初二数学勾股定理压轴题冲刺满分训练.
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析) 之欧阳物创编
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)时间:2021.02.07 命题人:欧阳物一.选择题(共8小题)1.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.2.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c23.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣ D.﹣1+6.一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169二.填空题(共5小题)9.将一根24cm的筷子,置于底面直径为15cm,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是.10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C 两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B 方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△A BC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n>0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB 的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.31.在一次“构造勾股数”的探究性学习中,老师给出了下表:m 2 3 3 4 …n 1 1 2 3 …a 22+12 32+12 32+22 42+32 …b 4 6 12 24 …c 22﹣12 32﹣12 32﹣22 42﹣32 …其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c 的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b=,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112=+;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m (在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B 处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()A.B. C.D.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=.6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题(共8小题)1.(2016秋•吴江区期中)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2016春•抚顺县期中)下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.(2016春•南陵县期中)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣ D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB 是解题的关键.6.(2015春•蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(2015春•罗田县期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.4【分析】根据勾股定理求出AB的长即可解答.【解答】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.故选D.【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.(2016春•重庆校级期中)如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二.填空题(共5小题)9.(2016春•固始县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7cm≤h≤16cm .【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h 的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故答案为:7cm≤h≤16cm.【点评】本题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.10.(2015春•汕头校级期中)如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(1+)米.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=,∴则树高为:(1+)m.故答案为:(1+).【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.(2016春•高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt△ABC的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春•嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)…观察以上各组勾股数组成特点,第7组勾股数是15,112,113 (只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春•武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= 84 ,c= 85 .【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春•黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋•永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC=,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC=1,S△DAC=1而S四边形ABCD=S△ABC+S△DAC,∴S四边形ABCD=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春•邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春•平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km 到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋•新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km 的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD 方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春•阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.【分析】(1)我们求出BP、BQ的长,用勾股定理解决即可.(2)△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8﹣1×t,解方程即得结果.(3)直线PQ把原三角形周长分成相等的两部分,根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.【解答】解:(1)出发2秒后,AP=2,BQ=4,∴BP=8﹣2=6,PQ==2;(3分)(2)设时间为t,列方程得2t=8﹣1×t,解得t=;(6分)(3)假设直线PQ能把原三角形周长分成相等的两部分,由AB=8cm,BC=6cm,根据勾股定理可知AC=10cm,即三角形的周长为8+6+10=24cm,。
【勾股定理 期末压轴题训练】2022-2023学年八年级数学下册(人教版)含解析
,在ABC 中,BAC ∠(1)求证:ABE CAD ∠=∠;(2)过点C 作CF BE ∥交AD 的延长线于点F ,试探索AE 与CF (3)如图2,若6AD BD AB ==,,求CE 的长.2.【阅读材料】如图①,四边形ABCD 中,AB AD B =∠+∠,3.【知识感知】我们把对角线互相垂直的四边形叫做垂美四边形.Rt ACB的直角边,,,BG GE,在ABC中,在整个运动过程中,当BCP是等腰三角形时,求,在平面直角坐标系中,点AQ CP交于点M,则在P、Q运动的过程中,(1)如图1,连接,(填“会”或“不会”);(2)如图1,当PBQ是直角三角形时,求点P的坐标;在ABC中,.在等腰直角ABC中,,延长BC∠=∠;(1)求证:MQB PAC(2)若22,,求DQ DH==(3)用等式表示线段MB与CP.在ABC中,(2)如图2,若点D在线段AB上,取.在ABC 中,(1)如图1,当ABC 为锐角三角形时,①依题意补全图形,猜想BAE ∠与BCD ∠之间的数量关系并证明;②用等式表示线段AE ,CE ,DE 的数量关系,并证明.(2)如图2,当ABC ∠为钝角时,直接写出线段问题解决:(1)先考虑特殊情况:①如果点E刚好和点A重合,或者点B刚好和点F重合时,AE “>”,“<”或“=”);形ABC和△⊥BC AD正方形的三个顶点,可得ABC ,则,在ABC 中,是BC .如图,ABC 是等腰直角三角形,上一点.时,求DEF 的面.和CDE 中,AC 上,连接(1)如图1,若30EDC ∠=︒,6EF =,求AEF △的面积;(2)如图2,若BD AE =,求AF 、AE 、BC 之间的数量关系;(3)如图3,移动点D ,使得点F 是线段AB 的中点时,3DB =,4AB =别是线段AC ,BC 上的动点,且AP CQ =,连接DP ,FQ ,求DP FQ +(1)如图1,若45CBD ∠=︒①求BCG ∠的度数;②求证:CE DG =;(2)如图2,若60CBD ∠=︒,当6AC DE −=时,求CE 的值(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点E ,交BC 于点D .求证:AD 是ABC ∆的一条双腰分割线;(3)如图3,已知ABC ∆中,AD 是三角形ABC 的双腰分割线,且AB AD =.①若64B ∠=︒,求C ∠的度数;②若3AB =,5AC =,求BC 的长.参考答案:1.(1)见解析(2)AE CF =【分析】(1)利用三角形外角的性质以及角的和差定义解决问题即可.(2)如图1中,在AF 上截取AJ ,使得AJ BE =.证明SAS ABE CAJ ≌(),推出AE CJ =,再证明CF CJ =即可解决问题.(3)如图2中,过点B 作BK AD ⊥于K ,作CF BE ∥交AD 的延长线于F ,过点C 作CQ DF⊥于Q .首先证明BE BD =, CD DF =,再证明EK DK =,DQ FQ =,2DK DQ =,2BK CQ =,AE DE CD CF ===,利用参数构建方程解决问题即可.【解析】(1)证明:∵BED ABE BAE BAC BAE CAD ∠=∠+∠∠=∠+∠,,又∵BED BAC ∠=∠,∴ABE BAE BAE CAD ∠+∠=∠+∠,∴ABE CAD ∠=∠.(2)解:结论:AE CF =.理由:如图1中,在AF 上截取AJ ,使得AJ BE =.∵BA AC ABE CAJ BE AJ =∠=∠=,,,∴SAS ABE CAJ ≌(),∴AE CJ AEB AJC =∠=∠,,∴BED CJF ∠=∠,∵BE CF ∥,∴BEJ F ∠=∠,∴CJF F ∠=∠,∴CJ CF =,∴AE CF =.(3)如图2中,过点B 作BK AD ⊥于K ,作CF BE ∥交AD 的延长线于F ,过点C 作CQ DF ⊥于Q .设ABE CAD x CBE y ∠=∠=∠=,,∵AB AC DB DA ==,,∴DBA DAB ACB x y ∠=∠=∠=+,∴22BED ABE DAB x y BDE ACB CAD x y ∠=∠+∠=+∠=∠+∠=+,,∴BED BDE ∠=∠,∴BE BD =,∵AB CA ABE CAD =∠=∠,,∴AAS ABE CAD ≌(),∴AE CD BE AD ==,,∵CF BE ∥,∴F BED ∠=∠,∴F CDF ∠=∠,∴CD CF =,∵BE BD BK DE CD CF CQ DF =⊥=⊥,,,,∴EK KD DQ QF ==,,∵CQ BK ∥,∴:::1:2DQ DK CD BD CQ BK ===,∴可以假设2DQ m DK m ==,,∵222BD BE AD CD CF AE =====,∴48AE DE m AD BD m ====,,∴BK ==,∴CQ =,在Rt ABK △中,∵222AB AK BK=+,∴()()22266m =+,∴m, ∴DQ =,CQ ,5EQ m ==,∵90CQE ∠=︒,∴CE =.【点评】本题属于三角形综合题,考查了等腰三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.2.阅读材料:见解析;解决问题:少370m【分析】阅读材料:延长CB 到点M ,使BM DF =,连接AM ,如图,利用已知条件可得D ABM ∠=∠,进而可证明ABM ADF ≅,可得,AM AF MAB DAF =∠=∠,再证明AEM AEF ≅,可得=ME EF ,进而可得结论;解决问题:如图,作辅助线,构建阅读材料的图形,先根据四边形的内角和定理证明90G ∠=︒ ,分别计算,,,CG DG AD AG 的长,由线段的和与差可得,AM AN 的长,最后由阅读材料的结论可得MN 的长,计算AM AN MN +−可得答案.【解析】阅读材料:证明:延长CB 到点M ,使BM DF =,连接AM ,如图,∵180ABC D ∠+∠=︒,180ABC ABM ∠+∠=︒,∴D ABM ∠=∠,∵,,AB AD ABM D BM DF =∠=∠=,∴ABM ADF ≅,∴,AM AF MAB DAF =∠=∠,∵2BAD EAF ∠∠=,∴BAE DAF BAE BAM EAM EAF ∠+∠=∠+∠=∠=∠,又∵,AM AF AE AE ==,∴AEM AEF ≅,∴=ME EF ,∴EF MB BE BE DF =+=+;解决问题:解:如图,延长DC AB ,交于点G ,连接CN CM ,,∵60120150D ABC BCD ∠=︒∠=︒∠=︒,,,∴3606012015030A ∠=︒−︒−︒−︒=︒,∴90G ∠=︒,∴2AD DG =,在Rt CGB △中,18015030BCG ∠=︒−︒=︒,∴1502BG BC CG ===,∴100DG CD CG =+=+∴2200150AD DG AG ==+==+∵100DM =,∴200100100AM AD DM =−=+=+∵)50501BG BN ==,,∴)150********AN AG BG BN =−−=+−=+GN BG BN =+= ∵60CD DM D =∠=︒,,∴DCM △ 是等边三角形,∴60DCM ∠=︒,∵GC GN ==∴CGN 是等腰直角三角形,∴45GCN ∠=︒,∴453015BCN ∠=︒−︒=︒, ∴11506015752MCN BCD ∠=︒−︒−︒=︒=∠,由【阅读材料】的结论得:)10050150MN DM BN =+=+=+∵()10015050200370AM AN MN +−=++=+≈(m ). ∴路线M→N 的长比路线M→A→N 的长少370m .【点评】此题主要考查了含30︒的直角三角形的性质,勾股定理,等腰直角三角形的判定与性质、等边三角形的判定与性质、全等三角形的判定和性质,二次根式的混合运算等知识与方法,解题的关键是作出所需要的辅助线,构造含30︒的直角三角形,再利用线段的和与差进行计算.3.(1)是,见解析(2)2222AD BC AB CD ++=,见解析【分析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【解析】(1)如图2,四边形ABCD 是垂美四边形.证明:连接AC BD 、交于点E ,∵AB AD =,∴点A 在线段BD 的垂直平分线上,∵CB CD =,∴点C 在线段BD 的垂直平分线上,∴直线AC 是线段BD 的垂直平分线,∴AC BD ⊥,即四边形ABCD 是垂美四边形;(2)猜想结论2222AD BC AB CD ++=.如图1,已知四边形ABCD 中,∵AC BD ⊥,∴90AOD AOB BOC COD ∠=∠=∠=∠=︒,由勾股定理得,222222AD BC AO DO BO CO +=+++,222222AB CD AO BO DO CO +=+++,∴2222AD BC AB CD ++=;(3)如图3,连接CG BE 、,∵90CAG BAE ∠=∠=︒,∴CAG BAC BAE BAC ∠+∠=∠+∠,即GAB CAE ∠∠=,在GA B 和CAE V 中,AG AC GAB CAEAB AE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS GAB CAE V V ≌, ∴ABG AEC ∠=∠,又90AEC AME ∠+∠=︒,∴90ABG BMN ∠+∠=︒,∴90BNC ∠=︒,即CE BG ⊥,∴四边形CGEB 是垂美四边形,由(2)得,2222CG BE CB GE +=+,∵810AC AB ==,,∴6BC CG ==,BE =∴((22222226292GE CG BE CB =+−=+−=,∴GE ==【点评】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.4.(1)4,4t − (2)52t = (3)1或535或9.5或10【分析】(1)利用勾股定理求出AC ,利用CP AC AP =−,求出CP ;(2)过点P 作PD AB ⊥,交AB 于点D ,利用勾股定理列式求解即可;(3)分,,BC CP BP CP BC BP ===,三种情况进行讨论求解即可.【解析】(1)解:∵90,5,3ACB AB BC ∠=︒==,∴4AC =;∵点P 从点A 出发,以每秒1个单位长度的速度沿路线A C B A →→→运动,∴当点P 在AC 上时,AP t =,∴4CP AC AP t =−=−;故答案为:4,4t −;(2)解:点P 作PD AB ⊥,交AB 于点D ,则:90PDA PDB ∠=∠=︒,∵点P 在ABC ∠的角平分线上,90ACB ∠=︒,∴90ACB PDB ∠=∠=︒,PD PC =,又∵BP BP =,∴()HL PBD PBC ≌,∴3BD BC ==,∴2AD AB BD =−=,由(1)知,4AP t CP t ==−,∴4PD PC t ==−,在Rt ADP 中,222AP PD AD =+,即:()22242t t =−+, 解得:52t =; (3)解:P 点运动的总时间为:()543112++÷=秒,当BCP 是等腰三角形时: ①当BC CP =,点P 在AC 上时:如图,此时:43t −=,解得:1t =;当BC CP =,点P 在AB 上时:如图,过点C 作CE AB ⊥,交AB 于点E ,则:72BP t AC BC t BE =−−=−=, ∵1122ABC S AC BC AB CE =⋅=⋅,即:435CE ⨯=, ∴125CE =,∴95BE ==, ∴1875BP t =−=, ∴535t =; ②当BP CP =时,如图:由①可知:912,7,55BE BP t CE ==−=, ∴97,75PE t CP t =−−=−,在Rt PEC 中,222CP PE CE =+,即:()2224412755t t ⎛⎫⎛⎫−=−+ ⎪ ⎪⎝⎭⎝⎭, 解得:9.5t =;③当BC BP =时,如图:此时:73BP t =−=,解得10t =;综上:当BCP 是等腰三角形时,t 的值为:1或535或9.5或10.【点评】本题考查三角形上的动点问题.熟练掌握勾股定理,以及等腰三角形的定义是解题的关键.注意,分类讨论.5.(1)不会(2)当PBQ 是直角三角形时,点P的坐标为43⎛ ⎝⎭或23⎛ ⎝⎭(3)(1,P −,120CMQ ∠=︒【分析】(1)先利用SAS 证明ABQ CAP ≌,得BAQ ACP ∠=∠,利用外角的性质并进行等量代换可得60CMQ ACP CAM BAQ CAM BAC ∠=∠+∠=∠+∠=∠=︒(2)分90,90PQB BPQ ︒∠=︒∠=两种情况, 利用直角三角形中30度角所对直角边等于斜边的一半列式求解(3)作PM x ⊥轴,先根据30度角的性质和勾股定理求出1MB =cm和MP =cm ,进而求出(1,P −,再根据SAS 证明ACQ CBP ≌,最后根据外角的性质并进行等量代换作答即可【解析】(1)解:在等边三角形ABC 中,60AB AC CBA CAP ︒=∠=∠=且点A 、点Q 同时出发,且它们的速度都为1cm/s AP =BQ ∴(SAS)ABQ CAP ∴≌BAQ ACP ∴∠=∠60CMQ ACP CAM BAQ CAM BAC ∴∠=∠+∠=∠+∠=∠=︒故答案为:不会(2)解:设运动时间为t 秒,则,4AP BQ t PB t ===−①当90PQB ∠=︒时60ABC ∠=︒30BPQ ∠=︒∴12BQ PB ∴=,即1(4)2t t =− 解得43t = 即48433BP =−= 60ABC ∠=︒∴43P ⎛ ⎝⎭ ②当90BPQ ∠=︒时60ABC ∠=︒30PQB ∴∠=︒12PB BQ ∴=,即142t t −= 解得83t = 即84433BP =−=60ABC ∠=︒∴23P ⎛ ⎝⎭ ∴当PBQ 是直角三角形时,点P的坐标为43⎛ ⎝⎭或23⎛ ⎝⎭ (3)∵12BP BC =∴2BP =cm作PM x ⊥轴∵60ABC ∠=︒∴60PBM ∠=︒∴60PBM ∠=︒∴30MPB ∠=︒∴1MB =cm由勾股定理得MP =cm∴(1,P −在等边三角形ABC 中,60BC AC ABC ACB ︒=∠=∠=∵点A 、点Q 同时出发,且它们的速度都为1cm/sBP CQ ∴=,120PBC ACQ ∠=∠=︒(SAS)ACQ CBP ∴≌CMQ APM PAM APM PAC CAQ AQB PAC CAQ ∴∠=∠+∠=∠+∠+∠=∠+∠+∠180AQB PAC CAQ ABC ∠+∠+∠+∠=︒,60ABC ∠=︒18060120CMQ ∴∠=︒−︒=︒【点评】本题考查了全等三角形的判定和性质,外角的性质,直角三角形30度角的性质,勾股定理,熟练掌握各知识点是解题的关键.6.(1)见解析(2)(1)是,证明见解析;(2)存在,66013CP =.【分析】(1)根据阅读材料给出的定义结合已经学过的三角形的知识点,推到即可得出结论;(2)根据已知条件利用相似三角形即可得出①中的作法是符合条件的;第②小题根据已知条件画出图形,再根据图形得出结论.【解析】(1)解:①∵BD 为△ABC 的角平分线,∠ABC =2∠C∴∠=∠DBC C∴BD CD =∴图中相等的线段有BD CD =∵A A ∠=∠,2ADB ABC C ∠=∠=∠∴ADB ABC ∽∴图中相似的三角形有:ADB 和ABC②∵AC 的中垂线交边BC 于点E∴AE EC =∴AEC △是等腰三角形∵2AEB C ∠=∠,2ABC C ∠∠=∴AB AE =∴ABE 是等腰三角形(2)解:①符合要求,延长EF 交AD 于N ,则四边形ABEN 为矩形∴48AB EN ==,1662AN BE EC BC ====∵33EF =∴483315NF EN EF =−=−=∵PN BC ∥∴PFN CFE ∽ ∴PN NF PF EC EF FC == ∴153366PN = ∴1553311PF FC == ∴663036AP AN PN =−=−=∵90A ∠=︒∴60BP = ∴60513211BP FC == ∴BP PF BC FC = 作FK BP ⊥于K ∴BPF BCF SPF S FC =∴1212FK BP PF FCEF BC ⋅=⋅∴FK EF =∵FK BP ⊥,FE BC ⊥ ∴BF 平分PBC ∠∴1FBE PBC 2∠=∠∵F 在BC 的垂直平分线上∴FB FC =∴FBC FCB ∠=∠∴2PBC PCB ∠=∠∴符合要求②存在, 66013CP =.I.若P 在AD 上时,连接BD ,如图所示,∴PBC DBC ∠>∠,PCB DCB ∠<∠取BD 的中垂线交BC 与G ,作DH BC ⊥于H∴四边形ABHD 为矩形∴48HD AB ==,68BH AD ==,DG GB =,1326864CH BC BH =−=−=,∴80DC =,设GH x =,则68BG DG x ==−∵90DHG ∠=︒∴由勾股定理222GH DH DG +=∴()2226848x x −=+∴22136684811620x =−=⨯ ∴2906417x =<在CH 上取点M ,使29017HM GH ==,连接DM∴DMB DCB PCB ∠>∠>∠∵DG BG =∴DBC GDB ∠=∠∴22DGC GDB DBC DBC PBC ∠=∠+∠=∠<∠∴HM GH =,DH MG ⊥∴DG DM =∴DMB DGC ∠=∠∴2PBC PCB ∠>∠∴在AD 上所有点都满足2PBC PCB ∠>∠∴不存在;II. 若P 在AB 上时,如图所示,∵BP AB BC <<,∴45BCP ∠<︒,∴2PBC BCP ∠≠∠,∴在AB 上不存在其它满足要求的△BCP ;III. 若P 在AB 上时,如图所示,作BC 的垂直平分线交AD 于点L 、交BC 于点R ,作BCD ∠的平分线交RL 于点O ,连结BO 并延长交DC 于点P ,此时有22BCD BCO PBC ∠=∠=∠, ∴△BCP 是以BC 为底边的倍角三角形,作OU DC ⊥于点U ,连结OA 、OD ,∵CO 平分BCD ∠,OR BC ⊥,OU DC ⊥,∴OR OU =,设OR x =,则OU x =,48OL x =−,由AOB BOC COD AOD ABCD S S S S S =+++梯形得11111(68132)4848661328068(48)22222x x x ⨯+⨯=⨯⨯+⨯+⨯+⨯⨯−,解得:22x =在Rt BOR 中,OB =∴OC OB ==∵OCP OCB PBC ∠=∠=∠,2POC PBC OCB PBC PCB ∠=∠+∠=∠=∠,∴PBC PCO ~,∴CP BP BC OP CP OC ==∴OP =,BP =, 由BP OP OB −=得= 解得,66013CP =【点评】本题考查了角的倍数关系,角平分线的性质,相似三角形的判定等相关知识,明确题意根据已知条件画出图形是解题的关键.7.(1)45,=(2)(3)【分析】(1)根据等腰直角三角形的三线合一即可得到90,ADC AD CD BD ∠=︒==,由此推出,45BC BA AD D C ⊥∠=︒=∠,证明ADE CDF △△≌,得到,DE DF ADE CDF =∠=∠,求出DEF 是等腰直角三角形,勾股定理得到EF =DE ;(2)证明(SAS)ADE CDF ≌V V ,得到DE DF =,ADE CDF ∠=∠,推出DE DF ⊥,再由勾股定理得到答案;(3)分两种情况,①当H 在线段AC 上时,②当H 在线段AC 的延长线上时,连接MC ,过点M 作MF AC ⊥于F ,由等腰三角形的性质及等腰直角三角形的性质可得出答案.【解析】(1)解:在ABC 中,90BAC ∠=︒,AB AC =,45B BCA ∠=∠=︒,D 是BC 的中点,∴,45BC BA AD D C ⊥∠=︒=∠,∴90,ADC AD CD BD ∠=︒==,∵AE CF =,∴ADE CDF △△≌(SAS ),∴,DE DF ADE CDF =∠=∠,∵90CDF ADF ADC ∠+∠=∠=︒,∴90ADE ADF ∠+∠=︒,∴DEF 是等腰直角三角形,∴EF ==,故答案为:45,=(2)解:∵AB AC =,90BAC ∠=︒,∴45B ACD ∠=∠=︒,∵AB AC =,点D 是BC 的中点,∴AD BC ⊥,45BAD CAD ∠=∠=︒∴AD CD =,90ADC ∠=︒,∴BAD ACD ∠=∠,∴180180BAD ACD ︒−∠=︒−∠,即EAD FCD ∠=∠,∵45ACD CAD ∠=∠=︒,∴AD CD =,在ADE V 和CDF 中,AD CD EAD FCD AE CF =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)ADE CDF ≌V V ,∴DE DF =,ADE CDF ∠=∠,∴90EDF CDF EDC ADE EDC ADC ∠=∠+∠=∠+∠=∠=︒,∴DE DF ⊥,在Rt EDF 中,DE DF =,4EF =,∴DE EF ==(3)解:①当H 在线段AC 上时,如图,连接MC ,过点M 作MF AC ⊥于F ,∵,AD BC BD CD ⊥=,∴AM 是线段BC 的中垂线,∴MB MC =,∴MBC MCB ∠=∠,∵AB AC =,∴A ABC CB =∠∠,∴ABM ACM ∠=∠,又∵90BAC BMH ∠=∠=︒,360BAH ABM BMH AHM ∠+∠+∠+∠=︒,∴180ABM AHM ∠+∠=︒,∵180AHM MHC ∠+∠=︒,∴ABM MHC ∠=∠,∴MCH MHC ∠=∠,∴MH MC =,∵2CH =, ∴112HF CF CH ===, ∵6AC =,∴615AF AC CF =−=−=,∵45DAC ∠=︒,∴5AF MF ==,∴AM =∵6AB AC ==,90BAC ∠=︒,D 是BC 的中点,∴12AD BC ==∴DM AM AD =−=②当H 在线段AC 的延长线上时,如图,连接MC ,过点M 作MF AC ⊥于F , 同理可得1CF HF ==,∴617AF AC CF =+=+=,∴AM =∴DM AM AD =−=综上,DM 的长为【点评】此题是三角形的综合题,主要考查了直角三角形的性质,等腰三角形的判定和性质,全等三角形的判定和性质及等腰直角三角形的判定和性质,根据已知得出ADE CDF V V ≌是解题的关键.8.(1)见解析(2)HM =(3)MB ,证明见解析【分析】(1)由直角三角形两个锐角互余即可得出90APC PAC ∠+∠=︒,90MQB APC ∠+∠=︒,从而得出MQB PAC ∠=∠;(2)连接AQ ,DP .由题意易得出AC 为线段QP 的垂直平分线,即得出2DP DQ ==,QAC PAC ∠=∠,AP AQ =,从而由勾股定理可求出PH DH .进而易证(AAS)DAH PQH ≌,得出2AH QH DQ DH ==+=,再根据勾股定理可求出2AQ ==.又易证QAM QMA ∠=∠,即得出2QM QA ==,从而由HM QM DH =−求解即可;(3)作ME QB ⊥于点E ,易证(AAS)APC QME ≌,即得出PC ME =.再根据MEB 是等腰直角三角形,即得出MB =,从而得出MB .【解析】(1)∵90ACB ∠=︒,QH AP ⊥,∴90APC PAC ∠+∠=︒,90MQB APC ∠+∠=︒,∴MQB PAC ∠=∠;(2)如图,连接AQ ,DP .∵CQ CP =,90ACB ∠=︒,∴AC 为线段QP 的垂直平分线,∴2DP DQ ==,QAC PAC ∠=∠,AP AQ =,∴PH DH =.又∵DAH PQH ∠=∠,90AHD QHP ∠=∠=︒,∴(AAS)DAH PQH ≌,∴2AH QH DQ DH ==+=∴2AQ ==.∵45QAM QAC CAB QAC ∠=∠+∠=∠+︒,45QMA MQB B BQM ∠=∠+∠=∠+︒, ∴QAM QMA ∠=∠,∴2QM QA ==,∴2(2HM QM DH =−=−=(3)MB .证明如下,如图,作ME QB ⊥于点E ,由(2)可知AP AQ QM ==,又∵90MQE PAC ACP QEM ∠=∠∠=∠=︒,,∴(AAS)APC QME ≌,∴PC ME =.∵MEB 是等腰直角三角形,∴BE ME =.∵222BE ME MB +=,∴MB ,∴MB =.【点评】本题考查等腰三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理.正确作出辅助线是解题的关键.9.(1)见解析(2)①见解析;②2AE CF =;证明见解析【分析】(1)根据“SAS ”证明≌ACD BCE V V ,得出AD BE =,DAC CBE ∠=∠,证明ABE为直角三角形,根据勾股定理得出222AB BE AE +=,即可得出答案;(2)①根据题意补全图形即可;②延长CF ,截取FG CF =,连接BG ,证明CFD GFB ≌,得出CD BG =,GBF CDF ∠=∠,证明()SAS ACE CBG ≌即可得出结论.【解析】(1)证明:∵90ACB ∠=︒,AC BC =,∴190452CAB CBA ∠=∠=⨯︒=︒,∵90DCE ∠=︒,∴90DCA ACE ACE ECB ∠+∠=∠+∠=︒,∴DCA ECB ∠=∠,∵AC BC =,CE CD =,∴()SAS ACD BCE △≌△,∴AD BE =,DAC CBE ∠=∠,∵180135DAC CAB ∠=︒−∠=︒,∴135CBE ∠=︒,∴90ABE CBE CBA ∠=∠−∠=︒,∴ABE 为直角三角形,∴222AB BE AE +=,∴222AB AD AE +=.(2)解:①依题意补全图2如图所示:②2AE CF =;理由如下:如图,延长CF ,截取FG CF =,连接BG ,∵F 为BD 的中点,∴BF DF =,∵CFD GFB ∠=∠,CF FG =,∴()SAS CFD GFB ≌,∴CD BG =,GBF CDF ∠=∠,∵CD CE =,∴BG CE =,∵45CDF DCA CAD DCA ∠=∠+∠=∠+︒,∴45GBF CDF DCA ∠=∠=∠+︒,∴454590CBG FBG CBA DCA DCA ∠=∠+∠=∠+︒+︒=∠+︒,∵90ACE DCA DCE DCA ∠=∠+∠=∠+︒,∴ACE CBG ∠=∠,∵AC BC =,CE BG =,∴()SAS ACE CBG ≌,∴2AE CG CF FG CF ==+=.【点评】本题主要考查了三角形全等的判定和性质,勾股定理,等腰三角形的性质,三角形外角的性质,余角的性质,解题的关键是作出辅助线,构造全等三角形.10.(1)见解析(2)见解析(3)22AD =,20AB =【分析】(1)由“SAS ”可证AOB ≌COD △,可得OB OD =;(2)由AOB ≌COD △得OAB OCD ∠=∠,AOB COD ∠=∠,从而得出AOC BOD ∠=∠,AOC APC ∠=∠,根据180APC APD ∠+∠=︒和1902APD COB ∠=︒+∠进一步得出结论;(3)作BF OD ⊥于F ,作CG OA ⊥于G ,设2BD OE a ==,根据1122BOD S OD BF BD OE =⋅=⋅,BF =,从而45BF OB ,设4BF k =,5OD OB k ==,则3OF k =,根据B F O C G O ,表示各边,并求出OG 和CG ,根据AB CD =列出方程,从而求得k ,进一步求得结果.【解析】(1)证明:在AOB 和COD △中,OA OC BAO DCOAB CD =⎧⎪∠=∠⎨⎪=⎩,∴AOB ≌COD △,∴OB OD =;(2)证明:由(1)知:AOB ≌COD △,∴OAB OCD ∠=∠,AOB COD ∠=∠,∴AOB BOC COD BOC ∠−∠=∠−∠,即:AOC BOD ∠=∠.∵180A P C O C D C E P ∠=︒−∠−∠,180A O C B A O A E O ∠=︒−∠−∠,∴AOC APC ∠=∠.∵180APC APD ∠+∠=︒,∴180A O C A P D ∠+∠=︒. ∵1902APD COB ∠=︒+∠, ∴1(90)1802AOC COB ∠+︒+∠=︒,∴2180A O C B O C ∠+∠=︒,∴180A O C B O D B O C ∠+∠+∠=︒,∴A ,O ,D 三点共线;(3)解:如图,作BF OD ⊥于F ,作CG OA ⊥于G ,设2BD OE a ==,∵OB OD =,∴BE DE a ==.∵90BEO ∠=︒,∴OD OB ===. ∵1122BOD S OD BF BD OE =⋅=⋅,22BF a a ⋅=⋅,∴BF =,∴45BF OB=, ∴设4BF k =,5OD OB k ==,则3OF k =,∵AOC BOD ∠=∠,90B F O C G O ∠=∠=︒,∴B F O C G O ,∴::::3:4:5O G C G O C O F B F O B ==,设3OG x =,4CG x =,5OC x =,∴57x =, 解得75x =, ∴2135OG x ==,2845CG x ==,在Rt CDG △和Rt AFB 中,由勾股定理得,222D C C G D G =+,222AB AF BF =+,且AB CD =, ∴22222821()(5)(37)(4)55k k k ++=++,解得3k =,∴412BF k ==,15OB OD ==,39OF k ==,33716A F =⨯+=,∴71522AD OA OD =+=+=.∵222221216400A B B F A F =+=+=,∴20AB =.【点评】本题主要考查了等腰三角形性质,勾股定理,全等三角形判定和性质等知识,解决问题的关键是作辅助线,根据面积法求得线段间关系.11.(1)①图形见解析;猜想:BAE BCD ∠=∠, 理由见解析;②见解析;(2)线段AE ,CE ,DE 的数量关系:CE AE =.【分析】(1)①依题意补全图形,由直角三角形的性质得出90BAE B ∠+∠=︒,90BCD B ∠+∠=︒,即可得出BAE BCD ∠=∠;②在AE 上截取AF CE =,可证出ACD 是等腰直角三角形,得出AD CD =,可证明()ADF CDE SAS ≌△△,得出DF DE =,ADF CDE ∠=∠,可推出90CDE FDC EDF ∠︒+∠=∠=,证出EDF 是等腰直角三角形,即可得出结论CE AE =;(2) 在CE 上截取CF AE =,连接DF ,由CD AD ⊥,AE BC ⊥,可得EAD DCF ∠=∠,由45BAC ∠=︒可得AD CD =,可证()ADE CDF SAS △≌△,可得ED DF =,ADE CDF ∠=∠,可推出90EDF ∠=︒,可得EDF 是等腰直角三角形故EF ,即可得线段AE ,CE ,DE 的数量关系.【解析】(1)解:①依题意,补全图形,如图1所示.猜想:BAE BCD ∠=∠,理由如下:∵CD AB ⊥,AE BC ⊥,∴90BAE B ∠+∠=︒,90BCD B ∠+∠=︒,∴BAE BCD ∠=∠,②证明:如图2,在AE 上截取AF CE =,连接DF∵45BAC ∠=︒,CD AB ⊥,∴ACD 是等腰直角三角形,∴AD CD =,在ADF △和CDE 中,DA CD BAE BCDAF CE =⎧⎪∠=∠⎨⎪=⎩∴()ADF CDE SAS ≌△△,∴DF DE =,ADF CDE ∠=∠,∵AB CD ⊥,∴90ADF FDC ∠+∠=︒,∴90CDE FDC EDF ∠︒+∠=∠=,∴EDF 是等腰直角三角形,∴EF =,∵AF EF AE +=,∴CE AE =.(2)解:依题意补全图形,如图3所示,在CE 上截取CF AE =,连接DF ,∵CD AD ⊥,AE BC ⊥,∴90ADC AEC ∠=∠=︒,∴90EAB ABE ∠+∠=︒,90DBC DCF ∠+∠=︒,ABE CBD ∠=∠,∴EAD DCF ∠=∠,∵45BAC ∠=︒,∴45DCA ∠=︒,∴AD CD =,在ADE V 和CDF 中,AD CD EAD DCFCF AE =⎧⎪∠=∠⎨⎪=⎩∴()ADE CDF SAS △≌△,∴ED DF =,ADE CDF ∠=∠,∵90CDF ADF ∠+∠=︒,∴90ADE ADF ∠+∠=︒,∴90EDF ∠=︒,∴EDF 是等腰直角三角形,∴EF =,∵CE CF EF =+,∴CE AE =,∴线段AE ,CE ,DE 的数量关系:CE AE =.【点评】本题考查了全等三角形的判定与性质等腰直角三角形的判定与性质、直角三角形的性质等知,证明三角形全等是解题的关键.12.(1)①=,②>(2)>(3)【分析】(1)①连接BD ,先证明CDB △是等边三角形,即60ACB CBD BDC ∠=︒=∠=∠,当F 点与B 点重合时,即0BF =,根据“三线合一”可得AE EF =,即有AE BF EF +=,同理:如果点E 刚好和点A 重合,同样有AE BF EF +=;问题得解;②先证明DEF 是等边三角形,根据等腰三角形的性质可得AE EF =,再结合含30︒角的直角三角形的性质可以求出BF AC =,即问题得解; (2)将DF 绕D 点逆时针旋转120°至DM ,连接AM ME ,,先证明DEM DEF ≌V V ,再证明ADM BDF ≌△△,问题即可得解;(3)将DF 绕D 点逆时针旋转120︒至DN ,连接AN NE ,,根据(2)中的方法,同理可证明:DEN DEF ≌V V ,ADN BDF ≌V V ,再证明ANE 是直角三角形,90ANE ∠=︒,结合含30︒角的直角三角形的性质即可求解.【解析】(1)①如图,连接BD ,根据题意有90ABC ∠=︒,60ACB ∠=︒,即30CAB ∠=︒,∵点D 为AC 中点, ∴12AD DC BD AC ===,∴CDB △是等边三角形,(此结论也适用于第(2)和(3)问)∴60ACB CBD BDC ∠=︒=∠=∠,∵30CAB ∠=︒,∴在Rt ABC △中,12BC AC =,∴AB AC ,当F 点与B 点重合时,如上图左图,即0BF =,∵60EDF DBC ∠=︒=∠,∴DE BC ∥,∴90AED ABC ∠=∠=︒,∴DE AF ⊥,∵AD BD =,∴AE EF =,∵0BF =,∴AE BF EF +=,同理:如果点E 刚好和点A 重合,同样有AE BF EF +=,故答案为:=;②当30ADE ∠=︒时,如图,∵30ADE ∠=︒,30DAE ∠=︒,∴60DEF ∠=︒,AE DE =,∵60EDF ∠=︒,∴DEF 是等边三角形,90ADF Ð=°,∴DE EF =,∴AE EF =,∵90ADF Ð=°,30DAE ∠=︒,∴在Rt ADF 中,12DF AF =,∴AF AB =,∴AF AC =,∴BF AB AF AC AC AC =−==,∵AE EF =,BF AC ,∴AE BF EF +>,故答案为:>;(2)AE BF EF +>,理由如下:将DF 绕D 点逆时针旋转120︒至DM ,连接AM ME ,,如图,根据旋转的性质有:120MDF ∠=︒,DF DM =,∵60FDE ∠=︒,∴60MDE ∠=︒,∵DE DE =,∴DEM DEF ≌V V ,∴EM EF =,∵60CDB ∠=︒,∴120ADB ∠=︒,即:ADB MDF ∠=∠,∵ADB ADF FDB ∠=∠+∠,MDF ADF ADM ∠=∠+∠,∴BDF ADM ∠=∠,∵AD BD =,MD DF =,∴ADM BDF ≌△△, ∴AM BF =,∴在AME △中,AM AE ME +>,∴BF AE EF +>,故答案为:>;(3)将DF 绕D 点逆时针旋转120︒至DN ,连接AN NE ,,如图,根据(2)中的方法,同理可证明:DEN DEF ≌V V ,ADN BDF ≌V V ,∴AN BF =,NE EF =,DBF DAN ∠=∠,∵222BF EF AE +=,∴222AN NE AE +=,∴ANE 是直角三角形,90ANE ∠=︒,∵在(1)中已证明60CBD ∠=︒,∴30DAN DBF ∠=∠=︒,∴60NAE DAN CAB ∠=∠+∠=︒,∴30AEN ∠=︒, ∴12AN AE =,∴NE AE ,∴EF NE AE AE=. 【点评】本题主要考查了全等三角形的判定与性质,含30︒角直角三角形的性质,等腰三角形的判定与性质,勾股定理及其逆定理等知识,合理构筑辅助线,证明三角形全等是解答本题的关键.13.(1)见解析(2) (3)94x =【分析】(1)表示出三个图形的面积进行加减计算可证222+=a b c ;(2)计算出ABC 的面积,再根据三角形的面积公式即可求得AB 边上的高;(3)运用勾股定理在Rt ABD 和Rt ADC 中求出2AD ,列出方程求解即可;【解析】(1)证明:∵2 12ABCD S c =四边形,() 12AEDC S b a b =+梯形,()12BED S a b a =−△, BED ABCD AEDC S S S =+△四边形梯形 ∴()()2111222c b a b a b a =++− ∴2221111122222c b ab a ab =++− ∴222+=a b c(2)111442424226222ABC S =⨯−⨯⨯−⨯⨯−⨯⨯=,AB =11622ABC S AB h =⨯=⨯=, 655h =即AB 边上的高是(3)解:在Rt △ABD 中,由勾股定理得222222416AD AB BD x x =-=-=-∵6BD CD BC +==,∴6CD BC BD x =−=−在Rt ACD △中,由勾股定理得()222222561112AD AC CD x x x =−=−−=−+−∴22161112x x x -=-+-, ∴94x =【点评】此题主要考查了梯形,证明勾股定理,勾股定理的应用,证明勾股定理常用的方法是利用面积证明,是解本题的关键.构造出直角三角形DEF 是解本题的难点.14.(1)见解析(2)(3)【分析】(1)证明ACE BCF △△≌,即可解决问题; (2)先由全等三角形的性质和三角形的外角性质,证出90ACD DFB ∠=∠=︒,再由勾股定理即可解决问题;(3)作FH BC ⊥于H .先证明BCF △是底角为30°的等腰三角形,再求出CF FB FH ,,的长,然后根据DEF ECD CDF ECF S S S S =+−计算即可.【解析】(1)证明:∵ABC ECF ,都是等腰直角三角形,∴90CA CB CE CF ACB ECF ==∠=∠=︒,,,∴ACE BCF ∠=∠,∴()SAS ACE BCF ≌,∴CAE CBF ∠=∠;(2)解:∵90AC BC ACB ==∠=︒,∴AB ==由(1)得:CAD DBF ∠=∠,∵ADB CAD ACD DBF DFB ∠=∠+∠=∠+∠,∴90DFB ACD ∠=∠=︒,∴AF == (3)解:过点F 作FH BC ⊥于H ,如图3所示:∵ABC 是等腰直角三角形,90ACB AC BC ∠=︒=,,∴45BAC ABC ∠=∠=︒,∵15BAD ∠=︒,∴451530CAE ∠=︒−︒=︒,∴30ACE CAE ∠=∠=︒,∴==AE CE CF ,同(1)得:()SAS ACE BCF ≌,∴30BF AE ACE BCF =∠=∠=︒,,∴CF BF =,∴30BCF CBF ∠=∠=︒,∵FC FB FH BC =⊥,,∴12CH BH BC ===,32FH ==,23CF BF FH ===,∵60903060CED CAE ACE ECD ∠=∠+∠=︒∠=︒−︒=︒,,∴ECD 是等边三角形,∴3EC CF CD ===,∴DEF ECD CDF ECF S S S S =+−21313333222=+⨯⨯−⨯⨯=.【点评】本题属于三角形综合题,考查了等腰直角三角形的性质,等边三角形的判定和性质,含30°角的直角三角形的性质,全等三角形的判定和性质,等腰三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.15.(1)AEFS =;AC BD =+,证明见解析;(3)DP FQ +【分析】(1)过点F 作FG AC ^于点G ,在Rt EFG △中利用勾股定理求得GF 的长,在等腰直角三角形AFG 中即可求得AG 的长,从而可得答案;(2)过点E 作EH AC ⊥交AB 于点H ,过点H 作HM BC ⊥于点M ,通过证明HEF DBF ≌,利用全等三角形的性质与等腰直角三角形的性质即可得出结论;(3)过点F 作FM AC ⊥于点M ,延长FM 至F '使F M FM '=,则F '与F 关于AC 对称,过点F '作F N BC '⊥,交BC 的延长线于点N ,证明APF CQF ≌,利用轴对称解决路径最短问题即可求得结论.【解析】(1)解:过点F 作FG AC ^于点G ,如图,∵90,ACB AC BC ∠=︒=,∴45A ABC ∠=∠=︒,∵90,30ECD EDC ∠=︒∠=︒,∴60DEG ∠=︒.∵,6FG AC EF ⊥=, ∴132EG EF ==,∴FG ==∵,45FG AC A ⊥∠=︒,∴AG FG ==∴3AE AG EG =−=.∴)11322AEF S AE FG ==⨯=. (2)解:过点E 作EH AC ⊥交AB 于点H ,过点H 作HM BC ⊥于点M ,如图,∵,45EH AC A ⊥∠=︒,∴,AE EH AH ==.∵BD AE =,∴EH BD =.∵,EH AC DC AC ⊥⊥,∴HE CD ∥,∴HEF D ∠=∠.在HEF 和DBF 中,HEF D HFE BFD EH DB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AAS HEF DBF ≌. ∴12HF BF BH ==.∵90HEC ACB HMC ∠=∠=∠=︒,则90EHM ∠=︒,∴HM AC ∥,而HE CD ∥,∴由平行线间的距离处处相等可得:,CM HE HM CE ==,∵,45HM BC ABC ⊥∠=︒,∴EC HM ==,∴12AF AH HF BH =++. ∴2AE BH =,即:AE AE CE AE AC =++=+. ∴AC BD =+.(3)解:∵AB = F 是线段AB 的中点,90ACB ∠=︒,∴4,45,AF FB FC AC BC A ABC CF AB =====∠=∠=︒⊥.∴45FCQ A ∠=∠=︒.在APF 和CQF △中,AP CQ A FCQ AF FC =⎧⎪∠=∠⎨⎪=⎩,∴APF CQF ≌.∴PF FQ =. ∴DP FQ DP PF +=+.过点F 作FN AC ⊥于点M ,延长FM 至F '使F M FM '=,则F '与F 关于AC 对称, 连接DF '交AC 于点P ,如图,则此时DP FP DF '+=,取得最小值, 过点F '作F N BC '⊥,交BC 的延长线于点N ,∵90,,45AFC FM AC A ∠=︒⊥∠=︒, ∴112,222AM MC AC FM AC =====. ∴2F M FM '==.。
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析) 之欧阳术创编
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)时间:2021.02.02 创作:欧阳术一.选择题(共8小题)1.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.2.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c23.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺 B.11尺 C.12尺 D.13尺5.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+6.一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169二.填空题(共5小题)9.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h 的取值范围是.10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC 的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m >0,n>0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b 均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB 的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.31.在一次“构造勾股数”的探究性学习中,老师给出了下表:m 2 3 3 4 …n 1 1 2 3 …a 22+12 32+12 32+22 42+32 …b 4 6 12 24 …c 22﹣12 32﹣12 32﹣22 42﹣32 …其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b=,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112=+;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()A.B.C.D.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=.6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题(共8小题)1.(2016秋•吴江区期中)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2016春•抚顺县期中)下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D 选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺 B.11尺 C.12尺 D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.(2016春•南陵县期中)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.(2015春•蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(2015春•罗田县期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.4【分析】根据勾股定理求出AB的长即可解答.【解答】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.故选D.【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.(2016春•重庆校级期中)如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二.填空题(共5小题)9.(2016春•固始县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7cm≤h≤16cm.【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故答案为:7cm≤h≤16cm.【点评】本题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.10.(2015春•汕头校级期中)如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(1+)米.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=,∴则树高为:(1+)m.故答案为:(1+).【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.(2016春•高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt△ABC的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春•嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113(只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春•武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=84,c= 85.【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春•黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋•永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC=,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC=1,S△DAC=1而S四边形ABCD=S△ABC+S△DAC,∴S四边形ABCD=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春•邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春•平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B 点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋•新泰市期中)如图,在气象站台A的正西方向320km 的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春•阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.【分析】(1)我们求出BP、BQ的长,用勾股定理解决即可.(2)△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8﹣1×t,解方程即得结果.(3)直线PQ把原三角形周长分成相等的两部分,根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.【解答】解:(1)出发2秒后,AP=2,BQ=4,。
部编数学八年级下册勾股定理专项提升训练(重难点培优)【拔尖特训】2023年培优含答案
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题17.1勾股定理专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•忻城县期中)在Rt△ABC中,∠C=90°,且AB=10,BC=6,则AC等于( )A.12B.8C.4D.2【分析】由勾股定理可直接得出结果.【解答】解:由勾股定理得:AC==8,故选:B.2.(2022春•黔西南州期末)如图,在△ABC中,∠B=90°,AC=,则AB2+BC2的值是( )A.2B.3C.2D.4【分析】由勾股定理可直接得出结果.【解答】解:由勾股定理得:AB2+BC2=AC2,即AB,故选:A.3.(2022秋•溧水区期中)在△ABC中,∠C=90°,∠A,∠B,∠C的对应边分别是a,b,c,则下列式子成立的是( )A.a2+b2=c2B.a2+c2=b2C.a2﹣b2=c2D.b2+c2=a2【分析】根据勾股定理进行解答即可.【解答】解:∵∠C=90°,∠A,∠B、∠C的对应边分别是a、b、c,∴a2+b2=c2.故选:A.4.(2022秋•西安月考)如图,三个正方形围成一个直角三角形,图中的数据是它们的面积,则正方形A的面积为( )A.72B.64C.60D.54【分析】根据勾股定理和正方形面积的公式直接可得答案.【解答】解:由勾股定理得,图形A的面积为100﹣36=64,故选:B.5.(2022春•合川区校级期中)平面直角坐标系内,点P(1,)到原点的距离是( )A.B.2C.+1D.4【分析】直接利用两点间的距离公式可得答案.【解答】解:由两点间距离公式得,OP=,故选:B.6.(2022春•中宁县期末)如图,在△ABC中,AB=AC=4,∠B=15°,CD是腰AB上的高,则CD的长( )A.4B.2C.1D.【分析】根据三角形外角的性质得∠DAC=30°,再利用含30°角的直角三角形的性质可得CD的长.【解答】解:∵AB=AC,∠B=15°,∴∠ACB=∠B=15°,∴∠DAC=30°,∵CD是腰AB上的高,∴CD⊥AB,∴CD=AC=2,故选:B.7.(2022春•普陀区校级期末)如图所示,以数轴上的单位长度线段为边作一个正方形,以表示数1的点为圆心、正方形的对角线长为半径画弧,交数轴于点A,则点A表示的数是( )A.﹣B.1﹣C.﹣1+D.﹣1﹣【分析】利用勾股定理求出正方形的对角线长,从而得出答案.【解答】解:∵正方形的边长为1,∴对角线长为=,∴点A表示的数是1﹣,故选:B.8.(2022春•兰山区期末)如图,边长为1的正方形网格图中,点A,B都在格点上,若,则BC 的长为( )A.B.C.D.【分析】根据勾股定理求得AB的长度,然后根据线段的和差即可得到结论.【解答】解:∵AB==2,,∴BC=AB=AC=2﹣=,故选:C.9.(2022秋•高新区校级月考)如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD平分∠CAB,交BC于D,DE⊥AB于E,则CD等于( )A.2cm B.3cm C.4cm D.5cm【分析】首先利用勾股定理求出AB,然后利用角平分线的性质得到CD=DE,在Rt△DEB中,利用勾股定理建立方程求解即可.【解答】解:∵AD是∠CAB的平分线,DE⊥AB,∠C=90°,∴CD=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE=6cm,∵AC=6cm,BC=8cm,∴AB==10cm,∴BE=AB﹣AE=10﹣6=4(cm),设DE=xcm,则CD=xcm,BD=(8﹣x)cm,在Rt△DEB中,BD2=DE2+BE2,∴(8﹣x)2=x2+42,∴x=DE=3.故选:B.10.(2022秋•海曙区期中)勾股定理是人类最伟大的科学发现之一,在我国算术《周髀算经》中早有记载.如图以直角三角形纸片的各边分别向外作正三角形纸片,再把较小的两张正三角形纸片按如图的方式放置在最大正三角形纸片内.若已知图中阴影部分的面积,则可知( )A.直角三角形纸片的面积B.最大正三角形纸片的面积C.最大正三角形与直角三角形的纸片面积和D.较小两个正三角形纸片重叠部分的面积【分析】设三个正三角形面积分别为S1,S2,S3,(不妨设S1>S2>S3),由勾股定理和三角形面积可得S1=S2+S3,再由面积和差关系即可求解.【解答】解:如图,设三个正三角形面积分别为S1,S2,S3,(不妨设S1>S2>S3),两个小正三角形的重叠部分的面积为S4,∵△ABC是直角三角形,∠ACB=90°,∴AB2=AC2+BC2,∵S1=AB2,S2=AC2,S3=BC2,∴S2+S3=AC2+BC2=(AC2+BC2)=AB2,∴S1=S2+S3,∴S=S1﹣(S2+S3﹣S4)=S1﹣S2﹣S3+S4=S4,阴影故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•溧阳市期中)若直角三角形两直角边长分别为9和40,则斜边长为 41 .【分析】利用勾股定理直接计算即可.【解答】解:由勾股定理得,斜边==41.故答案为:41.12.(2022秋•天桥区校级月考)在如图所示的方格纸中,建立直角坐标系,点A表示(3,4),则OA= 5 .【分析】根据勾股定理直接计算即可.【解答】解:由勾股定理得,OA==5,故答案为:5.13.(2022秋•临沭县校级月考)在△ABC中,BC=6,BC边上的高AD=4,且BD=2,则△ACD的面积为 8或16 .【分析】根据题意得出CD的长度,再利用三角形面积公式求出△ACD的面积即可.【解答】解:根据题意,分以下两种情况:①如图:∵BC=6,AD=4,BD=2,∴CD=BC﹣BD=6﹣2=4,=CD•AD==8,∴S△ACD②如图:∵BC=6,AD=4,BD=2,∴CD=BD+BC=8,=CD•AD=8×4=16,∴S△ACD故答案为:8或16.14.(2022春•中山市期末)平面直角坐标系中有两点A(m,﹣1),B(3,4),当m取任意实数时,线段AB长度的最小值为 5 .【分析】根据垂线段最短即可解决问题.【解答】解:∵A(m,﹣1),∴点A在直线y=﹣1上,要使AB最小,根据“垂线段最短”,可知:过B作直线y=﹣1的垂线,垂足为即为A,∴AB最小为5.故答案为:5.15.(2022秋•建邺区校级期中)如图,△ABC中,∠C=90°,AC=4,BC=3,若CH是△ABC的高线,则CH= .【分析】先根据勾股定理求出AB的长,再由三角形的面积公式即可得出结论.【解答】解:∵Rt△ABC中,AC=4,BC=3,∴AB===5.∵CH是△ABC的高线,∴AB•CH=AC•BC,即5CH=4×3,解得CH=.故答案为:.16.(2022秋•秦淮区期中)如图,在Rt△ABC中,∠ACB=90°,AB=4cm,分别以AC,BC为边作正方形,面积分别记为S1,S2,则S1+S2= 16 cm2.【分析】在直角三角形ABC中,利用勾股定理求出AC2+BC2的值,根据S1,S2分别表示正方形面积,求出S1+S2的值即可.【解答】解:在Rt△ABC中,∠ACB=90°,AB=4cm,由勾股定理得:AC2+BC2=AB2=16,则S1+S2=AC2+BC2=16(cm2),故答案为:16.17.(2022秋•云岩区月考)如图,在Rt△ABC中,∠ABC=90°,AC=5,BC=,分别以△ABC的三边为直径画半圆,则两个月形图案(阴影部分)的面积之和是 5 .【分析】由勾股定理得AB2+BC2=AC2,AB=2,设以AB、BC、AC为直径的半圆分别为①、②、③,则S①+S②=S③,而S阴影=S①+S②+S△ABC﹣S③=S△ABC,即可解决问题.【解答】解:∵∠ABC=90°,∴AB2+BC2=AC2,AB===2,设以AB、BC、AC为直径的半圆分别为①、②、③,∴S①=π×()2=AB2,同理:S②=BC2,S③=AC2,∴S①+S②=(AB2+BC2)=AC2=S③,=S①+S②+S△ABC﹣S③=S△ABC=AB•BC=×2×=5,∴S阴影即两个月形图案(阴影部分)的面积之和是5,故答案为:5.18.(2022秋•仁寿县校级月考)如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.过点D作DE⊥AP于点E.在点P的运动过程中,当t为 5或11 时,能使DE=CD?【分析】根据动点运动的不同位置利用勾股定理即可求解.【解答】解:①点P在线段BC上时,过点D作DE⊥AP于E,如图1所示:则∠AED=∠PED=90°,∴∠PED=∠ACB=90°,∴PD平分∠APC,∴∠EPD=∠CPD,又∵PD=PD,∴△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=16﹣2t,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+16﹣2t=20﹣2t,在Rt△APC中,由勾股定理得:82+(16﹣2t)2=(20﹣2t)2,解得:t=5;②点P在线段BC的延长线上时,过点D作DE⊥AP于E,如图2所示:同①得:△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=2t﹣16,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+2t﹣16=2t﹣12,在Rt△APC中,由勾股定理得:82+(2t﹣16)2=(2t﹣12)2,解得:t=11.综上所述,在点P的运动过程中,当t的值为5或11时,能使DE=CD.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022秋•温州期中)如图,在△ABC中,AB=AC,AD平分∠BAC,已知BC=10,AD=12,求AC 的长.【分析】根据等腰三角形的性质和勾股定理即可得到结论.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD=BC=5,∵AD=12,∴AC===13,故AC的长为13.20.(2022秋•玉林期中)如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,求线段CD的长.【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,BD=AD=6,再利用“30°角所对的直角边等于斜边的一半”即可求出结果.【解答】解:∵∠C=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=BD=6×=3.故线段CD的长为3.21.(2022秋•碑林区校级期中)在△ABC中,AB=13,BC=14,AC=15,AD为BC边上的高,求AD的长.【分析】由题意知,BD+DC=14,设BD=x,则CD=14﹣x,在直角△ABD中,AB是斜边,根据勾股定理AB2=AD2+BD2,在直角△ACD中,根据勾股定理AC2=AD2+CD2,列出方程组即可计算x的值,即可求得AD的长度.【解答】解:∵BC=14,且BC=BD+DC,设BD=x,则DC=14﹣x,则在直角△ABD中,AB2=AD2+BD2,即132=AD2+x2,在直角△ACD中,AC2=AD2+CD2,即152=AD2+(14﹣x)2,整理计算得x=5,即AD=12.22.(2022秋•苏州期中)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成如图2所示的“赵爽弦图”,得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长;(2)已知图2中小正方形面积为36,求大正方形的面积?【分析】(1)观察图形,用直角三角形较长的直角边减去较短的直角边即可;(2)根据正方形的面积=边长的平方列出代数式,把a=3代入求值即可.【解答】解:(1)∵直角三角形较短的直角边=×2a=a,较长的直角边=2a+3,∴小正方形的边长=2a+3﹣a=a+3;(2)小正方形的面积=(a+3)2=36,∴a=3(负值舍去),∴大正方形的面积=92+32=90.23.(2022春•巢湖市校级期中)学习勾股定理之后,同学们发现证明勾股定理有很多方法.某同学提出了一种证明勾股定理的方法:如图1点B是正方形ACDE边CD上一点,连接AB,得到直角三角形ACB,三边分别为a,b,c,将△ACB裁剪拼接至△AEF位置,如图2所示,该同学用图1、图2的面积不变证明了勾股定理.请你写出该方法证明勾股定理的过程.【分析】连接BF,由图1可得正方形ACDE的面积为b2,由图2可得四边形ABDF的面积为三角形ABF 与三角形BDF面积之和,再利用正方形ACDE的面积与四边形ABDF的面积相等即可证明.【解答】证明:如图,连接BF,∵AC=b,∴正方形ACDE的面积为b2,∵CD=DE=AC=b,BC=a,EF=BC=a,∴BD=CD﹣BC=b﹣a,DF=DE+EF=a+b,∵∠CAE=90°,∴∠BAC+∠BAE=90°,∵∠BAC=∠EAF,∴∠EAF+∠BAE=90°,∴△BAE为等腰直角三角形,∴四边形ABDF的面积为:c2+(b﹣a)(a+b)=c2+(b2﹣a2),∵正方形ACDE的面积与四边形ABDF的面积相等,∴b2=c2+(b2﹣a2),∴b2=c2+b2﹣a2,∴a2+b2=c2,∴a2+b2=c2.24.(2022秋•大丰区期中)如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC:BC=3:4,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.【分析】(1)利用勾股定理求解BC的长即可;(2)分3种情况讨论:当AP=BP时,当AB=BP时,当AB=AP时,分别计算可求解.【解答】解:(1)∵AC:BC=3:4,∴设AC=3xcm,BC=4xcm,在Rt△ABC中,∠ACB=90°,∴AB==5x=10cm,∴x=2,∴BC=8cm;(2)由(1)知,BC=8cm,AC=6cm,当AP=BP时,如图1,则AP=t,PC=BC﹣BP=8﹣t,在Rt△ACP中,AC2+CP2=AP2,∴62+(8﹣t)2=t2,解得t=;当AB=BP时,如图2,则BP=t=10;当AB=AP时,如图3,则BP=2BC;∴t=2×8=16,综上,t的值为或10或16.。
专题03 勾股定理选填题压轴训练(原卷版)八年级数学下学期期中考试压轴题专练(人教版)精选全文完整版
可编辑修改精选全文完整版专题03 勾股定理选填题压轴训练(原卷版)一.选择题(共25小题)1.如图,正方形ABCD的面积为100cm2,△ABP为直角三角形,∠P=90°,且PB=6cm,则AP的长为()A.10cm B.6cm C.8cm D.无法确定2.如图,在四边形ABCD中,AB=3,BC=4,CD=10,∠ABC=90°,AC⊥CD,则BD=()A.12B.10C.11D.23.由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.a=,b=,c=C.(b+a)(b﹣a)=c2D.∠A:∠B:∠C=5:3:24.如图,四个全等的直角三角形拼成“赵爽弦图”得到正方形ABCD与正方形EFGH.连接EG,BD相交于点O,BD与HC相交于点P.若GO=GP,下列结论:①∠GOP=∠BCP,②BC=BP,③BG:PG=+1,④DP =PO.正确的是()A.②③④B.①③④C.①②④D.①②③5.《九章算术》是中国古代的数学代表作,书中记载:今有开门去阃(读kun,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),从点O处推开双门,双门间隙CD的长度为2寸,点C和点D到门槛AB的距离都为1尺(1尺=10寸),则AB的长是()A.104寸B.101寸C.52寸D.50.5寸6.已知点P(3m,4﹣4m)为平面直角坐标系中一点,若O为原点,则线段PO的最小值为()A.2B.2.4C.2.5D.37.下列条件中,不能判断△ABC(a、b、c为三边,∠A、∠B、∠C为三内角)为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:58.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.9.在平面直角坐标系xOy中,点A的坐标为(4,﹣3),且OA=5,在y轴上确定一点P,使△AOP为等腰三角形,则所有符合题意的点P的坐标有()A.3个B.4个C.5个D.6个10.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列说法错误的是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形C.如果∠A:∠B:∠C=1:2:3,则△ABC是直角三角形D.如果a2+b2≠c2,则△ABC不是直角三角形11.已知M,N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,则△ABC一定是()A.锐角三角形B.直角三角形C.等腰三角形D.等边三角形12.如图,OC平分∠AOB,点P是OC上一点,PM⊥OB于点M,点N是射线OA上的一个动点若OM=4,OP =5,则PN的最小值为()A.2B.3C.4D.513.如图,四边形ABCD中,∠ABC=∠CDA=90°,以它的四条边为斜边分别向外作等腰直角三角形,其中3个三角形的面积分别为2,5,9,则第4个三角形的面积为()A.6B.9C.11D.1214.如图所示的是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF2的值是()A.169B.196C.392D.58815.如图所示的是一种“羊头”形图案,全部由正方形与等腰直角三角形构成,其作法是从正方形①开始,以它的一条边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,再分别以正方形②和②的一条边为斜边,向外作等腰直角三角形,…,若正方形⑤的面积为2cm2,则正方形①的面积为()A.8cm2B.16cm2C.32cm2D.64ccm216.如图,在Rt△ABC中,∠ACB=90°,AD是△ABC的BC边的中线.若AB=,BC=2AC,则AD的长是()A.1B.2C.D.417.如图,一棵高5米的树AB被强台风吹斜,与地面BC形成60°夹角,之后又被超强台风在点D处吹断,点A 恰好落在BC边上的点E处,若BE=2米,则BD的长是()米A.2B.3C.D.18.已知Rt△ABC中,∠C=90°.若a+b=14cm,c=12cm,则Rt△ABC的面积是()A.13cm2B.26cm2C.48cm2D.52cm219.如图,在△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上,AD=AC,AE⊥CD,垂足为F,与BC 交于点E,则BE的长是()A.3B.5C.D.620.小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=1;再以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,那么点P表示的数是()A.2.2B.C.D.21.在平面直角坐标系中,点P的坐标为(0,2),点M的坐标为(m﹣1,﹣m﹣)(其中m为实数),当PM的长最小时,m的值为()A.﹣B.﹣C.3D.422.如图,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.当△ABP是直角三角形时,t的值为()A.B.C.1或D.1或23.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,∠BAC的平分线交BC于点D,过点D作DE⊥AB,垂足为E,连接CE交AD于点F,则以下结论:①AB=2CE;②AC=4CD;③CE⊥AD;④△DBE与△ABC的面积比是:1:(7+4)其中正确结论是()A.①②B.②③C.③④D.①④24.如图,长方体ABCD﹣A′B′C′D′中,AB′=2,AD'=,则AC的取值范围为()A.﹣2<AC<5B.3<AC<+2C.3<AC<5D.﹣2<AC<+225.如图,P是等边△ABC形内一点,连接P A、PB、PC,P A:PB:PC=3:4:5,以AC为边在形外作△AP′C ≌△APB,连接PP′,则以下结论错误的是()A.△APP'是正三角形B.△PCP'是直角三角形C.∠APB=150°D.∠APC=135°二.填空题(共20小题)26.将一副三角尺如图所示叠放在一起,若AB=2,则阴影部分的面积是.27.如图,有一直立旗杆,它的上部被风从点A处吹折,旗杆顶点B落地,离杆脚6米,修好后又被风吹折,因新断处点D比上一次高1米,故杆顶E着地点比上次近2米,则原旗杆的高度为米.28.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,以点A为圆心、AC长为半径画弧,交AB于点D,再分别以B、D为圆心,大于BD的长为半径画弧,两弧交于M,N,作直线MN,分别交AB、BC于点E、F,则线段EF的长为.29.如图,在四边形ABCD中,∠C=90°,∠A=∠B=60°,若AD=a,BC=b,则AB的长为(用含a,b的式子表示).30.如图,在Rt△ABC中,∠C=90°,BE,AF分别是∠ABC,∠CAB平分线,BE,AF交于点O,OM⊥AB,AB =10,AC=8,则OM=.31.如图,已知正方形ABCD的面积为4,正方形FHIJ的面积为3,点D、C、G、J、I在同一水平面上,则正方形BEFG的面积为.32.如图,在四边形ABCD中,AD=2,AB=2,BC=10,CD=8,∠BAD=90°,那么四边形ABCD的面积是.33.将一副直角三角板按如图所示方式放置.∠ACB=∠CDE=90°,∠CAB=60°,∠ECD=45°,AB边交直线DE于点M,设∠BMD=α,∠BCE=β,将直角三角板ABC绕点C旋转,在旋转过程中,点B始终位于直线DE 下方,则在变化过程中α与β的数量关系是.34.如图,△ABC中,∠ACB=90°,分别以AC、BC为斜边作等腰直角三角形S1、S2,以AB为边作正方形S.若S1与S2的面积和为9,则正方形S的边长等于.35.在△ABC中,AD是BC边上的高线,CE是AB边上的中线,CD=AE,且CE<AC.若AD=6,AB=10,则CE=.36.如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面的部分BC为1尺.如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶部B恰好碰到岸边的B',则这根芦苇的长度是尺.37.如图,△ABC中,∠ABC=2∠C,点D在AC上连接BD,BD=CD,BE为△DBC的角平分线,过AD的中点F作BE的垂线,点G为垂足,若∠BDC=100°,EG=2,则BC的长为.38.如图,四边形ABCD中,对角线AC⊥BD,点F为CD上一点,连接AF交BD于点E,AF⊥AB,DE=DF,∠BAG=∠ABC=45°,BC+AG=20,AE=2EF,则AF=.39.如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4=.40.如图,在Rt△ACB中,∠C=90°,∠ABC=30°,AC=4,N是斜边AB上方一点,连接BN,点D是BC的中点,DM垂直平分BN,交AB于点E,连接DN,交AB于点F,当△ANF为直角三角形时,线段AE的长为.41.如图,在正方形ABCD的对角线AC上取一点E,使得∠CDE=15°,连接BE并延长BE到F,使CF=CB,BF与CD相交于点H,若AB=,有下列四个论:①∠CBE=15°;②AE=+1;③S△DEC=;④CE+DE =EF.则其中正确的结论有.(填序号)42.如图,在△ABC中,AB=6,AC=,∠A=30°,作△ABC关于直线l的轴对称图形△EBD,点F是BE的中点,若点A,C,F在同一直线上,则CD的长为.43.如图,在三角形△ABC中,∠A=45°,AB=8,CD为AB边上的高,CD=6,点P为边BC上的一动点,P1,P2分别为点P关于直线AB,AC的对称点,连接P1P2,则线段P1P2长度的取值范围是.44.如图,在直角坐标系中,点B(﹣8,8),点C(﹣2,0),若动点P从坐标原点出发,沿y轴正方向匀速运动,运动速度为1cm/s,设点P运动时间为t秒,当△BCP是以BC为腰的等腰三角形时,直接写出t的所有值.45.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B 两个基地前去拦截,六分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,则甲巡逻艇的航向为北偏东度.。
2023-2024学年八年级数学下册 专题04 勾股定理常考压轴题汇总(原卷版)
专题04勾股定理常考压轴题汇总一.选择题(共23小题)1.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成一个大正方形.如图,直角三角形的直角边长为a、b,斜边长为c.若b﹣a=2,c=10,则a+b的值为()A.12B.14C.16D.182.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.3.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定4.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI 上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm26.如图,阴影部分表示以Rt△ABC的各边为直径向上作三个半圆所组成的两个新月形,面积分别记作S1和S2.若S1+S2=7,AC=3,则BC长是()A.3.5B.C.4D.57.如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm 的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm8.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.4109.国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AB=9,BC=6,则BD的长为()A.3B.4C.5D.611.如图,某小区有一块长方形花圃,为了方便居民不用再走拐角,打算用瓷砖铺上一条新路,居民走新路比走拐角近()A.2m B.3m C.3.5m D.4m12.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.14413.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.5B.C.6D.14.如图,长为8cm的橡皮筋放置在数轴上,固定两端A和B,然后把中点C垂直向上拉升3cm到D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.1cm15.如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A.B.C.D.16.“四千年来,数学的道理还是相通的”.运用祖冲之的出入相补原理也可证明勾股定理.若图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,则大正方形的边长是()A.B.C.D.17.如图所示的一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A.5米B.6米C.7米D.8米18.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要细带.数学家欧几里得利用如图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACKJ,正方形ABFE,正方形BCIH,连接AH.CF,具中正方形BCIH面积为1,正方形ABFE面积为5,则以CF为边长的正方形面积为()A.4B.5C.6D.1019.如图,Rt△ABC中,∠C=90°.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN.四块阴影部分的面积如图所示分别记为S、S1、S2、S3,若S=10,则S1+S2+S3等于()A.10B.15C.20D.3020.如图,在Rt△ABC中,∠C=90°,分别以AB、AC、BC为直径向外作半圆,它们的面积分别记作S1、S2、S3,若S1=25,S3=16,则S2为()A.9B.11C.32D.4121.如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4.若已知S△ABC =S,则下列结论:①S4=S;②S2=S;③S1+S3=S2;④S1+S2+S3+S4=2.5S.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④22.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.1423.将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFGH.现将四个直角三角形的较长直角边分别向外延长,且A′E=ME.B′F =NF,C′G=PG,D′H=HQ,得到图2所示的“新型数学风车”的四个叶片,即△A′EF,△B′FG,△C′CH.△D′HE.若FM平分∠BFE,正方形ABCD和正方形EFGH 的边长比为1:5.若”新型数学风车”的四个叶片面积和是m,则正方形EFCH的面积是()A.B.C.3m D.二.填空题(共14小题)24.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为cm.25.如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接PA,当△ABP为等腰三角形时,t的值为.26.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB 的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为.27.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示“垂美”四边形ABCD,对角线AC,BD交于点O,若AB=6,CD=10,则AD2+BC2=.28.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为.29.《勾股》中记载了这样一个问题:“今有开门去阃(kǔn)一尺不合2寸,问门广几何?”意思是:如图推开两扇门(AD和BC),门边沿D,C两点到门槛AB的距离是1尺(1尺=10寸),两扇门的间隙CD为2寸,则门槛AB长为寸.30.如图,在某次军事演习中,舰艇1号在指挥中心(O处)北偏西30°的A处,舰艇2号在指挥中心南偏东60°的B处,并且OA=OB.接到行动指令后,舰艇1号向正东方向以60海里/小时的速度前进,舰艇2号沿北偏东60°的方向以m海里/小时的速度前进.1.5小时后,指挥中心观测到两舰艇分别到达点E,F处,若∠EOF=75°,EF=210海里,则m的值为.31.如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB=5,EF=1,则GM的长为.32.如图,铁路上A、D两点相距25千米,B,C为两村庄,AB⊥AD于A,CD⊥AD于D,已知AB=15km,CD=10km,现在要在铁路AD上建一个土特产品收购站P,使得B、C 两村到P站的距离相等,则P站应建在距点A千米.33.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).34.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.35.如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为.36.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.37.如图,Rt△ABC中,.点P为△ABC内一点,PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是.三.解答题(共4小题)38.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?39.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.40.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?41.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.。
期末考试勾股定理与几何翻折压轴题专项训练—2023-2024学年八年级数学下学期(人教版)(解析版)
期末考试勾股定理与几何翻折压轴题专项训练【例题精讲】例1.(三角形翻折问题)如图,在Rt ABC △中,9086ABC AB BC ∠=︒==,,,分别在AB AC ,边上取点E F ,,将AEF △沿直线EF 翻折得到A EF '△,使得点A 的对应点A '恰好落在CB 延长线上,当60EA B '∠=︒时,AE 的长为 ,当A F AC '⊥时,AF 的长为 .【答案】 32− 407【分析】由折叠的性质可得AE A E '=,先求出30A EB '∠=︒,从而可得1122A B A E AE ''==,再由勾股定理可得BE AE =,最后由AE BE AB +=,进行计算即可;令A F '交AB 于G ,连接CG ,由折叠的性质可得:A EA F '∠=∠,AFE A FE '∠=∠,AEF A EF '∠=∠,AF A F '=,由A F AC '⊥得出90A FA A FC ''∠=∠=︒,45AFE A FE '∠=∠=︒,证明()ASA A FC AFG '≌得到CF FG =,设CF FG x ==,则10AF x =−,AG ,根据1122ACG S AC FG AG BC =⋅=⋅建立方程,解方程即可得出CF 的长,即可求解.【详解】解:由折叠的性质可得:AE A E '=,90ABC ∠=︒,18090A BE ABC '∴∠=︒−∠=︒,60EA B '∠=︒,9030A EB EA B ''∴∠=︒−∠=︒,1122A B A E AE ''∴==,BE AE∴==,AE BE AB+=,8AE AE∴=,32AE∴=−如图,令A F'交AB于G,连接CG,A F AC'⊥,90A FA A FC''∴∠=∠=︒,由折叠的性质可得:A EA F'∠=∠,AFE A FE'∠=∠,AEF A EF'∠=∠,AF A F'=,90AFE A FE'∠+∠=︒,45AFE A FE'∴∠=∠=︒,设A EA Fα'∠=∠=,则45FEB AFEα∠=∠=+︒,180135AEF FEB A EFα'∴∠=︒−∠=︒−=∠,()13545902A EB A EF BEFααα''∴∠=∠−∠=︒−−︒+=︒−,902EA B A EBα''∴∠=︒−∠=,FA C EA B EA F Aα'''∴∠=∠−∠==∠,在A FC'和AFG中,CA F AA F AFA FC AFG∠=∠⎧⎪=⎨⎪∠=∠''⎩',()ASAA FC AFG'∴≌,CF FG∴=,在Rt ABC△中,9086ABC AB BC∠=︒==,,,10AC∴,设CF FG x==,则10AF x=−,AG∴==1122ACGS AC FG AG BC=⋅=⋅,106x∴⋅=,整理得:271809000x x+−=,即29014400749x⎛⎫+=⎪⎝⎭,9012077x∴+=±,解得:307x=或30x=−(不符合题意,舍去),307CF∴=,30401077AF AC CF∴=−=−=,故答案为:32−407.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、勾股定理、三角形的面积公式、等腰直角三角形的判定与性质、三角形外角的定义及性质、三角形内角和定理等知识,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.例2.(坐标系中折叠问题)如图,在平面直角坐标系中,长方形ABCO的边OC OA、分别在x轴、y轴上,6AB=,点E在边BC上,将长方形ABCO沿AE折叠,若点B的对应点F 恰好是边OC的三等分点,则点E的坐标是.【答案】⎛−⎝⎭或(−【分析】本题主要考查了勾股定理与折叠问题,坐标与图形,由折叠的性质可得6AF AB==,BE EF=,90AFE B∠=∠=︒,再分当点F靠近点C时,24CF OF==,,当点F靠近点O 时,则42CF OF==,,两种情况利用勾股定理先求出OA的长,进而得到BC的长,设出CE 的长,进而得到EF的长,在Rt EFC△中,由勾股定理建立方程求解即可.【详解】解:在长方形ABCO 中,6CO AB ==,90BCO B AOC ∠=∠=∠=︒, 由折叠的性质可得6AF AB ==,BE EF =,90AFE B ∠=∠=︒,F 恰好是边OC 的三等分点,∴当点F 靠近点C 时,24CF OF ==,,在Rt AFO V中,OA =,∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222EF CF CE =+,∴()2222xx =+,解得x =,∴点E的坐标是⎛− ⎝⎭; 当点F 靠近点O 时,则42CF OF ==,,在Rt AFO V中,OA ==∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222CF CE =+,∴()2224x x =+,解得x =∴点E的坐标是(−;综上所述,点E的坐标是⎛− ⎝⎭或(−,故答案为:⎛− ⎝⎭或(−.例3.(四边形折叠问题)如图,已知矩形ABCD ,4AB =,5BC =,点P 是射线BC 上的动点,连接AP ,AQP △是由ABP 沿AP 翻折所得到的图形.(1)当点Q 落在边AD 上时,QC = ;(2)当直线PQ 经过点D 时,求BP 的长;(3)如图2,点M 是DC 的中点,连接MP 、MQ .①MQ 的最小值为 ;②当PMQ 是以PM 为腰的等腰三角形时,请直接写出BP 的长.【答案】(2)2BP =或8BP =(3) 2.9BP =或4BP =或10BP =【分析】(1)根据折叠的性质和勾股定理进行求解即可;(2)分点P 在线段BC 上,点P 在线段BC 的延长线上,两种情况,进行讨论求解;(3)①连接AM ,勾股定理求出AM 的长,折叠求出AQ 的长,根据MQ AM AQ ≥−,求出最小值即可;②分PM MQ =和PM PQ =两种情况,再分点P 在线段BC 上,点P 在线段BC 的延长线上,进行讨论求解即可.【详解】(1)解:当点Q 落在边AD 上时,如图所示,∵矩形ABCD ,4AB =,5BC =,∴4,5CD AB AD BC ====,90BAD B BCD ADC ∠=∠=∠=∠=︒,∵翻折,∴4,90AQ AB AQP B ==∠=∠=︒,∴1DQ AD AQ =−=,在Rt CDQ △中,CQ ==(2)当直线PQ 经过点D 时,分两种情况:当点P 在线段BC 上时,如图:∵翻折,∴4AQ AB ==,90AQP B ∠=∠=︒,BP PQ =,∴90AQD ∠=︒,∴3DQ ==,设BP PQ x ==,则:5PC BC BP x =−=−,3DP DQ PQ x =+=+,在Rt PCD △中,222DP CP CD=+,即:()()222345x x +=+−,∴2x =;∴2BP =;②当P 在线段BC 的延长线上时:∵翻折,∴4,90AQ AB Q B ==∠=∠=︒,BP PQ =,∴3DQ ==,设BP PQ x ==,则:5PC BP BC x =−=−,3DP PQ DQ x =−=−,在Rt PCD △中,222DP CP CD =+,即:()()222345x x −=+−,∴8x =;∴8BP =;综上:2BP =或8BP =;(3)①连接AM ,∵M 是CD 的中点, ∴122DM CM CD ===,∴AM =∵翻折,∴4AQ AB ==,∵MQ AM AQ ≥−,∴当,,A Q M 三点共线时,MQ 的值最小,即:4MQ AM AQ =−=4;②当PM PQ =时,如图:∵翻折,∴BP PQ PM ==,设BP x =,则:,5PM x CP BC BP x ==−=−,在Rt PCM 中,222PM CM PC =+,即:()22225x x =+−,解得: 2.9x =,即: 2.9BP =;当PM QM =,点P 在线段BC 上时,如图:∵,QM PM DM CM ==,90D C ∠=∠=︒,∴()HL MDQ MCP ≌,∴CP DQ =,点Q 在AD 上,由(1)知:1DQ =,∴1CP DQ ==,∴4BP BC CP =−=;当点P 在BC 的延长线上时:如图:此时点M 在AP 上,连接BM ,∵翻折,∴BM MQ PM ==,∵MC BP ⊥,∴210BP BC ==;综上: 2.9BP =或4BP =或10BP =.质,综合性强,难度大,属于压轴题.利用数形结合和分类讨论的思想进行求解,是解题的关键.【模拟训练】1.如图,在长方形ABCD 中,点E 是AD 的中点,将ABE 沿BE 翻折得到FBE ,EF 交BC 于点H ,延长BF DC 、相交于点G ,若8DG =,10BC =,则DC = .【答案】258【分析】本题考查了全等三角形的判定与性质,折叠的性质,勾股定理,连接EG ,根据点E 是AD 的中点得DE AE EF ==,根据四边形ABCD 是长方形得90D A ∠=∠=︒,根据将ABE 沿BE 翻折得到FBE 得90BFE D A ∠=∠=∠=︒,利用HL 证明Rt Rt EFG EDG △≌△,得8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG V △中,根据勾股定理得,222CG BC BG +=,进行计算即可得.【详解】解:如图所示,连接EG ,∵点E 是AD 的中点,∴DE AE EF ==,∵四边形ABCD 是长方形,∴90D A ∠=∠=︒,∵将ABE 沿BE 翻折得到FBE ,∴90BFE D A ∠=∠=∠=︒在Rt EFG △和Rt EDG △中,EF ED EG EG =⎧⎨=⎩,∴()Rt Rt HL EFG EDG V V ≌,∴8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG 中,根据勾股定理得,222CG BC BG +=,∴222(8)10(8)x x −+=+,解得258x =,故答案为:258.2.如图,在Rt ABC △中,90ACB ∠=︒,254AB =,154=AC ,点D 是AB 边上的一个动点,连接CD ,将BCD △沿CD 折叠,得到CDE ,当DE 与ABC 的直角边垂直时,AD 的长是 .【答案】154或54【分析】本题考查了勾股定理,平行四边形的判定和性质,折叠的性质,全等三角形的判定和性质,分DE BC ⊥和DE AB ⊥两种情况进行求解即可得到答案,根据题意,正确画出图形是解题的关键.【详解】解:如图,当DE BC ⊥时,延长ED 交BC 于点F ,CE 与AB 相交于点M ,∵EF BC ⊥,∴90EFC EFB ∠=∠=︒,∴90E ECF ∠+∠=︒,由折叠得,B E ∠=∠,CE CB =,MCD FCD ∠=∠,∴90B ECF ∠+∠=︒,∴90CMB ∠=︒,即C M A B ⊥,∵90ACB ∠=︒,254AB =,154=AC ,∴5BC ==, ∵1122ABC S AC BC AB CM ==△,∴11512552424CM ⨯⨯=⨯⨯,解得3CM =,∴4BM =,∵90CFD CMD FCD MCD CD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()AAS CFD CMD ≌,∴3CF CM ==,DF DM =,∴532BF BC CF =−=−=,设DF DM x ==,则4BD x =−,在Rt BFD 中,222DF BF BD +=,∴()22224x x +=−, 解得32x =, ∴35422BD =−=, ∴25515424AD AB BD =−=−=;当DE AB ⊥时,如图,设DE 与AC 相交于点M ,由折叠可得,BCD ECD ∠=∠,DE DB =,ED BD =,5EC BC ==,∵DE AB ⊥,90ACB ∠=︒,∴DE BC ∥,∴EDC BCD ∠=∠,∴EDC ECD ∠=∠,∴5ED EC ==,∴5BD ED ==, ∴255544AD AB BD =−=−=;综上,AD 的长是154或54, 故答案为:154或54.3.如图,等边三角形ABC 中,16AB BD AC =⊥,于点D ,点E F 、分别是BC DC 、上的动点,沿EF 所在直线折叠CEF △,使点C 落在BD 上的点C '处,当BEC '△是直角三角形时,BE 的值为 .【答案】24−或323【分析】本题考查了翻折变换,等边三角形的性质,折叠的性质,熟练运用折叠的性质是本题的关键.由等边三角形的性质可得30DBC ∠=︒,分9090BEC BC E ''∠=︒∠=︒,两种情况讨论,由直角三角形的性质即可求解.【详解】解:ABC 是等边三角形,BD AC ⊥,30,DBC ∴∠=︒ 由折叠的性质可得:,CE C E '=若90,BEC ∠'=︒且30,C BE ∠'=︒,2,BE E B E C C ∴='''=16,BE CE BC +==16,CE +=8,E E C C ∴'==24BE ∴=−若90,30,E C B E C B ∠'=︒='∠︒2,,BE E B C E C ∴'''=16,BE CE BC +==16,3CE E C =='∴ 32.3BE ∴=故答案为∶ 24−323.4.如图,在ABC 中,120ACB ∠=︒,8AC =,4BC =,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A '处,两条折痕与斜边AB 分别交于点E 、F ,则线段FA '的长为 .【答案】【分析】本题考查了折叠的性质,勾股定理,直角三角形的性质,添加恰当辅助线构造直角三角形是本题的关键.过点A 作AH BC ⊥交BC 的延长线于H ,由直角三角形的性质可求142HC AC ==,AH =AB 的长,由面积法可求CE 的长,由折叠的性质可求90BEC DEC ∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,然后再求解即可.【详解】解:如图,过点A 作AH BC ⊥,交BC 的延长线于H ,120ACB ∠=︒,ACB H HAC ∠=∠+∠,30HAC ∴∠=︒,142HC AC ∴==,AH ==,448BH ∴=+=,AB ∴1122ACB S BC AH AB CE =⨯⨯=⨯⨯,4CE ∴=,CE ∴,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,90BEC DEC ∴∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,1602ECF ACB ∴∠=∠=︒,30CFE ∴∠=︒,EF ∴,在Rt BCE中,BE ===,AF AB EF BE ∴=−−==FA AF '∴==故答案为:5.如图,点D 是ABC 的边AB 的中点,将BCD △沿直线CD 翻折能与ECD 重合,若4AB =,2CD =,1AE =,则点C 到直线AB 的距离为 .【答案】【分析】连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质及中点性质可得AEB △为直角三角形,且G 为BE 中点,从而CG BE ⊥,由勾股定理可得BE的长,再根据2ABC BDC S S =△△,即11222AB CH CD BG ⋅=⨯⋅,从而可求得CH 的长.【详解】解:连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质可得:BD ED =,CB CE =,∴CG 为BE 的中垂线, ∴12BG BE =,∵点D 是AB 的中点,4AB =,2CD =,1AE =, ∴122BD AD AB ===,CBD CAD S S =,AD DE =,∴DBE DEB ∠=∠,DEA DAE ∠=∠,∵180EDA DEA DAE ∠+∠+∠=︒,即22180DEB DEA ∠+∠=︒,∴90DEB DEA ∠+∠=︒,即90BEA ∠=︒,∴BE∴12BG BE ==, ∵2ABC BDCS S =△△, ∴11222AB CH CD BG ⋅=⨯⋅,∴422CH =⨯,∴CH ,∴点C 到直线AB 的距离为.故答案为:.【点睛】本题考查翻折变换,线段中垂线的判定,等腰三角形的性质,点到直线的距离,直角三角形的判定,勾股定理,利用面积相等求相应线段的长,解题的关键是得出CG 为BE 的中垂线,2ABC BDC S S =△△.6.如图,在ABC 中,90,A AB AC ∠=︒==D 为AC 边上一动点,将C ∠沿过点D 的直线折叠,使点C 的对应点C '落在射线CA 上,连接BC ',当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为 .【答案】 或 【分析】由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==时,分别根据勾股定理求出AC '的长,再求出CC '的长即可 【详解】解:由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时,90,A AB AC ∠=︒==∴由勾股定理得,222BC AC AB ''−=,即222(2)AC AC ''−=,AC '∴=CC '∴CD ∴;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时,同理得AC 'CC '∴CD ∴;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==由勾股定理得,222AC BC AB ''=−,即22218AC '=−=,AC '∴=CC '∴CD ∴=,0>,CD AB ∴>,此时点D 不在边AC 上,不符合题意,舍去,综上,当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为或.故答案为:或.【点睛】本题主要考查图形的翻折变换(折叠问题),勾股定理,等腰直角三角形的性质等知识,灵活运用折叠的性质及勾股定理是解答本题的关键,同时要注意分类思想的运用.7.如图,在ABC 中,90ACB ∠=︒,3AC =,4BC =,P 为斜边AB 上的一动点(不包含A ,B 两端点),以CP 为对称轴将ACP △翻折得到A CP ',连结BA '.当A P AB '⊥时,BA '的长为 .【答案】【分析】当A P AB '⊥时,过点C 作CD AB ⊥于D ,可知125CD =,95AD =,得出PDC △为等腰直角三角形,得到PD CD =,求出PA '和BP 的长,利用勾股定理即可求出BA '的长.【详解】过点C 作CD AB ⊥于D ,在Rt ADC 中,90ACB ∠=︒,3AC =,4BC =,∴5AB = ∵1122AC BC AB CD ⨯=⨯,125CD ∴=,在Rt ADC 中,3AC =∴95AD ==,当A P AB '⊥时,如图由折叠性质可知12∠=∠,PA PA '=,又1290A PA '∠=∠+∠=︒145∠=∠2=︒∴,又2390∠+∠=︒,345∴∠=︒,23∴∠=∠,125PD CD ∴==,又PA PD AD =+,12921555PA ∴=+=,又PA PA '=,215PA '∴=,又BP AB PA =−,214555BP ∴=−=,在Rt BPA '△中,90BPA ∠='︒,222BP PA BA ∴='+,2224214575525BA ⎛⎫⎛⎫'∴=+= ⎪ ⎪⎝⎭⎝⎭,BA '∴=,故答案为:.【点睛】本题考查了勾股定理的应用,折叠问题,熟练掌握勾股定理是解题的关键.8.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连接DC ,将BDC 沿DC 翻折,得到EDC △,连接AE ,若AE CE =,4BC =,则D 到CE 的距离是 .【答案】2【分析】本题考查等腰直角三角形中的折叠问题,涉及等边三角形判定与性质,勾股定理应用、面积法等知识.设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,根据将BDC 沿DC 翻折,得到EDC △,AC BC =,AE CE =,可得ACE △是等边三角形,即知60ACE ∠=︒,而90ACB ∠=︒,故150BCE ∠=︒,30ECF ∠=︒,可得75BCD ECD ∠=∠=︒,122EF CE ==,CF =BE =15CBE ∠=︒,可得90BGC ∠=︒,即CG BE ⊥,从而12BG BE GE ===,由勾股定理得CG ,在Rt BDG △中,DG ,即得CD DG CG =+,由面积法可得D 到CE 的距离是2. 【详解】解:设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,如图:将BDC 沿DC 翻折,得到EDC △,4BC CE ∴==,BCD ECD ∠=∠,AC BC =,AE CE =,AC BC CE AE ∴===,ACE ∴是等边三角形,60ACE ∴∠=︒,90ACB ∠=︒,150BCE ∴∠=︒,30ECF ∠=︒,75BCD ECD ∴∠=∠=︒,122EF CE ==,CF =在Rt BEF △中,BE ==BCE 中,BC CE =,150BCE ∠=︒,15CBE ∴∠=︒,18090BGC BGC BCD ∴∠=︒−∠−∠=︒,即CG BE ⊥,12BG BE GE ∴==,CG ∴===,45ABC ∠=︒,15CBE ∠=︒,30DBG ∴∠=︒,在Rt BDG△中,DG =,CD DG CG ∴=+=,设D 到CE 的距离是h ,2DCE S CE h DC GE ∆=⋅=⋅,324DC GE h CE ⋅∴===,故答案为:2.9.在生活中、折纸是一种大家喜欢的活动、在数学中,我们可以通过折纸进行探究,探寻数学奥秘.【纸片规格】三角形纸片ABC ,120ACB ∠=︒,CA CB =,点D是底边AB 上一点.【换作探究】(1)如图1,若6AC =,AD =CD ,求CD 的长度;(2)如图2,若6AC =,连接CD ,将ACD 沿CD 所在直线翻折得到ECD ,点A 的对应点为点.E 若DE 所在的直线与ABC 的一边垂直,求AD 的长;(3)如图3,将ACD 沿CD 所在直线翻折得到ECD ,边CE 与边AB 交于点F ,且DE BC ∥,再将DFE △沿DF 所在直线翻折得到DFG ,点E 的对应点为点G ,DG 与CE 、BC 分别交于H ,K ,若1KH =,请直接写出AC 边的长.【答案】(1)(2)3或(3)3【分析】(1)作CE AB ⊥于E ,求得30A B ==︒∠∠,从而得出132CE AC ==,AE AC =进而得出DE AE AD =−=(2)当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,依次得出45DAE DEA ∠=∠=︒,304575CAE CAD DAE ∠=∠+∠=︒+︒=︒,75CEA CAE ∠=∠=︒,30ACE ∠=︒,15ACD DCE ∠=∠=︒,45CDG CAB DAC ∠=∠+∠=︒,从而DG CG =,进一步得出结果;当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,可推出90AVC ∠=︒,60ACE ∠=︒,从而30ACD DCE ∠=∠=︒,进一步得出结果;当DE BC ⊥时,可推出180ACB BCE ∠+∠=︒,从而90ACD DCE ∠=∠=︒,进一步得出结果;(3)可推出CKH 和CDH △及CHK 是直角三角形,且30HCK ∠=︒,30HDF ∠=︒,45DCH ∠=︒,进一步得出结果.【详解】(1)解:如图1,作CE AB ⊥于E ,90AEC ∴∠=︒,CA CB =,120ACB ∠=︒,30A B ∴∠=∠=︒,132CE AC ∴==,AE =,DE AE AD ∴=−==CD ∴=;(2)解:如图2,当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,由翻折得:AD DE =,CAD CED =∠∠,AC CE =,45DAE DEA ∠∠∴==︒,304575CAE CAD DAE ∴∠=∠+∠=︒+︒=︒,75CEA CAE ∴∠=∠=︒,30ACE ∴∠=︒,15ACD DCE ∴∠=∠=︒,45CDG CAB DAC ∴∠=∠+∠=︒,DG CG ∴=,由(1)知:3CG =,AG =3AD AG DG ∴=−=;如图3,当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,90E ACE ∴∠+∠=︒,E A ∠=∠,90A ACE ∴∠+∠=︒,90AVC ∴∠=︒,60ACE∴∠=︒,30ACD DCE∴∠=∠=︒,ACD A∴∠=∠,AD CD∴=,3CV =,CD∴=,AD CD∴==如图4,当DE BC⊥时,30E A∠=∠=︒,60BCE∴∠=︒,180ACB BCE∴∠+∠=︒,90ACD DCE∴∠=∠=︒,AD∴=,综上所述:3AD=或(3)解:如图5,∵DE BC ∥,30B C ∠=∠=︒,30BCF E ∴∠=∠=︒,30EDF B ∠=∠=︒,120ACB ∠=︒,90ACE ∴∠=︒,1452ECD ACD ACE ∴∠=∠=∠=︒,将DFE △沿DF 所在直线翻折得到DFG ,30GDF EDF ∴∠=∠=︒,60EDG ∴∠=︒,90CHK EHD ∴∠=∠=︒,DH CH ∴=1FH ∴==,1CF CH FH ∴=+,3AC ∴==.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质等知识,解决问题的关键是正确分类,画出图形.10.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为线段BC 延长线上一点,以AD 为腰作等腰直角DAF △,使90DAF ∠=︒,连接CF .(1)请判断CF 与BC 的位置关系,并说明理由;(2)若8BC =,4CD BC =,求线段AD 的长;(3)如图2,在(2)的条件下,将DAF △沿线段DF 翻折,使点A 与点E 重合,连接CE ,求线段CE 的长.【答案】(1)CF BC ⊥,理由见解析(2)(3)【分析】(1)证明()SAS ABD ACF △≌△,则ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,根据180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,可得90FAO DCO ∠=∠=︒,进而可得CF BC ⊥;(2)如图2,过A 作AH BC ⊥于H ,则142BH CH AH BC ====,6DH =,由勾股定理得,AD =(3)由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,证明()AAS ADM DEN ≌,则46DN AM EN DM ====,,6CN =,由勾股定理得,CE =计算求解即可.【详解】(1)解:CF BC ⊥,理由如下:∵等腰直角DAF △,90DAF ∠=︒,∴AD AF =,又∵90BAC ∠=︒,∴BAC CAD DAF CAD ∠+∠=∠+∠,即BAD CAF ∠=∠,∵AB AC =,BAD CAF ∠=∠,AD AF =,∴()SAS ABD ACF △≌△,∴ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,∵180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,∴90FAO DCO ∠=∠=︒,∴CF BC ⊥;(2)解:∵8BC =,4CD BC =,∴2CD =,如图2,过A 作AH BC ⊥于H ,∵ABC 是等腰直角三角形, ∴142BH CH AH BC ====,∴6DH =,由勾股定理得,AD =∴线段AD 的长为(3)解:由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,∴90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,∴90AMD DNE ∠=︒=∠,同理(2)可知,4AM =,6MD =,∵90ADM EDN EDN DEN ∠+∠=︒=∠+∠,∴ADM DEN ∠=∠,∵90AMD DNE ∠=︒=∠,ADM DEN ∠=∠,AD DE =,∴()AAS ADM DEN ≌,∴46DN AM EN DM ====,,∴6CN =,由勾股定理得,CE =,∴线段CE 的长为【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,勾股定理,折叠的性质,等腰三角形的性质.熟练掌握全等三角形的判定与性质,折叠的性质是解题的关键.11.如图1,在Rt ABC △中,90C ∠=︒,5AC =,12BC =,点D 为BC 边上一动点,将ACD 沿直线AD 折叠,得到AFD △,请解决下列问题.(1)AB =______;当点F 恰好落在斜边AB 上时,CD =______;(2)连接CF ,当CBF V 是以CF 为底边的等腰三角形时,请在图2中画出相应的图形,并求出此时点F 到直线AC 的距离;(3)如图3,E 为边BC 上一点,且4,连接EF ,当DEF 为直角三角形时,CD = .(请写出所有满足条件的CD 长)【答案】(1)13,103(2)画图见解析,600169(3)52或或5或10【分析】(1)根据勾股定理可得AB 的长,再利用等积法求出CD 即可;(2)过点F 作FG AC ^,交CA 的延长线于G ,首先由等积法求出CH 的长,再根据勾股定理求出AH 的长,再次利用等积法可得FG 的长;(3)分90DEF ∠=︒或90EDF ∠=︒或90EFD ∠=︒分别画出图形,从而解决问题.【详解】(1)解:在Rt ABC △中,由勾股定理得,13AB ,当点F 落在AB 上时,由折叠知,CD DF =, ∴111222AC CD AB DF AC BC ⋅+⋅=⋅,51360CD CD ∴+=,103CD ∴=,故答案为:13,103;(2)过点F 作FG AC ^,交CA 的延长线于G ,BC BF =,AC AF =,AB ∴垂直平分CF , 由等积法得6013AC BC CH AB ⋅==,在Rt ACH 中,由勾股定理得,2513AH ===, 1122ACF S AC FG CF AH =⋅=⋅△,6025260013135169CF AH FG AC ⨯⨯⋅∴===;(3)当90DEF ∠=︒时,当点D 在CE 上时,作FH AC ⊥于H ,则4HF CE ==,5AF AC ==,3AH ∴=,2CH EF AC AH ∴==−=,设CD x =,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)2x x =−+, 解得52x =,52CD ∴=, 当点D 在EB 上时,同理可得538CH AC AH =+=+=,设CD DF x ==,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)8x x −+=,解得10x =,10CD ∴=,当90DFE ∠=︒时,由勾股定理得AE设CD DF x ==,则520x +=,x ∴,CD ∴=;当90FDE ∠=︒时,则45ADC ADF ∠=∠=︒,5CD AC ∴==,综上:52CD =或或5或10,故答案为:52或或5或10.【点睛】本题是三角形综合题,主要考查了翻折的性质,直角三角形的性质,勾股定理,等腰直角三角形的判定与性质等知识,利用等积法求垂线段的长是解题的关键.。
(word版)初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)一.选择题〔共8小题〕1.直角三角形两直角边长度为 5,12,那么斜边上的高〔〕A.6 B.8 C. D.2.以下说法中正确的选项是〔〕A.a,b,c是三角形的三边,那么a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c23.如图,是台阶的示意图.每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,那么AB等于〔〕A.195cm B.200cm C.205cm D.210cm4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面那么这根芦苇的长度是〔〕A.10尺B.11尺C.12尺D.13尺5.如下列图,在数轴上点A所表示的数为a,那么a的值为〔〕第1页〔共61页〕A.﹣1﹣B.1﹣C.﹣D.﹣1+6.一架米长的梯子底部距离墙脚米,假设梯子的顶端下滑米,那么梯子的底部在水平方向滑动了〔〕A.米B.米C.米D.米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,那么MN的长为〔〕A.2B.C.3D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么〔a+b〕2的值为〔〕A.13 B.19 C.25 D.169二.填空题〔共5小题〕9.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图第2页〔共61页〕所示,筷子露在杯子外面的度hcm,h的取范是.10.如,一暴雨后,垂直于地面的一棵在距地面1米的点C折断,尖B恰好碰到地面,量AB=2米,高米.11.Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,Rt△ABC的面等于.12.察以下勾股数第一:3=2×1+1,4=2×1×〔1+1〕,5=2×1×〔1+1〕+1第二:5=2×2+1,12=2×2×〔2+1〕,13=2×2×〔2+1〕+1第三:7=2×3+1,24=2×3×〔3+1〕,25=2×3×〔3+1〕+1第四:9=2×4+1,40=2×4×〔4+1〕,41=2×4×〔4+1〕+1⋯察以上各勾股数成特点,第7勾股数是〔只填数,不填等式〕13.察以下一数:列:3、4、5,猜想:32=4+5;列:5、12、13,猜想:52=12+13;列:7、24、25,猜想:72=24+25;⋯列:13、b、c,猜想:132=b+c;你分析上述数据的律,合相关知求得b= ,c= .三.解答〔共27小〕14.a,b,c三角形ABC的三,且足a2+b2+c2+338=10a+24b+26c,判个三角形的形状.15.如:四形ABCD中,AB=CB= ,CD= ,DA=1,且AB⊥CB于B.第3页〔共61页〕(试求:〔1〕∠BAD的度数;〔2〕四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如下列图,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100 km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.1〕台风中心在移动过程中,与气象台A的最短距离是多少?2〕台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?第4页〔共61页〕19.如图,△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A 开始沿A?B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.1〕出发2秒后,求PQ的长;2〕从出发几秒钟后,△PQB能形成等腰三角形?3〕在运动过程中,直线PQ能否把原三角形周长分成相等的两局部?假设能够,请求出运动时间;假设不能够,请说明理由.(20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格〔每个小正方形的边长为1〕,再在网格中画出格点△ABC〔即△ABC三个顶点都在小正方形的顶点处〕,如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.〔1〕△ABC的面积为:.〔2〕假设△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.3〕如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.第5页〔共61页〕〔4〕如图4,一个六边形的花坛被分割成7个局部,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,那么六边形花坛ABCDEF的面积是m2.21.〔1〕在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC〔即△ABC三个顶点都在小正方形的顶点处〕,这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:〔2〕△ABC三边的长分别为a〔a>0〕,求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:〔3〕假设△ABC三边的长分别为〔m>0,n>0,且m≠n〕,求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.第6页〔共61页〕22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?(23.〔拓展创新〕在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系〔如图1〕.问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系〔如图2〕.问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系〔如图3〕.24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C〔a,b〕和D〔b,﹣a〕〔a、b均大于0〕;1〕连接OD、CD,求证:∠ODC=45°;2〕连接CO、CB、CA,假设CB=1,C0=2,CA=3,求∠OCB的度数;第7页〔共61页〕3〕假设a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼〞的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺〔肘尺是古代的长度单位〕,另外一棵高20肘尺;两棵棕榈树的树干间的距离是 50肘尺.每棵树的树顶上都停着一只鸟.突然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.〔1〕先化简,再求值:x〔x﹣2〕﹣〔x+1〕〔x﹣1〕,其中x=10.〔2〕,求代数式〔x+1〕2﹣4〔x+1〕+4的值.〔3〕如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB= ;②画出一个以〔1〕中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系〞〔勾股定理〕带到其它星球,作为地球人与其他星球“人〞进行第一次“谈话〞的语言;[定理表述]请你根据图1中的直角三角形表达勾股定理;第8页〔共61页〕[尝试证明]以图1中的直角三角形为根底,将两个直角边长为a,b,斜边长为c的三角形按如下列图的方式放置,连接两个之间三角形的另外一对锐角的顶点〔如图2〕,请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD〔填大小关系〕,即∴.28.观察、思考与验证〔1〕如图1是一个重要公式的几何解释,请你写出这个公式;2〕如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;3〕伽菲尔德〔1881年任美国第20届总统〕利用〔1〕中的公式和图2证明了勾股定理〔发表在1876年4月1日的?新英格兰教育日志?上〕,请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?〔参考数据:,〕第9页〔共61页〕30.中日争端持,我海船加大海域的巡航力度.如,OA⊥OB,OA=45海里,OB=15海里,位于O点,我国海船在点B有一不明国籍的船,自A点出沿着AO方向匀速向所在地点O,我国海船立即从B出以相同的速度沿某直去截艘船,果在点C截住了船.1〕用直尺和作出C的位置;2〕求我国海船行的航程BC的.31.在一次“构造勾股数〞的探究性学中,老出了下表:m2334⋯n1123a22+1232+1232+2242+32⋯b461224⋯c2212321232224232⋯其中m、n正整数,且m>n.1〕察表格,当m=2,n=1,此的a、b、c的能否直角三角形三的?明你的理由.〔2〕探究a,b,c与m、n之的关系并用含m、n的代数式表示:a= ,b= ,c= .3〕以a,b,c的三角形是否一定直角三角形?如果是,明理由;如果不是,出反例.32.如1,在4×8的网格中,每个小正方形的都1,点P、Q分从点D、A同出向右移,点 P的运速度每秒1个位,点Q的运速度每秒个位,当点P运到点C,两个点都停止运,运第10页〔共61页〕〔0<t<8〕.1〕在4×8的网格2中画出t6秒的段PQ.并求其度;2〕当t多少.△PQB是以BP底的等腰三角形.33.下面的情景,然后解答:〔1〕理解:①根据“奇异三角形〞的定,你判断:“等三角形一定是奇异三角形〞?〔填是或不是〕②假设某三角形的三分1、、2,三角形〔是或不是〕奇异三角形.〔2〕探究:假设Rt△ABC是奇异三角形,且其两分2、2 ,第三的,且个直角三角形的三之比〔从小到大排列,不得含有分母〕.〔3〕:提出一个和奇异三角形有关的.〔不用解答〕34.察以下各式,你有什么?32=4+5,52=12+13,72=24+25,92=40+41,⋯用你的解决以下:第11页〔共61页〕〔1〕填空:112=+;〔2〕请用含字母n〔n为正整数〕的关系式表示出你发现的规律:;〔3〕结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m〔在山的旁边经过〕,过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.假设施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件〔△ABC,其中∠ACB=90°〕,放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边〔AB、BC、CD〕和BD的长度都为5厘米,动点P 从A出发〔A→B→D〕到D,速度为2厘米/秒,动点Q从点D出发〔D→C→B→A〕到A,速度为厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.第12页〔共61页〕38.一艘船以20海里/的速度由西向航行,在途中接到台警,台中心正以40海里/的速度由南向北移,距台中心20海里的形区域〔包括界〕都属于台区域,当船到A得台中心移到位于点A正南方的B,且AB=100海里.假设艘船自A按原速度航行,在途中是否会遇到台?假设会,求出船最初遇到台的;假设不会,明理由.39.明朝数学家程大位在他的著作?算法宗?中写了一首算秋千索度的?西江月?:“平地秋千未起,踏板一尺离地°送行二步恰竿,五尺板高离地⋯〞翻成代文:如,秋千OA静止的候,踏板离地高一尺〔AC=1尺〕,将它往前推两步〔EB=10尺〕,此踏板升高离地五尺〔BD=5尺〕,求秋千索〔OA或OB〕的度.40.如,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B看一个小球第13页〔共61页〕从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.直角三角形两边的长为 3和4,那么此三角形的周长为〔〕A.12 B.7+ C.12或7+ D.以上都不对2.图中字母所代表的正方形的面积为144的选项为〔〕A. B. C .D.3.如图,数轴上的点 A所表示的数为x,那么x的值为〔〕A. B.﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,假设AB=8,BD=5,那么CD=.第14页〔共61页〕6.正方形网格中的每个小正方形的边长都是 1,每个小格的顶点叫做格点,以格点为顶点,1〕在图①中,画一个面积为10的正方形;2〕在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.第15页〔共61页〕第16页〔共61页〕初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题〔共8小题〕1.〔2021秋?吴江区期中〕直角三角形两直角边长度为5,12,那么斜边上的高〔〕A.6 B.8 C. D.【分析】首先根据勾股定理,得:斜边= =13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.应选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.〔2021春?抚顺县期中〕以下说法中正确的选项是〔〕A.a,b,c是三角形的三边,那么a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;第17页〔共61页〕应选C.【点评】此题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.〔2021春?临沭县期中〕如图,是台阶的示意图.每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,那么AB等于〔〕A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB= = =195cm.应选A.【点评】此题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.〔2021春?青山区期中〕如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面那么这根芦苇的长度是〔〕第18页〔共61页〕〕2=〔x+1〕2,A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,那么芦苇长为〔x+1〕尺,根据勾股定理得:x2+〔解得:x=12,芦苇的长度=x+1=12+1=13〔尺〕,应选D.【点评】此题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.〔2021春?南陵县期中〕如下列图,在数轴上点A所表示的数为a,那么a的值为〔〕A.﹣1﹣B.1﹣C.﹣D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB= ,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,那么根据勾股定理知OB= = = ,∴OA=OB=,a=﹣1﹣.第19页〔共61页〕应选A.【点评】此题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.〔2021春?蓟县期中〕一架米长的梯子底部距离墙脚米,假设梯子的顶端下滑米,那么梯子的底部在水平方向滑动了〔〕A.米B.米C.米D.米【分析】先根据梯子的顶端下滑了米求出A′C的长,再根据勾股定理求出B′C 的长,进而可得出结论.【解答】解:〔1〕∵在Rt△ABC中,,,∴AC== 〔m〕.∵梯子的顶端下滑了米,A′C=2m,∵在Rt△A′B′C中,A′B′=2.,5mA′C=2m,∴B′C=,BB′=B′C﹣﹣.应选C.第20页〔共61页〕【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.〔2021春?罗田县期中〕在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,那么MN的长为〔〕A.2B.C.3D.4【分析】根据勾股定理求出AB的长即可解答.【解答】解:在Rt△ABC中,根据勾股定理,AB== 13,又∵AC=12,BC=5,AM=AC,BN=BC,AM=12,BN=5,MN=AM+BN﹣AB=12+5﹣13=4.应选D.【点评】此题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.〔2021春?重庆校级期中〕如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是2〕1,直角三角形的短直角边为a,较长直角边为b,那么〔a+b〕的值为〔A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得〔a+b〕第21页〔共61页〕的值.【解答】解:〔a+b〕2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+〔13﹣1〕=25.应选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:〔a+b〕2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二.填空题〔共5小题〕9.〔2021春?固始县期中〕将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如下列图,设筷子露在杯子外面的长度为hcm,那么h的取值范围是7cm≤h≤16cm.【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.第22页〔共61页〕故答案为:7cm≤h≤16cm.【点评】此题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.10.〔2021春?汕头校级期中〕如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,那么树高为〔1+ 〕米.【分析】根据题意利用勾股定理得出B C的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,2+AB22,AC =BC那么12+222,=BC∴BC=,∴那么树高为:〔1+ 〕m.故答案为:〔1+ 〕.【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.〔2021春?高安市期中〕Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,那么Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即〔a+b〕2﹣2ab=c2=100,第23页〔共61页〕1962ab=100,即ab=48,Rt△ABC的面ab=24〔cm2〕.故答案:24cm2.【点】此考了勾股定理,熟掌握勾股定理是解本的关.12.〔2021春?嘉祥期中〕察以下勾股数第一:3=2×1+1,4=2×1×〔1+1〕,5=2×1×〔1+1〕+1第二:5=2×2+1,12=2×2×〔2+1〕,13=2×2×〔2+1〕+1第三:7=2×3+1,24=2×3×〔3+1〕,25=2×3×〔3+1〕+1第四:9=2×4+1,40=2×4×〔4+1〕,41=2×4×〔4+1〕+1⋯察以上各勾股数成特点,第7勾股数是15,112,113 〔只填数,不填等式〕【分析】通察,得出律:勾股数分2n+1,2n〔n+1〕,2n〔n+1〕+1,由此可写出第7勾股数.【解答】解:∵第1:3=2×1+1,4=2×1×〔1+1〕,5=2×1×〔1+1〕+1,第2:5=2×2+1,12=2×2×〔2+1〕,13=2×2×〔2+1〕+1,第3:7=2×3+1,24=2×3×〔3+1〕,25=2×3×〔3+1〕+1,第4:9=2×4+1,40=2×4×〔4+1〕41=2×4×〔4+1〕+1,∴第7勾股数是2×7+1=15,2×7×〔7+1〕=112,2×7×〔7+1〕+1=113,即15,112,113.故答案:15,112,113.【点】此考的知点是勾股数,属于律性目,关是通察找出律求解.13.〔2021春?武昌区期中〕察以下一数:列:3、4、5,猜想:32=4+5;列:5、12、13,猜想:52=12+13;列:7、24、25,猜想:72=24+25;⋯第24页〔共61页〕列:13、b、c,猜想:132=b+c;你分析上述数据的律,合相关知求得b= 84 ,c= 85 .【分析】真察三个数之的关系:首先每一的三个数勾股数,第一个数从3开始的奇数,第二、三个数的自然数;一步第一个数的平方是第二、三个数的和;最后得出第n数〔2n+1〕,〔〕,〔〕,由此律解决.【解答】解:在32=4+5中,4= ,5= ;在52=12+13中,12= ,13= ;⋯在13、b、c中,b= =84,c= =85.【点】真察各式的特点,律是解的关.三.解答〔共27小〕14.〔2021春?黄期中〕a,b,c三角形ABC的三,且足a2+b2+c2+338=10a+24b+26c,判个三角形的形状.【分析】的式子形,出三个非数的平方和等于0的形式,求出a、b、c,再两小的平方和是否等于最的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:〔a210a+25〕+〔b224b+144〕+〔c226c+169〕=0,即:〔a5〕2+〔b12〕2+〔c13〕2=0,由非数的性可得:,解得,52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC直角三角形.【点】本考勾股定理的逆定理的用、完全平方公式、非数的性.判第25页〔共61页〕断三角形是否为直角三角形,三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.〔2021秋?永登县期中〕如图:四边形ABCD中,AB=CB= ,CD= ,DA=1,且AB⊥CB于B.试求:〔1〕∠BAD的度数;〔2〕四边形ABCD的面积.【分析】连接AC,那么在直角△ABC中,AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,1〕根据∠BAD=∠CAD+∠BAC,可以求解;2〕根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:〔1〕连接AC,AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,AB2+BC2=AC2,又∵AB=CB=,AC=2,∠BAC=∠BCA=45°,CD=,DA=1,CD2=5,DA2=1,AC2=4.AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;第26页〔共61页〕2〕∵∠DAC=90°,AB⊥CB于B,∴S△ABC= ,S△DAC= ,AB=CB=,DA=1,AC=2,∴S△ABC=1,S△DAC=1而S四边形ABCD=S△ABC+S△DAC,∴S四边形ABCD=2.【点评】此题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,此题中求证△ACD是直角三角形是解题的关键.16.〔2021春?邹城市校级期中〕如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如下列图:△ABC即为所求.第27页〔共61页〕【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.〔2021春?平南县期中〕如下列图,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴= =200,(∴A、C两点之间的距离为200km.【点评】此题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.〔2021秋?新泰市期中〕如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.1〕台风中心在移动过程中,与气象台A的最短距离是多少?2〕台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?第28页〔共61页〕第29页〔共61页〕【分析】〔1〕过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;2〕根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:〔1〕过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.〔2〕∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120k m,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12〔小时〕.(【点评】此题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题〔2〕的关键.19.〔2021春?阳东县期中〕如图,△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A?B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.1〕出发2秒后,求PQ的长;2〕从出发几秒钟后,△PQB能形成等腰三角形?3〕在运动过程中,直线PQ能否把原三角形周长分成相等的两局部?假设能够,请求出运动时间;假设不能够,请说明理由.第30页〔共61页〕【分析】〔1〕我们求出BP、BQ的长,用勾股定理解决即可.〔2〕△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8﹣1×t,解方程即得结果.〔3〕直线PQ把原三角形周长分成相等的两局部,根据勾股定理可知AC=10cm,即三角形的周长为24cm,那么有BP+BQ=12,即2t+〔8﹣1×t〕=12,解方程即可.【解答】解:〔1〕出发2秒后,AP=2,BQ=4,∴BP=8﹣2=6,PQ= =2 ;〔3分〕〔2〕设时间为t,列方程得2t=8﹣1×t,解得t= ;〔6分〕〔3〕假设直线PQ能把原三角形周长分成相等的两局部,由AB=8cm,BC=6cm,根据勾股定理可知AC=10cm,即三角形的周长为8+6+10=24cm,那么有BP+BQ=×24=12,设时间为t,列方程得:2t+〔8﹣1×t〕=12,解得t=4,当t=4时,点Q运动的路程是4×2=8>6,所以直线PQ不能够把原三角形周长分成相等的两局部.〔10分〕【点评】此题重点考查了利用勾股定理解决问题的能力,综合性较强.20.〔2021秋?江阴市期中〕在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格〔每个小正方形的边长为1〕,再在网格中画出格点△ABC〔即△ABC三个顶点都在小正方形的顶点处〕,如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.第31页〔共61页〕。
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析) 之欧阳史创编
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)时间:2021.02.10 创作:欧阳史一.选择题(共8小题)1.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.2.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c23.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣ D.﹣1+6.一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169二.填空题(共5小题)9.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是.10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC 的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB 于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD 方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△AB C三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m >0,n>0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.31.在一次“构造勾股数”的探究性学习中,老师给出了下表:m 2 3 3 4 …n 1 1 2 3 …a 22+12 32+12 32+22 42+32 …b 4 6 12 24 …c 22﹣12 32﹣12 32﹣22 42﹣32 …其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b=,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t (0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112=+;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B 处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+ C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()A.B. C.D.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.﹣ C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=.6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题(共8小题)1.(2016秋•吴江区期中)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2016春•抚顺县期中)下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选 C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.(2016春•南陵县期中)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣ D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.(2015春•蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(2015春•罗田县期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.4【分析】根据勾股定理求出AB的长即可解答.【解答】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.故选D.【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.(2016春•重庆校级期中)如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二.填空题(共5小题)9.(2016春•固始县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7cm≤h≤16cm.【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h 的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故答案为:7cm≤h≤16cm.【点评】本题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.10.(2015春•汕头校级期中)如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(1+)米.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=,∴则树高为:(1+)m.故答案为:(1+).【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.(2016春•高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt△ABC的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春•嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113 (只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n (n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春•武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= 84 ,c= 85 .【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春•黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋•永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC=,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC=1,S△DAC=1而S四边形ABCD=S△ABC+S△DAC,∴S四边形ABCD=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春•邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春•平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km 到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋•新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD 方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春•阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B 开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理。
完整初二数学勾股定理提高练习与常考难题和培优题压轴题含解析
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)小题)8一.选择题(共),则斜边上的高(121.直角三角形两直角边长度为5,..8CD.A.6B2.下列说法中正确的是()222=c是三角形的三边,则ab+,A.已知a,bcB.在直角三角形中两边和的平方等于第三边的平方222=cab+RtC.在△ABC中,∠C=90°,所以222=c+b△ABC中,∠B=90°,所以aRtD.在3.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图所示,在数轴上点A所表示的数为a,则a的值为()第1页(共61页)+.﹣C1.﹣.﹣1﹣B.1D﹣A米,那么梯0.40.7米,若梯子的顶端下滑6.一架2.5米长的梯子底部距离墙脚)子的底部在水平方向滑动了(米.0.50.8米 D B.0.9米C.A.1.5米)的长为(AM=AC,BN=BC,则MNBC=5在△7.ABC中,∠ACB=90°,AC=12,,4.3 DB.2.6 C.A.2个全等的直角三角届国际数学家大会会徽,由4年北京第8.如图,是200224直角三角形的短1,如果大正方形的面积是13,小正方形的面积是形拼合而成,2)的值为(b,较长直角边为,那么(a+b)直角边为a169D.19 C.25 13 A.B.小题)5二.填空题(共的圆柱形水杯中,如图8cm的筷子,置于底面直径为24cm15cm,高.将一根9 612第页(共页).h的取值范围是所示,设筷子露在杯子外面的长度为hcm,则10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:2=4+55,猜想:3;列举:3、4、2=12+13,猜想:5;列举:5、12、132=24+725;7、24、25,猜想:列举:…2=b+c;b、c,猜想:13列举:13、请你分析上述数据的规律,结合相关知识求得b=,c=.三.解答题(共27小题)222+338=10a+24bc+26caca14.,b,为三角形ABC的三边,且满足,试判别+b+这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.页)61页(共3第试求:(1)∠BAD的度数;(2)四边形ABCD的面积.,54,如图,小华准备在边长为1的正方形网格中,作一个三边长分别为16.的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°100km到达B点,然后再沿北偏西30°方向走了方向走了100km到达目的地C 点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?第4页(共61页)BC、P、Q分别为AB,19.如图,已知△ABC中,∠B=90°,AB=8cmBC=6cm,从点B方向运动,且速度为每秒1cm,点Q?边上的动点,点P从点A开始沿At开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为B秒.的长;)出发2秒后,求PQ(1能形成等腰三角形?(2)从出发几秒钟后,△PQB能否把原三角形周长分成相等的两部分?若能够,(3PQ)在运动过程中,直线请求出运动时间;若不能够,请说明理由.,求这个三角形、BC、AC三边的长分别为、、.在△20ABC中,AB(每个小正方形的边长小华同学在解答这道题时,先画一个正方形网格的面积.,三个顶点都在小正方形的顶点处)(即△为1),再在网格中画出格点△ABCABC的高,而借用网格就能计算出它的面积.这种方ABC如图1所示.这样不需求△法叫做构图法..1)△ABC的面积为:(的正方形网格中画出相,请在图2DEF三边的长分别为、、(2)若△.应的△DEF,并利用构图法求出它的面积为为ACAB、A⊥BC于点G,以为直角顶点,分别以ABC3()如图3,△中,AG的垂GA、F作射线,过点和等腰外作等腰ABCRt△ABERt△ACFE直角边,向△之间的数量关系,并证明你的结论.FQEP、Q.试探究与P线,垂足分别为615第页(共页)(4)如图4,一个六边形的花坛被分割成72222.、,RQDC个部分,其中正方形PRBA,36mABCDEF,则六边形花坛的面积是mQPFE的面积分别为13m、25m21.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.,网格中每个小正方形的边我们把上述求△面积的方法叫做构图法.如图2ABC,并求出它的面积.,请在网格中画出相应的△ABC长都是a类比创新:n0m三边的长分别为(3)若△ABC(>,,求出这个三角形的面积.,且)m≠n0>,,网格中每个小长方形长、宽都是如图3mABC,请在网格中画出相应的△,n用网格计算这个三角形的面积.第6页(共61页)的一棵24m3m高的小树上觅食,它的巢筑在距离该树22.有一只喜鹊在一棵.当它听到巢中幼鸟的叫声,立即赶过1m14m,且巢离树顶部大树上,大树高,那它至少需要多少时间才能赶回巢中?5m/s去,如果它飞行的速度为(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关23.系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.(如S的关系S′+S″与问题1:以直角三角形的三边为边向形外作等边三角形,探究.1)图SS″与:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+问题2.)的关系(如图2(如图的关系S″与S3:以直角三角形的三边为直径向形外作半圆,探究S′+问题.)3,且OA=OBx分别在轴、y轴的正半轴上,如图,24.在平面坐标系中,点A、点B;)b均大于0,﹣a)(a、bbC另有两点(a,)和D(;,求证:∠ODC=45°OD1)连接、CD(的度数;OCBCA=3,C0=2,,求∠CB=1CACBCO2()连接、、,若617第页(共页)(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.2﹣4(x+1)+4(2)已知,求代数式(x+1)的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:AB=,使得;A出发在图中画一条线段AB①从点②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;第8页(共61页)c,斜边长为[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b 的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点,验证勾股定理;,请你利用图(如图2)2<,其证明步骤如下:中的直角梯形,我们可以证明[知识扩展]利用图2,+bAD=∵BC=a(填大小关系),即又∵在直角梯形ABCD中,有BCAD.∴28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)页)61页(共9第.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,30处发BO点,我国海监船在点OB=15OA⊥OB,OA=45海里,海里,钓鱼岛位于,OAO方向匀速驶向钓鱼岛所在地点现有一不明国籍的渔船,自A点出发沿着C 结果在点B处出发以相同的速度沿某直线去拦截这艘渔船,我国海监船立即从处截住了渔船.处的位置;C1)请用直尺和圆规作出(的长.BC2)求我国海监船行驶的航程(的探究性学习中,老师给出了下表:构造勾股数”31.在一次“…3 m2 3 4…1 2 n3 122222222…a 3+421+2 331++…b4 24 6 1222222222…c3﹣﹣231﹣2﹣1 34.>n其中m、n为正整数,且m的值能否为直角三角形cn=1时,此时对应的a、b、m=2(1)观察表格,当,三边的长?说明你的理由.,b=n、之间的关系并用含m、n的代数式表示:a=,ca(2)探究,b,与m.c=为边长的三角形是否一定为直角三角形?如果是,请说明理由;c,b,)以(3a 如果不是,请举出反例.分别、Q的网格纸中,每个小正方形的边长都为81,动点P,在32.如图14×的运动速Q1个单位,点PD从点、A同时出发向右移动,点的运动速度为每秒时,两个点都停止运动,设运动时间为C个单位,当点0.5P运动到点度为每秒6110第页(共页).t<8)t(0<.并求其长度;秒时的线段PQ的网格纸图4×82中画出t为6(1)请在为底的等腰三角形.是以BPPQB(2)当t为多少时.△.阅读下面的情景对话,然后解答问题:33)理解:(1”的定义,请你判断:“等边三角形一定是奇异三角形”吗?①根据“奇异三角形(填是或不是),则该三角形、2(是或不是)奇异三②若某三角形的三边长分别为1、角形.)探究:(2,2是奇异三角形,且其两边长分别为2、,则第三边的长为若RtABC△且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?2222=40+419+25,,…713553=4+,=12+,=24用你的发现解决下列问题:第11页(共61页)2 + =(1)填空:11;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B →A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ 的形状.第12页(共61页)时的速度由西向东航行,在途中接到台风警报,台风中/.一艘轮船以20海里38海里的圆形区域(包括20/时的速度由南向北移动,距台风中心心正以40海里B正南方的处时测得台风中心移到位于点A边界)都属于台风区域,当轮船到A处按原速度继续航行,在途中是否会遇到海里.若这艘轮船自A处,且AB=100台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.中写了一首计算秋千绳索长度的明朝数学家程大位在他的著作《算法统宗》39.…”五尺板高离地踏板一尺离地°送行二步恰竿齐,词《西江月》:“平地秋千未起,,将尺)静止的时候,踏板离地高一尺(AC=1翻译成现代文为:如图,秋千OA,求秋千绳索BD=5尺)它往前推进两步(EB=10尺),此时踏板升高离地五尺()的长度.OBOA(或处看见一个小球B,OA=45cmOB=15cm,一机器人在点,.如图,∠40AOB=90°6113第页(共页)出发,沿直线匀速前B出发沿着AO方向匀速滚向点O,机器人立即从点从点A 如果小球滚动的速度与机器人行走的速处截住了小球.进拦截小球,恰好在点C 是多少?BC度相等,那么机器人行走的路程)4,则此三角形的周长为(和1.已知直角三角形两边的长为3.以上都不对+ C+.12或7.A12 B.7D)的选项为(2.图中字母所代表的正方形的面积为144..BC.A.D)x,则x的值为(3.如图,数轴上的点A所表示的数为22 D.﹣.B.﹣C.A..如图,带阴影的正方形面积是4,,AB=8BD=5AD=BDD点是BC上一点,,若,∠ABCRt如图,5.在△中,BCA=90°则CD=.第14页(共61页),每个小格的顶点叫做格点,以.正方形网格中的每个小正方形的边长都是16格点为顶点,的正方形;10(1)在图①中,画一个面积为)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是(2无理数.6115第页(共页)第16页(共61页)初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题(共8小题)1.(2016秋?吴江区期中)直角三角形两直角边长度为5,12,则斜边上的高().D. 6B.8CA.==13.再根据直角三角形的面积【分析】首先根据勾股定理,得:斜边公式,求出斜边上的高.13=.5÷=13【解答】.所以斜边上的高解:由题意得,斜边为=12×.故选D【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2016春?抚顺县期中)下列说法中正确的是()222=cab+.已知a,b,c是三角形的三边,则AB.在直角三角形中两边和的平方等于第三边的平方222=c+b△ABC中,∠C=90°,所以aC.在Rt222=c+B=90°,所以ab中,∠D.在Rt△ABC【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;222,故本命题错误,即D+c=b选项错误;,所以,所以斜边为、∠DB=90°ba第17页(共61页)故选C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春?临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,==195cmAB=.故.A故选【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.(2015春?青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()第18页(共61页)尺13 D.C.12尺.A.10尺B11尺尺,根据勾股定理解答.x【分析】找到题中的直角三角形,设水深为)尺,1x+【解答】解:设水深为x尺,则芦苇长为(222,+1))根据勾股定理得:x(+(=x,解得:x=12,1=12+1=13(尺)+芦苇的长度=x.故选D善于观察题目的信息是解题以及学好数学本题考查正确运用勾股定理.【点评】的关键.的值a南陵县期中)如图所示,在数轴上点5.(2016春?A所表示的数为a,则)为(+.﹣C1.﹣A.﹣1.﹣B1D﹣中,根据长为半径的圆上,所以在直角△BOC在以O为圆心,OB点【分析】A的值.然后由实数与数轴的关系可以求得aOA=OB=,勾股定理求得圆O的半径长为半径的圆上.OB在以O为圆心,【解答】解:如图,点A=OB==,,∵在直角△BOC中,OC=2BC=1,则根据勾股定理知,∴OA=OB=.﹣∴a=1﹣页(共19第61页)故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.(2015春?蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,==2.4(m)∴.AC=∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,B′C==1.5m,∴∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选C.第20页(共61页)【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(2015春?罗田县期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.4【分析】根据勾股定理求出AB的长即可解答.AB==13,Rt解:在△ABC中,根据勾股定理,【解答】,,AM=AC,BN=BC又∵AC=12,BC=5,AM=12,BN=5∴.5﹣13=4∴MN=AM+BN﹣AB=12+.故选D是关键.﹣AB【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN届国际数学家大会会徽,24重庆校级期中)如图,是2002年北京第8.(2016春?,小正方形的面个全等的直角三角形拼合而成,如果大正方形的面积是由4132)a那么(+b)(b直角三角形的短直角边为的值为积是1,a,较长直角边为,A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)第21页(共61页)2的值.2)b+【解答】解:(a222ab=a++b四个直角三角形的面积和大正方形的面积+=)﹣1=13+(13.=25.故选C222)b注意完全平方公式的展开:(a+b++2ab,【点评】=a考查了勾股定理的证明,之间的关系.b还要注意图形的面积和a,小题)5二.填空题(共8cm的筷子,置于底面直径为15cm,高(.2016春?固始县期中)将一根24cm9的取值范,则h的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm 围是7cm≤h≤16cm.【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.第22页(共61页).≤16cm故答案为:7cm≤h的值最大值与最小值是解题关键.本题考查了勾股定理的应用,求出h【点评】汕头校级期中)如图,一场暴雨过后,垂直于地面的一棵树在距春?10.(2015)1+则树高为恰好碰到地面,1米的点C处折断,树尖B经测量AB=2米,(地面米.的长,进而得出答案.BC【分析】根据题意利用勾股定理得出中,ABC【解答】解:由题意得:在直角△222,AC=BC+AB222,+2=BC则1,∴BC=+(1m.∴则树高为:)+1).故答案为:(的长是解BC【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出题关键.,c=10cmb=14cm,则中,∠C=90°,a+201611.(春?高安市期中)已知Rt△ABC2 24cm.△ABC的面积等于Rt【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,22222=100,b)﹣2ab=c+b∴由勾股定理得:a+=c,即(a第23页(共61页),,即ab=48196﹣2ab=100∴2.)ab=24(则Rt△ABCcm的面积为2.24cm故答案为:此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.【点评】嘉祥县期中)观察下列勾股数?2016.(春121++1),5=2×1×(11+1,4=2×1×(1+1)第一组:3=2×1++1)13=2×2×(21,12=2×2×(2+1),第二组:5=2×2+1+1)×3×(3+24=2×3×(3+1),25=21第三组:7=2×3+,1+1)4×(4+×(×44+1),41=2×第四组:9=2×4+1,40=2(只填数,,11315,112…观察以上各组勾股数组成特点,第7组勾股数是不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春?武昌区期中)观察下列一组数:2=4+35;、列举:34、5,猜想:2=12+1313,猜想:5;、列举:5、122=24+25,猜想:24、257;、列举:7…第24页(共61页)2;=b+c列举:13、b、c,猜想:1384,c=请你分析上述数据的规律,结合相关知识求得85b=.【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),,由此规律解决问题.)(2=4+535=,;中,4=【解答】解:在2=12+13中,12=,;在513=…=84,c==85、、bc中,b=.则在13【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春?黄冈期中)a,b,c为三角形ABC的三边,且满足222+338=10a+24bc+a26c+b,试判别这个三角形的形状.+【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.222+338=10a+24b++b26c+c,a【解答】解:由222﹣26c+169(c)=0,)+25+(b144﹣24b+)+得:(a﹣10a222=0,﹣13)b﹣12)c+(5即:(a﹣)(+由非负数的性质可得:,解得,222222,+b∵5+12=169=13=c,即a∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判第25页(共61页)断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.CD=,DA=1,?永登县期中)如图:四边形ABCD中,,AB=CB=15.(2016秋.B ⊥CB于且AB的度数;BAD(1)∠试求:的面积.2)四边形ABCD(【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,222,BC∴AB=AC+AB=CB=,又∵∴AC=2,∠BAC=∠BCA=45°,CD=,DA=1∵,222=4.,CDAC=5,DA=1∴222,AC∴=CD+DA由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;第26页(共61页)(2)∵∠DAC=90°,AB⊥CB于B,=,,=S∴S DACABC△△,DA=1,AC=2∵AB=CB=,∴S=1,S=1DACABC△△而S=S+S,DACABCABCD△四边形△∴S=2.ABCD四边形【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春?邹城市校级期中)如图,小华准备在边长为1的正方形网格中,,的三角形,请你帮助小华作出来.,作一个三边长分别为45【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.第27页(共61页)【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春?平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A100km到达B方向走了点,然后再沿北偏西30°方向走点出发,沿北偏东60°了100km到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,中,ABCRt△在=200=∴,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋?新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?第28页(共61页)的最AAE的长即为台风中心与气象台BD于E,线段作【分析】(1)过AAE⊥角的直角三角形的性质即可得出结果;30°短距离,由含的长,受到台风影响的路程,求出CD)根据题意得出线段CD就是气象台A2(即可得出结果.所示:,如图1BD于E作解:(1)过AAE⊥【解答】上移动,∵台风中心在BD的长即为气象台距离台风中心的最短距离,∴AE,=30°ABE=90°﹣60°在Rt△ABE中,∠,∴AB=160AE=.160kmA的最短距离是即台风中心在移动过程中,与气象台方向移动,在距离台BD60°的2)∵台风中心以每小时20km的速度沿北偏东(内的地方都要受到其影响,风中心200km受到台风影响的路程,就是气象台A∴线段CD所示:,如图2连接AC,AE=160km中,AC=200km,在Rt△ACE,=120kmCE=∴,⊥CD∵AC=AD,AE,CE=ED=120km∴.CD=240km∴.(小时)÷∴台风影响气象台的时间会持续24020=126129第页(共页)角的直角【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°)CD是解决问题(2三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出的关键.,,BC=6cmABC中,∠B=90°,AB=8cm19.(2015春?阳东县期中)如图,已知△方向运动,且速度为B开始沿A?从点Q分别为AB、BC边上的动点,点PA、P它们同时出发;2cm,方向运动,Q从点B开始B→C且速度为每秒1cm每秒,点秒.设出发的时间为t的长;PQ1)出发2秒后,求(能形成等腰三角形?2)从出发几秒钟后,△PQB(能否把原三角形周长分成相等的两部分?若能够,PQ3()在运动过程中,直线请求出运动时间;若不能够,请说明理由.页(共第3061页)【分析】(1)我们求出BP、BQ的长,用勾股定理解决即可.(2)△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8﹣1×t,解方程即得结果.(3)直线PQ把原三角形周长分成相等的两部分,根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.【解答】解:(1)出发2秒后,AP=2,BQ=4,=2;(2=6,3PQ=分)∴BP=8﹣(2)设时间为t,列方程得2t=8﹣1×t,t=;(6解得分)(3)假设直线PQ能把原三角形周长分成相等的两部分,由AB=8cm,BC=6cm,根据勾股定理可知AC=10cm,即三角形的周长为8+6+10=24cm,。
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析) 之欧阳治创编
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)时间2021.03.10 创作:欧阳治一.选择题(共8小题)1.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.2.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2 B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2 D.在Rt△ABC中,∠B=90°,所以a2+b2=c2 3.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm 4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺 B.11尺C.12尺D.13尺5.如图所示,在数轴上点A所表示的数为a,则a 的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+6.一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米 C.0.8米 D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169二.填空题(共5小题)9.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是.10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km 内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P 从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a >0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n>0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B 处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.31.在一次“构造勾股数”的探究性学习中,老师给出了下表:m 2 3 3 4 …n 1 1 2 3 …a 22+12 32+12 32+22 42+32 …b 4 6 12 24 …c 22﹣12 32﹣12 32﹣22 42﹣32 …其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n 的代数式表示:a=,b=,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112=+;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB 遇到一座山,于是要修一条隧道BC.已知A,B,C 在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C 作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO 方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()A.B.C.D.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC 上一点,AD=BD,若AB=8,BD=5,则CD=.6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题(共8小题)1.(2016秋•吴江区期中)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2016春•抚顺县期中)下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2 B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2 D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B 选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm 【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺 B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.(2016春•南陵县期中)如图所示,在数轴上点A 所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.(2015春•蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米 C.0.8米 D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C 的长,再根据勾股定理求出B′C的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(2015春•罗田县期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.4【分析】根据勾股定理求出AB的长即可解答.【解答】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.故选D.【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.(2016春•重庆校级期中)如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二.填空题(共5小题)9.(2016春•固始县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7cm≤h≤16cm.【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故答案为:7cm≤h≤16cm.【点评】本题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.10.(2015春•汕头校级期中)如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(1+)米.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=,∴则树高为:(1+)m.故答案为:(1+).【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.(2016春•高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt△ABC的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春•嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113 (只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春•武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= 84 ,c= 85 .【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春•黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋•永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC=,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC=1,S△DAC=1而S四边形ABCD=S△ABC+S△DAC,∴S四边形ABCD=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春•邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春•平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋•新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春•阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.。
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)之欧阳术创编
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)时间:2021.02.02 创作:欧阳术一.选择题(共8小题)1.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.2.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c23.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+6.一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169二.填空题(共5小题)9.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是.10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n>0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB 的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l 的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.31.在一次“构造勾股数”的探究性学习中,老师给出了下表: m 2 3 3 4…n 1 1 2 3…a22+1232+12 32+2242+32…b 4 6 1224 …c22﹣1232﹣1232﹣22 42﹣32…其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b=,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P 运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112=+;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()A.B.C.D.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=.6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题(共8小题)1.(2016秋•吴江区期中)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2016春•抚顺县期中)下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选 C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.(2016春•南陵县期中)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.(2015春•蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(2015春•罗田县期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.4【分析】根据勾股定理求出AB的长即可解答.【解答】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.故选D.【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.(2016春•重庆校级期中)如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二.填空题(共5小题)9.(2016春•固始县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7cm≤h≤16cm.【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故答案为:7cm≤h≤16cm.【点评】本题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.10.(2015春•汕头校级期中)如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(1+)米.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=,∴则树高为:(1+)m.故答案为:(1+).【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.(2016春•高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt△ABC的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春•嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113(只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n (n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春•武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=84,c= 85.【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春•黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋•永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC=,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC=1,S△DAC=1而S四边形ABCD=S△ABC+S△DAC,∴S四边形ABCD=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春•邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春•平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C 点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋•新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春•阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P 从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.【分析】(1)我们求出BP、BQ的长,用勾股定理解决即可.(2)△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8﹣1×t,解方程即得结果.(3)直线PQ把原三角形周长分成相等的两部分,根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.【解答】解:(1)出发2秒后,AP=2,BQ=4,∴BP=8﹣2=6,PQ==2;(3分)(2)设时间为t,列方程得。
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析) 之欧阳生创编
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)时间:2021.02.08 创作人:欧阳生一.选择题(共8小题)1.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.2.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c23.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣ D.﹣1+6.一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169二.填空题(共5小题)9.将一根24cm的筷子,置于底面直径为15cm,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是.10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C 两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△A BC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n>0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB 的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.31.在一次“构造勾股数”的探究性学习中,老师给出了下表:m 2 3 3 4 …n 1 1 2 3 …a 22+12 32+12 32+22 42+32 …b 4 6 12 24 …c 22﹣12 32﹣12 32﹣22 42﹣32 …其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c 的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b=,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112=+;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m (在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()A.B. C.D.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.﹣ C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=.6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题(共8小题)1.(2016秋•吴江区期中)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2016春•抚顺县期中)下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.(2016春•南陵县期中)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣ D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB 是解题的关键.6.(2015春•蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(2015春•罗田县期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.4【分析】根据勾股定理求出AB的长即可解答.【解答】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.故选D.【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.(2016春•重庆校级期中)如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二.填空题(共5小题)9.(2016春•固始县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7cm≤h≤16cm.【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h 的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故答案为:7cm≤h≤16cm.【点评】本题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.10.(2015春•汕头校级期中)如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(1+)米.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=,∴则树高为:(1+)m.故答案为:(1+).【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.(2016春•高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt△ABC的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春•嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113 (只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春•武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= 84 ,c= 85 .【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春•黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋•永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC=,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC=1,S△DAC=1而S四边形ABCD=S△ABC+S△DAC,∴S四边形ABCD=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春•邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春•平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km 到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋•新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km 的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD 方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春•阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.【分析】(1)我们求出BP、BQ的长,用勾股定理解决即可.(2)△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8﹣1×t,解方程即得结果.(3)直线PQ把原三角形周长分成相等的两部分,根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.。
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)-
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)一.选择题(共8小题)1.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C .D .2.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c23.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C .﹣D.﹣1+6.一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169二.填空题(共5小题)9.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在第1页(共38页)杯子外面的长度为hcm,则h的取值范围是.10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= ,c= .三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km 到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?第2页(共38页)(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC 三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF 三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ 之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC 三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC 的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC 三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.第3页(共38页)类比创新:(3)若△ABC 三边的长分别为(m>0,n>0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所第4页(共38页)画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO 方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.第5页(共38页)31.在一次“构造勾股数”的探究性学习中,老师给出了下表:其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a= ,b= ,c= .(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…第6页(共38页)用你的发现解决下列问题:(1)填空:112= +;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO 方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()第7页(共38页)A. B .C .D .3.如图,数轴上的点A所表示的数为x,则x的值为()A.B .﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD= .6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题(共8小题)1.(2016秋•吴江区期中)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C .D .【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2016春•抚顺县期中)下列说法中正确的是()第8页(共38页)A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选 C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB 的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,第9页(共38页)根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.(2016春•南陵县期中)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C .﹣D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O 的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.(2015春•蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选C.第10页(共38页)【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(2015春•罗田县期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.4【分析】根据勾股定理求出AB的长即可解答.【解答】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.故选D.【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.(2016春•重庆校级期中)如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二.填空题(共5小题)9.(2016春•固始县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7cm≤h≤16cm .第11页(共38页)【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故答案为:7cm≤h≤16cm.【点评】本题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.10.(2015春•汕头校级期中)如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(1+)米.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC 2,∴BC=,∴则树高为:(1+)m.故答案为:(1+).【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.(2016春•高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,第12页(共38页)则Rt△ABC 的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春•嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113 (只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春•武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= 84 ,c= 85 .【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.第13页(共38页)【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春•黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋•永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;第14页(共38页)(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC =,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC =1,S△DAC=1而S四边形ABCD =S△ABC+S△DAC,∴S四边形ABCD=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春•邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春•平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.第15页(共38页)【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC 中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC 的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋•新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:第16页(共38页)在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春•阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.【分析】(1)我们求出BP、BQ的长,用勾股定理解决即可.(2)△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8﹣1×t,解方程即得结果.(3)直线PQ把原三角形周长分成相等的两部分,根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.【解答】解:(1)出发2秒后,AP=2,BQ=4,∴BP=8﹣2=6,PQ==2;(3分)(2)设时间为t,列方程得2t=8﹣1×t,解得t=;(6分)(3)假设直线PQ能把原三角形周长分成相等的两部分,由AB=8cm,BC=6cm,根据勾股定理可知AC=10cm,第17页(共38页)。
八年级勾股定理压轴题
八年级勾股定理压轴题成功根本没有什么秘诀可言,如果真是有的话,就是两个:第一个就是坚持到底,永不放弃;第二个是当你想放弃的时候,回过头来看看第一个秘诀:坚持到底,永不放弃。
犹如勾股定理,总能找到符合自己的那一条边。
下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。
八年级勾股定理选择压轴题一、单选题1.下列各组数中,是勾股数的是( )A. 12,15,18B. 12,35,36C. 2,3,4D. 5,12,13【答案】D2.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于( )A. 1-B. 1-C.D.【答案】D【解析】试题分析:设CD与B′C′相交于点O,连接OA.根据旋转的性质,得∠BAB′=30°,则∠DAB′=60°.3.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )A. 5B. 25C. 10 +5D. 35【答案】B【解析】试题解析:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB= .4.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=( )A. 4B. 5C. 6D. 7【答案】A【解析】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.5.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为81,小正方形面积为16,若用x,y表示直角三角形的两直角边(x>y),请观察图案,指出以下关系式中不正确的是( )A. x2+y2=81B. x+y=13C. 2xy+16=81D. x-y=4【答案】B6.如图,带阴影的长方形面积是( )A. 9 cm2B. 24 cm2C. 45 cm2D. 51 cm2【答案】C【解析】试题解析:由图可知,△ABC是直角三角形,∵AC=8cm,BC=12cm,∴AB= =15cm,∴S阴影=15×3=45cm2.故选C.7.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则大正方形与小正方形的面积差是( )A. 9B. 36C. 27D. 34【答案】B【解析】大正方形的面积为32+62=45,小正方形的面积为(6-3)2=9,则面积差为45-9=36.故选B.8.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为( )A. B. C. 3 D. 2【答案】B故选B.9.如图,一棵大树在一次强台风中于离地面5m处折断倒下,倒下后树顶落在树根部大约12m处。
勾股定理 期末压轴题训练(含答案) 2022—2023学年人教版数学八年级下册
1.如图,已知 VABC 为等腰直角三角形,且面积为 4.点 D 是 BC 的中点,点 F 是直 线 AB 上一动点,连结 DF .
(1)求线段 BC 的长; (2)当点 E 在射线 BC 上,且 CE 2BC 时,连结 FE ,若 AF 3AB ,试判断 VDEF 是否 为等腰三角形,并说明理由; (3)直线 AB 上是否存在点 F(F 不与 AB 重合),使△ACF 的其中两边之比为1: 2 ?若 存在,求出 BF 的长;若不存在,请说明理由. 2.已知:如图,在△ABC 纸片中,AC=3,BC=4,AB=5,按图所示的方法将△ACD 沿 AD 折叠,使点 C 恰好落在边 AB 上的点 C′处,点 P 是射线 AB 上的一个动点.
(1)如图 1,若 BAC 90 , AF 1, AC 3 ,求点 B 到 AE 的距离; (2)如图 2,若 E 为 BD 中点,连接 FD,FD 平分 AFC ,G 为 CF 上一点,且 GDC GCD ,求证: DG AF FC ;
(3)如图 3,若 BAC 120 , BC 12 ,将△ABD 沿着 AB 翻折得△ABD ,点 H 为 BD 的中点,连接 HA、HC,当△HAC 周长最小时,请直接写出 AD 的值.
(1)如图 1,△ABC 与△ADE 互为“底余等腰三角形”. ①若连接 BD,CE,判断△ABD 与△ACE 是否互为“底余等腰三角形”:_______ (填 “是”或“否”) ;
②当∠BAC=90°时,若△ADE 的“余高”AH= 5 ,则 DE=_______;
③当 0°<∠BAC<180°时,判断 DE 与 AH 之间的数量关系,并证明; (2)如图 2,在四边形 ABCD 中,∠ABC=60°,DA⊥BA,DC⊥BC,且 DA=DC. ①画出△OAB 与△OCD,使它们互为“底余等腰三角形”; ②若△OCD 的“余高”长为 a,则点 A 到 BC 的距离为_______(用含 a 的式子表示). 7.已知:△ABC 是等腰直角三角形,动点 P 在斜边 AB 所在的直线上,以 PC 为直角 边作等腰直角三角形 PCQ,其中∠PCQ=90°,探究并解决以下问题: (1)如图 1,若点 P 在线段 AB 上,且 AC=4,PA= 2 ,则①线段 PB= ,PC= .② 猜想: PA2, PB2, PQ2 三者之间的数量关系为 .
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析) 之欧阳德创编
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)时间:2021.03.07 创作:欧阳德一.选择题(共8小题)1.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.2.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2 B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2 D.在Rt△ABC中,∠B=90°,所以a2+b2=c2 3.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB 等于()A.195cm B.200cm C.205cm D.210cm 4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺 C.12尺D.13尺5.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣ B.1﹣C.﹣D.﹣1+6.一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169二.填空题(共5小题)9.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是.10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C 点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△AB C三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA 的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a >0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n>0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.31.在一次“构造勾股数”的探究性学习中,老师给出了下表:m 2 3 3 4 …n 1 1 2 3 …a 22+12 32+12 32+22 42+32 …b 4 6 12 24 …c 22﹣12 32﹣12 32﹣22 42﹣32 …其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b=,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112=+;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l 与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C 分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO 方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()A.B.C.D.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC 上一点,AD=BD,若AB=8,BD=5,则CD=.6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题(共8小题)1.(2016秋•吴江区期中)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2016春•抚顺县期中)下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2 B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2 D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm 【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺 C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.(2016春•南陵县期中)如图所示,在数轴上点A 所表示的数为a,则a的值为()A.﹣1﹣ B.1﹣C.﹣D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.(2015春•蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(2015春•罗田县期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.4【分析】根据勾股定理求出AB的长即可解答.【解答】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.故选D.【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.(2016春•重庆校级期中)如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二.填空题(共5小题)9.(2016春•固始县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7cm≤h≤16cm.【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故答案为:7cm≤h≤16cm.【点评】本题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.10.(2015春•汕头校级期中)如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(1+)米.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=,∴则树高为:(1+)m.故答案为:(1+).【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.(2016春•高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt△ABC的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春•嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113 (只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春•武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= 84 ,c= 85 .【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春•黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋•永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC 可以求AC,根据AC,AD,CD的长可以判定△ACD 为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC=,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC=1,S△DAC=1而S四边形ABCD=S△ABC+S△DAC,∴S四边形ABCD=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春•邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春•平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋•新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春•阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t 秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.【分析】(1)我们求出BP、BQ的长,用勾股定理解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.填空题(共9小题)
1.△ABC是等腰三角形,腰上的高为8cm,面积为40cm2,则该三角形的周长是cm.
2.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为.
3.如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3=.
4.如图,在Rt△ABC中,∠ACB=90,AC=3,BC=4,分别以AB、AC、BC为边在AB同侧作正方形ABEF,ACPQ,BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4,则S1+S2+S3+S4=.
5.如图,Rt△ABC中,∠ACB=90°,AC=2,BC=.分别以AB,AC,BC为边,向外作正方形ABDE,正方形ACFG,正方形BCMN,连接GE,DN.则图中阴影的总面积是.
6.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.
7.如图,A在线段BG上,ABCD和DEFG都是正方形,面积分别为7平方厘米和11平方厘米,则△CDE的面积等于平方厘米.
8.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为秒.
9.Rt△ABC中,∠BAC=90°,AB=AC=2.以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段BD的长为.
二.解答题(共3小题)
10.已知△ABC中,AB=AC.
(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;
(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的长;
(3)如图3,在△ADE中,当BD垂直平分AE于H,且∠BAC=2∠ADB时,试探究CD2,BD2,AH2之间的数量关系,并证明.
11.我们学习了勾股定理后,都知道“勾三、股四、弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.事实上,勾是三时,股和弦的算式分别是;勾是五时,股和弦的算式分别是.根据你发现的规律,分别写出勾是七时,股和弦的算式;
(2)根据(1)的规律,请用含n(n为奇数,且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的相等关系(请写出两种),并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数,且m>4)的代数式来表示股和弦.
12.大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2.
(1)请你结合图形来证明:h1+h2=h;
(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上的一点M到l1的距离是.求点M的坐标.
2018年03月29日150****1613的初中数学组卷
参考答案
一.填空题(共9小题)
1.(20+4)或(20+8);2.4或4或4;3.18;4.18;5.2;6.4;7.;8.7或25;9.4或2或;
二.解答题(共3小题)
10.;11.;12.;。