△DEC和△HEF中,,∴△DEC≌△HEF(AAS),∴EC=EF,DE=EH,∵DF⊥AC,∴△CEF是等腰直角三角形,∴∠ECF=45°,∵AF=FH,DF⊥AC,∴AE=HE=DE,∴△ADE是等腰直角三角形,∴∠DAC=45°,DE=AD,∵AD=AC,∴∠ADC=∠ACD=(180°﹣45°)=67.5°,∴∠EDC=∠H=22.5°,∴∠CFH=∠EF﹣∠H=22.5°=∠H,∴CF=CH,∴EF+FC=EC+CH=EH=DE,∴FD+FC=DE+EF+FC=DE+DE=2DE=AD.26.如图,抛物线y=与x轴交于A、B两点,与y轴交于C点.(1)点P是线段BC下方的抛物线上一点,过点P作PD⊥BC交BC于点D,过点P作EP ∥y轴交BC于点E.点MN是直线BC上两个动点且MN=AO(x M<x N).当DE长度最大时,求PM+MN﹣BN的最小值.(2)将点A向左移动3个单位得点G,△GOC延直线BC平移运动得到三角形△G'O′C'(两三角形可重合),则在平面内是否存在点G',使得△G′BC为等腰三角形,若存在,直接写出满足条件的所有点G′的坐标,若不存在请说明理由.【分析】(1)DE=PE sin∠EPD=(x﹣﹣x2﹣x+),当x=2时,DE最大,此时点P(3,﹣);MN=AO=1,将△BCO沿BC翻折得到BCO′,将点P 沿CB的方向平移1个单位得到点P′(,﹣),作P′H⊥BO′交BO′于点H,交BC于点N,将点N沿C方向平移1个单位得到点M,则点M、N为所求;即可求解;(2)分BC=BG′、BC=G′C、BG=CG′三种情况,分别求解即可.【解答】解:(1)y==(x﹣4)(x+1),故点A、B、C的坐标分别为:(﹣1,0)、(4,0)、(0,﹣);则直线BC的表达式为:y=(x﹣4);设点P(x,),则点E(x,x﹣),DE=PE sin∠EPD=(x﹣﹣x2﹣x+),当x=2时,DE最大,此时点P(3,﹣);MN=AO=1,将△BCO沿BC翻折得到BCO′,将点P沿CB的方向平移1个单位得到点P′(,﹣),作P′H⊥BO′交BO′于点H,交BC于点N,将点N沿C方向平移1个单位得到点M,则点M、N为所求;P′P∥MN,且PP′=MN,则四边形P′PNM为平行四边形,则P′N=PM,∠CBO′=∠OBC=30°,则HN=NB sin30BN,PM+MN﹣BN=MN+P′N﹣BN=MN+P′H为最小;直线BO′的倾斜角为60°,则其表达式为:y=(x﹣4)…①,则直线P′N表达式中的k为:﹣,其表达式为:y=﹣+b,将点P′坐标代入并解得:直线P′N的表达式为:y=﹣x+…②,联立①②并解得:x=,故点H(,﹣);P′H=,PM+MN﹣BN最小值=MN+P′N﹣BN=MN+P′H=;(2)直线BC的表达式为:y=(x﹣4);点G′(﹣4,0),设△GOC延直线BC向上平移m个单位,则向右平移m个单位,则点G′(m﹣4,m);BC2=,BG′2=(m﹣8)2+3m2,CG′2=(m﹣4)2+(m+)2=4m2+;①当BC=BG′时,BC2=(m﹣8)2+3m2,方程无解;②当BC=G′C时,同理可得:m=0;。

福建莆田哲理中学2024年九年级上学期9月月考数学试题及答案

福建莆田哲理中学2024年九年级上学期9月月考数学试题及答案

2024-2025学年上学期九年级第一次综合训练数学试卷一、选择题1.下列各组图形中,一定相似的是()A .任意两个平行四边形B .任意两个正方形C .任意两个菱形D .任意两个矩形 2.方程2x 2﹣6x+9=0的二次项系数、一次项系数、常数项分别为( )A.6,2,9B.2,﹣6,9C.2,6,9D.2,﹣6,﹣93.一元二次方程x 2﹣6x ﹣6=0配方后化为( )A.(x ﹣3)2=15B.(x ﹣3)2=3C.(x +3)2=15D.(x +3)2=34.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和10cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( )A .3cm B .4cmC .4.5cmD .5cm5.将抛物线向左平移3个单位长度得到抛物线( )A .B .C .D .6.如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C 都在横线上.若线段AB=3,则线段BC 的长是 ( )A .23B .1C .32D .27.某品牌网上专卖店150万元,已知第一季度的总营业额共600万元,如果平均每月增长率为x ,则由题意列方程应为( ) A.250(1)600x += B.()(250[111)600x x ++++=C.50503600x +×= D.50502600x +×=8.已知抛物线y=ax 2 +bx+c 的部分图象如图所示,则当y <0时,x 的取值范围是( ) A .x <3 B .x >-1C .-1<x <3D .x <-1 或 x >39.如图,D 为△ABC 的边AB 上一点,若AB =15,AC =10,AD =3,在AC 边上取一点E ,使△ADE 与△ABC 相似,则AE 的长为( )A .2B . 3.5C .2或 4.5D .2或3.510.已知二次函数y =x 2﹣2ax +a (a ≠0)的图象经过,B (3a ,y 2)两点,则下列判断正确的是( )A .可以找到一个实数a ,使得y 1>aB . 可以找到一个实数a ,使得y 2<0C .无论实数a 取什么值,都有y 1>aD .无论实数a 取什么值,都有y 2<0 二、填空题11.若△ABC 与△A′B′C′相似,一组对应边的长为AB =2cm ,A′B′=4cm ,那么△ABC 与△A′B′C′的相似比是____.12.抛物线y =x 2的对称轴是 .13.二次函数()21yx =−,当x <0时,y 随x 的增大而 .(填“增大”或“减小”)14.如图,AB ∥CD ,AC ,BD 相交于点E ,AE =1,EC =2,DE =3,则BE 的长为____.15.设是方程的两实数根,则.16.在平面直角坐标系xOy 中,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)是二次函数y =﹣x 2+4x ﹣1图象上三点.若对于m <x 1<m +1,m +1<x 2<m +2,m +2<x 3<m +3,存在y 1<y 3<y 2,则m 的取值范围是.三、解答题17.解方程: 27100x x −+=18.如图,已知四边形ABCD 相似于四边形A′B′C′D′,求∠A 的度数及x 的值.(第18题) (第19题) (第20题)19.如图,EG ∥BC ,GF ∥CD ,AE =3,EB =2,AF =6,求AD 的值.20.如图是一张长12dm ,宽6dm 的长方形纸板,将纸板四个角各剪去一个同样的边长为xdm 的正方形,然后将四周突出部分折起,可制成一个无盖长方体纸盒.若要制作一个底面积是40dm 2的一个无盖长方体纸盒,求剪去的正方形边长x.21.如图,△ABC中,CD是边AB上的高,且=,求∠ACB的大小.22.已知关于x的一元二次方程:2x2+(m﹣2)x﹣m=0.(1)求证:不论m为何实数,方程总有实数根;(2)当m=﹣7时,此方程的两个根分别是菱形ABCD两条对角线长,求菱形ABCD的面积.23.【感知】小明同学在学习相似三角形时遇到这样一个问题:如图(1),在△ABC中,点D是BC的中点,点E是AC的一个三等分点,且.连结AD,BE 交于点G,则= .【拓展】(2)如图(2),在平行四边形ABCD中,点E为BC的中点,点F为CD上一点,BF与AE、AC分别交于点G、M,若,求的值.(1)(2)24.中新社上海3月21日电(记者缪璐)21日在上海举行的2023年全国跳水冠军赛女子单人10米跳台决赛中,陈芋汐以416.25分的总分夺得冠军,全红婵位列第二,掌敏洁获得铜牌.在精彩的比赛过程中,全红婵选择了一个极具难度的207C(向后翻腾三周半抱膝).如图2所示,建立平面直角坐标系xOy.如果她从点A(3,10)起跳后的运动路线可以看作抛物线的一部分,从起跳到入水的过程中,她的竖直高度y(单位:米)与水平距离x(单位:米)近似满足函数关系式y=a(x﹣h)2+k(a<0).(1)在平时训练完成一次跳水动作时,全红婵的水平距离x与竖直高度y的几组数据如下:水平距离x/m03 3.54 4.5竖直高度y/m1010k10 6.25根据上述数据,直接写出k的值为,直接写出满足的函数关系式:;(2)比赛当天的某一次跳水中,全红婵的竖直高度y与水平距离x近似满足函数关系y=﹣5x2+40x﹣68,记她训练的入水点的水平距离为d1;比赛当天入水点的水平距离为d2,则d1d2(填“>”“=”或“<”);(3)在(2)的情况下,全红婵起跳后到达最高点B开始计时,若点B到水平面的距离为c,则她到水面的距离y与时间t之间近似满足y=﹣5t2+c,如果全红婵在达到最高点后需要1.6秒的时间才能完成极具难度的270C动作,请通过计算说明,她当天的比赛能否成功完成此动作?25.在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)经过A(﹣1,0),B(3,0)两点,与y轴交于点C,点P是抛物线上一动点,且在直线BC的上方.(1)求抛物线的表达式.(2)如图1,过点P作PD⊥x轴,交直线BC于点E,若PE=2ED,求点P的坐标.(3)如图2,连接AC、PC、AP,AP与BC交于点G,过点P作PF∥AC交BC于点F.记△ACG、△PCG、△PGF的面积分别为S1,S2,S3.求的最大值.参考答案与试题解析一.解答题(共2小题)1.如图,△ABC中,CD是边AB上的高,且=,求∠ACB的大小.【考点】相似三角形的判定与性质.【解答】解:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=,∴△ADC∽△CDB,∴∠A=∠DCB,∵∠A+∠ACD=90°,∴∠DCB+∠ACD=90°,即∠ACB=90°.【点评】2.【感知】小明同学在学习相似三角形时遇到这样一个问题:如图,在△ABC中,点D是BC的中点,点E是AC的一个三等分点,且.连结AD,BE交于点G,求的值.小明发现,过点D作DH∥AC交BE于H,可证明△AGE≌△DGH,得到相关结论后,再利用相似三角形的性质即可得到问题的答案.下面是小明的部分证明过程:解:如图①,过点D作DH∥AC交BE于H,则∠EAG=∠HDG,∠AEG=∠DHG,∵D是BC的中点,∴BD=CD,∴,∴BH=EH,∵E是AC的一个三等分点,且,∴,∴AE=DH,∴△AGE≌△DGH.请你补全余下的证明过程.【尝试应用】(2)如图②,在△ABC中,D为AC上一点,AB=AD,连结BD,若AE⊥BD,交BD、BC于点E、F.若AD=6,CD=2,AF=5,则AE的长为.【拓展提高】(3)如图③,在平行四边形ABCD中,点E为BC的中点,点F为CD上一点,BF与AE、AC分别交于点G、M,若,则的值为.【考点】相似形综合题.【解答】【感知】解:如图①,过点D作DH∥AC交BE于H,则∠EAG=∠HDG,∠AEG=∠DHG,∵D是BC的中点,∴BD=CD,∴==1,∴BH=EH,∵E是AC的一个三等分点,且AE=AC,∴AE=CE,∴DH=AE,∴△AGE≌△DGH(ASA),∴GH=GE,∴BG﹣GH=GE+GH,∴BG=3GE,∴=3,∴的值为3.【尝试应用】解:如图②,取BC的中点H,连结EH,则BH=CH,∵AB=AD=6,AE⊥BD于点E,CD=2,AF=5,∴BE=DE,AC=AD+CD=6+2=8,∴EH∥CD,EH=CD=1,∵EH∥AC,∴△EHF∽△ACF,∴==,∴EF=AF=×5=,∴AE=AF﹣EF=5﹣=,∴故答案为:.【拓展提高】解:如图③,作EL∥BF交AC于点L,∵点E为BC的中点,∴BE=CE,∴==1,∴ML=CL=CM,∴CM=2ML,MB=2LE,∵四边形ABCD 是平行四边形, ∴CD ∥AB ,CD =AB , ∵CF ∥AB , ∴△CMF ∽△AMB ,∴===,∵AM =m •CM =m ×2ML =2m •ML , ∵EL ∥GM , ∴△AEL ∽△AGM , ∴===,∴LE =MG ,∴MB =2LE =2×MG =MG ,∴BG =MB ﹣MG =MG ﹣MG =MG ,∴=,故答案为:.【点评】此题重点考查等腰三角形的“三线合一”、三角形的中位线定理、平行线分线段成比例定理、相似三角形的判定与性质、平行四边形的性质等知识,此题综合性强,难度较大,正确地作出所需要的辅助线是解题的关键.。

湖北省武汉市青山区任家路中学2019-2020学年九年级(上)月考数学试卷(9月份)

湖北省武汉市青山区任家路中学2019-2020学年九年级(上)月考数学试卷(9月份)

2019-2020学年湖北省武汉市青山区任家路中学九年级(上)月考数学试卷(9月份)一、选择题(共10小题,每小题3分,共30分)1.(3分)(2019秋•青山区校级月考)方程2326x x +=化成一般形式后,二次项系数和一次项系数分别是( )A .3、6-B .3、6C .3、2D .2、6-2.(3分)(2014•武汉模拟)下列一元二次方程没有实数根的是( )A .230x +=B .20x x +=C .221x x +=-D .231x x +=3.(3分)(2017秋•江汉区校级期中)用配方法解方程214x x +=,下列变形正确的是( )A .2(2)3x +=B .2(2)3x -=C .2(2)5x +=D .2(2)5x -=4.(3分)(2019秋•青山区校级月考)已知2210x x --=的两根为1x 、2x ,则12x x +为( )A .1B .1-C .12D .12- 5.(3分)(2014•天津)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A .1(1)282x x += B .1(1)282x x -= C .(1)28x x += D .(1)28x x -=6.(3分)(2017秋•江汉区校级期中)抛物线2(2)3y x =---经过平移得到抛物线21y x =--,平移过程正确的是( )A .先向下平移2个单位,再向左平移2个单位B .先向上平移2个单位,再向右平移2个单位C .先向下平移2个单位,再向右平移2个单位D .先向上平移2个单位,再向左平移2个单位7.(3分)(2015•宁河县校级二模)某超市一月份的营业额为100万元,第一季度的营业额共800万元.如果平均每月增长率为x ,则所列方程应为( )A .2100(1)800x +=B .1001002800x +⨯=C .1001003800x +⨯=D .2100[1(1)(1)]800x x ++++= 8.(3分)(2013•潍坊)已知关于x 的方程2(1)10kx k x +--=,下列说法正确的是( )A .当0k =时,方程无解B .当1k =时,方程有一个实数解C .当1k =-时,方程有两个相等的实数解D .当0k ≠时,方程总有两个不相等的实数解9.(3分)(2017秋•吴兴区期末)已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:则下列判断中正确的是( )A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当4x =时,0y >D .方程20ax bx c ++=的正根在3与4之间10.(3分)(2019秋•青山区校级月考)如图是二次函数2y ax bx c =++图象的一部分,其对称轴是1x =-,且过点(3,0)-,说法:①0abc <;②20a b -=;③0a c -+<;④若1(5,)y -、5(2,2)y 是抛物线上两点,则12y y >,其中说法正确的有( )个.A .1B .2C .3D .4二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2019秋•青山区校级月考)抛物线22(4)1y x =-+的顶点坐标为 .12.(3分)(2018秋•崇阳县期末)方程29180x x -+=的两个根是等腰三角形的底和腰的长,则这个等腰三角形的周长为 .13.(3分)(2019秋•青山区校级月考)小明向一些好友发送了一条新年问候的短信,获得信息的人也按小明发送的人数再加1人向外转发,经过两轮短信的发送,共有35人次手机上收到该短信,则小明发送短信给了 个好友.14.(3分)(2018•邵阳模拟)某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m ,他在不弯腰的情况下,在棚内的横向活动范围是 m .15.(3分)(2019秋•青山区校级月考)二次函数2(4)4(0)y a x a =--≠的图象在23x <<这一段位于x 轴的下方,在67x <<这一段位于x 轴的上方,则a 的值为 .16.(3分)(2016•武汉模拟)我们把a 、b 两个数中较小的数记作{min a ,}b ,直线2(0)y kx k k =--<与函数2{1y min x =-、1}x -+的图象有且只有2个交点,则k 的取值为 .三、解答题(共7题,共72分)17.(8分)(2019秋•青山区校级月考)解方程:(1)2470x x --=;(2)24120x x --=.18.(8分)(2019秋•青山区校级月考)已知抛物线的顶点坐标是(2,3),并且经过点(0,1)-,求它的解析式.19.(8分)(2019秋•青山区校级月考)已知抛物线243y x x =-+(1)直接写出它的开口方向、对称轴、顶点坐标(2)当0y <时,直接写出x 的取值范围.20.(8分)(2019秋•青山区校级月考)如图,利用一面墙(墙长10米)用20米的篱笆围成一个矩形场地.设垂直于墙的一边为x 米,矩形场地的面积为s 平方米.(1)求s 与x 的函数关系式,并求出x 的取值范围;(2)若矩形场地的面积为48平方米,求矩形场地的长与宽.21.(8分)(2019秋•青山区校级月考)关于x 的方程22(23)0x a x a +-+=(1)有两个不等的实数根,求a 的取值范围;(2)若1x 、2x 是方程的两根,且12111x x +=,求a . 22.(10分)(2015•东西湖区校级模拟)某商品的进价为每件40元,售价每件不低于60元且每件不高于80元.当售价为每件60元是,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)当每件商品定价为多少元使得每个月的利润恰为2250元?23.(10分)(2014•宜城市模拟)已知四边形ABCD 和四边形CEFG 都是正方形,且AB CE >.(1)如图1,连接BG 、DE .求证:BG DE =;(2)如图2,如果正方形ABCD的边长为,将正方形CEFG 绕着点C 旋转到某一位置时恰好使得//CG BD ,BG BD =.①求BDE ∠的度数;②请直接写出正方形CEFG 的边长的值.24.(12分)(2017秋•武昌区校级期中)如图,抛物线24y ax ax b =-+交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且3OB OC ==.(1)求抛物线的解析式;(2)如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连OP 交直线BC 于G ,连GD ,是否存在点P,使GD GO=P 的坐标;若不存在,请说明理由 (3)如图2,将抛物线向上平移m 个单位,交BC 于点M 、N ,若45MON ∠=︒,求m的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁津县实验中学2015-2016学年度第一学期第一次月考
九年级数学试题 2015.9
一、选择题(本大题共10小题,每小题3分,共30分)
1.关于x的一元二次方程(a2-1)x2+x-2=0是一元二次方程,则a满足( )
A.a≠1 B.a≠-1
C.a≠±1 D.为任意实数
2.用配方法解方程x2-2x-5=0时,原方程应变形为( )
A.(x+1)2=6 B.(x-1)2=6
C.(x+2)2=9 D.(x-2)2=9
3.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是( )
A.k>-1 B.k>-1且k≠0
C.k<1 D.k<1且k≠0
4.若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是( )
A.2018 B.2008
C.2014 D. 2012
5.方程x2-9+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( )
A.12 B.12或15
C.15 D.不能确定
6.对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为( )
A.有两个相等的实数根
B.没有实数根
C.有两个不相等的实数根
D.无法确定
7.已知函数y=kx+b的图象如图21­1,则一元二次方
程x 2
+x +k -1=0根的存在情况是( )
A .没有实数根
B .有两个相等的实数根
C .有两个不相等的实数根
D .无法确定 8.已知实数a ,b 分别满足a 2-6a +4=0,b 2-6b +4=0,
且a ≠b ,则b a +a
b
的值是( )
A .7
B .-7
C .11
D .-11

21­1
图21­2
9.如图21­2,在长为100 m ,宽为80 m 的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,
要使绿化面积为7644 m 2
,则道路的宽应为多少米?设道路的宽为x m ,则可列方程为( )
A .100×80-100x -80x =7644
B .(100-x )(80-x )+x 2
=7644 C .(100-x )(80-x )=7644 D .100x +80x =356
10.图21­3是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( )
2019-2020年九年级9月月考数学试卷及答案 A .32 B .126 C .135 D .144
二、填空题(本大题共6小题,每小题4分,共24分)
11.一元二次方程x2-3=0的解为________________.12.把一元二次方程(x-3)2=4化为一般形式为:________________,二次项为:________,一次项系数为:________,常数项为:________.
13.已知2是关于x的一元二次方程x2+4x-p=0的一个根,则该方程的另一个根是__________.
14.已知x1,x2是方程x2-2x-1=0的两个根,则1
x1

1
x2
=__________.
15.若|b-1|+a-4=0,且一元二次方程kx2+ax+b =0有两个实数根,则k的取值范围是________.16.一个长100 m,宽60 m的游泳池扩建成一个周长为600 m的大型水上游乐场,把游泳池的长增加x m,那么x等于多少时,水上游乐场的面积为20 000 m2?列出方程__________________________.
三、解答题(一)(本大题共3小题,每小题6分,共18分)
17.用公式法解方程:2x2-4x-5=0.
18.用配方法解方程:x2-4x+1=0.
19.用因式分解法解方程:(y-1)2+2y(1-y)=0.
四、解答题(二)(本大题共3小题,每小题7分,共21分)
20.若a,b,c是△ABC的三条边,且a2-6a+b2-10c +c2=8b-50,判断此三角形的形状.
21.如图21­4,在宽为20 m,长为32 m的矩形耕地上,修筑同样宽的三条道路(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570 m2,道路应为多宽?
图21­4
22.在实数范围内定义一种新运算“”,其规则为:a b =a2-b2,根据这个规则:
(1)求43的值;
(2)求(x+2)5=0中x的值.
五、解答题(三)(本大题共3小题,每小题9分,共27分)
23.已知:关于x的方程x2-2(m+1)x+m2=0.
(1)当m取何值时,方程有两个实数根?
(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.
24.已知下列n(n为正整数)个关于x的一元二次方程:x2-1=0,
x2+x-2=0,
x2+2x-3=0,

x2+(n-1)x-n=0.
(1)请解上述4个一元二次方程;
(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.
25.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
1.C 2.B 3.B 4.A 5.C 6.C7.C8.A9.C 10.D
11.x=± 3 12.x2-6x+5=0 x2-6 5 13.-6 14.-2 15.k≤4,且k≠0
16.(x+100)(200-x)=20 000
17.解:∵a=2,b=-4,c=-5,
∴b2-4ac=(-4)2-4×2×(-5)=56>0.
∴x=4±56
2×2

4±2 14
4
.
∴x1=2+14
2
,x2=
2-14
2
.
18.解:∵x2-4x+1=0,
∴x2-4x+4=4-1,即(x-2)2=3.
∴x1=2+3,x2=2- 3.
19.解:∵(y-1)2+2y(1-y)=0,
∴(y-1)2-2y(y-1)=0.∴(y-1)(y-1-2y)=0.
∴y-1=0或y-1-2y=0.∴y1=1,y2=-1.
20.解:将a2-6a+b2-10c+c2=8b-50变形为a2-6a +9+b2-8b+16+c2-10c+25=0,
∴(a-3)2+(b-4)2+(c-5)2=0.
∴a-3=0,b-4=0,c-5=0.∴a=3,b=4,c=5.
∵32+42=52,∴△ABC为直角三角形.
21.解:设道路宽为x m,
(32-2x)(20-x)=570,
640-32x-40x+2x2=570,
x2-36x+35=0,
(x-1)(x-35)=0,
x1=1,x2=35(舍去).
答:道路应宽1 m.
22.解:(1)4△3=42-32=16-9=7.
(2)∵(x+2)△5=0,即(x+2)2-52=0,
∴x1=-7,x2=3.
23.解:(1)当Δ≥0时,方程有两个实数根,
∴[-2(m +1)]2
-4m 2
=8m +4≥0.∴m ≥-1
2
.
(2)取m =0时,原方程可化为x 2
-2x =0, 解得x 1=0,x 2=2.(答案不唯一)
24.解:(1)x 2
-1=(x +1)(x -1)=0,∴x 1=-1,x 2=
1.
x 2+x -2=(x +2)(x -1)=0,∴x 1=-2,x 2=1. x 2+2x -3=(x +3)(x -1)=0,∴x 1=-3,x 2=1.

x 2+(n -1)x -n =(x +n )(x -1)=0,∴x 1=-n ,x 2=1. (2)共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根;两根之和等于一次项系数的相反数.
25.解:(1)设每千克应涨价x 元, 则(10+x )(500-20x )=6000. 解得x =5或x =10.
为了使顾客得到实惠,所以x =5. (2)设涨价x 元时总利润为y ,则 y =(10+x )(500-20x )
=-20x 2+300x +5000=-20(x -7.5)2
+6125 当x =7.5时,取得最大值,最大值为6125.
答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元.
(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.。

相关文档
最新文档