高中数学函数压轴题(精制)

合集下载

压轴题01 函数性质的综合运用(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题01  函数性质的综合运用(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题01函数性质的综合运用函数是高中数学的主干,也是高考考查的重点,而函数的性质是函数的灵魂,它对函数概念的理解以及利用函数性质来解决相关函数问题起到十分重要的作用.此外在高考试题的考查中函数的性质也是常见题型.考向一:利用奇偶性、单调性解函数不等式考向二:奇函数+M 模型与奇函数+函数模型考向三:周期运用的综合运用1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x ;②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;③定号:判断差的正负或商与1的大小关系;④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x是增函数,则()f x-为减函数;若()f x是减函数,则()f x-为增函数;②若()f x和()g x均为增(或减)函数,则在()f x和()g x的公共定义域上()()f xg x+为增(或减)函数;③若()0f x>且()f x为增函数,1()f x为减函数;④若()0f x>且()f x为减函数,1()f x为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x是偶函数⇔函数()f x的图象关于y轴对称;函数()f x是奇函数⇔函数()f x的图象关于原点中心对称.(3)若奇函数()y f x=在0x=处有意义,则有(0)0f=;偶函数()y f x=必满足()(||)f x f x=.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x的定义域关于原点对称,则函数()f x能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x=+-,1()()()]2h x f x f x=--,则()()()f xg xh x=+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f xg x f x g x f x g x f x g x+-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x=的奇偶性原来:内偶则偶,两奇为奇.(8)常见奇偶性函数模型奇函数:①函数1()()01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-.③函数2()log log (1)aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =或函数()log )a f x x =.注意:关于①式,可以写成函数2()(0)1xm f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+.②函数()log (1)2mx a mxf x a =+-.③函数(||)f x 类型的一切函数.④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.1.(2023·河北唐山·开滦第二中学校考一模)已知函数()222e e 287x x f x x x --=++-+则不等式()()232f x f x +>+的解集为()A.1(1)3--,B.1(,1)(,)3-∞--+∞ C.1(1)3-,D.1(,(1,)3-∞-⋃+∞2.(2023·安徽宣城·统考二模)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=.若()3f x +为奇函数,322g x ⎛⎫+ ⎪⎝⎭为偶函数,且()03g =-,()12g =,则()20231i g i ==∑()A.670B.672C.674D.6763.(2023·甘肃定西·统考一模)定义在R 上的函数()f x 满足()()()f x y f x f y +=+,当0x >时,()0f x <,则不等式()()22530f x f x x -+-<的解集为()A.5,3⎛⎫-∞ ⎪⎝⎭B.51,2⎛⎫- ⎪⎝⎭C.()5,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭D.5,3⎛⎫+∞ ⎪⎝⎭4.(2023·吉林通化·梅河口市第五中学校考一模)已知函数()()lg 122x xf x x -=-++,则不等式()()12f x f x +<的解集为()A.()(),11,-∞-⋃+∞B.()2,1--C.()(),21,-∞-+∞ D.()()1,1,3-∞-⋃+∞5.(2023·内蒙古·模拟预测)已知()f x 是定义在[]4,4-上的增函数,且()f x 的图象关于点()0,1对称,则关于x 的不等式()()23350f x f x x +-+->的解集为()A.(),1-∞B.()1,+∞C.(]1,7D.(]1,26.(2023·广西梧州·统考一模)已知定义在R 上的函数()f x 在(,1]-∞上单调递增,若函数(1)f x +为偶函数,且(3)0f =,则不等式()0xf x >的解集为()A.(1,3)-B.(,1)(3,)-∞-⋃+∞C.(,1)(0,3)-∞-⋃D.(1,0)(3,)-+∞ 7.(2023·河南·开封高中校考模拟预测)已知()f x 是定义域为R 的奇函数,当0x >时,()()2ln 1f x x x =++,则不等式()211ln2f x +>+的解集为()A.{1}∣<x x B.{0}x x <∣C.{1}xx >∣D.{0}xx >∣8.(2023·福建泉州·校考模拟预测)已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为()A.](2-∞,B.[)2,+∞C.[]24-,D.[]14,9.(2023·陕西西安·高三西北工业大学附属中学校考阶段练习)已知函数()(32e log e 1xx f x x =++在[],(0)k k k ->上的最大值与最小值分别为M 和m ,则M m +=()A.2-B.0C.2D.410.(2023·江西南昌·统考一模)已知函数()()35112=-+f x x ,若对于任意的[]2,3x ∈,不等式()()21+-≤f x f a x 恒成立,则实数a 的取值范围是()A.(),2-∞B.(],2-∞C.(),4-∞D.(],4∞-11.(2023·全国·高三专题练习)已知函数()e e 2x xf x x x -=-++在区间[]22-,上的最大值与最小值分别为,M N ,则M N +的值为()A.2-B.0C.2D.412.(2023·全国·高三专题练习)若对x ∀,R y ∈.有()()()4f x y f x f y +=+-,则函数22()()1xg x f x x =++在[2018-,2018]上的最大值和最小值的和为()A.4B.8C.6D.1213.(多选题)(2023·浙江杭州·统考二模)已知函数()f x (x ∈R )是奇函数,()()2f x f x +=-且()12f =,()f x '是()f x 的导函数,则()A.()20232f =B.()f x '的一个周期是4C.()f x '是偶函数D.()11f '=14.(多选题)(2023·安徽滁州·统考二模)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若12f x ⎛⎫- ⎪⎝⎭,()1g x +均为奇函数,则()A.()00f =B.()00g =C.()()14f f -=D.()()14g g -=15.(多选题)(2023·吉林·统考三模)设定义在R 上的可导函数()f x 与()g x 导函数分别为()f x '和()g x ',若()()212f x g x x =-+,()1f x +与()g x 均为偶函数,则()A.()11g '=B.()20220323g =-'C.()24f '=-D.991198100i f i =⎛⎫= ⎪⎝'⎭∑16.(多选题)(2023·海南海口·校考模拟预测)已知定义在R 上的函数()f x 在(],2-∞上单调递增,且()2f x +为偶函数,则()A.()f x 的对称中心为()2,0B.()f x 的对称轴为直线2x =C.()()14f f -<D.不等式()()34f x f x +>的解集为()1,1,5⎛⎫-∞+∞ ⎪⎝⎭ 17.(多选题)(2023·广东佛山·佛山一中校考一模)设函数()y f x =的定义域为R ,且满足(1)(1)f x f x +=-,(2)()0f x f x -+-=,当[]1,1x ∈-时,()1f x x =-+,则下列说法正确的是()A.()1y f x =+是偶函数B.()3y f x =+为奇函数C.函数()lg =-y f x x 有8个不同的零点D.()202311k f k ==∑18.(2023·江西吉安·统考一模)已知函数()f x 的定义域为R ,其导函数为()g x ,若函数(22)f x +为偶函数,函数(1)g x -为偶函数,则下列说法正确的序号有___________.①函数()f x 关于2x =轴对称;②函数()f x 关于(1,0)-中心对称;③若(2)1,(5)1f f -==-,则(26)(16)=3g f +-;④若当12x -≤≤时,1()e 1x f x +=-,则当1417x ≤≤时,17()e 1x f x -=-.19.(2023·陕西榆林·统考一模)已知函数()f x 是定义在()2,2-上的增函数,且()f x 的图象关于点()0,2-对称,则关于x 的不等式()()240f x f x +++>的解集为__________.20.(2023·全国·校联考模拟预测)已知定义在R 上的函数()f x 满足:对任意实数a ,b 都有()()()1a a b b f f f +=+-,且当0x >时,()1f x >.若()23f =,则不等式()212f x x --<的解集为______.21.(2023·江西赣州·高三统考阶段练习)已知()f x 是定义在[]4,4-上的增函数,且()f x 的图象关于点()0,1对称,则关于x 的不等式()()23350f x f x x +-+->的解集为______.22.(2023·湖南湘潭·高三湘钢一中校考开学考试)已知()f x 是定义在()5,5-上的增函数,且()f x 的图象关于点()0,1-对称,则关于x 的不等式()()211320f x f x x ++-++>的解集为_________.23.(2023·江苏常州·高三校联考开学考试)已知函数()2e e e ex xx x f x x ---=++,则不等式()()21122f x f x x ++-<+的解集为__________.24.(2023·辽宁·鞍山一中校联考模拟预测)已知函数()f x ,()g x 的定义域均为R ,()1f x +是奇函数,且()()12f x g x -+=,()()32f x g x +-=,则下列结论正确的是______.(只填序号)①()f x 为偶函数;②()g x 为奇函数;③()20140k f k ==∑;④()20140k g k ==∑.25.(2023·陕西西安·西北工业大学附属中学校考模拟预测)已知函数()(32e log e 1xxf x x =++在[](),0k k k ->上的最大值与最小值分别为M 和m ,则函数()()()31g x M m x M m x -=+++-⎡⎤⎣⎦的图象的对称中心是___________.26.(2023·全国·高三专题练习)设函数()())221ln1x xf x x ++=+的最大值为M ,最小值为N ,则M N +的值为________。

(压轴题)高中数学必修一第二单元《函数》测试(有答案解析)(2)

(压轴题)高中数学必修一第二单元《函数》测试(有答案解析)(2)

一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.若函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则实数a 的取值范围是( )A.4,⎡-⎣B.4⎤⎦C .[]3,4-D.⎡⎣3.以下说法正确的有( )(1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}3,1AB =;(2)若()f x 是定义在R 上的奇函数,则()00f =; (3)函数1y x=的单调区间是()(),00,-∞⋃+∞; (4)在映射:f A B →的作用下,A 中元素(),x y 与B 中元素()1,3x y --对应,则与B 中元素()0,1对应的A 中元素是()1,2 A .1个B .2个C .3个D .4个4.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3x y =具有性质M ; ②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =. 其中正确的个数是( ) A .0个B .1个C .2个D .3个5.已知2()25x f x +=-,()()20g x ax a =+>,若对任意的[]11,2x ∈-,存在[]00,1x ∈,使()()10g x f x =,则a 的取值范围是( )A .1(0,]2B .1[,3]2C .[)3,+∞D .(]0,36.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( )A .-1B .0C .1D .47.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2 C .()1,2 D .(],1-∞8.已知函数的定义域为R ,且对任意的12,x x ,且12x x ≠都有()()()12120f x f x x x -->⎡⎤⎣⎦成立,若()()2211f x f m m +>--对x ∈R 恒成立,则实数m 的取值范围是( ) A .(1,2)- B .[1,2]-C .(,1)(2,)-∞-+∞D .(,1][2,)-∞-+∞9.若函数()28,12,1ax x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩为R 上的减函数,则实数a 的取值范围是( )A .()4,+∞B .[)4,+∞C .[]4,6D .()0,∞+10.已知函数()1,0,21,0,x x f x x x +≥⎧=⎨--<⎩若()()0a f a f a -->⎡⎤⎣⎦,则实数a 的取值范围是( ) A .()2,+∞ B .[)(]2,00,2-C .(](),22,-∞-+∞D .()()2,00,2-11.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-312.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃二、填空题13.若函数()y f x =的定义域是[]0,4,则函数()2f x f x =的定义域是__________.14.若函数()12423xx f x m m +=-⋅+-,在其定义域R 内存在实数x ,满足()()f x f x -=-,则整数m 的取值集合是________.15.已知函数(3)5,1 ()2,1a x xf x axx--≤⎧⎪=⎨->⎪⎩是R上的增函数,则a的取值范围是________. 16.关于函数21()11xf xx-=+-的性质描述,正确的是_________.①()f x的定义域为[-1,0)∪(0,1];②()f x的值域为R;③在定义域上是减函数;④()f x的图象关于原点对称.17.自然下垂的铁链;空旷的田野上,两根电线杆之间的电线等这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()x xf ae ex b-=+(其中a,b是非零常数,无理数 2.71828e=…)(1)如果()f x为单调函数.写出满足条件的一-组值:a=______,b=______.(2)如果()f x的最小值为2,则+a b的最小值为______.18.已知集合{1,A B==2,3},f:A B→为从集合A到集合B的一个函数,那么该函数的值域的不同情况有______种.19.定义域为R的函数()f x满足(2)2()f x f x+=,当[0,2)x∈时,21.5,[0,1)()0.5,[1,2)xx x xf xx-⎧-∈⎪=⎨-∈⎪⎩,若[4,2)x∈--时,1()42tf xt≥-恒成立,则实数t的取值范围是______.20.函数y=a x(a>0且a≠1)在[1,2]上的最大值比最小值大2a,则a=______.三、解答题21.已知函数()2112f xa a x=+-,实数a R∈且0a≠.(1)设0m n<<,判断函数()f x在[],m n上的单调性,并说明理由;(2)设0m n<<且0a>时,()f x的定义域和值域都是[],m n,求n m-的最大值;(3)若1≥x时不等式()22a f x x≤恒成立,求实数a的取值范围.22.已知函数()f x为二次函数,满足()()139f f-==,且()03f=.(1)求函数()f x 的解析式;(2)设()()g x f x mx =-在[]1,3上是单调函数,求实数m 的取值范围. 23.已知函数()222f x x ax =++,[]5,5x ∈-.(1)当1a =-时,求函数()f x 的最大值和最小值;(2)求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数. (3)求函数()f x 的最小值()g a 的表达式,并求()g a 的最大值. 24.已知函数()2h x x bx c =++是偶函数,且()20h -=,()()h x f x x=. (1)当[]1,2x ∈时,求函数()f x 的值域; (2)设()221642F x x a x x x ⎛⎫=+-- ⎪⎝⎭,[]1,2x ∈,a ∈R ,求函数()F x 的最小值()g a ;(3)对(2)中的()g a ,若不等式()224g a a at >-++对于任意的()3,0a ∈-恒成立,求实数t 的取值范围.25.已知函数21.2()2,2221,2x x f x x x x x x +≤-⎧⎪=+-<<⎨⎪-≥⎩,(1)求(5)f -,(f ,5(())2f f -的值; (2)若()3f a =,求实数a 的值. 26.已知定义在()1,1-上的奇函数2()1ax bf x x +=+,且1225f ⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)证明:()f x 在0,1上是增函数; (3)解不等式()2(120)f t f t -+<.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.B解析:B 【分析】函数()f x 在R 上是增函数,则在两段上分别要单调递增,且在分界点处要满足2138a a -+--≤,从而得到答案.【详解】函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则满足下列条件:(1)()2238y x a x =-+--在(],1-∞递增,2312a -≥,即a ≥a ≤(2)y ax =在()1,+∞递增,则0a >(3)当1x =时满足2138a a -+--≤,解得34a -≤≤综上可得函数()f x 在R 上是增函数,实数a 4a ≤≤ 故选:B. 【点睛】关键点睛:本题考查根据分段函数的单调性求参数的范围,解答本题的关键是分段函数要在定义域内单调递增,则在两段上要分别单调递增,且在分界点出满足2138a a -+--≤,这也时容易出错的地方,属于中档题.3.B解析:B 【分析】 根据AB 为点集,可判断(1)的正误;根据奇函数的性质,可判断(2)的正误;分解反比例函数的单调性,可判断(3)的正误;根据映射的概念,可判断(4)的正误. 【详解】 (1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}(3,1)AB =,所以(1)错误;(2)若()f x 是定义在R 上的奇函数,则()00f =,所以(2)正确; (3)函数1y x=的单调区间是(),0-∞和()0,∞+,所以(3)错误; (4)设A 中元素为(,)x y ,由题意可知1031x y -=⎧⎨-=⎩,解得12x y =⎧⎨=⎩,所以A 中元素是()1,2,所以(4)正确;所以正确命题的个数是2个, 故选:B. 【点睛】关键点点睛:该题考查的是有关命题的真假判断,在解题的过程中,关键点是要熟练掌握基础知识,此类题目综合性较强,属于中档题目.4.C解析:C 【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断. 【详解】解:对于①:3xy =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=, 所以函数3xy =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=,所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =, 故③正确; 故选:C. 【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.5.A解析:A 【分析】根据指数函数的性质求出()f x 在[0,1]上的值域A ,利用一次函数的单调性求出()g x 在[1,2]-上的值域B ,由题得B A ⊆,再根据集合的包含关系即可求解.【详解】2()25x f x +=-,[]00,1x ∈,()()min 01f x f ∴==-,()()max 13f x f ==, ∴()f x 在[0,1]上的值域为[]1,3A =-,又()2(0)g x ax a =+>在[1,2]-上单调递增,∴()g x 在[1,2]-上的值域为[]2,22B a a =-++,由题意可得B A ⊆,021223a a a >⎧⎪∴-+≥-⎨⎪+≤⎩,解得102a <≤.故选:A 【点睛】本题考查函数的单调性求值域、集合的包含关系求参数的取值范围.探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围6.C解析:C 【分析】根据定义求出()M x 的表达式,然后根据单调性确定最小值. 【详解】由23(1)x x -+=-解得:1x =-或2x =,2(1)3x x -≥-+的解集为1x ≤-或2x ≥,2(1)3x x -<-+的解为12x -<<,∴2(1),12()3,12x x x M x x x ⎧-≤-≥=⎨-+-<<⎩或,∴2x ≤时,()M x 是减函数,2x >时,()M x 是增函数,∴min ()(2)1M x M ==. 故选:C . 【点睛】关键点点睛:本题考查新定义函数,解题关键是确定新定义函数的解析式,根据新定义通过求最大值得出新函数的解析式,然后根据分段函数研究新函数的性质.7.B解析:B 【分析】计算出()24f -=,并由()()()0x y f x f y ⎡⎤--<⎣⎦可得出函数()y f x =在R 上为减函数,再由()()234f x f x-⋅≥,可得出()()232f xx f -≥-,再由函数()y f x =在R 上的单调性可得出232x x -≤-,解出该不等式即可. 【详解】由于对任意的实数x 、y ,()()()f x y f x f y +=⋅且()0f x >. 令0x y ==,可得()()()000f f f =⋅,且()00f >,解得()01f =. 令y x =-,则()()()01f x f x f ⋅-==,()()1f x f x -=,()()1121f f -==. ()()()211224f f f ∴-=-⋅-=⨯=.设x y <,则0x y -<,由()()()0x y f x f y ⎡⎤--<⎣⎦,得()()f x f y >. 所以,函数()y f x =在R 上为减函数,由()()234f x f x-⋅≥,可得()()232f x x f -≥-.所以232x x -≤-,即2320x x -+≤,解得12x ≤≤. 因此,不等式()()234f x f x -⋅≥的解集为[]1,2.故选B. 【点睛】本题考查抽象函数的单调性解不等式,解题的关键就是将不等式左右两边转化为函数的两个函数值,并利用函数的单调性进行求解,考查分析问题和解决问题的能力,属于中等题.8.A解析:A 【分析】由函数的单调性列x 的不等式求解即可.由()()()12120f x f x x x -->⎡⎤⎣⎦,则函数()f x 在R 上为增函数, 由()()2211f x f m m +>--对x ∈R 恒成立,故22min 1(1)m m x --<+,即211m m --<解得12m -<<.故选:A. 【点睛】本题考查函数的单调性,考查恒成立问题,是基础题9.C解析:C 【分析】由题意可知二次函数282a y x x =-+在区间(],1-∞上为减函数,函数ay x =在区间()1,+∞上为减函数,且有92aa -≥,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】由于函数()28,12,1ax x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩为R 上的减函数,则二次函数282ay x x =-+在区间(],1-∞上为减函数,该二次函数的图象开口向上,对称轴为直线4ax =,所以,14a ≥;函数ay x =在区间()1,+∞上为减函数,则0a >,且有92a a -≥.所以,14092a a a a ⎧≥⎪⎪>⎨⎪⎪-≥⎩,解得46a ≤≤.因此,实数a 的取值范围是[]4,6. 故选:C. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,要注意分析每支函数的单调性以及分界点处函数值的大小关系,考查计算能力,属于中等题.10.D【分析】按0a >和0a <分类解不等式即可得. 【详解】[()()]0a f a f a -->,若0a >,则()()0f a f a -->,即1[2()1]0a a +--⨯-->,解得2a <,所以02a <<,若0a <,则()()0f a f a --<,即21(1)0a a ----+<,解得2a >-,所以20a -<<,综上,不等式的解为(2,0)(0,2)-.故选:D . 【点睛】本题考查解不等式,解题方法是分类讨论.掌握分类讨论的思想方法是解题关键.11.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减, ∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.12.A解析:A 【分析】根据题意,由奇函数的性质可得f (﹣2)=﹣f (2)=0,结合函数的单调性分析可得在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0,再结合函数的奇偶性可得在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合即可得答案. 【详解】根据题意,函数y=f (x )为奇函数,且f (2)=0, 则f (﹣2)=﹣f (2)=0,又由f (x )在(﹣∞,0)上单调递增,则在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0, 又由函数y=f (x )为奇函数,则在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0, 综合可得:不等式f (x )>0的解集(﹣2,0)∪(2,+∞); 故选A . 【点睛】本题考查函数单调性奇偶性的应用,关键是掌握函数的奇偶性与单调性的定义,属于基础题.二、填空题13.【分析】求出抽象函数定义域与联立求解答可得【详解】因为函数的定义域是所以又所以故答案为:【点睛】对于抽象函数定义域的求解(1)若已知函数的定义域为则复合函数的定义域由不等式求出;(2)若已知函数的定 解析:](1,2【分析】求出抽象函数()2f x 定义域与10x ->联立求解答可得 【详解】因为函数()y f x =的定义域是[]0,4,所以02402x x ≤≤⇒≤≤,又10x -> 所以12x <≤ 故答案为:](1,2 【点睛】对于抽象函数定义域的求解(1)若已知函数()f x 的定义域为[]a b ,,则复合函数(())f g x 的定义域由不等式()a g x b ≤≤求出;(2)若已知函数(())f g x 的定义域为[]a b ,,,则()f x 的定义域为()g x 在[]x a b ∈,上的值域.14.【分析】将已知等式转化为方程有解问题利用换元法和二次函数的性质列出不等式组解出整数m 的取值集合【详解】根据题意函数其定义域为R 则有若在其定义域R 内存在实数x 满足即方程在R 上有解该方程变形可得令原问题解析:{|1m m -≤≤【分析】将已知等式转化为方程有解问题,利用换元法和二次函数的性质列出不等式组,解出整数m 的取值集合. 【详解】根据题意,函数()1224234223xx x x f x m m m m +=-⋅+-=-⋅+-,其定义域为R ,则有()24223xx f x m m ---=-⋅+-,若在其定义域R 内存在实数x ,满足()()f x f x -=-,即方程()2242234223x x x x m m m m ---⋅+-=--⋅+-在R 上有解,该方程变形可得()244222260xxx x m m --+-++-=,令222x x t -+=≥,原问题转化为()222280F t t mt m =-+-=在[)2,+∞有解,则必有()20F ≤或()22(2)0244280F m m m ⎧>⎪⎪>⎨⎪∆=--≥⎪⎩,解得:1m ≤m的取值集合为{|1m m -≤≤,故答案为:{|1m m -≤≤. 【点睛】关键点点睛:本题考查方程有解问题,考查二次函数的性质,考查换元法的应用,解决本题的关键点是将定义域R 内存在实数x ,满足()()f x f x -=-,转化为方程有解问题,化简并利用换元法,结合二次函数图象和性质,列出不等式组求出参数范围,考查学生计算能力,属于中档题.15.【分析】函数是增函数可得且即可求解【详解】因为函数为上的增函数所以当时递增即当时递增即且解得∴综上可知实数的取值范围是故答案为:【点睛】易错点睛:本题考查根据分段函数的单调性求参数范围需满足分段函数 解析:(]0,2【分析】函数是增函数可得30a ->,0a >且2(3)151aa -⨯-≤-,即可求解. 【详解】因为函数()f x 为R 上的增函数,所以当1x ≤时,()f x 递增,即30a ->,当1x >时,()f x 递增,即0a >, 且2(3)151aa -⨯-≤-,解得2a ≤,∴02a <≤, 综上可知实数a 的取值范围是(]0,2. 故答案为:(]0,2. 【点睛】易错点睛:本题考查根据分段函数的单调性求参数范围,需满足分段函数每部分分别单调,还应注意在分段处的函数值大小问题,这是容易漏掉的地方.16.①②④【分析】求出函数的定义域值域判断①②根据单调性的定义判断③根据奇偶性的定义与性质判断④【详解】函数满足解得或故函数的定义域为故①正确当时当时所以函数值域为故②正确③虽然时函数单调递减当时函数单解析:①②④ 【分析】求出函数的定义域,值域判断①②,根据单调性的定义判断③,根据奇偶性的定义与性质判断④. 【详解】函数()f x =21011x x ⎧-⎪⎨+≠⎪⎩,解得10x -<或01x <,故函数的定义域为[1-,0)(0⋃,1].故①正确.当[1x ∈-,0)时(][)(]2211,(),00,1x f x x ∈+∞⇒===-∞∈⇒,当(0x ∈,1]时,(][)220,,111x x ∈∈⇒+∞⇒()[0f x ===,)+∞,所以函数值域为R ,故②正确.③虽然[1x ∈-,0)时,函数单调递减,当(0x ∈,1]时,函数单调递减,但在定义域上不是减函数,故③错误.④由于定义域为[1-,0)(0⋃,1],()11f x x x==+-,则()()f x f x -=-,()f x 是奇函数,其图象关于原点对称,故④正确.故答案为:①②④. 【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、值域、函数的定义域与对称性,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.17.2【分析】(1)取结合函数是单调函数利用复合函数的单调性求解的值即可;(2)根据的最小值为2分类讨论确定结合基本不等式进行求解即可【详解】(1)令则是增函数是减函数要使是单调函数只需综上当时时为增函解析:1- 2 【分析】(1)取1a =,结合函数是单调函数,利用复合函数的单调性求解b 的值即可;(2)根据()f x 的最小值为2,分类讨论确定0a >,0b >,结合基本不等式进行求解即可. 【详解】(1)令1a =,则()x x f x e be -=+,x y e =是增函数,x y e -=是减函数,要使()x x f x e be -=+是单调函数, 只需1b =-.综上,当1a =时,1b =-时,()xxf x e e -=-为增函数. (2)当0ab 时,()f x 为单调函数,此时函数没有最小值, 当0a <,0b <,()f x 有最大值,无最小值, 所以,若()f x 有最小值为2,则必有0a >,0b >,此时()22x x x f x ae be ae be -=+⨯,1=,即1ab =,则22a b ab +=,当1a b ==时等号成立, 即+a b 的最小值为2. 故答案为:1,1,2- 【点睛】利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).18.7【分析】根据函数的定义来研究由于函数是一对一或者多对一的对应且在B 中的元素可能没有原像故可以按函数对应的方式分类讨论可分为一对一二对一三对一三类进行讨论得答案【详解】由函数的定义知此函数可以分为三解析:7 【分析】根据函数的定义来研究,由于函数是一对一或者多对一的对应,且在B 中的元素可能没有原像,故可以按函数对应的方式分类讨论.可分为一对一,二对一,三对一三类进行讨论得答案. 【详解】由函数的定义知,此函数可以分为三类来进行研究:若函数的是三对一的对应,则值域为{}1、{}2、{}3三种情况; 若函数是二对一的对应,{}1,2、{}2,3、{}1,3三种情况; 若函数是一对一的对应,则值域为{1,2,3}共一种情况. 综上知,函数的值域的不同情况有7种.故答案为7. 【点睛】本题考查函数的概念,函数的定义,考查数学的基本思想方法,是中档题.19.【分析】由分段函数根据单调性求得在的最小值根据求出的最小值将问题转化为解不等式即可得出结果【详解】根据已知当时则当时在处取到最小值当时在处取到最小值所以在时在处取到最小值又因为可知当时在时取到最小值 解析:(,2](0,1]-∞-⋃【分析】由分段函数根据单调性求得()f x 在[0,2)x ∈的最小值,根据(2)2()f x f x +=求出[4,2)x ∈--,()f x 的最小值,将问题转化为min 1()42t f x t≥-解不等式即可得出结果. 【详解】 根据已知,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩, 则当[0,1)x ∈时,()f x 在0.5x =处取到最小值(0.5)0.25f =-, 当[1,2)x ∈时,()f x 在 1.5x =处取到最小值(1.5)1f =-, 所以()f x 在[0,2)x ∈时在 1.5x =处取到最小值(1.5)1f =-, 又因为(2)2()f x f x +=, 可知当[4,2)x ∈--时, ()f x 在 2.5x =-时取到最小值,且(1.5)2(0.5)4( 2.5)f f f =-=-, 则1( 2.5)(1.5)0.254f f -=⨯=-. 为使[4,2)x ∈--,1()42t f x t≥-恒成立, 需11424t t -≤-, 当0t >时,可整理为220t t +-≤, 解得(0,1)t ∈; 当0t <时,可整理为220t t +-≥, 解得(,2]t ∈-∞-. 故答案为(,2](0,1]-∞-⋃. 【点睛】本题考查分段函数的应用,考查函数的单调性,将恒成立问题转化为函数的最值问题是解题的关键,属于中档题.20.或【分析】由题意按照分类结合指数函数的性质可得方程即可得解【详解】当时是增函数则解得或(舍去);当时是减函数则解得或(舍去);综上或故答案为:或【点睛】关键点点睛:涉及指数函数单调性问题底数为参数时解析:12或32【分析】由题意按照1a >、01a <<分类,结合指数函数的性质可得方程,即可得解. 【详解】当1a >时,x y a =是增函数,则22a a a -=,解得32a =或0a =(舍去); 当01a <<时,xy a =是减函数,则22a a a -=,解得12a =或0a =(舍去); 综上,12或32故答案为:12或32【点睛】关键点点睛:涉及指数函数单调性问题,底数为参数时,一般都要分类讨论,分底数大于1与底数大于0小于1两种情况解决.本题考查了指数函数单调性的应用,考查了运算求解能力及分类讨论思想.三、解答题21.(1)单调递增,理由见解析;(2;(3)312a -≤≤且0a ≠.【分析】(1)根据函数单调性的定义先设120<m x x n ≤<≤,然后化简判断()()12f x f x -的正负,即可判断单调性;(2)由函数单调性可得,m n 是方程()222210a x a a x -++=的不相等的两个正数根,利用韦达定理可求出a 的范围,进而求出n m -的最大值; (3)不等式等价于211222x a a x x x-≤+≤+对1≥x 恒成立,求出1()2h x x x =+最小值和1()2g x x x=-的最大值即可解出. 【详解】 (1)设120<m x x n ≤<≤,则()()1212222121211x x f x f x a x a x a x x --=-+=, 120<m x x n ≤<≤,12120,0x x x x ∴>-<,()()12f x f x ∴<,故()f x 在[],m n 上单调递增;(2)由(1)可得0m n <<时,()f x 在[],m n 上单调递增,()f x 的定义域和值域都是[],m n ,(),()f m m f n n ∴==,则,m n 是方程2112x a a x+-=的不相等的两个正数根, 即()222210a x a a x -++=有两个不相等的正数根,则()2222122122Δ2402010a a a a a x x a x x a ⎧=+->⎪⎪+⎪+=>⎨⎪⎪=>⎪⎩,解得12a >,n m ∴-=== 1,2a ∞⎛⎫∈+ ⎪⎝⎭,32a ∴=时,n m -(3)221()2a f x a a x=+-,则不等式()22a f x x ≤对1≥x 恒成立, 即21222x a a x x -≤+-≤,即211222x a a x x x-≤+≤+对1≥x 恒成立, 令1()2h x x x=+,则()h x 在[1,)+∞单调递增,min ()(1)3h x h ∴==,令1()2g x x x=-,则()g x 在[1,)+∞单调递减,max ()(1)1g x g ∴==-, 222321a a a a ⎧+≤∴⎨+≥-⎩,解得312a -≤≤且0a ≠.【点睛】关键点睛:由函数单调性得出,m n 是方程()222210a x a a x -++=的不相等的两个正数根,利用韦达定理可求出a 的范围是解决第二问的关键,第三问不等式的恒成立问题需要分离参数求最值.22.(1)()2243f x x x =-+;(2)8m ≥或0m ≤.【分析】(1)设函数()2f x ax bx c =++(0a ≠),代入已知条件解得,,a b c ,得解析式;(2)由对称轴不在区间内可得. 【详解】(1)设函数()2f x ax bx c =++(0a ≠)∵()()139f f -==,且()03f = ∴99313a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得243a b c =⎧⎪=-⎨⎪=⎩∴()2243f x x x =-+.(2)由(1)()()2243g x x m x =-++,其对称轴为4144m mx +==+ ∵()()g x f x mx =-在[]1,3上单调函数,∴134m +≥,或114m+≤,解得:8m ≥或0m ≤. 【点睛】方法点睛:本题考查求二次函数的解析式,二次函数的单调性.二次函数解析式有三种形式:(1)一般式:2()f x ax bx c =++;(2)顶点式:2()()f x a x h m =-+;(3)交点式(两根式):12()()()f x a x x x x =--. 23.(1)最大值为37,最小值为1;(2)(][),55,-∞-+∞;(3)()22710,52,552710,5a a g a a a a a +≤-⎧⎪=--<<⎨⎪-≥⎩,()max 2g a =.【分析】(1)利用二次函数的基本性质可求得函数()f x 在区间[]5,5-上的最大值和最小值; (2)分析二次函数()y f x =图象的开口方向和对称轴,然后对函数()y f x =在区间上为增函数或减函数两种情况分类讨论,结合题意可得出关于实数a 的不等式,进而可求得实数a 的取值范围;(3)对实数a 的取值进行分类讨论,分析二次函数()f x 在区间[]5,5-上的单调性,进而可求得()g a 关于a 的表达式,并求出a 在不同取值下()g a 的取值范围,由此可得出()g a 的最大值.【详解】(1)当1a =-时,()()222211f x x x x =-+=-+.所以,函数()f x 在区间[]5,1-上为减函数,在区间[]1,5上为减函数, 当[]5,5x ∈-时,()()min 11f x f ==,()517f =,()537f -=,所以,()()max 537f x f =-=;(2)二次函数()222f x x ax =++的图象开口向上,对称轴为直线x a =-.①若函数()y f x =在区间[]5,5-上是增函数,则5a -≤-,解得5a ≥; ②若函数()y f x =在区间[]5,5-上是减函数,则5a -≥,解得5a ≤-. 综上所述,实数a 的取值范围是(][),55,-∞-+∞;(3)二次函数()222f x x ax =++的图象开口向上,对称轴为直线x a =-. ①当5a -≤-时,即当5a ≥时,函数()y f x =在区间[]5,5-上为增函数, 则()()52710g a f a =-=-,此时()23g a ≤-; ②当55a -<-<时,即当55a -<<时,函数()y f x =在区间[)5,a --上为减函数,在区间(],5a -上为增函数, 则()()22g a f a a =-=-,此时()(]2223,2g a a =-∈-;③当5a -≥时,即当5a ≤-时,函数()y f x =在区间[]5,5-上为减函数,则()()52710g a f a ==+,此时()271023g a a =+≤-.综上所述,()22710,52,552710,5a a g a a a a a +≤-⎧⎪=--<<⎨⎪-≥⎩,()max 2g a =.【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.24.(1)[]3,0-;(2)()()2617,(3)8,308,(0)a a g a a a a +<-⎧⎪=--≤≤⎨⎪>⎩;(3)(4,)-+∞.【分析】(1)函数()2h x x bx c =++是偶函数,则0b = ,由()20h -=得出答案.(2)()24428F x x a x x x ⎛⎫⎛⎫=---+ ⎪ ⎪⎝⎭⎝⎭,设4t x x =-,当[]1,2x ∈时,由(1)可知,3,0t ,即求228y t at =-+ ,在3,0t上的最小值,由对称轴和区间的位置关系进行分类讨论得出答案.(3)当()3,0a ∈-时,()28g a a =-,则22824a a at ->-++对于任意的()3,0a ∈-恒成立,即24a at +>对于任意的()3,0a ∈-恒成立,所以4a t a+<对于任意的()3,0a ∈-恒成立,从而可得出答案. 【详解】(1)函数()2h x x bx c =++是偶函数,则0b =()240h c -=+=,4c =- ,所以()24h x x =-则()244x f x x x x-==-当[]1,2x ∈时,()4f x x x=-单调递增. 所以()()()3120f f x f -==≤≤=所以当[]1,2x ∈时,函数()f x 的值域为[]3,0-(2)()22216444228F x x a x x a x x x x x ⎛⎫⎛⎫⎛⎫=+--=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 设4t x x=-,当[]1,2x ∈时,由(1)可知,3,0t228y t at =-+ ,3,0t,其对称轴方程为t a =当3a <-时,228y t at =-+在3,0t 上单调递增,则其最小值为176a + 当0a >时,228y t at =-+在3,0t上单调递减,则其最小值为8当30a -≤≤时,228y t at =-+在[]3,a -上单减,在[],0a 上单增, 所以当x a =时,则其函数的最小值为28a -+所以2617(3)()8,(30)8(0)a a g a a a a +<-⎧⎪=--≤≤⎨⎪>⎩,,(3)若不等式()224g a a at >-++对于任意的()3,0a ∈-恒成立当()3,0a ∈-时,()28g a a =-,则22824a a at ->-++对于任意的()3,0a ∈-恒成立即24a at +>对于任意的()3,0a ∈-恒成立 所以4a t a+<对于任意的()3,0a ∈-恒成立,由函数4y a a =+在()3,2--上单调递增,在()2,0-上单调递减. 所以当2x =-时,4y a a=+有最大值4- ,所以4t >- 不等式()224g a a at >-++对于任意的()3,0a ∈-恒成立,实数t 的取值范围是()4+-∞,【点睛】关键点睛:本题考查求二次函数的解析式和分类讨论求二次函数的最小值以及分离参数求差参数的范围,解答本题的关键是由二次函数的对称轴方程与区间的相对位置关系讨论求函数的最小值,和分离参数法求参数的范围,即24a at +>对于任意的()3,0a ∈-恒成立 所以4a t a+<对于任意的()3,0a ∈-恒成立,属于中档题. 25.(1)(5)4f -=-,(3f =-53(())24f f -=-;(2)1a =或2a =. 【分析】 (1)本题首先可以根据题意明确函数()f x 在各段的解析式,然后代入值进行计算即可; (2)本题可分为2a ≤-、22a -<<、2a ≥三种情况进行讨论,依次求解()3f a =,即可得出结果.【详解】(1)因为函数21,2()2,2221,2x x f x x x x x x +≤-⎧⎪=+-<<⎨⎪-≥⎩,所以()5514f -=-+=-,(((223f =+⨯=- 5531222f ⎛⎫-=-+=- ⎪⎝⎭,253339323222244f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=-+⨯-=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. (2)当2a ≤-时,(13)f a a +==,解得2a =,不合题意,舍去;当22a -<<时,2(3)2f a a a ,即()()130a a -+=,解得1a =或3a =-(舍去),故此时1a =;当2a ≥时,()213f a a =-=,即2a =,综上所述,1a =或2a =.【点睛】本题考查分段函数值的求法以及根据分段函数值求自变量,能否明确分段函数在各段的解析式是解决本题的关键,根据分段函数值求自变量时要注意求出的自变量是否在取值范围内,考查分类讨论思想,是中档题.26.(1)2()1x f x x =+;(2)证明见解析;(3)102t <<. 【分析】(1)由题意可得(0)0f =,可求出b 的值,再由1225f ⎛⎫=⎪⎝⎭可求出a 的值,从而可求出函数()f x 的解析式;(2)利用增函数的定义证明即可;(3)由于函数是奇函数,所以()2(120)f t f t -+<可化为()2()12f t t f <-,再利用单调性可求解不等式【详解】(1)解:因为()f x 是()1,1-上的奇函数,所以(0)0f =,即01b =,得0b =, 因为1225f ⎛⎫= ⎪⎝⎭,所以1221514a =+,解得1a =, 所以2()1x f x x =+ (2)证明:1x ∀,2(0,1)x ∈,且12x x <,则()()()()()()122112122222121211111x x x x x x f x f x x x x x ---=-=++++, 因为1201x x ,所以2212211210,0,(1)(1)0x x x x x x -<->++>,所以()()120f x f x -<,即()()12f x f x <所以()f x 在(0,1)上是增函数.(3)解:因为()f x 在(0,1)上是增函数,且()f x 是()1,1-上的奇函数,所以()f x 是(1,1)-上的奇函数且是增函数,所以()2(120)f t f t -+<可化为()2()12f t t f <-, 所以2211112121t t t t -<-<⎧⎪-<<⎨⎪<-⎩,解得102t <<. 【点睛】关键点点睛:此题函数的奇偶性和单调性的应用,第(3)问解题的关键是利用奇函数的性质将不等式()2(120)f t f t -+<转化为()2()12f t t f <-,进而利用单调性解不等式,考查转化思想和计算能力,属于中档题。

高一数学第一学期函数压轴(大题)练习(含答案)

高一数学第一学期函数压轴(大题)练习(含答案)

高一数学第一学期函数压轴(大题)练习(含答案)1.(本小题满分12分)已知x 满足不等式211222(log )7log 30x x ++≤,求22()log log 42x xf x =⋅的最大值与最小值及相应x 值.2.(14分)已知定义域为R 的函数2()12x xaf x -+=+是奇函数(1)求a 值;(2)判断并证明该函数在定义域R 上的单调性;(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围;3. (本小题满分10分)已知定义在区间(1,1)-上的函数2()1ax b f x x +=+为奇函数,且12()25f =. (1) 求实数a ,b 的值; (2) 用定义证明:函数()f x 在区间(1,1)-上是增函数;(3) 解关于t 的不等式(1)()0f t f t -+<.4. (14分)定义在R +上的函数f(x)对任意实数a,b +∈R ,均有f(ab)=f(a)+f(b)成立,且当x>1时,f(x)<0, (1)求f(1) (2)求证:f(x)为减函数。

(3)当f(4)= -2时,解不等式1)5()3(-≥+-f x f5.(本小题满分12分)已知定义在[1,4]上的函数f(x)=x 2-2bx+4b (b ≥1),(I)求f(x)的最小值g(b); (II)求g(b)的最大值M 。

6. (12分)设函数()log (3)(0,1)a f x x a a a =->≠且,当点(,)P x y 是函数()y f x =图象上的点时,点(2,)Q x a y --是函数()y g x =图象上的点. (1)写出函数()y g x =的解析式;(2)若当[2,3]x a a ∈++时,恒有|()()|1f x g x -…,试确定a 的取值范围; (3)把()y g x =的图象向左平移a 个单位得到()y h x =的图象,函数1()22()()()2h x h x h x F x a a a ---=-+,(0,1a a >≠且)在1[,4]4的最大值为54,求a 的值.7. (12分)设函数124()lg()3xxa f x a R ++=∈. (1)当2a =-时,求()f x 的定义域;(2)如果(,1)x ∈-∞-时,()f x 有意义,试确定a 的取值范围; (3)如果01a <<,求证:当0x ≠时,有2()(2)f x f x <.8. (本题满分14分)已知幂函数(2)(1)()()k k f x x k z -+=∈满足(2)(3)f f <。

高中数学函数压轴题

高中数学函数压轴题

高考数学函数压轴题:1. 已知函数 f (x) 1x 3 ax b(a,b3(1) 求 f (x) 的单调递增区间;2. 某造船公司年最高造船量是 20艘. 已知造船 x 艘的产值函数 R (x)=3700x + 45x 2– 10x 3(单位:万元), 成本函数为 C (x) = 460x + 5000 ( 单位:万元 ). 又在经济学中,函数 f(x) 的边际函数 Mf (x) 定义为 : Mf (x) = f (x+1) – f (x). 求 : (提示:利 润 = 产值 –成本)(1) 利润函数 P(x) 及边际利润函数 MP(x);(2) 年造船量安排多少艘时 , 可使公司造船的年利润最大(3) 边际利润函数 MP(x) 的单调递减区间 , 并说明单调递减在本题中的实际意义是什么213. 已知函数 (x) 5x 2 5x 1(x R),函数 y f (x)的图象与 ( x)的图象关于点 (0, )中心对称。

2( 1)求函数 y f(x) 的解析式;(2)如果 g 1(x) f(x),g n (x) f[g n 1(x)](n N,n 2) ,试求出使 g 2(x) 0成 立的 x 取值范围;( 3)是否存在区间 E ,使 E x f(x) 0 对于区间内的任意实数 x ,只要 n N ,且 n 2 时,都有(2)若 x [ 4,3] 时,有 f (x)10恒成立,求实数3m 的取值范围R) 在 x 2 处取得的极小值是g n(x) 0 恒成立x 1 a4.已知函数:f (x) (a R且x a) axⅠ)证明:f(x)+2+f(2a -x)=0 对定义域内的所有x 都成立.1Ⅱ)当f(x) 的定义域为[a+ ,a+1]时,求证:f(x) 的值域为[-3,-2];2Ⅲ)设函数g(x)=x 2+|(x-a)f(x)| , 求g(x) 的最小值.5. 设f (x)是定义在[0,1]上的函数,若存在x* (0,1) ,使得f (x)在[0, x*]上单调递增,在[ x* ,1]上单调递减,则称f(x)为[ 0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间. 对任意的[ 0,1]上的单峰函数f(x) ,下面研究缩短其含峰区间长度的方法.(1) 证明:对任意的x1,x2 (0,1) ,x1 x2,若f(x1) f(x2),则(0, x2)为含峰区间;若f(x1) f(x2),则( x1,1) 为含峰区间;(2)对给定的r(0 r 0.5) ,证明:存在x1,x2 (0,1) ,满足x2 x1 2r ,使得由( 1)所确定的含峰区间的长度不大于0.5 r ;6. 设关于x的方程2x2 ax 2 0的两根分别为、,函数f(x) 4x2ax1(1)证明f (x) 在区间, 上是增函数;( 2)当a 为何值时,f (x) 在区间, 上的最大值与最小值之差最小7. 甲乙两公司生产同一种新产品,经测算,对于函数f x x 8,g x x 12 ,及任意的x 0,当甲公司投入x 万元作宣传时,乙公司投入的宣传费若小于f x 万元,则乙公司有失败的危险,否则无失败的危险;当乙公司投入x 万元作宣传时,甲公司投入的宣传费若小于g x 万元,则甲公司有失败的危险,否则无失败的危险. 设甲公司投入宣传费x 万元,乙公司投入宣传费y 万元,建立如图直角坐标系,试回答以下问题:(1)请解释f 0 ,g 0 ;甲、乙两公司在均无失败危险的情况下尽可能少地投入宣传费用,问此时各应投入多少宣传费(3)若甲、乙分别在上述策略下,为确保无失败的危险,根据对方所投入的宣传费,按最少投入费用原则,投入自己的宣传费:若甲先投入a1 12万元,乙在上述策略下,投入最少费用b1;而甲根据乙的情况,调整宣传费为a2 ;同样,乙再根据甲的情况,调整宣传费为b2 , , 如此得当甲调整宣传费为a n 时,乙调整宣传费为b n ;试问是否存在lim a n,lim b n的值,若存在写出此极限值(不必证明) ,若不存在,说明理由.nn n8. 设 f (x)是定义域在[ 1, 1] 上的奇函数,且其图象上任意两点连线的斜率均小于零.(l)求证f(x)在[ 1, 1]上是减函数;(ll )如果f (x c),f (x c2)的定义域的交集为空集,求实数c的取值范围;2(lll )证明若1 c 2,则f(x c),f(x c2)存在公共的定义域,并求这个公共的空义域9. 已知函数f(x)=ax2+bx+c,其中a∈N*,b∈N,c∈Z。

函数概念与基本初等函数(选填压轴题)(原卷版)-【挑战压轴题】备战2023年高考数学高分必刷必过题

 函数概念与基本初等函数(选填压轴题)(原卷版)-【挑战压轴题】备战2023年高考数学高分必刷必过题

专题02函数概念与基本初等函数(选填压轴题)一、函数及其表示①抽象函数定义域②复合函数定义域③根式型、分式型求值域④抽象函数的值域⑤复合函数的值域⑥根据值域求参数二、函数的基本性质①单调性(复合函数的单调性)②函数的值域(复合函数的值域)③恒成立(能成立)问题④奇偶性⑤周期性⑥对称性⑦函数奇偶性+单调性+对称性联袂三、分段函数①分段函数求值域或最值②根据分段函数的单调性求参数四、函数的图象①特殊值②奇偶性③单调性④零点⑤极限联袂五、二次函数①二次函数的单调性②二次函数的值域(最值)六、指对幂函数①单调性②值域③图象④复合型七、函数与方程①函数的零点(方程的根)的个数②已知函数的零点(方程的根)的个数,求参数③分段函数的零点(根)的问题④二分法八、新定义题①高斯函数②狄利克雷函数③劳威尔不动点④黎曼函数⑤纳皮尔对数表⑥同族函数⑦康托尔三分集⑧太极图一、函数及其表示1.(2022·浙江·高三专题练习)已知函数(2)x y f =的定义域是[]1,1-,则函数3(log )f x 的定义域是()A .[]1,1-B .1,33⎡⎤⎢⎥⎣⎦C .[]1,3D .2.(2022·北京师大附中高一期末)已知函数()f x x =,()2g x ax x =-,其中0a >,若[]11,3x ∀∈,[]21,3x ∃∈,使得()()()()1212f x f x g x g x =成立,则=a ()A .32B .43C .23D .123.(2022·河南南阳·高一期末)若函数()f x 的定义域为[]0,2,则函数()()lg g x f x =的定义域为______.4.(2022·全国·高三专题练习)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.5.(2022·全国·高三专题练习)设2()lg2xf x x+=-,则2(()2x f f x +的定义域为_______.6.(2022·江西·赣州市赣县第三中学高一开学考试)函数()f x =______.7.(2022·上海·高三专题练习)函数y =_____.8.(2022·上海·模拟预测)若函数()y f x =的值域是1[,3]2,则函数1()(21)(21)F x f x f x =+++的值域是________.9.(2022·全国·高一)函数2y =的值域是________________.10.(2021·全国·高一专题练习)已知函数22y x x =+在闭区间[,]a b 上的值域为[1,3]-,则⋅a b 的最大值为________.二、函数的基本性质1.(2021·江苏·海安高级中学高一阶段练习)已知函数()()2ln 122x xf x x -=-++,则使不等式()()12f x f x +<成立的x 的取值范围是A .()(),11,-∞-+∞U B .()2,1--C .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭ D .()(),21,-∞-⋃+∞2.(2021·江苏·高一单元测试)已知函数()f x 的定义域是()0+∞,,且满足()()()f xy f x f y =+,112f ⎛⎫= ⎪⎝⎭,如果对于0x y <<,都有()()f x f y >,不等式()()32f x f x -+-≥-的解集为()A .[)(]1034-⋃,,B .112⎡⎤--⎢⎥⎣⎦,C .[)43--,D .[)10-,3.(2022·吉林·梅河口市第五中学高一期末)已知函数()22ln 1f x x x x =-+-,若实数a 满足()()121f a f a ->-,则实数a 的取值范围是()A .40,3⎛⎫ ⎪⎝⎭B .(),0∞-C .41,3⎛⎫ ⎪⎝⎭D .()40,11,3⎛⎫⎪⎝⎭4.(2022·北京·高三专题练习)已知函数()f x 的定义域为R ,当[2x ∈,4]时,224,23()2,34x x x f x x x x⎧-+⎪=⎨+<⎪⎩ ,()1g x ax =+,若对1[2x ∀∈,4],2[2x ∃∈-,1],使得21()()g x f x ,则正实数a 的取值范围为()A .(0,2]B .(0,7]2C .[2,)+∞D .7[2,)+∞5.(2022·全国·高三专题练习)已知函数2()21x x mf x +=+(01x ≤≤),函数()(1)g x m x=-(12x ≤≤).若任意的[]10,1x ∈,存在[]21,2x ∈,使得()()12f x g x =,则实数m 的取值范围为()A .51,3⎛⎤ ⎥⎝⎦B .[]2,3C .52,2⎡⎤⎢⎥⎣⎦D .55,32⎡⎤⎢⎥⎣⎦6.(多选)(2022·湖北·沙市中学高一期末)定义在R 上的函数()f x 满足()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,若任给[]12,0x =-,存在[]22,1x ∈-,使得()()21g x f x =,则实数a 的取值可以为()A .12-B .14-C .18-D .187.(2022·河北·高三阶段练习)函数()212x ax bf x -+⎛⎫= ⎪⎝⎭的最大值为2,且在1,2⎛⎤-∞ ⎥⎝⎦上单调递增,则a 的范围是______,4b a+的最小值为______.8.(2022·全国·模拟预测)已知函数()f x 的定义域()(),00,D =-∞⋃+∞,对任意的1x ,2x D ∈,都有()()()12123f x x f x f x =+-,若()f x 在()0,∞+上单调递减,且对任意的[)9,t ∈+∞,()f m >m 的取值范围是______.9.(2022·河北省唐县第一中学高一期中)设函数()()20.5log 23f x x x =--,则()f x 的单调递增区间为_________.10.(2022·山西吕梁·高一期末)已知函数2231()2--=ax x y 在区间(-1,2)上单调递增,则实数a 的取值范围是_________.11.(2022·安徽省舒城中学高一阶段练习)已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是________.12.(2022·上海·曹杨二中高一期末)已知常数0a >,函数()y f x =、()y g x =的表达式分别为()21x f x ax =+、()3ag x x =-.若对任意[]1,x a a ∈-,总存在[]2,x a a ∈-,使得()()21f x g x ≥,则a 的最大值为______.13.(2022·全国·高三专题练习)设函数()123f x ax b x=--,若对任意的正实数a 和实数b ,总存在[]01,4x ∈,使得()0f x m >,则实数m 的取值范围是______.14.(2022·上海·高三专题练习)已知t 为常数,函数22y x x t =--在区间[0,3]上的最大值为2,则t =_____________15.(2022·重庆市万州第二高级中学高二阶段练习)已知函数2()(1)ln 1f x a x ax =+++(1a <-)如果对任意12,(0,)x x ∈+∞,1212()()4|f x f x x x -≥-,则a 的取值范围为_____________.16.(2022·浙江宁波·高一期末)已知()()()e 1ln 21x af x x a -=-+-,若()0f x ≥对()12,x a ∈-+∞恒成立,则实数=a ___________.17.(2022·湖南长沙·高三阶段练习)已知函数2()f x x =,()21g x a x =-,a 为常数.若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,则实数a 的取值范围是___________.18.(2022·上海·高三专题练习)已知函数()800x x f x x x a x ⎧-<⎪=⎨⎪-≥⎩,若对任意的[)12,x ∈+∞,都存在[]22,1x ∈--,使得()()12f x f x a ⋅≥,则实数a 的取值范围为___________.19.(2022·全国·高三专题练习)设函数2()f x x ax b =++,对于任意的实数a ,b ,总存在0[0,4]x ∈,使得()f x t ≥成立,则实数t 的取值范围是________.三、分段函数1.(2022·江苏南京·三模)已知()22,0,0x x f x x x ⎧≥=⎨-<⎩,若∀x ≥1,f (x +2m )+mf (x )>0,则实数m 的取值范围是()A .(-1,+∞)B .1,4⎛⎫-+∞ ⎪⎝⎭C .(0,+∞)D .1,12⎛⎫- ⎪⎝⎭2.(2022·河南·二模(理))已知函数1,01()ln ,1x x f x x x -≤≤⎧=⎨>⎩,若()()f a f b =,且a b ¹,则()()bf a af b +的最大值为()A .0B .(3ln 2)ln 2-⋅C .1D .e3.(2022·宁夏·银川一中三模(文))已知()242,01,0x x m x f x x x x +⎧-+≤⎪=⎨+>⎪⎩的最小值为2,则m 的取值范围为()A .(],3-∞B .(],5-∞C .[)3,+∞D .[)5,+∞4.(2022·北京丰台·一模)已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是()A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞5.(2022·四川攀枝花·二模(文))已知函数()()222,1e ,1xx ax a x f x a R ax x ⎧-+≤=∈⎨->⎩,若关于x 的不等式()0f x ≥恒成立,则实数a 的取值范围为()A .[]0,1B .[]0,2C .[]1,e D .[]0,e6.(2022·浙江·高三专题练习)已知函数()22,,14,,xx a f x x x x x a ⎧<⎪=+⎨⎪-+≥⎩则当5a =时,函数()f x 有______个零点;记函数()f x 的最大值为()g a ,则()g a 的值域为______.7.(2022·北京市十一学校高三阶段练习)已知函数()2ln ,021,0x x f x kx x x ⎧>=⎨+-≤⎩,给出下列命题:(1)无论k 取何值,()f x 恒有两个零点;(2)存在实数k ,使得()f x 的值域是R ;(3)存在实数k 使得()f x 的图像上关于原点对称的点有两对;(4)当1k =时,若()f x 的图象与直线1y ax =-有且只有三个公共点,则实数a 的取值范围是()0,2.其中,所有正确命题的序号是___________.8.(2022·贵州·遵义市南白中学高一期末)已知函数1,0()lg ,0x x f x x x ⎧+<=⎨>⎩,()g x ²222x x λ=-+-,若关于x 的方程(())f g x λ=(R λ∈)恰好有6个不同的实数根,则实数λ的取值范围为_______.9.(2022·河南·鹤壁高中模拟预测(文))已知(),01e ,1x x xf x x <<⎧=⎨≥⎩,若存在210x x >>,使得()()21e f x f x =,则()12x f x ⋅的取值范围为___________.四、函数的图象1.(2022·全国·高三专题练习)已知函数2sin 62()41x x x f x π⎛⎫⋅+ ⎪⎝⎭=-,则()f x 的图象大致是()A.B .C .D .2.(2021·浙江省三门中学高三期中)已知函数()f x 的图像如图,则该函数的解析式可能是()A .ln xe x⋅B .ln xx e C .ln xx e +D .ln xe x-3.(2022·江西·景德镇一中高一期中)已知函数()f x =()A .B .C .D .4.(多选)(2022·全国·高三专题练习)函数()()2,,R ax bf x a b c x c+=∈+的图象可能为()A .B .C .D .5.(多选)(2022·福建·莆田二中高三开学考试)函数2||()x f x x a=+的大致图象可能是()A .B .C .D .6.(多选)(2021·河北省唐县第一中学高一阶段练习)已知()2xf x x a=-的图像可能是()A .B .C .D .五、二次函数1.(2022·江西景德镇·三模(理))已知二次函数()2f x ax bx c =++(其中0ac <)存在零点,且经过点()1,3和()1,3-.记M 为三个数a ,b ,c 的最大值,则M 的最小值为()A .32B .43C .54D .652.(2022·浙江·高三专题练习)设I M 表示函数()242f x x x =-+在闭区间I 上的最大值.若正实数...a 满足[][]0,,22a a a M M ≥,则正实数a 的取值范围是()A .122⎡⎤⎢⎥⎣⎦B .2⎡⎤⎣⎦C .2,2⎡⎣D .24⎡⎤+⎣⎦3.(2022·安徽·界首中学高一期末)已知函数()()212f x x mx x =++∈R ,且()y f x =在[]0,2x ∈上的最大值为12,若函数()()2g x f x ax =-有四个不同的零点,则实数a 的取值范围为()4.(2022·湖南长沙·高三阶段练习)已知函数2()f x x =,()21g x a x =-,a 为常数.若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,则实数a 的取值范围是___________.5.(2022·浙江·高三专题练习)对于函数()()y f x y g x ==,,若存在0x ,使()()00 f x g x =-,则称()()()()0000M x f x N x g x --,,,是函数()f x 与()g x 图象的一对“雷点”.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,恒有()()1f x f x +=,且当10x -<≤时,()f x x =.若()()()2120g x x a x =++-<<,函数()f x 与()g x 的图象恰好存在一对“雷点”,则实数a 的取值范围为____________________.6.(2022·江西·贵溪市实验中学高二期末)函数21()43f x ax ax =++的定义域为(,)-∞+∞,则实数a 的取值范围是___________.7.(2022·湖北·一模)若函数()f x 的定义域为R ,对任意的12,x x ,当12x x D -∈时,都有()()12f x f x D -∈,则称函数f (x )是关于D 关联的.已知函数()f x 是关于{4}关联的,且当[)4,0x ∈-时,()26f x x x =+.则:①当[)0,4x ∈时,函数()f x 的值域为___________;②不等式()03f x <<的解集为___________.六、指对幂函数1.(2022·山西·太原五中高三阶段练习(理))正实数,,a b c 满足422,33,log 4a b a b c c -+=+=+=,则实数,,a b c 之间的大小关系为()A .b a c <<B .a b c <<C .a c d<<D .b c a <<2.(2022·山东·模拟预测)若282log 323log +=⋅+a b a b ,则()A .12b a b<<B .2<<+b a b C .23b a b<<D .1132b a b<<3.(2022·广东·模拟预测)已知()222022log f x x x =+,且()60.20.2log 11,lg ,4102022a f b f c f -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 之间的大小关系是__________.(用“<”连接)4.(2022·上海·华东师范大学附属东昌中学高三阶段练习)若关于x 的不等式()14log 321x x λ+⋅≤对任意的[)0,x ∈+∞恒成立,则实数λ的取值范围是______.5.(2022·云南·曲靖一中高二期中)函数()21949192120212049x f x x x x=--+,[]1949,2022α∃∈,对[],2049m β∀∈,()()f f αβ<都成立,则m 的取值范围(用区间表示)是_______6.(2022·江西宜春·模拟预测(文))若1,22x ⎡⎤∀∈⎢⎥⎣⎦,不等式2122log 0x x x ax -+<恒成立,则实数a 的取值范围为___________.7.(2022·天津·二模)已知()4log 41log x y +=+2x y +的最小值为__________.8.(2022·陕西·榆林市第十中学高二期中(文))要使函数124x x y a =++⋅在(],1x ∈-∞时恒大于0,则实数a 的取值范围是______.七、函数与方程1.(2022·天津·南开中学模拟预测)已知函数()2221,12810,1x x x f x x x x ⎧++≤=⎨-+>⎩,若函数()()1g x f x x a =+--恰有两个零点则实数a 的取值范围是()A .()723,4,48∞⎛⎫⋃+ ⎪⎝⎭B .23,48⎛⎫ ⎪⎝⎭C .23,8∞⎛⎫+ ⎪⎝⎭D .7,4⎛⎫+∞ ⎪⎝⎭2.(2022·安徽·蚌埠二中模拟预测(理))已知1120xx +=,222log 0x x +=,3233log 0x x --=,则()A .123x x x <<B .213x x x <<C .132x x x <<D .231x x x <<3.(2022·甘肃·临泽县第一中学高二期中(文))若函数2()(1)1x f x m x x =--+在区间(1,1)-上有2个零点()1212,x x x x <,则21e xx +的取值范围是()A .(1,e 1)-B .(2,e 1)+C .(1,)+∞D .(e 1,)-+∞4.(2022·山西·太原五中高三阶段练习(理))正实数,,a b c 满足422,33,log 4a b a b c c -+=+=+=,则实数,,a b c 之间的大小关系为()A .b a c <<B .a b c <<C .a c d<<D .b c a<<5.(2022·全国·模拟预测)已知函数()()22,22cos π,24xx f x x x ⎧-≤⎪=⎨<≤⎪⎩,实数123,,x x x ,4x 是函数()y f x m =-的零点,若1234x x x <<<,则132314242222x x x x x x x x +++++++的取值范围为()A .[)16,20B .()C .[)64,80D .()6.(2022·浙江·效实中学模拟预测)已知函数()2222x xf x --=+,对任意的实数a ,b ,c ,关于x 的方程()()20a f x bf x c ++=⎡⎤⎣⎦的解集不可能是()A .{}1,3B .{}1,2,3C .{}0,2,4D .{}1,2,3,47.(2022·陕西·模拟预测(理))已知1x 是方程32x x ⋅=的根,2x 是方程3log 2x x ⋅=的根,则12x x ⋅的值为()A .2B .3C .6D .108.(2022·福建南平·三模)已知函数()2e 9e 42x a a xf x x x --=++--有零点,则实数=a ___________.9.(2022·内蒙古呼和浩特·二模(文))若2log 3x x ⋅=,23y y ⋅=,ln 3z z ⋅=,则x 、y 、z 由小到大的顺序是___________.八、新定义题1.(2022·广东·梅州市梅江区梅州中学高一阶段练习)设x ∈R ,用[x ]表示不超过x 的最大整数,则[]y x =称为高斯函数.例如:[][]3, 5.1π=-6=-.已知函数()221xf x x =+,则函数()]y f x ⎡=⎣的值域为()A .{0,1-}B .{1-,1}C .{0,1}D .{1-,0,1}2.(2022·广东·华南师大附中高一期中)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]0.51-=-,[]1.51=,已知函数()()2134142f x x x x =-+<<,则函数()y f x ⎡⎤=⎣⎦的值域为()A .13,22⎡⎫⎪⎢⎣⎭B .{}1,0,1-C .{}1,0,1,2-D .{}0,1,23.(2022·上海民办南模中学高三阶段练习)德国数学家狄利克雷是解析数论的创始人之一,以其名命名狄利克雷函数的解析式为()0,1,x Qf x x Q ∉⎧=⎨∈⎩,关于狄利克雷函数()f x ,下列说法不正确的是().A .对任意x ∈R ,()()1f f x =B .函数()f x 是偶函数C .任意一个非零实数T 都是()f x 的周期D .存在三个点()()11,A x f x 、()()22,B x f x 、()()33,C x f x ,使得ABC 为正三角形4.(2022·新疆·一模(理))德国著名数学家狄利克雷在数学领域成就显著,是解析数论的创始人之一.以其命名的函数()1,0,x f x x ⎧=⎨⎩为有理数为无理数,称为狄利克雷函数,则关于函数()f x ,下列说法正确的是()A .()f x 的定义域为{}0,1B .()f x 的值域为[]0,1C .x R ∃∈,()()0f f x =D .任意一个非零有理数T ,()()f x T f x +=对任意x ∈R 恒成立5.(2022·河南·鹤壁高中模拟预测(文))黎曼函数是一个特殊的函数,由德国数学家波恩哈德·黎曼发现并提出,在高等数学中有着广泛的应用.黎曼函数定义在[]0,1上,其解析式为:()[]1,,,0,0,10,1q q x p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩当都是正整数是既约真分数当或上的无理数.若函数()f x 是定义在实数集上的偶函数,且对任意x 都有()()20f x f x ++=,当[]0,1x ∈时,()()f x R x =,则()2022ln 20225f f ⎛⎫--= ⎪⎝⎭()A .15B .25C .25-D .15-6.(2022·吉林长春·模拟预测(文))纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大的贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是()1T ℃,空气的温度是()0T ℃,经过t 分钟后物体的温度T (℃)可由公式1034log T T t T T -=-得出,如温度为90℃的物体,放在空气中冷却约5分钟后,物体的温度是30℃,若根据对数尺可以查询出3log 20.6309=,则空气温度约是()A .5℃B .10℃C .15℃D .20℃7.(2022.安徽.淮南第二中学高二阶段练习)纳皮尔在他的《奇妙的对数表》一书中说过:没有什么比大数的运算更让数学工作者头痛,更阻碍了天文学的发展.许凯和斯蒂菲尔这两个数学家都想到了构造了如下一个双数列模型的方法处理大数运算.012345678910124816326412825651210241112...19202122232425 (2048)4096…52428810485762097152419430483886081677721633554432…如5121024⨯,我们发现512是9个2相乘,1024是10个2相乘.这两者的积,其实就是2的个数做一个加法.所以只需要计算91019+=.那么接下来找到19对应的数524288,这就是结果了.若()4log 202112261314520x =⨯,则x 落在区间()A .()1516,B .()22,23C .()42,44D .()44,468.(2022·内蒙古·赤峰红旗中学松山分校高一期末(文))纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大的贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是1T (℃),空气的温度是0T (℃),经过t 分钟后物体的温度T (℃)可由公式3104log T T t T T -=-得出,如温度为90℃的物体,放在空气中冷却2.5236分钟后,物体的温度是50℃,若根据对数尺可以查询出3log 20.6309=,则空气温度是()A .5℃B .10℃C .15℃D .20℃9.(2022·山西·朔州市平鲁区李林中学高一阶段练习)16、17世纪,随着社会各领域的科学知识迅速发展,庞大的数学计算需求对数学运算提出了更高要求,改进计算方法,提高计算速度和准确度成了当务之急.苏格兰数学家纳皮尔发明了对数,是简化大数运算的有效工具,恩格斯曾把纳皮尔的对数称为十七世纪的三大数学发明之一.已知ln 20.6931≈,ln 3 1.0986≈,设536N =,则N 所在的区间为(e 2.71828= 是自然对数的底数)()A .()1718,e eB .()1819,e eC .()1920,e eD .()2122,e e10.(2022·新疆石河子一中高三阶段练习(理))16、17世纪之交,苏格兰数学家纳皮尔发明了对数,在此基础上,布里格斯制作了第一个常用对数表,在科学技术中,还常使用以无理数e 为底数的自然对数,其中e 2.71828=⋅⋅⋅称之为“欧拉数”,也称之为“纳皮尔数”对数)x1.3102 3.190 3.797 4.71557.397ln x0.27000.69311.1600 1.33421.550 1.60942.001A .3.797B .4.715C .5D .7.39711.(2022·福建泉州·模拟预测)1883年,德国数学家康托提出了三分康托集,亦称康托尔集.下图是其构造过程的图示,其详细构造过程可用文字描述为:第一步,把闭区间[0,1]平均分成一段,去掉中间的一段,剩下两个闭区间10,3⎡⎤⎢⎥⎣⎦和2,13⎡⎤⎢⎥⎣⎦;第二步,将剩下的两个闭区间分别平均分为二段,各自去掉中间的一段,剩下四段闭区间:10,9⎡⎤⎢⎥⎣⎦,21,93⎡⎤⎢⎥⎣⎦,27,39⎡⎤⎢⎥⎣⎦,8,19⎡⎤⎢⎥⎣⎦;如此不断的构造下去,最后剩下的各个区间段就构成了二分康托集.若经历n 步构造后,20212022不属于剩下的闭区间,则n 的最小值是()A .7B .8C .9D .1012.(2022·全国·高三专题练习)广为人知的太极图,其形状如阴阳两鱼互纠在一起,因而被习称为“阴阳鱼太极图”如图是放在平面直角坐标系中的“太极图”整个图形是一个圆形区域224x y +≤.其中黑色阴影区域在y 轴左侧部分的边界为一个半圆.已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则当224x y +≤时,下列不等式能表示图中阴影部分的是()A .()22(sgn())10x x y x +--≤B .()22(sgn())10y x y y -+-≤C .()22(sgn())10x x y x +--≥D .()22(sgn())10y x y y -+-≥13.(多选)(2022·安徽·高一期中)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,设x ∈R ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如:[][]1.61, 2.13=-=-,设函数()[]1f x x x =+-,则下列关于函数()f x 叙述正确的是()A .()f x 为奇函数B .()1f x =⎡⎤⎣⎦C .()f x 在()01,上单调递增D .()f x 有最大值无最小值14.(多选)(2022·贵州贵阳·高一期末)历史上第一个给出函数一般定义的是19世纪数学家秋利克需(Dirichlet ),他是最早倡导严格化方法的数学家之一,狄利克雷在1829年给出了著名的狄利克雷函数:1,()0,x Qf x x Q ∈⎧=⎨∉⎩(Q 是有理数集),狄利克雷函数的出现表示数学家们对数学的理解发生了深刻的变化,从研究“算”转变到了研究“概念、性质、结构”.一般地,广文的秋利克雷函数可以定义为:,,(),,a x Q D x b x Q ∈⎧=⎨∉⎩(其中,a b ∈R ,且a b ¹).以下对()D x 说法正确的有()A .()D x 的定义域为RB .()D x 是非奇非偶函数C .()D x 在实数集的任何区间上都不具有单调性D .任意非零有理数均是()D x 的周期15.(多选)(2022·吉林·农安县教师进修学校高一期末)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可以应用到有限维空间并构成了一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L .E .J .Brouwer ),简单地讲就是对于满足一定条件的连续函数()f x ,如果存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点函数”,下列为“不动点函数”的是()A .()sin f x x x=+B .()23f x x x =--C .()221,12,1x x f x x x ⎧-≤⎪=⎨->⎪⎩D .()1f x x x=-16.(多选)(2021·吉林油田高级中学高一期中)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer ),简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是()A .()2xf x x=+B .()23f x x x =--C .()x f x x=-D .()ln 1f x x =+17.(多选)(2022·山东·广饶一中高一开学考试)中国传统文化中很多内容体现了数学的“对称美”,如图所示的太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美,定义:圆O 的圆心在原点,若函数的图像将圆O 的周长和面积同时等分成两部分,则这个函数称为圆O 的一个“太极函数”,则()A .对于圆O ,其“太极函数”有1个B .函数()()()2200x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩是圆O 的一个“太极函数”C .函数()33f x x x =-不是圆O 的“太极函数”D .函数())lnf x x =是圆O 的一个“太极函数”18.(2022·山东·德州市教育科学研究院二模)十九世纪下半叶集合论的创立,奠定了现代数学的基础,著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第1次操作;再将剩下的两个区间10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第2次操作...;每次操作都在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段:操作过程不断地进行下去,剩下的区间集合即是“康托三分集”,第三次操作后,依次从左到右第三个区间为___________,若使前n 次操作去掉的所有区间长度之和不小于2627,则需要操作的次数n 的最小值为____________.(lg 20.30=,lg 30.47=)19.(2022·江苏常州·高一期末)德国数学家康托(Cantor )创立的集合论奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的产物,具有典型的分形特征,其构造的操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第1次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第2次操作;以此类推,每次在上一次操作的基础上,将剩下的各个区间分别均分为3段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的元素构成的集合为“康托三分集”.定义区间(,)a b 长度为b a -,则构造“康托三分集”的第n 次操作去掉的各区间的长度之和为______,若第n 次操作去掉的各区间的长度之和小于1100,则n 的最小值为______.(参考数据:lg 20.3010=,lg30.4771=)20.(2022·浙江·乐清市知临中学高二期中)黎曼函数(Riemannfunction )是一个特殊函数,由德国数学家黎曼发现并提出,黎曼函数定义在[]0,1上,其定义为()[]1,,,0,0,10,1q qx p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩当都是正整数是不可以再约分的真分数或者上的无理数,则1R π⎛⎫= ⎪⎝⎭________.21.(2022·河南新乡·三模(理))黎曼函数是一个特殊的函数,由德国数学家波恩哈德·黎曼发现并提出,在高等数学中有着广泛的应用.黎曼函数定义在[]0,1上,其解析式如下:()[]1,,,0,0,10,1.q q x p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩都是正整数,是既约真分数或上的无理数若函数()f x 是定义在R 上的奇函数,且对任意x 都有()()220f x f x ++-=,当[]0,1x ∈时,()()f x R x =,则()202220225f f ⎛⎫+-= ⎪⎝⎭___________.22.(2021·全国·高一单元测试)黎曼函数是一个特殊的函数,由德国著名的数学家波恩哈德·黎曼发现提出,在高等数学中有着广泛的应用.黎曼函数定义在[0,1]上,其定义为:()1,(,00,101q q x p q p p p R x x ⎧=⎪=⎨⎪=⎩都是正整数,是既约真分数),或(,)上的无理数,若函数()f x 是定义在R 上的奇函数,且对任意x 都有()()20f x f x +=-,当[0,1]x ∈时,()()f x R x =,则()18lg 305f f ⎛⎫+= ⎪⎝⎭________.23.(2021·湖北·荆门市龙泉中学高一阶段练习)解析式相同,定义域不同的两个函数称为“同族函数”.对于函数21y x =+,值域为{1,2,4}的“同族函数”的个数为______个.24.(2022·江苏省苏州实验中学高二阶段练习)十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,),33记为第一次操作;再将剩下的两个区间120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于9,10则需要操作的次数n 的最小值为____.(参考数据:lg 2=0.3010,lg 3=0.4771)25.(2022·四川省南充高级中学高三阶段练习(文))太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,设圆22:1O x y +=,则下列说法中正确的序号是______.①函数()3f x x =是圆O 的一个太极函数;②圆O 的所有非常数函数的太极函数都不能为偶函数;③函数()sin f x x =是圆O 的一个太极函数;④函数()f x 的图象关于原点对称是()f x 为圆O 的太极函数的充要条件.26.(2022·广东·惠来县第一中学高一阶段练习)布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续实函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点"函数,而称0x 为该函数的一个不动点.现新定义:若0x 满足()00f x x =-,则称0x 为()f x 的次不动点.(1)判断函数()22f x x =-是否是“不动点”函数,若是,求出其不动点;若不是,请说明理由(2)已知函数()112g x x =+,若a 是()g x 的次不动点,求实数a 的值:(3)若函数()()12log 42x xh x b =-⋅在[]0,1上仅有一个不动点和一个次不动点,求实数b 的取值范围.。

高中数学函数压轴题

高中数学函数压轴题

高中数学函数压轴题(精制)(总28页)--本页仅作为文档封面,使用时请直接删除即可--高考数学函数压轴题:1. 已知函数31()(,)3f x x ax b a b R =++∈在2x =处取得的极小值是43-. (1)求()f x 的单调递增区间;(2)若[4,3]x ∈-时,有210()3f x m m ≤++恒成立,求实数m 的取值范围.2. 某造船公司年最高造船量是20艘. 已知造船x 艘的产值函数R (x)=3700x + 45x 2 – 10x 3(单位:万元), 成本函数为C (x) = 460x + 5000 (单位:万元). 又在经济学中,函数f(x)的边际函数Mf (x)定义为: Mf (x) = f (x+1) – f (x). 求:(提示:利润 = 产值 – 成本)(1) 利润函数P(x) 及边际利润函数MP(x);(2) 年造船量安排多少艘时, 可使公司造船的年利润最大?(3) 边际利润函数MP(x)的单调递减区间, 并说明单调递减在本题中的实际意义是什么?3. 已知函数155)(2++=x x x ϕ)(R x ∈,函数)(x f y =的图象与)(x ϕ的图象关于点)21,0(中心对称。

(1)求函数)(x f y =的解析式;(2)如果)()(1x f x g =,)2,)](([)(1≥∈=-n N n x g f x g n n ,试求出使0)(2<x g 成立的x 取值范围;(3)是否存在区间E ,使{}Φ=<⋂0)(x f x E 对于区间内的任意实数x ,只要N n ∈,且2≥n 时,都有0)(<x g n 恒成立?4.已知函数:)(1)(a x R a xa a x x f ≠∈--+=且 (Ⅰ)证明:f(x)+2+f(2a -x)=0对定义域内的所有x 都成立.(Ⅱ)当f(x)的定义域为[a+21,a+1]时,求证:f(x)的值域为[-3,-2]; (Ⅲ)设函数g(x)=x 2+|(x -a)f(x)| ,求g(x) 的最小值 .5. 设()f x 是定义在]1,0[上的函数,若存在*x )1,0(∈,使得()f x 在],0[*x 上单调递增,在]1,[*x 上单调递减,则称()f x 为]1,0[上的单峰函数,*x 为峰点,包含峰点的区间为含峰区间. 对任意的]1,0[上的单峰函数()f x ,下面研究缩短其含峰区间长度的方法.(1)证明:对任意的21,x x )1,0(∈,21x x <,若)()(21x f x f ≥,则),0(2x 为含峰区间;若)()(21x f x f ≤,则)1,(1x 为含峰区间;(2)对给定的)5.00(<<r r ,证明:存在21,x x )1,0(∈,满足r x x 212≥-,使得由(1)所确定的含峰区间的长度不大于r +5.0;6. 设关于x 的方程0222=--ax x 的两根分别为α、β()βα<,函数14)(2+-=x a x x f (1)证明)(x f 在区间()βα,上是增函数;(2)当a 为何值时,)(x f 在区间[]βα,上的最大值与最小值之差最小7. 甲乙两公司生产同一种新产品,经测算,对于函数()8+=x x f ,()12+=x x g ,及任意的0≥x ,当甲公司投入x 万元作宣传时,乙公司投入的宣传费若小于()x f 万元,则乙公司有失败的危险,否则无失败的危险;当乙公司投入x 万元作宣传时,甲公司投入的宣传费若小于()x g 万元,则甲公司有失败的危险,否则无失败的危险. 设甲公司投入宣传费x 万元,乙公司投入宣传费y 万元,建立如图直角坐标系,试回答以下问题:(1)请解释()()0,0g f ;(2)甲、乙两公司在均无失败危险的情况下尽可能少地投入宣传费用,问此时各应投入多少宣传费?(3)若甲、乙分别在上述策略下,为确保无失败的危险,根据对方所投入的宣传费,按最少投入费用原则,投入自己的宣传费:若甲先投入121=a 万元,乙在上述策略下,投入最少费用1b ;而甲根据乙的情况,调整宣传费为2a ;同样,乙再根据甲的情况,调整宣传费为2b ,, 如此得当甲调整宣传费为n a 时,乙调整宣传费为n b ;试问是否存在lim n n a →∞,n n b ∞→lim 的值,若存在写出此极限值(不必证明),若不存在,说明理由.8. 设)(x f 是定义域在]1,1[-上的奇函数,且其图象上任意两点连线的斜率均小于零.(l )求证)(x f 在]1,1[-上是减函数;(ll )如果)(c x f -,)(2c x f -的定义域的交集为空集,求实数c 的取值范围;(lll )证明若21≤≤-c ,则)(c x f -,)(2c x f -存在公共的定义域,并求这个公共的空义域.9. 已知函数f (x )=ax 2+bx +c ,其中a ∈N *,b ∈N ,c ∈Z 。

2023-2024学年高考数学专项复习——压轴题(附答案)

2023-2024学年高考数学专项复习——压轴题(附答案)

决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。

(word完整版)必修一函数压轴题

(word完整版)必修一函数压轴题

函数压轴题 一、函数的性质1.已知函数)1()(xx e e x x f -=,若f (x 1)<f (x 2),则( ) A .x 1>x 2 B .x 1+x 2=0 C .x 1<x 2 D .2221x x <2。

f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,若f (x )+f (x -8)≤2,则x 的取值范围为________.3。

要使函数22)(-+=x kx x f 与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是________.4.已知函数f (x )是(-∞,+∞)上的奇函数,且f (x )的图象关于x =1对称,当x ∈[0,1]时,f (x )=2x -1,①求证:f (x )是周期函数;②当x ∈[1,2]时,求f (x )的解析式;③计算f (0)+f (1)+f (2)+…+f (2 017)的值.5.已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且g (x )=f (x -1),则f (2 013)+f (2 015)的值为( )A .-1B .1C .0D .无法计算6.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2 014).7.奇函数f (x )的定义域为R ,若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( )A .-2B .-1C .0D .18。

若函数)1ln()(2++=x x x x f 为偶函数,则a =________. 9.若函数))(12()(a x x xx f -+=为奇函数,则a =________10.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为( )A .4B .-4C .6D .-611.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足)1(2)(log )(log 212f a f a f ≤+,则a 的取值范围是( )A .[1,2]B 。

压轴题03 三角函数压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题03 三角函数压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题03三角函数压轴题题型/考向一:三角函数的图像与性质题型/考向二:三角恒等变换题型/考向三:三角函数综合应用一、三角函数的图像与性质热点一三角函数图象的变换1.沿x轴平移:由y=f(x)变为y=f(x+φ)时,“左加右减”,即φ>0,左移;φ<0,右移.沿y轴平移:由y=f(x)变为y=f(x)+k时,“上加下减”,即k>0,上移;k<0,下移.2.沿x轴伸缩:若ω>0,A>0,由y=f(x)变为y=f(ωx)时,点的纵坐标不变,横坐标变为原来的1ω倍.沿y轴伸缩:由y=f(x)变为y=Af(x)时,点的横坐标不变,纵坐标变为原来的A 倍.热点二三角函数的图象与解析式已知图象求函数y =A sin(ωx +φ)+B (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A ,B ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.热点三三角函数的性质1.单调性:由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )可得单调递增区间;由π2+2k π≤ωx+φ≤3π2+2k π(k ∈Z )可得单调递减区间.2.对称性:由ωx +φ=k π(k ∈Z )可得对称中心;由ωx +φ=k π+π2(k ∈Z )可得对称轴.3.奇偶性:φ=k π(k ∈Z )时,函数y =A sin(ωx +φ)为奇函数;φ=k π+π2(k ∈Z )时,函数y =A sin(ωx +φ)为偶函数.二、三角恒等变换热点一化简与求值(角)1.同角三角函数的基本关系:sin 2α+cos 2α=1,sin αcos α=tan ≠π2+k π,k ∈2.诱导公式的记忆口诀:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.3.熟记三角函数公式的两类变形:(1)和差角公式的变形;(2)倍角公式的变形.热点二三角函数恒等式的证明三角恒等式常从复杂一边向简单的一边转化,或者两边同时推出一个相同式子,有时要证等式先进行等价交换,进而证明其等价命题.○热○点○题○型一三角函数的图像与性质一、单选题1.将函数()sin cos f x x x =-的图象向左平移7π12个单位长度,得到函数()y g x =的图象,关于函数()y g x =的下列说法中错误的是()A .周期是2πB .非奇非偶函数C .图象关于点5π,03⎛⎫⎪⎝⎭中心对称D .在π0,2⎛⎫⎪⎝⎭内单调递增【答案】D【详解】()πsin cos 2sin 4f x x x x ⎛⎫=-=-⎪⎝⎭,则()7πππ2sin 2sin 1243g x x x ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭,则2πT =,故A 正确;因为()π2sin 3g x x ⎛⎫-=-+ ⎪⎝⎭,则()()()(),g x g x g x g x -≠-≠-,故函数()g x 是非奇非偶函数,故B 正确;2.数学与音乐有着紧密的关联,我们平时听到的乐音一般来说并不是纯音,而是由多种波叠加而成的复合音.如图为某段乐音的图象,则该段乐音对应的函数解析式可以为()A .11sin sin 2sin 323=++y x x xB .11sin 2sin 323y x x x=--C .11sin cos 2cos323y x x x=++D .11cos cos 2cos323y x x x=++3移()0ϕϕ>个单位长度,再向下平移1个单位长度得到函数()g x 的图象.若对于任意的1π0,4x ⎡⎤∈⎢⎥⎣⎦,总存在2π,04x ⎡⎤∈-⎢⎥⎣⎦,使得()()12f x g x =,则ϕ的值可能是()A .π6B .5π24C .π4D .2π3A.B.C .D .5.已知函数()()2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则满足()()5π605π12f x f f x f ⎛⎫- ⎪⎝⎭>⎛⎫- ⎪⎝⎭的正整数x 的最小值为()A .1B .2C .3D .4二、多选题6.已知函数2π()cos (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在ππ,2⎡⎤-⎢⎥⎣⎦上单调,且曲线()y f x =关于点π,03⎛⎫- ⎪⎝⎭对称,则()A .()f x 以2π为周期B .()f x 的图象关于直线2π3x =对称C .将()f x 的图象向右平移π3个单位长度后对应的函数为偶函数D .函数9()10y f x =+在[0,π]上有两个零点故选:BD.7.已知函数()()()sin 0,0π,f x A x b A b ωϕϕ=++><<∈R 的部分图像如图,则()A .5πb ωϕ=B .π23f ⎛⎫= ⎪⎝⎭C .将曲线()y f x =向右平移π9个单位长度得到曲线4cos 32y x =-+D .点11π,218⎛⎫-⎪⎝⎭为曲线()y f x =的一个对称中心8.已知函数()f x 的定义域为()1,1-,对任意的(),1,1x y ∈-,都有()()1f x f y f xy ⎛⎫--= ⎪-⎝⎭,且112f ⎛⎫= ⎪⎝⎭,当()0,1x ∈时,()0f x >,则()A .()f x 是偶函数B .()00f =C .当A ,B 是锐角ABC 的内角时,()()cos sin f B f A <D .当0n x >,且21112n n n x x x ++=,112x =时,()12n n f x -=【答案】BCD【详解】令0x y ==,得()00f =,故B 正确;9.已知某游乐场循环观光车路线近似为一个半径为1km 的圆,观光车从起始站点P 出发,沿图中顺时针方向行驶,记观光者从某次出发开始,行驶的时间为t 小时.A ,B 是沿途两个站点,C 是终点站,D 是该游乐场的观景点之一.已知该观光车绕行一圈的时间是固定的,且π,,6BOA OA OC OA OD ∠=⊥⊥.若要求起始站点P 无论位于站台B ,C 之间的任何位置(异于B ,C ),观光车在ππ,124t ⎛⎫∈ ⎪⎝⎭的时间内,都要至少经过两次终点站C ,则下列说法正确的是()A .该观光车绕行一周的时间小于π6B .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内不一定会经过终点站C C .该观光车的行驶速度一定大于52km /h3D .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内一定会经过一次观景点Ds t 于平衡位置的高度()cm h 可以田ππ2sin 24h t ⎛⎫=+ ⎪⎝⎭确定,则下列说法正确的是()A .小球运动的最高点与最低点的距离为2cmB .小球经过4s 往复运动一次C .()3,5t ∈时小球是自下往上运动D .当 6.5t =时,小球到达最低点【答案】BD【详解】小球运动的最高点与最低点的距离为()224cm --=,所以选项A 错误;因为2π4π2=,所以小球经过4s 往复运动一次,因此选项B 正确;当()3,5t ∈时,ππ7π11π,2444t ⎛⎫+∈ ⎪⎝⎭,所以是自下往上到最高点,再往下运动,因此选项C 错误;当 6.5t =时,ππ2sin 6.5224h ⎛⎫=⨯+=- ⎪⎝⎭,所以选项D 正确,故选:BD○热○点○题○型二三角恒等变换一、单选题1.已知π0,2α⎛⎫∈ ⎪⎝⎭,cos 22sin 21αα+=,则sin α=()A .15B 5C .45D 25【答案】D【详解】π0,2α⎛⎫∈ ⎪⎝⎭,cos 0,sin 0αα∴>>22cos 22sin 2cos sin 4sin cos 1αααααα+=-+= ①,又22sin cos 1αα+=②,由①②得25sin 5α=.故选:D.23,5,…,记BAC α∠=,DAC β∠=,则()cos αβ+=()A 24-B 36C 36D 24+【答案】B⎝⎭A.-B.C.9D.9 94.人脸识别技术应用在各行各业,改变着人类的生活,而所谓人脸识别,就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别人脸对象的身份.在人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用的测量距离的方式有曼哈顿距离和余弦距离.假设二维空间中有两个点()()1122,,,A x y B x y ,O 为坐标原点,余弦相似度similarity 为向量,OA OB夹角的余弦值,记作()cos ,A B ,余弦距离为()1cos ,A B -.已知()sin ,cos P αα,()sin ,cos Q ββ,()sin ,cos R αα-,若P ,Q 的余弦距离为13,Q ,R 的余弦距离为12,则tan tan αβ⋅=()A .7B .17C .4D .145.已知函数()()*sin cos n n n f x x x n =+∈N ,函数()4324y f x =-在3π0,8⎡⎤⎢⎥⎣⎦上的零点的个数为()A .2B .3C .4D .56.已知函数())2sin 02f x x x ωω⎛⎫=-> ⎪⎝⎭的图像如图所示,则ω的值为()A .13B .43C .16D .76二、多选题7.已知函数2()sin cos f x x x x =-+,则下列说法正确的是()A .π()sin(2)3f x x =-B .函数()f x 的最小正周期为πC .函数()f x 的对称轴方程为()5ππZ 12x k k =+∈D .函数()f x 的图象可由sin 2y x =的图象向右平移π6个单位长度得到【答案】ABD中所示的建筑对应的黄金三角形,它的底角正好是顶角的两倍,且它的底与腰之比为黄金分割比(黄金分割比=).在顶角为BAC ∠的黄金ABC 中,D 为BC 边上的中点,则()A .cos 342AD AC︒=B .cos 27sin 27cos 27sin 27AD CD ︒+︒=︒-︒C .AB在ACACD .cos BAC ∠是方程324231x x x +-=的一个实根则AB在AC 上的投影向量为设cos x θ=,则()()222212121x x x x x -=--+-,整理得324231x x x +-=,D 正确.故选:ABD9.已知()cos 4cos 3f θθθ=+,且1θ,2θ,3θ是()f θ在()0,π内的三个不同零点,则()A .{}123π,,7∈θθθB .123π++=θθθC .1231cos cos cos 8θθθ=-D .1231cos cos cos 2θθθ++=民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中2π3COD ∠=,33OC OA ==,动点P 在 CD 上(含端点),连结OP 交扇形OAB 的弧 AB 于点Q ,且OQ xOC yOD =+,则下列说法正确的是()A .若y x =,则23x y +=B .若2y x =,则0OA OP ⋅=C .2AB PQ ⋅≥-D .112PA PB ⋅≥则13(1,0),(3,0),(,),(22A C B D --设()2πcos ,sin ,0,3Q θθθ⎡⎤∈⎢⎥⎣⎦,则由OQ xOC yOD =+ 可得cos θ=○热○点○题○型三三角函数综合应用1.已知函数2()cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)求函数()f x 在区间5ππ[,]126-的值域;2.已知2,1,cos ,cos 2m x n x x ⎛⎫=-=+ ⎪⎝⎭,设函数()f x m n =⋅.(1)当π5π,1212x ⎡⎤∈-⎢⎥⎣⎦时,分别求函数()f x 取得最大值和最小值时x 的值;(2)设ABC 的内角,,A B C 的对应边分别是,,,a b c 且a =,6,12A b f ⎛⎫==- ⎪⎝⎭,求c 的值.3.已知函数()()21cos cos 02f x x x x ωωωω=+->.(1)若1ω=,求函数()f x 的最小正周期;(2)若()y f x =图象在0,4π⎛⎫ ⎪⎝⎭内有且仅有一条对称轴,求8f π⎛⎫⎪⎝⎭的取值范围.4.已知函数()()2sin f x x ωϕ=+(0ω>,2ϕ<)的部分图象如图所示.(1)求()f x 的解析式,并求()f x 的单调递增区间;(2)若对任意π,3x t ⎡⎤∈⎢⎥⎣⎦,都有()π116f x f x ⎛⎫--≤ ⎪⎝⎭,求实数t 的取值范围.结合图像可知:5ππ7π4666t ≤-<,解得所以实数t 的取值范围为ππ,43⎡⎫⎪⎢⎣⎭.5.若实数,,且满足,则称、是“余弦相关”的.(1)若2x π=,求出所有与之“余弦相关”的实数y ;(2)若实数x 、y 是“余弦相关”的,求x 的取值范围;(3)若不相等的两个实数x 、y 是“余弦相关”的,求证:存在实数z ,使得x 、z 为“余弦相关”的,y 、z 也为“余弦相关”的.【答案】(2)由()cos cos cos x y x y +=+得cos cos sin sin cos cos x y x y x y -=+,()1sin sin cos cos cos x y x y x +-=-,()cos y x ϕ+=-,故cos x -≤,222cos cos x x ≤-,11cos x -≤≤,))121arccos ,arccos x π⎡⎤∈-⎣⎦(3)证明:先证明3x y ππ≤+≤,反证法,假设x y π+<,则由余弦函数的单调性可知()cos cos x y x +≤,()0cos cos cos y x y x ∴=+-≤,2y π∴≥,同理2x π≥,相加得x y π+≥,与假设矛盾,故x y π+≥.[]2202,,x y πππ--∈Q ,且()()()()()2222cos cos cos cos cos cos x y x y x y x y ππππ⎡⎤-+-=+=+=-+-⎣⎦故22,x y ππ--也是余弦相关的,()()22x y πππ∴-+-≥,即3x y π+≤.记()3,z x y π=-+则[]02,z π∈.()()3cos cos cos x z y y π+=-=-,()()()3cos cos cos cos cos cos cos cos cos cos x z x x y x x y x x y y π+=+--=-+=-+=-()cos cos cos x z x z ∴+=+,故x 、z 为“余弦相关”的;同理y 、z 也为“余弦相关”的。

高一数学第一学期函数压轴(大题)练习(含答案)

高一数学第一学期函数压轴(大题)练习(含答案)

高一数学第一学期函数压轴(大题)练习(含答案)1.已知不等式 $2(\log_2 x)^2+7\log_2 x+3\leqslant 0$,求函数 $f(x)=\log_2 x\cdot \log_2 x$ 的最大值、最小值及相应的$x$ 值。

2.已知定义域为 $\mathbb{R}$ 的函数$f(x)=\dfrac{2x+1}{x^2+1}$ 是奇函数。

1)求 $a$ 的值;2)判断并证明该函数在定义域 $\mathbb{R}$ 上的单调性;3)若对任意的 $t\in\mathbb{R}$,不等式 $f(t-2t)+f(2t-k)<0$ 恒成立,求实数 $k$ 的取值范围。

3.已知定义在区间 $(-1,1)$ 上的函数 $f(x)=\dfrac{(1-a)x^2+b}{1-x^2}$。

1)求实数 $a,b$ 的值;2)用定义证明:函数$f(x)$ 在区间$(-1,1)$ 上是增函数;3)解关于 $t$ 的不等式 $\dfrac{(1-a)t^2+b}{1-t^2}>0$。

4.定义在 $\mathbb{R}^+$ 上的函数 $f(x)$ 对任意实数$a,b\in \mathbb{R}^+$,均有 $f(ab)=f(a)+f(b)$ 成立,且当$x>1$ 时,$f(x)<0$。

1)求 $f(1)$;2)求证:$f(x)$ 为减函数;3)当 $f(4)=-2$ 时,解不等式$f(x)+f\left(\dfrac{1}{2}x\right)>0$。

5.已知函数$f(x)=x-2bx+\dfrac{4}{b}$,定义域为$[1,4]$,$b\geqslant 1$。

I)求 $f(x)$ 的最小值 $g(b)$;II)求 $g(b)$ 的最大值 $M$。

6.设函数 $f(x)=\log_a (x-3)$,$a>0$ 且 $a\neq 1$,当点$P(x,y)$ 是函数 $y=f(x)$ 图象上的点时,点 $Q(x-2a,-y)$ 是函数 $y=g(x)$ 图象上的点。

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

压轴题09 基本初等函数、函数与方程(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题09 基本初等函数、函数与方程(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题09基本初等函数、函数与方程题型/考向一:基本初等函数的图像与性质题型/考向二:函数的零点题型/考向三:函数模型及其应用○热○点○题○型一基本初等函数的图像与性质1.指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,其图象关于y =x 对称,它们的图象和性质分0<a <1,a >1两种情况,着重关注两个函数图象的异同.2.幂函数y =x α的图象和性质,主要掌握α=1,2,3,12,-1五种情况.一、单选题1.若125()3a -=,121log 5b =,3log 7c =,则a ,b ,c 的大小关系为()A .a b c >>B .b c a>>C .c a b>>D .c b a>>2.已知函数()2121x f x =-+,则()A .()f x 是偶函数且是增函数B .()f x 是偶函数且是减函数C .()f x 是奇函数且是增函数D .()f x 是奇函数且是减函数【答案】CA.y =B .21y x =C .lg y x =D .332x xy --=4.已知函数()1,0,2x f x x ⎧≥⎪=⎨⎛⎫-<⎪⎪⎝⎭⎩若()()6f a f a <-,则实数a 的取值范围是()A .()3,-+∞B .(),3-∞-C .()3,+∞D .(),3-∞【答案】D【详解】由解析式易知:()f x 在R 上递增,又()()6f a f a <-,所以6a a <-,则3a <.故选:D5.函数()2eln 2x f x x=的图象大致是()A .B .C .D .A .1,2⎛⎫-∞- ⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,2⎛⎫⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭7.已知实数1a ≠,函数()2,0,a x f x x -≥=⎨<⎩若(1)(1)f a f a -=-,则a 的值为()A .12B .12-C .14D .14-8.函数⎣⎦的部分图象大致是()A .B .C .D .【答案】C【详解】对于函数()()()ln 1ln 1f x x x x =+--⎡⎤⎣⎦,有1010x x +>⎧⎨->⎩,可得11x -<<,所以,函数()f x 的定义域为()1,1-,()1,1x ∀∈-,()()()()()()ln 1ln 1ln 1ln 1f x x x x x x x f x -=---+=+--=⎡⎤⎡⎤⎣⎦⎣⎦,所以,函数()f x 为偶函数,排除AB 选项;当01x <<时,110x x +>->,则()()ln 1ln 1x x +>-,此时()()()ln 1ln 10f x x x x =+-->⎡⎤⎣⎦,排除D 选项.故选:C.二、填空题9.已知函数()2()e e x x f x x -=-⋅,若实数m 满足))2(1)f f m f -≤,则实数m的取值范围是____________.【答案】ln3-##1ln311.已知,,1x y a ∈>R ,若2x y a a a +=,且x y +的最大值为3,则函数()()212log 2f x x ax a =-++的最小值为______故当4x =时,()2432x --+取得最大值32,则()f x 的取到最小值为5-.故答案为:5-.12.幂函数y=xa ,当a 取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=xa ,y=xb 的图象三等分,即有BM =MN =NA ,那么ab =______.○热○点○题○型二函数的零点判断函数零点个数的方法:(1)利用零点存在定理判断.(2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f (x )的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.一、单选题1.函数()243xf x x =+-的零点所在的区间是()A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭【答案】C【详解】 函数()243x f x x =+-的图象是连续不间断的,根据增函数加增函数为增函数的结论知()f x 在定义域R 上为增函数,412204f ⎛⎫=-< ⎪⎝⎭,12102f ⎛⎫=-> ⎪⎝⎭,故函数()243x f x x =+-的零点所在区间是11,42⎛⎫⎪⎝⎭.故选:C.()a 的值是()A .0B .1C .2D .3【答案】B 【详解】依题意,因为函数()2cos 1f x a x x =--有且只有1个零点,所以()2cos 10f x a x x =--=有且仅有一个解,即2cos 1a x x =+有且仅有一个解,转化为cos y a x =与21y x =+有且仅有一个交点,当0a =时,cos 0y a x ==与21y x =+没有交点,所以0a ≠;当a<0时,因为[]cos 1,1x ∈-,所以[]cos ,y a x a a =∈-,当0x =时,21y x =+有最小值1,cos y a x =有最小值a<0,此时cos 0y a x ==与21y x =+没有交点,由于cos 0y a x ==与21y x =+都是偶函数,若在除去0x =之外有交点,则交点必为偶数个,不符合题意,所以a<0不符合题意;当0a >时,因为[]cos 1,1x ∈-,所以[]cos ,y a x a a =∈-,又因为211y x =+≥,所以当且仅当1a =时,此时0x =有唯一的交点.故选:B.3.已知()0,2πθ∈,若函数()()2sin cos sin 2f x x x x θ=-+在π0,4⎛⎫⎪⎝⎭上无零点,则θ的值可能为()A .π6B .π4C .11π12D .6π54.若函数2()1,0f x x x -⎧≤=⎨+>⎩,则函数()()2g x f x =-的零点的个数是()A .1B .2C .3D .4【答案】B【详解】由题意函数22,0()1,0x x f x x x -⎧≤=⎨+>⎩,则函数()()2g x f x =-的零点个数即()2f x =的解的个数,当0x >时,令212+=x ,即1x =,符合题意;当0x ≤时,令22x -=,得=1x -,符合题意,故()()2g x f x =-的零点有2个,故选:B.5.已知函数()2ln 1212x x x f x mx mx x +>⎧⎪=⎨-+≤⎪⎩,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是()A .71,4⎛⎤⎥⎝⎦B .(]1,2C .41,3⎛⎤ ⎥⎝⎦D .[]1,36.是定义在R 上的奇函数,当1,1x ∈-时,f x x =,11f x f x +=-,令()()lg g x f x x =-,则函数()g x 的零点个数为()A .4B .5C .6D .7【答案】B【详解】由()()11f x f x +=-可得,()f x 的图象关于1x =对称,又由()()11f x f x +=-可得()()2()f x f x f x +=-=-,所以()4(2)()f x f x f x +=-+=,所以()f x 以4为周期,所以作出()f x 的图象如下,()()lg g x f x x =-的零点个数即为方程()lg f x x =也即()f x 的图象与lg y x =图象的交点个数,因为lg 91,lg101<=,所以数形结合可得()f x 的图象与lg y x =图象的交点个数为故选:B.7.已知函数41,0141,02x x x x ⎧+-≤⎪=⎨⎛⎫->⎪ ⎪⎝⎭⎩,关于的方程有6个不等实数根,则实数t 的取值范围是()A .7,5⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭B.7,5⎡⎫⎛⎫-∞--+∞⎪⎢ ⎪⎪⎝⎭⎣⎭ C .7,52⎛-- ⎝⎦D .7,522⎛⎛⎫-- ⎪ ⎪⎝⎭⎝⎭【答案】D【详解】作出函数()f x 的图象如图所示,∴函数()f x 的图象与函数()y c c =∈R 的图象最多三个交点,且()f x c =有3个实数根时,13c -<<,()()()22110f x t f x t ∴+-+-=有6个不等实数根等价于一元二次方程()22110x t x t +-+-=在()1,3-上有两个不同的实数根,是()A .6B .5C .4D .3二、多选题9.已知偶函数()f x 满足()()()126f x f x f -+=,()11e f -=+,且当[)0,6x ∈时,()e 1x f x a -=+,则下列说法正确的有()A .2e a =B .()f x 在[]18,24上为增函数C .()320231ef -=-D .()f x 在[]2023,0-上共有169个零点【答案】ABD【详解】因为函数()f x 为偶函数,所以()()111e f f -==+,又当[)0,6x ∈时,()e 1x f x a -=+,故()11e 11e f a -=+=+,解得2e a =,故A 选项正确.因为()()()126f x f x f -+=,令6x =-,得()()()666f f f --=,故()60f =.由()()120f x f x -+=得()()12f x f x +=,即函数()f x 具有周期性且周期为12.当[)0,6x ∈时,()2e 1xf x -=+单调递减,故当(]6,0x ∈-时,函数()f x 单调递增,所以当(]18,24x ∈时,函数()f x 单调递增.又()()1860f f ==,且当(]18,24x ∈时,函数()0f x >恒成立,所以()f x 在[]18,24上为增函数,故B 选项正确.()()()()()32023121687755e 1f f f f f -=⨯+==-==+,故C 选项错误.因为当[)0,6x ∈时,()2e 1xf x -=+单调递减,所以当06x ≤<时,()420<e 1e 1f x -+<≤+,又()f x 为偶函数,所以60x -<≤时,()0f x >,又()60f -=,所以函数()f x 在[)6,6-上有且仅有一个零点,因为()f x 的周期为12,2023121687=⨯+,所以(]2016,0-上有168个零点,再考虑[]2023,2016--等价于[]7,0-这个区间,有1个零点,故最终有169个零点,故D 选项正确.故选:ABD .10.定义在R 上的偶函数()f x 满足()()22f x f x -=+,且当[]0,2x ∈时,()2e 1,01,44,1 2.x x f x x x x ⎧-≤≤=⎨-+<≤⎩若关于x 的不等式()m x f x ≤的整数解有且仅有9个,则实数m的取值可以是()A .e 16-B .e 17-C .e 18-D .e 19-三、填空题11.已知函数()131,0ln ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若函数()()()2221g x f x af x a =-+-⎡⎤⎣⎦恰有4个不同的零点,则a 的取值范围是__________.【答案】()[)1,01,2- 【详解】令()()()22210g x f x af x a =-+-=⎡⎤⎣⎦,得()1f x a =-或()1f x a =+,画出()f x 的大致图象.设()f x t =,由图可知,当0t <或2t >时,()t f x =有且仅有1个实根;当0=t 或12t ≤≤时,()t f x =有2个实根;当01t <<时,()t f x =有3个实根.则()g x 恰有4个不同的零点等价于10,011a a -<⎧⎨<+<⎩或10,112a a -=⎧⎨≤+≤⎩或011,12a a <-<⎧⎨+>⎩或112,112,a a ≤-≤⎧⎨≤+≤⎩解得10a -<<或12a ≤<.故答案为:()[)1,01,2-12.已知函数11,02()2(2),28x x f x f x x ⎧--≤≤=⎨-<≤⎩,若方程()f x kx =恰好有四个实根,则实数k 的取值范围是___.设()g x kx =,若方程()f x kx =恰好有四个实根,则函数()f x 与()g x 的图象有且只有四个公共点,由图得,(1,1),(3,2),(5,4),(A D B C 则2481,,,357OA OB OC OD k k k k ====,则<<<OB OC OA OD k k k k ,○热○点○题○型三函数模型及其应用应用函数模型解决实际问题的一般程序和解题关键:(1)一般程序:――→读题文字语言⇒――→建模数学语言⇒――→求解数学应用⇒――→反馈检验作答(2)解题关键:解答这类问题的关键是确切地写出相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.一、单选题1.垃圾分类,一般是指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而变成公共资源的一系列活动的总称.已知某种垃圾的分解率ν与时间t (月)满足函数关系式t v a b =⋅(其中a ,b 为非零常数).若经过6个月,这种垃圾的分解率为5%,经过12个月,这种垃圾的分解率为10%,那么这种垃圾完全分解(分解率为100%)至少需要经过()(参考数据lg 20.3≈)A .20个月B .40个月C .28个月D .32个月m /s )可以表示为31log 2100Qv =,其中Q 表示鲑鱼的耗氧量的单位数.当一条鲑鱼以3ln2m /s ln3的速度游动时,其耗氧量是静止时耗氧量的倍数为()A .83B .8C .32D .643.0C 表示生物体内碳14的初始质量,经过t 年后碳14剩余质量01()2hC t C ⎛⎫= ⎪⎝⎭(0t >,h为碳14半衰期).现测得一古墓内某生物体内碳14含量为00.4C ,据此推算该生物是距今约多少年前的生物(参考数据lg 20.301≈).正确选项是()A .1.36hB .1.34hC .1.32hD .1.30h“ChatGTP ”的人工智能聊天程序进入中国,迅速以其极高的智能化水平引起国内关注.深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的,在神经网络优化中,指数衰减的学习率模型为00G GL L D =,其中L 表示每一轮优化时使用的学习率,0L 表示初始学习率,D 表示衰减系数,G 表示训练迭代轮数,0G 表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为18,且当训练迭代轮数为18时,学习率衰减为0.4,则学习率衰减到0.2以下(不含0.2)所需的训练迭代轮数至少为()(参考数据:1g20.3010≈)A .72B .74C .76D .78血氧饱和度低于90%时,需要吸氧治疗,在环境模拟实验室的某段时间内,可以用指数模型:0()e KtS t S =描述血氧饱和度()S t 随给氧时间t (单位:时)的变化规律,其中0S 为初始血氧饱和度,K 为参数.已知060%S =,给氧1小时后,血氧饱和度为80%.若使得血氧饱和度达到90%,则至少还需要给氧时间(单位:时)为()(精确到0.1,参考数据:ln 2069ln 3110≈≈.,.)A .0.3B .0.5C .0.7D .0.9故选:B6.某企业为了响应并落实国家污水减排政策,加装了污水过滤排放设备,在过滤过程中,污染物含量M (单位:mg /L )与时间t (单位:h )之间的关系为0e ktM M -=(其中0,M k 是正常数).已知在处理过程中,该设备每小时可以清理池中残留污染物10%,则过滤一半的污染物需要的时间最接近()(参考数据:lg20.30≈,lg30.48≈)A .6小时B .8小时C .10小时D .12小时媒质传递热量逐渐冷却时所遵循的规律.统计学家发现网络热搜度也遵循这样的规律,即随着时间的推移,热搜度会逐渐降低.假设事件的初始热搜度为()000N N >,经过t (天)时间之后的热搜度变为()0etN t N α-=,其中α为冷却系数.若设某事件的冷却系数0.3α=,则该事件的热搜度降到初始的50%以下需要的天数t 至少为().(ln 20.693≈,t 取整数)A .7B .6C .4D .3族整体利益和两岸同胞切身利益,解放军组织多种战机巡航台湾.已知海面上的大气压强是760mmHg ,大气压强P (单位:mmHg )和高度h (单位:m )之间的关系为760e hk P -=(e为自然对数的底数,k 是常数),根据实验知500m 高空处的大气压强是700mmHg ,则当歼20战机巡航高度为1000m ,歼16D 战机的巡航高度为1500m 时,歼20战机所受的大气压强是歼16D 战机所受的大气压强的()倍.A .0.67B .0.92C .1.09D .1.5【答案】C二、多选题9.如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =,关于下列说法正确的是()A .浮萍每月的增长率为3B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积超过280m D .若浮萍蔓延到2224m 2m 8m 、、所经过的时间分别是123t t t 、、,则2132t t t =+【答案】CD【详解】由图可知,函数过点()1,3,将其代入解析式,=3a ,故3t y =,A 选项,取前3个月的浮萍面积,分别为32m ,92m ,272m ,故增长率逐月增大,A 错误;从前3个月浮萍面积可看出,每月增加的面积不相等,B 错误;第4个月的浮萍面积为812m ,超过了802m ,C 正确;令132t =,234t =,338t =,解得:132333log 2,log 4,log 8t t t ===,1333332log 2log 8log 162log 42t t t +=+===,D 正确.故选:CD10.泊松分布适合于描述单位时间(或空间)内随机事件发生的次数.如某一服务设施在一定时间内到达的人数,显微镜下单位分区内的细菌分布数等等.其概率函数为()e !kP X k k λλλ-==,参数λ是单位时间(或单位面积)内随机事件的平均发生次数.现采用某种紫外线照射大肠杆菌,大肠杆菌的基因组平均产生3个嘧啶二体.设大肠杆菌的基因组产生的嘧啶二体个数为Y ,()P Y k =表示经该种紫外线照射后产生k 个嘧啶二体的概率.已知Y 服从泊松分布,记为()Y Pois λ~,当产生的嘧啶二体个数不小于1时,大肠杆菌就会死亡,下列说法正确的有()(参考数据:3e 0.049-=⋅⋅⋅,恒等式0e !inxi x i ==∑)A .大肠杆菌a 经该种紫外线照射后,存活的概率约为5%B .设()()f k P Y k λ==,则,(1)()0,()f k f k k λ∀∈+->∈N NC .如果()X pois λ~,那么(!)X E X λ=,X 的标准差σλ=D .大肠杆菌a 经该种紫外线照射后,其基因组产生的嘧啶二体个数的数学期望为3公园的距离都是2km.如图所示表示甲同学从家出发到乙同学家经过的路程y (km)与时间x (min)的关系,下列结论正确的是()A .甲同学从家出发到乙同学家走了60minB .甲从家到公园的时间是30minC .甲从家到公园的速度比从公园到乙同学家的速度快D .当0≤x ≤30时,y 与x 的关系式为y =115x 【答案】BD【详解】在A 中,甲在公园休息的时间是10min ,所以只走了50min ,A 错误;由题中图象知,B 正确;甲从家到公园所用的时间比从公园到乙同学家所用的时间长,而距离相等,所以甲从家到公园的速度比从公园到乙同学家的速度慢,C 错误;当0≤x ≤30时,设y =kx (k ≠0),则2=30k ,解得115k =,D 正确.故选:BD地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg E =4.8+1.5M ,则下列说法正确的是()A .地震释放的能量为1015.3焦耳时,地震里氏震级约为七级B .八级地震释放的能量约为七级地震释放的能量的6.3倍C .八级地震释放的能量约为六级地震释放的能量的1000倍D .记地震里氏震级为n (n =1,2,···,9,10),地震释放的能量为an ,则数列{an }是等比数列【答案】ACD【详解】对于A :当15.310E =时,由题意得15.3lg10 4.8 1.5M =+,解得7M =,即地震里氏震级约为七级,故A 正确;对于B :八级地震即8M =时,1lg 4.8 1.5816.8E =+⨯=,解得16.8110E =,所以16.81.5115.3101010 6.310E E ==>≠,所以八级地震释放的能量约为七级地震释放的能量的 1.510倍,故B 错误;对于C :六级地震即6M =时,2lg 4.8 1.5613.8E =+⨯=,解得13.8210E =,。

高考数学常考压轴题及答案:二次函数

高考数学常考压轴题及答案:二次函数

高考数学常考压轴题及答案:二次函数1500字二次函数是高考数学中的重要内容之一。

在高考中,常常会涉及到二次函数的基本概念、性质以及与其他知识点的联合运用。

本文将介绍高考数学中常考的二次函数压轴题及其答案,希望能对广大考生备战高考有所帮助。

1. 求二次函数 y = ax^2 + bx + c 的顶点坐标。

答案:二次函数 y = ax^2 + bx + c 的顶点坐标可以通过求导或者利用平移公式来求解。

求导法可以通过将二次函数转化为一次函数来求解,即 y' = 2ax + b,令y' = 0,解得 x = -b / (2a),代入原函数可得 y = c - b^2 / (4a)。

利用平移公式可以将二次函数表示为 y = a(x - h)^2 + k 的形式,其中 (h, k) 就是顶点坐标。

2. 已知二次函数 y = ax^2 + bx + c 过点 (1, 2) 和 (2, 3),求二次函数的解析式。

答案:由已知条件可得:2 = a + b + c (1)3 = 4a + 2b + c (2)由 (1) 式减去2倍的 (2) 式,得 -1 = -6a - 3b,即 6a + 3b = 1 (3)由 (1) 式减去 (2) 式,得 -1 = -3a - b,即 3a + b = 1 (4)解方程组 (3) 和 (4) 可得 a = 1/3,b = 2/3。

将 a 和 b 的值代入 (1) 式,可得 c =5/3。

所以二次函数的解析式为 y = (1/3)x^2 + (2/3)x + 5/3。

3. 设某个二次函数的图像过点 (1, 3) 和 (2, 7),与 y 轴交于点 A,与 x 轴交于点 B 和C,求 B、C 的坐标。

答案:已知二次函数过点 (1, 3) 和 (2, 7),可以得到两个方程:3 = a + b + c (1)7 = 4a + 2b + c (2)由 (2) 式减去4倍的 (1) 式,得 1 = -2a - b,即 2a + b = -1 (3)解方程组 (1) 和 (3) 可得 a = 1,b = -3。

(精校版)高一数学第一学期函数压轴(大题)练习(含答案)

(精校版)高一数学第一学期函数压轴(大题)练习(含答案)

(直打版)高一数学第一学期函数压轴(大题)练习(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)高一数学第一学期函数压轴(大题)练习(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)高一数学第一学期函数压轴(大题)练习(含答案)(word版可编辑修改)的全部内容。

高一数学第一学期函数压轴(大题)练习(含答案)1.(本小题满分12分)已知x 满足不等式,211222(log )7log 30x x ++≤求的最大值与最小值及相应x 值.22()log log 42x xf x =⋅2。

(14分)已知定义域为的函数是奇函数R 2()12x x af x -+=+ (1)求值;a (2)判断并证明该函数在定义域上的单调性;R (3)若对任意的,不等式恒成立,求实数的取值范围;t R ∈22(2)(2)0f t t f t k -+-<k 3. (本小题满分10分)已知定义在区间上的函数为奇函数,且.(1,1)-2()1ax b f x x +=+12(25f =(1) 求实数,的值;a b (2) 用定义证明:函数在区间上是增函数;()f x (1,1)-(3) 解关于的不等式.t (1)()0f t f t -+<4. (14分)定义在R 上的函数f (x)对任意实数a,b ,均有f (ab )=f(a)+f(b)成立,且当x>1时,f ++∈R (x)<0,(1)求f (1) (2)求证:f(x)为减函数。

(3)当f(4)= -2时,解不等式1)5()3(-≥+-f x f 5。

压轴题03--函数与导数常见经典压轴小题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题03--函数与导数常见经典压轴小题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题03函数与导数常见经典压轴小题1、导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.2、应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题.考向一:函数、零点嵌套问题考向二:函数整数解问题考向三:等高线问题考向四:零点问题考向五:构造函数解不等式考向六:导数中的距离问题考向七:导数的同构思想考向八:最大值的最小值问题(平口单峰函数、铅锤距离)1、分段函数零点的求解与判断方法:(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.2、由于三次函数的导函数为我们最熟悉的二次函数,所以基本的研究思路是:借助导函数的图象来研究原函数的图象.如借助导函数的正负研究原函数的单调性;借助导函数的(变号)零点研究原函数的极值点(最值点);综合借助导函数的图象画出原函数的图象并研究原函数的零点,具体来说,对于三次函数()()32 0f x ax bx cx d a =+++>,其导函数为()()232 0f x ax bx c a '=++>,根的判别式()243b ac ∆=-.a >()232f x ax bx c'=++判别式∆>0∆=0∆<图象()32f x ax bx cx d=+++单调性增区间:()1, x -∞,()2, x +∞;减区间:()12, x x 增区间:(), -∞+∞增区间:(), -∞+∞图象(1)当0∆≤时,()0f x '≥恒成立,三次函数()f x 在R 上为增函数,没有极值点,有且只有一个零点;(2)当0∆≥时,()0f x '=有两根1x ,2x ,不妨设12x x <,则1223bx x a+=-,可得三次函数()f x 在()1, x -∞,()2, x +∞上为增函数,在()12, x x 上为减函数,则1x ,2x 分别为三次函数()32f x ax bx cx d =+++的两个不相等的极值点,那么:①若()()120f x f x ⋅>,则()f x 有且只有1个零点;②若()()120f x f x ⋅<,则()f x 有3个零点;③若()()120f x f x ⋅=,则()f x 有2个零点.特别地,若三次函数()()32 0f x ax bx cx d a =+++>存在极值点0x ,且()00f x =,则()f x 地解析式为()()()20f x a x x x m =--.同理,对于三次函数()()32 0f x ax bx cx d a =+++<,其性质也可类比得到.3、由于三次函数()()32 0f x ax bx cx d a =+++≠的导函数()232f x ax bx c '=++为二次函数,其图象变化规律具有对称性,所以三次函数图象也应当具有对称性,其图象对称中心应当为点, 33bb faa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,此结论可以由对称性的定义加以证明.事实上,该图象对称中心的横坐标正是三次函数导函数的极值点.4、恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.5、如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值.6、当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数图象之间的关系,得出答案或列出条件,求出参数的范围.7、两类零点问题的不同处理方法利用零点存在性定理的条件为函数图象在区间[a ,b ]上是连续不断的曲线,且()()0f a f b ⋅<..①直接法:判断-一个零点时,若函数为单调函数,则只需取值证明()()0f a f b ⋅<.②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明()()0f a f b ⋅<.8、利用导数研究方程根(函数零点)的技巧(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.9、已知函数零点个数求参数的常用方法(1)分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.1.(2023·江西宜春·统考模拟预测)已知函数()()()ln 1,ln (0)1m xf x xg x x m x m=+-=+>+,且()()120f x g x ==,则()2111em x x -+的最大值为()A .1B .eC .2eD .1e【答案】A【解析】()()()()()ln 10,ln 10,1ln 1,11m mf x x x m x x x x =+-=+-==++++()ln0,e ,x xg x x m x m=+==由题意知,()()21121ln 1e ,x x x x m ++==即()()2221121ln 1e e ln e ,x x xx x x m ++===因为0m >,所以21e 1,11xx >+>,设()ln ,1p x x x x =>,则()1ln 0p x x '=+>,()()211e ,xp x p m +==所以211e x x +=,所以()22121111e e e ex m m m x x x m---+==,1(),0e m m t m m -=>,则11(),e m m t m --'=当01m <<时,()0;t m '>当1m >时,()0;t m '<所以()t m 在()0,1时单调递增,在()1,+∞时单调递减,所以max ()(1)1,t m t ==故选:A.2.(2023·湖南岳阳·统考二模)若函数()22ln 2e 2ln x xf x a x ax -=-+有两个不同的零点,则实数a 的取值范围是()A .(),e -∞-B .(],e -∞-C .()e,0-D .()【答案】A【解析】函数()f x 的定义域为(0,)+∞,()()222ln 22ln 2e 2ln e 2ln x x x x f x a x ax a x x --=-+=+-,设2()2ln (0)h x x x x =->,则22(1)(1)()2x x h x x x x+-'=-=,令()01h x x '>⇒>,令()001h x x '<⇒<<,所以函数()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,且(1)1h =,所以min ()(1)1h x h ==,所以()1h x ≥,函数()f x 有两个不同的零点等价于方程()0f x =有两个不同的解,则()222ln 2ln 22e e 2ln 02ln x x x x a x x a x x--+-=⇒-=-,等价于函数y a =-与22ln 2e 2ln x xy x x-=-图象有两个不同的交点.令22ln x x t -=,()1e ,tg t tt =>,则函数y a =-与()1e ,tg t tt =>图象有一个交点,则()()22e 1e e 0tt t t t g t t t '--==>,所以函数()g t 在(1,)+∞上单调递增,所以()()1e g t g >=,且t 趋向于正无穷时,()e tg t t=趋向于正无穷,所以e a ->,解得e a <-.故选:A.3.(2023·江西吉安·统考一模)已知,R,0,0x y x y ∈>>,且2x y xy +=,则8e y x-的可能取值为()(参考数据: 1.1e 3≈, 1.2e 3.321≈)A .54B .32C .e 1-D .e【答案】D【解析】由2x y xy +=,可得844x y =-且1y >,所以84e e 4y yx y-=+-,令()()4e 4,1,yg y y y =+-∈+∞,可得()24e y g y y='-,令()24e yh y y =-,可得()38e 0yh y y '=+>,()h y 为单调递增函数,即()g y '单调递增,又()()1.1 1.222441.1e 0, 1.2e 01.1 1.2g g =--'<'=>,所以存在()0 1.1,1.2y ∈,使得()00204e 0yg y y =-=',所以()()0min 002000444e 44, 1.1,1.2yg g y y y y y ==+-=-∈,设()0200444f y y y =+-,则()0320084f y y y =--',因为()0 1.1,1.2y ∈,所以()00f y '<,所以()0f y 在()1.1,1.2上单调递减,所以()()0191.229f y f >=>,又因为()22e 2e g =->,()g y 在()0,y ∞+上递增,所以D 正确.故选:D.4.(2023·河南开封·开封高中校考一模)若存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,则实数a 的最小值为()A .2B .1ln2C .ln21-D .11ln2-【答案】D 【解析】由11e x ax +⎛⎫+≥ ⎪⎝⎭两边取对数可得 1()ln 11x a x ⎛⎫++≥ ⎪⎝⎭①,令11,t x +=则11x t =-,因为[)1,x ∞∈+,所以(1,2]t ∈,则①可转化得1ln 11a t t ⎛⎫+≥⎪-⎝⎭,因为ln 0t >,11ln 1a t t ∴≥--因为存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,所以存在(1,2]t ∈,11ln 1a t t ≥--成立,故求11ln 1t t --的最小值即可,令11(),(1,2]ln 1g x x x x =-∈-2211()(ln )(1)g x x x x '∴=-+⋅-2222(ln )(1)(1)(ln )x x x x x x ⋅--=-2222222(1)1(ln )(ln )2(1)(ln )(1)(ln )x x x x x x x x x x ----+==--,令()h x 21(ln )2,(1,2]x x x x=--+∈212ln 11()2ln 1x x x h x x x xx-+'∴=⋅-+=,令1()2ln ,(1,2]x x x x xϕ=-+∈,2222121()1x x x x x x ϕ-+-'∴=--=22(1)0x x --=<,所以()ϕx 在(1,2]上单调递减,所以()(1)0x ϕϕ<=,()0h x '∴<,所以()h x 在(1,2]上单调递减,所以()(1)0,()0,h x h g x '<=∴<()g x ∴在(1,2]上单调递减,1()(2)1ln 2g x g ∴≥=-,11ln 2a ∴≥-,所以实数a 的最小值为11ln 2-故选:D5.(2023·河北石家庄·统考一模)已知210x x a -=在()0,x ∈+∞上有两个不相等的实数根,则实数a 的取值范围是()A .10,2e ⎛⎤ ⎥⎝⎦B .10,2e ⎛⎫⎪⎝⎭C .12e 1,e ⎛⎤ ⎥⎝⎦D .12e 1,e ⎛⎫ ⎪⎝⎭【答案】D【解析】由()0,x ∈+∞,则210x x a =>,故2ln ln xa x=,要使原方程在()0,x ∈+∞有两个不等实根,即2ln ()xf x x =与ln y a =有两个不同的交点,由432ln 12ln ()x x x x f x x x --'==,令()0f x '>,则120e x <<,()0f x '<,则12e x >,所以()f x 在12(0,e )上递增,12(e ,)+∞上递减,故12max 1()(e )2e f x f ==,又x 趋向于0时,()f x 趋向负无穷,x 趋向于正无穷时,()f x 趋向0,所以,要使()f x 与ln y a =有两个不同的交点,则10ln 2ea <<,所以12e 1e a <<.故选:D6.(2023·吉林·统考三模)已知不等式22e ln ln x x λλ+≥在()0,x ∈+∞上恒成立,则实数λ的取值范围是()A .10,2e ⎛⎤ ⎥⎝⎦B .10,4e ⎛⎤ ⎥⎝⎦C .1,2e ∞⎡⎫+⎪⎢⎣⎭D .1,4e ⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】由22e ln ln x x λλ+≥得22e ln ln lnxxx λλλ≥-=,即22e lnxxxx λλ≥,令()e t f t t =,()0,t ∈+∞,则()()1e 0tf t t '=+>,所以()e tf t t =在()0,∞+上单调递增,而ln22e lnlne xxxxxx λλλλ≥=等价于()2ln x f x f λ⎛⎫≥ ⎪⎝⎭,∴2lnxx λ≥,即2e xx λ≥令()2e x g x x =,()0,x ∈+∞,则()212e xg x x-'=,所以()g x 在10,2x ⎛⎫∈ ⎪⎝⎭时()0g x '>,为增函数;在在1,2x ⎛⎫∈+∞ ⎪⎝⎭时()0g x '<,为减函数,所以()g x 最大值为1122e g ⎛⎫= ⎪⎝⎭,∴12e λ≥.故选:C7.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)设()f x 是定义在R 上的可导函数,()f x 的导函数为()f x ',且()()32f x f x x '⋅>在R 上恒成立,则下列说法中正确的是()A .()()20232023f f <-B .()()20232023f f >-C .()()20232023f f <-D .()()20232023f f >-【答案】D【解析】由题设32()()4f x f x x ⋅>',构造24()()g x f x x =-,则3()2()()40g x f x f x x =-'>',所以()g x 在R 上单调递增,则(2023)(2023)g g >-,即2424(2023)2023(2023)(2023)f f ->---,所以22(2023)(2023)f f >-,即()()20232023f f >-.故选:D8.(2023·四川广安·统考二模)若存在[]01,2x ∈-,使不等式()022002e 1ln e 2ex ax a x +-≥+-成立,则a 的取值范围是()A .21,e 2e ⎡⎤⎢⎥⎣⎦B .221,e e ⎡⎤⎢⎥⎣⎦C .421,e e ⎡⎤⎢⎥⎣⎦D .41,e e ⎡⎤⎢⎥⎣⎦【答案】D【解析】()022002e 1ln e 2e x a x a x +-≥+-⇔()()222e 1ln e 12e x a a x ---≥-()()()000022222 e 1ln e 1ln e 2 e 1ln 2e e x x x x a a a a e ⇔---≥-⇔-≥-令ex at =,即()2e 1ln 220t t --+≥,因为0[1,2]x ∈-,所以21,e e a a t -⎡⎤∈⎢⎥⎣⎦,令()2()e 1ln 22f t t t =--+.则原问题等价于存在21,e e a a t -⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立.()22e 12e 1()2t f t t t---'=-=令()0f t '<,即()2e 120,t --<解得2e 12t ->,令()0f t '>,即()2e 120,t -->解得2e 102t -<<,所以()f t 在2e 10,2⎛⎫- ⎪⎝⎭上单调递增,在2e 1,2⎛⎫-+∞⎪⎝⎭上单调递减.又因为()()2222(1)0,e e 1ln e 2e 2f f ==--+222e 22e 20=--+=而22e 11e 2-<<,∴当21e t ≤≤时,()0f t ≥.若存在21,e e a a t -⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立.只需22e e a ≤且11e a -≥,解得4ea ≤且1e a ≥,所以41e ea ≤≤.故a 的取值范围为41,e e ⎡⎤⎢⎥⎣⎦.故选:D9.(2023·河南郑州·统考二模)函数()ln ,01,0x x x f x x x >⎧=⎨+≤⎩,若关于x 的方程()()()210f x m f x m -++=⎡⎤⎣⎦恰有5个不同的实数根,则实数m 的取值范围是()A .10em -<<B .10em -<≤C .10em -≤<D .10em -≤≤【答案】A【解析】由()2[()]1()[()][()1]0f x m f x m f x m f x -++=--=,可得()f x m =或()1f x =,令ln y x x =且定义域为(0,)+∞,则ln 1y x ¢=+,当1(0,ex ∈时0'<y ,即y 递减;当1(,)ex ∈+∞时0'>y ,即y 递增;所以min 1e y =-,且1|0x y ==,在x 趋向正无穷y 趋向正无穷,综上,根据()f x 解析式可得图象如下图示:显然()1f x =对应两个根,要使原方程有5个根,则()f x m =有三个根,即(),f x y m =有3个交点,所以10em -<<.故选:A10.(2023·贵州·统考模拟预测)已知函数()f x 在R 上满足如下条件:(1)()()0f x f x -+=;(2)()20f -=;(3)当()0,x ∈+∞时,()()f x f x x'<.若()0f a >恒成立,则实数a 的值不可能是()A .3-B .2C .4-D .1【答案】B 【解析】设()()f x g x x =,则()()()2xf x f x g x x'-'=,因为当()0,x ∈+∞时,()()f x f x x'<,所以当0x >时,有()()0xf x f x '-<恒成立,即此时()g x '<0,函数()g x 为减函数,因为()f x 在R 上满足()()0f x f x -+=,所以函数()f x 是奇函数,又()20f -=,所以()20f =,又()()()()()f x f x f x g x g x x x x---====--,故()g x 是偶函数,所以()()220g g =-=,且()g x 在(),0x ∈-∞上为增函数,当0a >时,()0f a >,即()()0f a ag a =>,等价为()0g a >,即()()2g a g >,得02a <<;当a<0时,()0f a >,即()()0f a ag a =>,等价为()0g a <,即()()2g a g <-,此时函数()g x 为增函数,得2a <-,综上不等式()0f a >的解集是()(),20,2-∞- ,结合选项可知,实数a 的值可能是3-,4-,1.故选:B11.(2023·广西·统考三模)已知2()cos f x x x =+,若3441e ,ln ,54a f b f c f -⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a ,b ,c 的大小关系为()A .b c a <<B .c a b<<C .c b a<<D .a c b<<【答案】A【解析】因为2()cos ,R f x x x x =+∈,定义域关于原点对称,()22()()cos()cos f x x x x x f x -=-+-=+=,所以()f x 为R 上的偶函数,当0x ≥时,()2sin ,f x x x '=-,设()2sin g x x x =-,则()2cos g x x =-',1cos 1x -≤≤ ,()0g x '∴>,所以()g x 即()f x '在[0,)+∞上单调递增,所以()(0)0f x f ''≥=,所以()f x 在[0,)+∞上单调递增,又因为()f x 为偶函数,所以()f x 在(,0]-∞上单调递减,又因为41ln0,054<-<,所以445ln ln ln 554b f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1144c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭又因为31411ee e 4-->=>,因为141ln e 4=,41445e e, 2.4e 4⎛⎫⎛⎫=≈< ⎪ ⎪⎝⎭⎝⎭,所以145e 4>,所以145ln e ln 4>,即15ln 44>,所以3415eln 44->>,所以3441e 5ln 4f f f -⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,即a c b >>.故选:A.12.(2023·天津南开·统考一模)已知函数()()216249,1,11,1,9x x x f x f x x ⎧-+≤⎪=⎨->⎪⎩则下列结论:①()1*9,Nn f n n -=∈②()()10,,x f x x∞∀∈+<恒成立③关于x 的方程()()R f x m m =∈有三个不同的实根,则119m <<④关于x 的方程()()1*9N n f x n -=∈的所有根之和为23n n +其中正确结论有()A .1个B .2个C .3个D .4个【答案】B【解析】由题意知,()()()()1211111219999n n f n f n f n f n n --=-=-==--=⎡⎤⎣⎦ ,所以①正确;又由上式知,要使得()()10,,x f x x∞∀∈+<恒成立,只需满足01x <≤时,()1f x x <恒成立,即2116249x x x-+<,即321624910x x x -+-<恒成立,令()(]32162491,0,1g x x x x x =-+-∈,则()248489g x x x '=-+,令()0g x '=,解得14x =或34x =,当1(0,4x ∈时,()0g x '>,()g x 单调递增;当13(,)44x ∈时,()0g x '<,()g x 单调递减;当3(,)4x ∈+∞时,()0g x '>,()g x 单调递增,当14x =时,函数()g x 取得极大值,极大值11101444g f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,,所以②不正确;作出函数()f x 的图象,如图所示,由图象可知,要使得方程()()R f x m m =∈有三个不同的实根,则满足()()21f m f <<,即119m <<,所以③正确;由()1(1)9f x f x =-知,函数()f x 在(),1n n +上的函数图象可以由()1,n n -上的图象向右平移一个单位长度,再将所有点的横坐标不变,纵坐标变为原来的19倍得到,因为216249y x x =-+的对称轴为34x =,故()09f x =的两根之和为32,同理可得:()19f x =的两个之和为322+, ,()19nf x -=的两个之和为32(1)2n +-,故所有根之和为23333(2)[2(1)]2222n n n +++++-=+,所以④不正确.故选:B.13.(2023·山东济南·一模)函数()()()221xxx f x a a a =++-+(0a >且1a ≠)的零点个数为()A .1B .2C .3D .4【答案】B【解析】由()0f x =可得22011x x a a a a +⎛⎫⎛⎫+-= ⎪ ⎪++⎝⎭⎝⎭,即11112011x xa a ⎛⎫⎛⎫-++-= ⎪ ⎪++⎝⎭⎝⎭,因为0a >且1a ≠,则1110,,1122a ⎛⎫⎛⎫∈ ⎪ ⎪+⎝⎭⎝⎭,令11t a =+,令()()()112x xg x t t =-++-,则()()010g g ==,()()()()()1ln 11ln 1xxg x t t t t '=--+++,令()()()()()1ln 11ln 1xxh x t t t t =--+++,则()()()()()221ln 11ln 10xxh x t t t t '=--+++>⎡⎤⎡⎤⎣⎦⎣⎦,所以,函数()g x '在R 上单调递增,因为()()()()20ln 1ln 1ln 1ln10g t t t'=-++=-<=,()()()()()11ln 11ln 1g t t t t '=--+++,令()()()()()1ln 11ln 1p t t t t t =--+++,其中01t <<,则()()()ln 1ln 10p t t t '=+-->,所以,函数()p t 在()0,1上单调递增,所以,()()()100g p t p >'==,由零点存在定理可知,存在()00,1x ∈,使得()00g x '=,且当0x x <时,()0g x '<,此时函数()g x 单调递减,当0x x >时,()0g x '>,此时函数()g x 单调递增,所以,()()()0010g x g g <==,所以,函数()g x 的零点个数为2,即函数()f x 的零点个数为2.故选:B.14.(2023·陕西榆林·统考二模)已知函数()()25e xf x x x =+-,若函数()()()()222g x f x a f x a =---⎡⎤⎣⎦恰有5个零点,则a 的取值范围是()A .()3e,0-B .470,e ⎛⎫ ⎪⎝⎭C .473e,e ⎛⎫- ⎪⎝⎭D .()0,3e 【答案】B【解析】函数()g x 恰有5个零点等价于关于x 的方程()()()2220f x a f x a ⎡⎤---=⎣⎦有5个不同的实根.由()()()2220f x a f x a ⎡⎤---=⎣⎦,得()f x a =或()2f x =-.因为()()25e x f x x x =+-,所以()()234e x f x x x '=+-()()41e xx x =+-,由()0f x ¢>,得<4x -或1x >,由()0f x '<,得41x -<<,则()f x 在(),4-∞-和()1,+∞上单调递增,在()4,1-上单调递减.因为()474e f -=,()13e f =-,当x →+∞时,()f x →+∞,当x →-∞时,()0f x →,所以可画出()f x 的大致图象:由图可知()2f x =-有2个不同的实根,则()f x a =有3个不同的实根,故470,e a ⎛⎫∈ ⎪⎝⎭,故A ,C ,D 错误.故选:B.15.(2023·山东枣庄·统考二模)已知()f x =,a ∈R ,曲线cos 2y x =+上存在点()00,x y ,使得()()00f f y y =,则a 的范围是()A .()8,18ln 3+B .[]8,18ln 3+C .()9,27ln 3+D .[]9,27ln 3+【答案】B【解析】因为[]cos 1,1x ∈-,所以[]cos 21,3y x =+∈,由题意cos 2y x =+上存在一点()00,x y 使得()()00f f y y =,即[]01,3y ∈,只需证明()00f y y =,显然()f x =假设()00f y y c =>,则()()()()000f f y f c c y f y ==>>不满足()()00f f y y =,同理()00f y c y =<不满足()()00f f y y =,所以()00f y y =,那么函数()[]1,3f x =即函数()f x x =在[]1,3x ∈有解,x =,可得[]2ln 9,1,3x x a x x +-=∈,从而[]2ln 9,1,3x x x a x +-=∈,令()[]2ln 9,1,3h x x x x x =+-∈,则()2119292x x h x x x x+-'=+-=,令()0h x '=,即21920x x +-=,解得12993,044x x -=>=(舍去),()0h x '>时03x <<<()0h x '<时x >所以()h x 在[]1,3单调递增,所以()()()13h h x h ≤≤,()1ln1918h =+-=,()3ln 3279ln 318h =+-=+,所以()h x 的取值范围为[]8,ln 318+,即a 的取值范围为[]8,ln 318+.故选:B.16.(2023·四川绵阳·盐亭中学校考模拟预测)已知()(0)ln kxx k xϕ=>,若不等式()11e kxxx ϕ+<+在()1+∞,上恒成立,则k 的取值范围为()A .1e⎛⎫+∞ ⎪⎝⎭,B .()ln2+∞,C .()0,eD .()0,2e 【答案】A【解析】由题意知,(1,)x ∀∈+∞,不等式11e ln kx x kx x+<+恒成立,即()(1,),1eln e(1)ln kxkxx x x ∀∈+∞+>+成立.设()(1)ln (1)f x x x x =+>,则()e ()kxf f x >.因为11()ln ln 10x f x x x x x+'=+=++>,所以()f x 在()1+∞,上单调递增,于是e kx x >对任意的()1x ∈+∞,恒成立,即ln xk x >对任意的()1x ∈+∞,恒成立.令ln ()(1)x g x x x=>,即max ()k g x >.因为21ln ()xg x x-'=,所以当(1,e)x ∈时,()0g x '>;当()e x ∈+∞,时,()g x '<0,所以()g x 在(1,e)上单调递增,在()e ,+∞上单调递减,所以max 1()(e)eg x g ==,所以1ek >.故选:A .17.(2023·江西·校联考模拟预测)已知()ee 1ln x x a x+>有解,则实数a 的取值范围为()A .21,e ⎛⎫-+∞ ⎪⎝⎭B .1,e⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e⎛⎫-∞ ⎪⎝⎭【答案】A【解析】不等式()e e 1ln x x a x+>可化为()e ln 1x a x x x ++>,()()e ln e 1x x a x x +>,令e x t x =,则ln 1at t +>且0t >,由已知不等式ln 1t at +>在()0,∞+上有解,所以1ln ta t ->在()0,∞+上有解.令()1ln t f t t -=,则()2ln 2t f t t ='-,当20e t <<时,()0f t '<,()f t 在()20,e 上单调递减;当2t e >时,()0f t '>,()f t 在()2e ,+∞单调递增,所以()min f t =()221e e f =-,所以21e a >-,所以a 的取值范围为21,e ⎛⎫-+∞ ⎪⎝⎭,故选:A.18.(2023·辽宁朝阳·校联考一模)设0k >,若不等式()ln e 0xk kx -≤在0x >时恒成立,则k 的最大值为()A .eB .1C .1e -D .2e 【答案】A【解析】对于()ln e 0xk kx -≤,即()e ln x kx k≤,因为()ln y kx =是e xy k =的反函数,所以()ln y kx =与e xy k =关于y x =对称,原问题等价于e x x k≥对一切0x >恒成立,即e xk x≤;令()e x f x x =,则()()'21e x x f x x -=,当01x <<时,()()'0,f x f x <单调递减,当1x >时,()()'0,f x f x >单调递增,()()min 1e f x f ==,e k ∴≤;故选:A.19.(2023·四川南充·统考二模)已知函数()()2ln ln 1212x x h x t t x x ⎛⎫=--+- ⎪⎝⎭有三个不同的零点123,,x x x ,且123x x x <<.则实数11ln 1x x ⎛-⎝)A .1t -B .1t -C .-1D .1【答案】D 【解析】令ln x y x =,则21ln xy x-'=,当(0,e)x ∈时0'>y ,y 是增函数,当(e,)x ∈+∞时0'<y ,y 是减函数;又x 趋向于0时y 趋向负无穷,x 趋向于正无穷时y 趋向0,且e 1|ex y ==,令ln xm x=,则2()()(12)12h x g m m t m t ==--+-,要使()h x 有3个不同零点,则()g m 必有2个零点12,m m ,若11(0,e m ∈,则21em =或2(,0]m ∞∈-,所以2(12)120m t m t --+-=有两个不同的根12,m m ,则2Δ(12)4(12)0t t =--->,所以32t <-或12t >,且1212m m t +=-,1212m m t =-,①若32t <-,12124m m t +=->,与12,m m 的范围相矛盾,故不成立;②若12t >,则方程的两个根12,m m 一正一负,即11(0,)em ∈,2(,0)m ∞∈-;又123x x x <<,则12301e x x x <<<<<,且121ln x m x =,32123ln ln x x m x x ==,故11ln 1x x ⎛⎫- ⎪⎝⎭(()()221111m m m =-=--12121()1m m m m =-++=.故选:D20.(2023·陕西咸阳·武功县普集高级中学统考二模)已知实数0a >,e 2.718=…,对任意()1,x ∈-+∞,不等式()e e 2ln xa ax a ⎡⎤++⎣⎦≥恒成立,则实数a 的取值范围是()A .10,e ⎛⎤⎥⎝⎦B .1,1e⎡⎫⎪⎢⎣⎭C .20,e⎛⎫⎪⎝⎭D .2,1e⎛⎫ ⎪⎝⎭【答案】A【解析】因为()e e 2ln xa ax a ⎡⎤++⎣⎦≥,所以()()1e2ln 2ln 2ln ln(1)x a ax a a a ax a a a a a x -⎡⎤++=++=+++⎣≥⎦,即11e 2ln ln(1)x a x a-⋅++≥+,即1ln 11ln e e 2ln ln(1)e 2ln ln(1)x x a a a x a x ---⋅+++⇔+≥++≥,所以1ln e 1ln ln(1)1x a x x a x --+≥--+++,令()e ,(1,)x f x x x =+∈-+∞,易知()f x 在()1,x ∈-+∞上单调递增,又因为ln(1)[ln(1)]e ln(1)1ln(1)x f x x x x ++=++=+++,所以(1ln )[ln(1)]f x a f x --≥+,所以1ln ln(1),(1,)x a x x --≥+∈-+∞,所以ln 1ln(1),(1,)a x x x ≤--+∈-+∞,令()1ln(1),(1,)g x x x x =--+∈-+∞,则1()111x g x x x '=-=++,所以当(1,0)x ∈-时,()0g x '<,()g x 单调递减;当,()0x ∈+∞时,()0g x '>,()g x 单调递增;所以min ()(0)1g x g ==-,所以ln 1a ≤-,解得10ea <≤.故选:A21.(2023·陕西榆林·统考二模)已知函数()()25e xf x x x =+-,若函数()()()()0g x f f x a a =->,则()g x 的零点个数不可能是()A .1B .3C .5D .7【答案】D【解析】令()0g x =,即()()f f x a =,因为()()25e xf x x x =+-,所以()2()34e x f x x x '=+-,由()0f x ¢>,得<4x -或1x >,由()0f x '<,得41x -<<,则()f x 在(),4-∞-和()1,+∞上单调递增,在()4,1-上单调递减,因为()474e f -=,()13e f =-,当+x →∞时,()+f x →∞,当x →-∞时,()0f x →,令()0f x =,解得1212x -=或1212x -=,所以可画出()f x 的大致图像,设()t f x =,则()f t a =,第一种情况:当470e a <<时,()f t a =有三个不同的零点1t ,2t ,3t ,不妨设123t t t <<,则14t <-,2142t -<<-,312t ->,①讨论()1f x t =根的情况:当13e t <-时,()1f x t =无实数根,当13e t =-时,()1f x t =有1个实数根,当13e 4t -<<-时,()1f x t =有2个实数根,②讨论()2f x t =根的情况:因为2142t -<<-,所以()2f x t =有2个实数根,③讨论()3f x t =根的情况:因为3t >47e>,所以()3f x t =只有1个实数根,第二种情况:当47e a =时,()f t a =有2个实数根44t =-,51212t ->,则()4f x t =有2个实数根,()5f x t =有1个实数根,故当47ea =时,()()f f x a =有3个实数根;第三种情况:当47e a >时,()f t a =有一个实数根612t ->,则()6f x t =有1个实数根,综上,当470ea <<时,()()f f x a =可能有3个或4个或5个实数根;当47e a =时,()()f f x a =有3实数根;当47e a >时,()()f f x a =有1个实数根;综上,()g x 的零点个数可能是1或3或4或5.故选:D .22.(多选题)(2023·河北唐山·开滦第二中学校考一模)若关于x 的不等式1ln ln e e ex m xm -+≥在(),m +∞上恒成立,则实数m 的值可能为()A .21e B .22e C .1eD .2e【答案】CD【解析】因为不等式1ln ln ee e x m x m -+≥在(),m +∞上恒成立,显然0x m >>,1x m >,ln 0xm>,因此ln 1ln ln 1ee ln e ln e ln e e e xx x x x mm x x x x x m x x m m m m m-+≥⇔≥⇔≥⇔≥⋅,令()e ,0x f x x x =>,求导得()(1)0x f x x e '=+>,即函数()f x 在(0,)+∞上单调递增,ln e ln e ()(ln xxm x x x f x f m m ≥⋅⇔≥,于是ln x x m ≥,即e e xx x x m m ≥⇔≥,令(),0e x xg x x =>,求导得1()ex x g x -'=,当01x <<时,()0g x '>,当1x >时,()0g x '<,因此函数()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,max 1()(1)eg x g ==,因为0x m >>,则当01m <<时,()g x 在(,1)m 上单调递增,在(1,)+∞上单调递减,1()(1)eg x g ≤=,因此要使原不等式成立,则有11em ≤<,当m 1≥时,函数()g x 在(,)m +∞上单调递减,()()()11eg x g m g <≤=,符合题意,所以m 的取值范围为1[,)e+∞,选项AB 不满足,选项CD 满足.故选:CD23.(多选题)(2023·山东·沂水县第一中学校联考模拟预测)已知函数()()()32e 04610x x f x x x x ⎧<⎪=⎨-+≥⎪⎩,其中e 是自然对数的底数,记()()()2h x f x f x a =-+⎡⎤⎣⎦,()()()3g x f f x =-,则()A .()g x 有唯一零点B .方程()f x x =有两个不相等的根C .当()h x 有且只有3个零点时,[)2,0a ∈-D .0a =时,()h x 有4个零点【答案】ABD【解析】因为32()461(0)f x x x x =-+≥,所以2()121212(1)(0)f x x x x x x '=-=-≥,所以(0,1)x ∈时,()0f x '<,(1,)x ∈+∞时,()0f x '>所以()()()32e04610x x f x x x x ⎧<⎪=⎨-+≥⎪⎩的图像如下图,选项A ,因为()()()3g x f f x =-,令()f x t =,由()0g x =,得到()3f t =,由图像知,存在唯一的01t >,使得()3f t =,所以0()1f x t =>,由()f x 的图像知,存在唯一0x ,使00()f x t =,即()()()3g x f f x =-只有唯一零点,所以选项A 正确;选项B ,令()g x x =,如图,易知()g x x =与()y f x =有两个交点,所以方程()f x x =有两个不相等的根,所以选项B 正确;选项C ,因为()()()2h x f x f x a =-+⎡⎤⎣⎦,令()f x m =,由()0h x =,得到20m m a -+=,当()h x 有且只有3个零点时,由()f x 的图像知,方程20m m a -+=有两等根0m ,且0(0,1)m ∈,或两不等根12,m m ,1210,1m m -<<>,或121,1m m =-=(舍弃,不满足韦达定理),所以140a ∆=-=或Δ140(0)0(1)0(1)0a f f f =->⎧⎪<⎪⎨->⎪⎪<⎩即14a =或14020a a aa ⎧<⎪⎪⎪<⎨⎪-<⎪<⎪⎩,所以14a =或20a -<<,当14a =时,12m =,满足条件,所以选项C 错误;选项D ,当0a =时,由()0h x =,得到()0f x =或()1f x =,由()f x 的图像知,当()0f x =时,有2个解,当()1f x =时,有2个解,所以选项D 正确.故选:ABD.24.(多选题)(2023·全国·模拟预测)已知函数()21ln 1f x a x x =++.若当()0,1x ∈时,()0f x >,则a 的一个值所在的区间可能是()A .()12,11--B .()0,1C .()2,3D .()24e ,e 【答案】ABC 【解析】设21t x =,因为01x <<,所以1t >,则211ln 1ln 12a x t a t x ++=-+.设()1ln 12g t t a t =-+,则()12ag t t'=-.若2a ≤,则()0g t '>,所以()g t 在()1,+∞上单调递增,所以()()120g t g >=>,则A ,B 符合题意.若2a >,则当1,2a t ⎛⎫∈ ⎪⎝⎭时,()0g t '<,所以()g t 单调递减;当,2a t ⎛⎫∈+∞ ⎪⎝⎭时,()0g t '>,所以()g t 单调递增.所以()ln 12222a a a ag t g ⎛⎫≥=-+ ⎪⎝⎭.设()()ln 11h x x x x x =-+>,则()ln 0h x x '=-<,所以()h x 在()1,+∞上单调递减,且3533ln 02222h ⎛⎫=-> ⎪⎝⎭,所以若()2,3a ∈,则()30222a a g t g h h ⎛⎫⎛⎫⎛⎫≥=>> ⎪ ⎪⎝⎭⎝⎭⎝⎭,当()0,1x ∈时,()0f x >,C 符合题意.因为()h x 在()1,+∞上单调递减,且()22e e 10h =-+<,所以若()24e ,e a ∈,则24e e ,222a ⎛⎫∈ ⎪⎝⎭,取22e a =,则()2e 022a a g h h ⎛⎫⎛⎫=<< ⎪ ⎝⎭⎝⎭,此时存在()1,t ∈+∞,使得()0g t <,即存在()0,1x ∈时,使得()0f x <,D 不符合题意.故选:ABC .25.(多选题)(2023·全国·本溪高中校联考模拟预测)已知函数()f x 是定义在()0,∞+上的函数,()f x '是()f x 的导函数,若()()122e xx f x xf x '+=,且()e 22f =,则下列结论正确的是()A .函数()f x 在定义域上有极小值.B .函数()f x 在定义域上单调递增.C .函数()()eln H x xf x x =-的单调递减区间为()0,2.D .不等式()12e e 4x f x +>的解集为()2,+∞.【解析】令()()m x xf x =,则()()()m x f x xf x ''=+,又()()22e xx f x xf x '+=得:()()2e xf x xf x x'+=,由()()m x f x x =得:()()()()()()()22222e xm x x m x xf x x f x m x m x f x x x x ''⋅-+--'===,令()()2e xh x m x =-得:()()2222e e e 2e 222x x x xx h x m x x x -''=-=-=⎛⎫ ⎪⎝⎭,当()0,2x ∈时,()0h x '<,()h x 单调递减;当()2,x ∈+∞时,()0h x '>,()h x 单调递增,所以()()()()2e 2e 220h x h m f ≥=-=-=,即()0f x '≥,所以()f x 单调递增,所以B 正确,A 不正确;由()()eln H x m x x =-且定义域为()0,∞+得:()()2e e e x H x m x xx-''=-=,令()0H x '<,解得02x <<,即()H x 的单调递减区间为()0,2,故C 正确.()12ee 4xf x +>的解集等价于()2e e 4x x x xf x +>的解集,设()()2e e 44xx x x m x ϕ=--,则()()222ee ee e 11424424x xx x x x m x x ϕ⎛⎫⎛⎫''=-+-=-+- ⎪ ⎪⎝⎭⎝⎭2282e e 84x x x x --=⋅-,当()2,x ∈+∞时,2820x x --<,此时()0x ϕ'<,即()x ϕ在()2,+∞上递减,所以()()()22e 0x m ϕϕ<=-=,即()2e e 4x x x xf x +<在()2,+∞上成立,故D 错误.26.(多选题)(2023·山东泰安·统考一模)已知函数()()()ln f x x x ax a =-∈R 有两个极值点1x ,2x ()12x x <,则()A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-【答案】ACD【解析】对于A :()()()ln f x x x ax a =-∈R ,定义域()0,x ∈+∞,()()ln 120f x x ax x '=+->,函数()f x 有两个极值点1x ,2x ,则()f x '有两个变号零点,设()()ln 120g x x ax x =+->,则()1122axg x a xx-'=-=,当0a ≤时,()0g x '>,则函数()f x '单调递增,则函数()f x '最多只有一个变号零点,不符合题意,故舍去;当0a >时,12x a <时,()0g x '>,12x a>时,()0g x '<,则函数()f x '在10,2a ⎛⎫⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞⎪⎝⎭上单调递减,若()f x '有两个变号零点,则102f a ⎛⎫'> ⎪⎝⎭,解得:12a <,此时x 由正趋向于0时,()f x '趋向于-∞,x 趋向于+∞时,()f x '趋向于-∞,则()f x '有两个变号零点,满足题意,故a 的范围为:102a <<,故A 正确;对于B :函数()f x 有两个极值点1x ,2x ()12x x <,即()f x '有两个变号零点1x ,2x ()12x x <,则1212x x a<<,故B 错误;对于C :当102a <<时,()1120f a '=->,则12112x x a <<<,即212x a >,11x ->-,则21112x x a->-,故C 正确;对于D :()f x '有两个变号零点1x ,2x ()12x x <,且函数()f x '先增后减,则函数()f x 在()10,x 与()2,x +∞上单调递减,在()12,x x 上单调递增,121x x << ,且102a <<,()()()()1210112f x f a f x f a ⎧<=-<⎪∴⎨>=->-⎪⎩,故D 正确;故选:ACD.27.(多选题)(2023·吉林·东北师大附中校考二模)已知函数()ln xf x a a =,()()ln 1g x a x =-,其中0a >且1a ≠.若函数()()()h x f x g x =-,则下列结论正确的是()A .当01a <<时,()h x 有且只有一个零点B .当1e 1e a <<时,()h x 有两个零点C .当1e e a >时,曲线()yf x =与曲线()yg x =有且只有两条公切线D .若()h x 为单调函数,则e e 1a -≤<【答案】BCD【解析】对A ,()ln ln(1),x h x a a a x =--令()10,ln ln(1),log (1)x x a h x a a a x a x -=∴=-∴=-,令111,164a x =-=,或111,162a x =-=1log (1)x a a x -=-都成立,()h x 有两个零点,故A 错误;对B ,1ln ln(1),x a a x -=-令1ln ,(1)ln ln ,ln(1),1x ta t x a t t x x -=∴-=∴⋅=--ln (1)ln(1)t t x x ∴=--,(1t >).考虑ln (),()ln 10,y x x F x F x x '===+=11,()(1),e x x F a F x -∴=∴=-所以函数()F x 在1(0,e单调递减,在1(,)e +∞单调递增,1()(1),x F a F x -∴=-1ln(1)1,ln 1x x a x a x --∴=-∴=-.考虑2ln 1ln (),()0,e,x xQ x Q x x x x -'=∴==∴=所以函数()Q x 在(0,e)单调递增,在(e,)+∞单调递减,1(e),eQ =当1ln1e ()e 0,1e eQ ==-<x →+∞时,()0Q x >,所以当10ln e a <<时,有两个零点.此时1e 1e a <<,故B 正确;对C ,设21ln ,(),()e 1x ak a f x a k g x x ''=>=⋅=-,1t x =-.设切点1122111222(,()),(,()),()()(),()()(),x f x x g x y f x f x x x y g x g x x x ''∴-=--=-所以12111222()()()()()()f x g x f x x f x g x x g x ''''=⎧⎨-=-⎩.①111122222211,,11x x t a a k a k a k x x t -=∴==--。

数学高考压轴题含答案

数学高考压轴题含答案

数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。

2025届高考数学复习:压轴好题专项(构造函数证明不等式)练习(附答案)

2025届高考数学复习:压轴好题专项(构造函数证明不等式)练习(附答案)

2025届高考数学复习:压轴好题专项(构造函数证明不等式)练习1. (2024届云南省昆明市第一中学高三上学期第一次月考)已知函数()()2ln f x x a x =-,R a ∈. (1)若()10f '=,求a ;(2)若()1,e a ∈,()f x 的极大值大于b2e <.2.(2024届全国名校大联考高三上学期第一联考)已知函数()2ln f x x ax =+(a ∈R ). (1)若()0f x ≤在()0,∞+上恒成立,求a 的取值范围:(2)设()()3g x x f x =-,1x ,2x 为函数()g x 的两个零点,证明:121x x <.3.(2024届山东省青岛市高三上学期期初调研检测)已知1ea ≥,函数()e ln ln xf x a x a =-+.(1)若1a =,求()f x 在点()()1,1f 处的切线方程; (2)求证:()44f x x ≥-+;(3)若β为()f x 的极值点,点()(),f ββ在圆22117416x y ⎛⎫++= ⎪⎝⎭上.求a .4.(2024届湖南省株洲市第二中学教育集团2高三上学期开学联考)已知函数()21e 12xf x x x =---, (1)证明:当0x >时,()0f x >恒成立; (2)若关于x 的方程()sin 2f x xa x x +=在()0,π内有解,求实数a 的取值范围. 5.(2024届辽宁省十校联合体高三上学期八月调研考试)设方程()22e x x a -=有三个实数根123123,,()x x x x x x <<.(1)求a 的取值范围;(2)请在以下两个问题中任选一个进行作答,注意选的序号不同,该题得分不同.若选①则该小问满分4分,若选②则该小问满分9分.①证明:12(2)(2)4x x --<;②证明:1231231113e 2x x x x x x +++++<. 6.(2024届安徽省江淮十校高三第一次联考)已知函数()2k f x x x=+,0k ≠.(1)讨论()f x 的单调性;(2)设函数()3ln g x x x =-n m ≤<,当13k =-时,证明:()()()()332g m g n f m f n m n -+<-. 7.(2024届内蒙古包头市高三上学期调研考试)设函数()()ln 1f x a x =+-,已知2x =是函数()()2y x f x =-的极值点.(1)求a ; (2)设函数()()()()22x f x g x x f x -=-+,证明:()1g x >.8.(2024届北京市景山学校高三上学期开学考试)已知函数())(0)f x x b a =+≠,曲线()y f x =在点(1,(1))f 处的切线方程是1y x =-.(1)求a 、b 的值; (2)求证:()f x x <;(3)若函数()2()()g x f x t x x =+-在区间(1,)+∞上无零点,求t 的取值范围.9.(2024届山西省大同市高三上学期质量检测)已知函数2()ln (R)af x ax x a x=--∈. (1)讨论()f x 的单调性;(2)若()f x 的两个极值点分别为1x ,2x ,证明:12|()()|2f x f x a-<.10.(2024届黑龙江省哈尔滨市第三中学校高三上学期开学测试)已知函数()()111ln f x ax a x x=+--+.(1)讨论函数()f x 的单调性;(2)求证:n *∀∈N ,)21+⋅⋅⋅++>.参考答案1. (2024届云南省昆明市第一中学高三上学期第一次月考)已知函数()()2ln f x x a x =-,R a ∈. (1)若()10f '=,求a ;(2)若()1,e a ∈,()f x 的极大值大于b 2e <.【过程详解】(1)()212()ln ()f x x a x x a x'=-+-⋅,由()10f '=,即202(1)ln1(1)a a --=+,解得1a =. (2)()()(2ln 1)af x x a x x'=--+, 令()2ln 1ag x x x=-+, ()1,e a ∈ ,111(,1e ),a a a∴∈∴<,()21()2ln 11)2ln (10g a a a a a a=--+=-++-<, ()2ln 112ln 0g a a a =-+=>, 22()0ag x x x+'=>在(0,)+∞恒成立, 故()g x 在(0,)+∞递增,而1lg()0,()0g a a <>,01(,)x a a∴∃∈,使得g 0()0,x =令()0f x '=,有1201,,x a x x x =<=故0(0,)x x ∈时()0f x ¢>,0(,)x x a ∈时()0f x '<,(,)x a ∈+∞时()0f x ¢>, 故()f x 在0(0,)x 上递增,在0(,)x a 上递减,在(,)a +∞上递增,∴()f x 极大值2000()()ln ,f x x a x b =->由000()2ln 10,ag x x x =-+=得0002ln ,a x x x =+ 故23004(ln ),b x x <则230028(ln ),ab ax x <01,e 1e x a a<<<< 0e,e a x ∴<<,23233008(ln )8e e 18e ax x ∴<⋅⋅⋅=,328e ,ab ∴<2e <.2.(2024届全国名校大联考高三上学期第一联考)已知函数()2ln f x x ax =+(a ∈R ). (1)若()0f x ≤在()0,∞+上恒成立,求a 的取值范围:(2)设()()3g x x f x =-,1x ,2x 为函数()g x 的两个零点,证明:121x x <.【过程详解】(1)若()0f x ≤在()0,∞+上恒成立,即2ln xa x≤-, 令()2ln x u x x =-,所以()()222ln 122ln x x u x x x --'=-=, 所以当0e x <<时,()0u x '<,当e x >时,()0u x '>, 所以()u x 在()0,e 上单调递减,在()e,+∞上单调递增, 所以()()min 2e eu x u ==-,所以2a e ≤-,即a 的取值范围是2,e ⎛⎤-∞- ⎝⎦.(2)令()0g x =,即22ln 0xx a x--=, 令()22ln x h x x a x =--,则()()()3222ln 121ln 2x x x h x x x x +--'=-=, 令()3ln 1r x x x =+-,所以()2130r x x x'=+>,所以()r x 在()0,∞+上单调递增,又()10r =,所以当01x <<时,()0r x <,所以()0h x '<, 当1x >时,()0r x >,所以()0h x '>,所以()h x 在()0,1上单调递减,在()1,+∞上单调递增. 不妨设12x x <,则1201x x <<<,2101x <<, 因为()()120h x h x ==,所以()()22212222222212ln 2ln 1111x x h x h h x h x a a x x x x x ⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪-=-=----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭22222112ln x x x x x ⎛⎫⎛⎫=+--- ⎪ ⎪⎝⎭⎝⎭. 设函数()12ln x x x x ϕ=--(1x >),则()()22211210x x x x xϕ-'=+-=>在()1,+∞上恒成立, 所以()x ϕ在()1,+∞上单调递增,所以()()222212ln 10x x x x ϕϕ=-->=, 所以()1210h x h x ⎛⎫-> ⎪⎝⎭,即()121h x h x ⎛⎫> ⎪⎝⎭.又函数()22ln xh x x a x=--在()0,1上单调递减, 所以12101x x <<<,所以121x x <. 3.(2024届山东省青岛市高三上学期期初调研检测)已知1ea ≥,函数()e ln ln xf x a x a =-+.(1)若1a =,求()f x 在点()()1,1f 处的切线方程; (2)求证:()44f x x ≥-+;(3)若β为()f x 的极值点,点()(),f ββ在圆22117416x y ⎛⎫++= ⎪⎝⎭上.求a .【过程详解】(1)1a =,()e ln xf x x =-,0x >由()11e ln1e f =-=,得切点为()1,e由()1e xf x x'=-,有()1e 1f '=-,即()f x 在点()1,e 处的切线斜率为e 1-,所以()f x 在点()1,e 处的切线方程为:()e 11y x =-+. (2)证明:因为()1e xf x a x '=-(1ea ≥,0x >),设函数()()g x f x '=,则()21e 0xg x a x '=+>(1e a ≥,0x >),所以()f x '在()0,∞+上单调递增又因为()212e 02f a '=->,112e2e 1e 2e e 2e 02e a a f a a a a ⎛⎫⎛⎫'=-=-< ⎪ ⎪⎝⎭⎝⎭, 所以存在1,22e a β⎛⎫∈⎪⎝⎭,使得()0f β'=, 即1e a ββ=,1e a ββ=,所以,当()0,x ∈β时,()0f x '<,()f x 在()0,β上单调递减; 当(),x β∈+∞时,()0f x ¢>,()f x 在(),β+∞上单调递增;所以()()1e ln ln 2lnf x f a a ββββββ≥=-+=--令()12ln =--h x x x x ,()()()()14432ln 40x h x x x x x xϕ=--+=+-->, 则()()()2131x x x x ϕ-+'=,()0x ϕ'<解得01x <<,()0x ϕ'>解得1x >,所以,()x ϕ在()0,1上单调递减,在()1,+∞上单调递增; 所以,()()10x ϕϕ≥=,所以,()h x 的图像在44y x =-+的上方,且()h x 与44y x =-+唯一交点为()1,0, 所以,()44f x x ≥-+.(3)圆22117416x y ⎛⎫++= ⎪⎝⎭的圆心坐标为10,4⎛⎫- ⎪⎝⎭,半径r =圆心到直线44y x =-+的距离174d ===, 所以直线44y x =-+为圆22117416x y ⎛⎫++= ⎪⎝⎭的切线,由2211741644x y y x ⎧⎛⎫++=⎪ ⎪⎨⎝⎭⎪=-+⎩解得切点坐标为()1,0, 显然,圆22117416x y ⎛⎫++= ⎪⎝⎭在直线44y x =-+的下方又因为()44f x x ≥-+,且点()(),f ββ在圆22117416x y ⎛⎫++= ⎪⎝⎭上,则点()(),f ββ即为切点为()1,0,所以1β=,1ea =.4.(2024届湖南省株洲市第二中学教育集团2高三上学期开学联考)已知函数()21e 12xf x x x =---, (1)证明:当0x >时,()0f x >恒成立;(2)若关于x 的方程()sin 2f x xa x x +=在()0,π内有解,求实数a 的取值范围. 【过程详解】(1)函数21()e 12xf x x x =---,0x >,求导得()e 1x f x x '=--,令e 1x y x =--,0x >,求导得e 10x y '=->, 则函数()f x '在(0,)+∞上单调递增,()(0)0f x f ''>=, 因此函数()f x 在(0,)+∞上单调递增,()(0)0f x f >=, 所以当0x >时,()0f x >恒成立.(2)设sin y x x =-,()0,πx ∈,则1cos 0y x '=->, 则sin y x x =-在()0,π上递增,0y >,即sin 0x x >>, 方程()sin 2f x xa x x +=等价于e sin 10x ax x x ---=,()0,πx ∈, 令()e sin 1xg x ax x x =---,原问题等价于()g x 在()0,π内有零点,由()0,πx ∈,得2sin x x x <, 由(1)知,当12a ≤时,()21e sin 1e 102x xg x ax x x x x =--->--->, 当()0,πx ∈时,函数()y g x =没有零点,不合题意; 当12a >时,由()e sin 1x g x ax x x =---,求导得()()e cos sin 1xg x a x x x '=-+-, 令()()()e cos sin 1x t x g x a x x x '==-+-,则()()e sin 2cos xt x a x x x '=+-,当π[,π)2x ∈时,()0t x '>恒成立,当π(0,)2x ∈时,令()()()e sin 2cos x s x t x a x x x '==+-,则()()e 3sin cos xs x a x x x '=++,因为e 0x >,()3sin cos 0a x x x +>,则()0s x '>,即()t x '在π(0,2上单调递增,又()0120t a '=-<,π2ππ(e 022t a '=+>,因此()t x '在π(0,)2上存在唯一的零点0x ,当()00,x x ∈时,()0t x '<,函数()g x '单调递减,当()0,πx x ∈时,()0t x '>,函数()g x '单调递增,显然()()000g x g ''<=,()ππe π10g a '=+->,因此()g x '在()0,π上存在唯一的零点1x ,且()10,πx x ∈,当()10,x x ∈时,()0g x '<,函数()g x 单调递减,当()1,πx x ∈时,()0g x '>,()g x 单调递增, 又()00g =,()()100g x g <=,由(1)知,21e 112x x x x >++>+,则()ππe π10g =-->,所以()g x 在()10,x 上没有零点,在()1,πx 上存在唯一零点,因此()g x 在()0,π上有唯一零点, 所以a 的取值范围是1(,)2+∞.5.(2024届辽宁省十校联合体高三上学期八月调研考试)设方程()22e x x a -=有三个实数根123123,,()x x x x x x <<.(1)求a 的取值范围;(2)请在以下两个问题中任选一个进行作答,注意选的序号不同,该题得分不同.若选①则该小问满分4分,若选②则该小问满分9分.①证明:12(2)(2)4x x --<;②证明:1231231113e2x x x x x x +++++<. 【过程详解】(1)由题意设()()22e x f x x =-(x ∈R ),则()f x '=()2e xx x -,x ∈R ,令()0f x '=,得0x =或2x =,当0x <或2x >时,()0f x ¢>,所以()f x 在(),0∞-,()2,+∞上单调递增; 当02x <<时,()0f x '<,所以()f x 在()0,2上单调递减;又()20f =,()04f =,()33e 4f =>,且()()22e 0x f x x =-≥,当x 趋向于+∞时,()f x 也趋向于+∞,又方程()22e x x a -=有三个实数根123123,,()x x x x x x <<, 等价于直线y a =与()y f x =的函数图像有三个交点, 即04a <<,所以a 的取值范围为()0,4.(2)选①,证明如下:由(1)得:1202x x <<<,则122220x x -<-<-<, 设112t x =-,222t x =-,则1220t t <-<<, 不妨设121t k t =>,则12t kt =(1k >), 又()()1222122e 2e x x x x a -=-=,即12222212e e t t t t a ++==,故22222222e e 0e kt ta k t t ==>,即222e e kt t k =,所以22ln 1k t k=-,212ln 1k k t kt k ==-,1k >, 则()()()2222121222ln 2ln 22111k x x t t k k ⎛⎫⎫ ⎪⎛⎫⎪--==⋅==⎪ ⎪ ⎪-⎝⎭⎪⎪-⎪⎝⎭⎭,设()l 1n 2x g x x x=-+,1x >, 则()()222121=10x g x x x x -'--=-≤,所以()g x 在()1,+∞上单调递减,即()()10g x g <=,1>,则0<,即,0>2<,故()()212122241x x t t ⎛⎫ ⎪--==<⎪ ⎪⎪⎝⎭. 选②,证明如下:由(1)得:1202x x <<<,则122220x x -<-<-<, 设112t x =-,222t x =-,则1220t t <-<<, 不妨设121t k t =>,则12t kt =(1k >), 又()()1222122e 2e x x x x a -=-=,即12222212e e t t t t a ++==,故22222222e e 0e kt ta k t t ==>,即222e e kt t k =,所以22ln 1k t k=-,212ln 1k k t kt k ==-(1k >),则()()()2222121222ln 2ln 22111k x x t t k k ⎛⎫⎫ ⎪⎛⎫⎪--==⋅==⎪ ⎪ ⎪-⎝⎭⎪⎪-⎪⎝⎭⎭1>), 设()l 1n 2x g x x x=-+,1x >, 则()()222121=10x g x x x x -'--=-≤,所以()g x 在()1,+∞上单调递减,即()()10g x g <=,1>,则0<,即,0>2<,故()()212122241x x t t ⎛⎫ ⎪--==<⎪ ⎪⎪⎝⎭. 所以()()()12121222244x x x x x x --=-++<,则()12122x x x x <+, 又因为1202x x <<<,所以120x x <,从而()12121221121x x x x x x +⎛⎫=+< ⎪⎝⎭,故121112x x +<①,下证120x x +<, 有12122ln 2ln 44011k k kx x t t k k+=++=++<--(1k >), 即证1k >时,()()1ln 21k k k +>-,即()214ln 211k k k k ->=-++, 即证4ln 21k k +>+(1k >), 设()4ln 1h x x x =++(1x >),则()()()()22211411x h x x x x x -'=-=++,当1x >时,()0h x '>,所以()h x 在()1,+∞上单调递增, 则()()12h x h >=,所以120x x +<②,又()()33e 0f f =>,所以得323x <<,设()1x x xϕ=+,(23x <<),则()211x x ϕ'=-,当23x <<时,()0x ϕ'>,所以()x ϕ在()2,3上单调递增, 则331103x x +<③, 联立①②③得:123123*********e 042362x x x x x x +++++<++=<<,故1231231113e2x x x x x x +++++<. 6.(2024届安徽省江淮十校高三第一次联考)已知函数()2k f x x x=+,0k ≠.(1)讨论()f x 的单调性;(2)设函数()3ln g x x x =-n m ≤<,当13k =-时,证明:()()()()332g m g n f m f n m n -+<-. 【过程详解】(1)解:函数()f x 的定义域为{}|0x x ≠,()32222k x kf x x x x -='-=, 令()0f x '=,则x =①当0k<时,当x <()0f x '<,()f x0x <<时,()0f x ¢>,()f x 单调递增;当0x >时,()0f x ¢>,()f x 单调递增;②当0k>时,当0x <时,()0f x '<,()f x 单调递减;当0x <<()0f x '<,()f x 单调递减;当x >时,()0f x ¢>,()f x 单调递增.综上:当0k <时,单调增区间为⎫⎪⎪⎭,()0,∞+,单调递减区间为⎛-∞ ⎝; 当0k >时,单调递增区间为⎫+∞⎪⎪⎭,单调递减区间为(),0∞-,⎛ ⎝. (2)对任意的m,n ⎫∈+∞⎪⎭,且m n >,令mt n =(1t >),因为()()()()()()()32m n f m f n g m g n -+--()22333311ln 2222m m n m n m n m n n ⎛⎫⎛⎫=-+----- ⎪ ⎪⎝⎭⎝⎭33221133ln 222222n m m m n mn m n m n n=-+-+-+ 323111332ln 22m m m m n m n n n n n mn ⎡⎤⎛⎫⎛⎫⎛⎫=-+⋅----⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()332331*********ln (1)2ln 2222n t t t t t n t t t t t ⎛⎫⎛⎫=-+----=---- ⎪ ⎪⎝⎭⎝⎭ ()33211111(1)2ln 33132ln 626t t t t t t t t t t ⎡⎤⎛⎫⎛⎫≥----=-+---- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 321336ln 16t t t t ⎛⎫=-++- ⎪⎝⎭, 记()32336ln 1h t t t t t =-++-,则()22226311113636320h t t t t t t t t t t t t t ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=---'=-+-> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()h t 在()1,+∞单调递增,所以()()10h t h >=,故32336ln 10t t t t-++->,所以()()()()()()()302m n f m f n g m g n -+-->, 故()()()()332g m g n f m f n m n-+<-.7.(2024届内蒙古包头市高三上学期调研考试)设函数()()ln 1f x a x =+-,已知2x =是函数()()2y x f x =-的极值点.(1)求a ; (2)设函数()()()()22x f x g x x f x -=-+,证明:()1g x >.【过程详解】(1)由题意可知,()()()()22ln 1y x f x x a x =-=-+-,则()2ln 11xy a x a x-'=+-++-,因为2x =是函数()()2ln 1y x a x =-+-的极值点, 所以()ln 120a +-=,解得2a =, 经检验满足题意,故2a =;(2)由(1)得()()ln 3f x x =-,(),3x ∞∈-, 设()()()22ln 3h x x f x x x =-+=-+-,则()12133x h x x x -'=-=--, 当2x <时,203x x ->-,即()0h x '>,所以()h x 在区间(),2-∞单调递增; 当23x <<时,203x x -<-,即()0h x '<,所以()h x 在区间()2,3单调递减, 因此当(),3x ∞∈-时,()()20h x h ≤=,因为()g x 的定义域要求()f x 有意义,即(),3x ∞∈-,同时还要求()2ln 30x x -+-≠,即要求2x ≠,所以()g x的定义域为{|3x x < 且}2x ≠, 要证()()()()212x f x g x x f x -=>-+,因为()20x f x -+<,所以需证()()()22x f x x f x -<-+, 即需证()()23ln 30x x x -+-->,令3x t -=,则0t >且1t ≠,则只需证1ln 0t t t -+>,令()1ln m t t t t =-+,则()ln m t t '=,令()ln 0m t t '==,可得1t =, 所以()0,1t ∈,()0m t '<;()1,t ∈+∞,()0m t '>;所以()m t 在区间()0,1上单调递减,在区间()1,+∞上单调递增, 所以()()10m t m >=,即()1g x >成立.8.(2024届北京市景山学校高三上学期开学考试)已知函数())(0)f x x b a =+≠,曲线()y f x =在点(1,(1))f 处的切线方程是1y x =-.(1)求a 、b 的值; (2)求证:()f x x <;(3)若函数()2()()g x f x t x x =+-在区间(1,)+∞上无零点,求t 的取值范围.【过程详解】(1)()()f x x b '=+由切线方程知()()1110f f ⎧=⎪⎨='⎪⎩,即()()1110b b +=+=,注意到0a ≠,解得1a =,0b =.(2)由(1)可知()f x x,若要()f x x x =<且注意到0x >,所以只需ln x < 构造函数()ln h x x =()122h x x x '==,令()0h x '=得4x =,所以()h x 、()h x '随x 的变化情况如下表:()0,4 ()4,+∞()h x '+-()h x所以()h x 有极大值()244ln 42ln 0eh =-=<,综上()0h x <,结合分析可知命题得证. (3)由题意分以下三种情形讨论:情形一:注意到当0t ≥且1x >0x >,()10txx -≥,此时有()0g x >,即()g x 在区间(1,)+∞上无零点,符合题意.情形二:对()2()g x x t x x =+-求导得()()21g xt x x '=+-,所以有()11g t '=+;进一步对()()21g x t x x '=++- 求导得()32ln 24x g x t x-''=+,注意到当1t ≤-且1x >时,有20t <,32ln 04x x-< ,进而有()0g x ''<,所以()g x '单调递减,所以()()110g x g t ''<=+≤,因此()g x 单调递减,故()()10g x g <=,即()g x 在区间(1,)+∞上无零点,符合题意.情形三:由(2)可知1x >lnx <,且注意到当10t -<<时有()()()1()21211212g x t x t x t x '=-<+-<++-成立, 所以11(02a g a a -'<-<,此时()110g t '=+>, 所以存在011,a x a -⎛⎫∈ ⎪⎝⎭使得()00g x '=,且注意到此时有()32ln 204x g x t x -''=+<成立, 所以()g x 、()g x '随x 的变化情况如下表:()01,x ()0,x +∞()g x ' +-()g x故一方面当0x x =时,()g x 取极大值(或最大值)()0g x ,显然有()()010g x g >=;ln x <可得()()()22()1g x x t x x x t x x x tx t +-<+-=+-,所以有10a g a -⎛⎫< ⎪⎝⎭,由零点存在定理并结合这两方面可知函数()g x 在区间(1,)+∞上存在零点.综上所述,符合题意的t 的取值范围为(][),10,-∞-⋃+∞.9.(2024届山西省大同市高三上学期质量检测)已知函数2()ln (R)af x ax x a x=--∈. (1)讨论()f x 的单调性;(2)若()f x 的两个极值点分别为1x ,2x,证明:12|()()|f x f x -<. 【过程详解】(1)依题意,222122()(0)a ax x af x a x x x x -+'=-+=>,当0a ≤时,()0f x '<,所以()f x 在(0,)+∞上单调递减;当0a <<()0f x '>,解得102x a <<或12x a>,令()0f x '<,解得112x a <<,所以()f x在1(0,2a 上单调递增,在11(22a a上单调递减,在)+∞上单调递增;当a ≥时,()0f x '≥,所以()f x 在(0,)+∞上单调递增. (2)不妨设120x x <<,由(1)知,当04a <<时,()f x 在1(0,)x 上单调递增,在12(,)x x 上单调递减,在2(,)x +∞上单调递增,所以1x 是()f x 的极大值点,2x 是()fx的极小值点,所以12()()f x f x >,所以1212|()()|()()f x f x f xf x -=-.由(1)知,122x x =,121x x a+=,则21x xa-==.要证12|()()|f x f x -<1221()())2f x f x x x -<-.因为22121122121112()()()()()ln 222x x xx x f x f x x x a x x a x x x ---+=-+--+⋅2212212111212()2()()ln ln 2x x x x a x x x x x x x x -=-+--=+ 2122112(1)ln 1x x xx x x -=+, 设211x t x =>,2(1)()ln 1t g t t t -=++.所以222414()0(1)(1)g t t t t '==>++, 所以()g t 在(1,)+∞上单调递增,所以()(1)0g t g >=.所以2112)()()02x x f x f x --+>,即得1221()()()2f x f x x x -<-成立. 所以原不等式成立.10.(2024届黑龙江省哈尔滨市第三中学校高三上学期开学测试)已知函数()()111ln f x ax a x x=+--+.(1)讨论函数()f x 的单调性;(2)求证:n *∀∈N ,)21+⋅⋅⋅++>.【过程详解】(1)()f x 的定义域为()0,∞+,()()()221111ax x a f x a x x x --+'=+-=, 当0a ≤时,10ax -<,令()0f x ¢>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在()0,1上单调递增,()1,+∞上单调递减;当01a <<时,令()0f x ¢>,解得01x <<或1x a >,令()0f x '<,解得11x a <<,所以()f x 在()0,1,1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,11,a ⎛⎫⎪⎝⎭上单调递减;当1a =时,()0f x '≥恒成立,所以()f x 在()0,∞+上单调递增;当1a >时,令()0f x ¢>,解得10x a <<或1x >,令()0f x '<,解得11x a <<,所以()f x 在10,a ⎛⎫⎪⎝⎭,()1,+∞上单调递增,1,1a ⎛⎫⎪⎝⎭上单调递减;综上所述,当0a ≤时,()f x 在()0,1上单调递增,()1,+∞上单调递减;当01a <<时,()f x 在()0,1,1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,11,a ⎛⎫⎪⎝⎭上单调递减;当1a =时,()f x 在()0,∞+上单调递增;当1a >时,()f x 在10,a ⎛⎫⎪⎝⎭,()1,+∞上单调递增,1,1a ⎛⎫ ⎪⎝⎭上单调递减.(2)当0a =时,由(1)可得()()11ln 10f x x f x=--<=,()1x >,因为N n *∈1>,则10<,即11>>所以n ++>-+L L2n =-L2n =-)21=-,即)2ln 1+>L .。

高考函数压轴精典题型以及答案

高考函数压轴精典题型以及答案

函数专题训练复习目标:通过对函数综合题的分类,使学生在解函数题中牢固掌握:反函数的求法及其与原函数的关系的应用、函数的单调性、函数的奇偶性、求函数的定义域与值域常用方法、函数的解析式求法、二次函数的根的分布情况的充要条件运用、函数中的新题型的新解法、函数与方程的思想方法等。

重点与难点: 反函数、值域、单调性、奇偶性、求解析式、分段函数、根的分布、函数与方程思想方法、函数图象等过程:一、反函数 ●有奖征解① 若函数f(x)的图像过点(0,1),则函数f(x+2)的反函数过定点(1,-2)② 若函数f(x)的图像过(0,1),则)4(1x f --过点(-1,0); ③若函数f(x)的图像过点(0,1),则f(4-x)的反函数过点(1,4),y=f(4-x)的反函数为)(41x fy --=。

●例子分析例1①已知函数()x x x f +-=121,函数y=g(x)的图像与)1(1--x f 的图像关于直线y=x 对称,则g(x)的解析式为12+-=x xy 。

②给定实数a,a ≠0,且a ≠1,设函数⎪⎭⎫⎝⎛≠∈--=a x R x ax x y 1,11,证明这个函数图关于y=x对称。

① 已知函数()ax x x f ++=12存在反函数,求α的取值。

(α≠1/2)说明:④小题可以据③小题去求,但也可以据通常方法去求。

二、周期性、循环 ● 有奖征解设x 为整数,给出一个流程图如右图:按此流程图计算,刚好处理3次 ,则输入的x 值是例1(2004年福建省高考)定义在R 上的偶函数f(x)满足f(x)=f(x+2),当x ∈[3,5]时,f(x)=2-|x-4|,则(D )(A )f(sin6π)<f(cos 6π) (B )f(sin1)>f(cos1) 输入x 与y 值 用2与x+3的几何平均值代替y开始用x+1代x 表示出x 终了 不是是 y 是否大于是x(C )f(cos32π)<f(sin 32π) (D )f(cos2)>f(sin2)例2 f(x)定义域为(-∞,+∞)上以2为周期的函数,对k ∈Z,用I k 表示区间(]12,12+-k k ,已知当x ∈I 0时,f(x)=x 2, ① 求f(x)在I k 上的解析式;② 对自然数k ,求集合M k ={a|使方程f(x)=ax 在I k 上有两个不同的实根}。

2025届高考数学复习:压轴好题专项(三次函数)练习(附答案)

2025届高考数学复习:压轴好题专项(三次函数)练习(附答案)

2025届高考数学复习:压轴好题专项(三次函数)练习1.(2024届江苏省镇江市丹阳市高三上学期期初检测)已知函数()()3222f x x mx m x m =-+∈R 在6x =处有极小值. (1)求m 的值;(2)求函数()y f x =在[]0,t 上的最大值.2.(2023河南省新未来3月联考)已知函数()()3211132f x x a x ax =+--. (1)若2a =,求函数()f x 的极值;(2)当1a >时,若对0x ∀≥,()e 0xf x x b ++≥恒成立,求4b a -的最小值.3.(2023届安徽省卓越县中联盟高三上学期第一次联考)已知函数()3223=+f x x ax ,a ∈R .(1)若()f x 在[]1,3-上的值域为[]8,0-,求()f x 在R 上的单调区间;(2)若函数()()()6cos 6sin g x f x x a x x =++-,则当0a ≥时,求()g x 的零点个数.4.(2023届湖南省湘潭市部分学校高三上学期期末联考)已知函数()313f x mx kx =-,其中,m k ∈R .(1)当1k =时,求函数()f x 的单调区间;(2)已知函数()2ln g x x x =-(e 是自然对数的底数),若0k ∀>,曲线()y f x '=与曲线()y g x =都有唯一的公共点,求实数m 的取值范围.5.(2023届北京市第五中学高三下学期3月检测)设函数()()23f x x x x a =-+,R a ∈(1)当9a =-时,求函数()f x 的单调增区间;(2)若函数()f x 在区间()1,2上为减函数,求a 的取值范围;(3)若函数在区间()0,2内存在两个极值点1x ,2x ,且()()()()2121f x f x f x f x ->+,求a 的取值范围. 6.已知函数32()1f x x ax bx =+++(0,a b R >∈)有极值,且导函数()f x '的极值点是()f x 的零点.(1)求b 关于a 的函数关系式,并写出定义域; (2)求证:23b a >;(3)若(),()f x f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.7.已知()3222,f x x ax a x a =+-+∈R .(1)当a<0时,求函数()y f x =的单调减区间;(2)当0a =时,曲线()y f x =在相异的两点,A B 点处的切线分别为1l 和21,l l 和2l 的交点位于直线2x =上,证明:,A B 两点的横坐标之和小于4.8.(2024届江西省稳派上进教育高三上学期摸底考试)已知函数()321132f x x x ax =++,()1e ln x g x x x x -=+,()f x ',()g x '分别为()f x ,()g x 的导函数,且对任意的(]10,1x ∈,存在(]20,1x ∈,使()()122f x g x ''≤-.(1)求实数a 的取值范围;(2)证明:0x ∀>,有()()'≥g x f x .9.已知函数()331f x x ax =++,[]1,1x ∈-,a R ∈,(1)若函数()f x 在区间[]1,1-上不单调,求a 的取值范围; (2)求()f x 的最大值;(3)若()1f x b +≤对任意[]1,1x ∈-恒成立,求a b +的取值范围.10.已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 11.已知函数.0)0,(,2)(,)()(22<-∞∈=-=a x x a x g a x x x f 且 (1)(i )求函数)()(x g y x f y ==与的图象的交点A 的坐标;(ii )设函数)(),(x g y x f y ==的图象在交点A 处的切线分别为,,21l l 是否存在这样的实数a, 使得21l l ⊥?若存在,请求出a 的值和相应的点A 坐标;若不存在,请说明理由. (2)记[)0,1)(-=在x f y 上最小值为F (a ),求aa F )(的最小值. 12.已知函数32()1f x x ax bx =-+++在1x =时有极小值. (1)当4a =时,求()f x 在0x =处的切线方程;(2)求()f x 在33,2⎡⎤-⎢⎥⎣⎦上的最小值.13.已知函数()3222312f x x ax a x =+-,其中a ∈R .(1)求函数()f x 的单调区间;(2)设函数()f x 在区间2,2a a ⎡⎤⎣⎦上的最大值为()g a ,证明:()32g a <.14.已知函数()3221f x x ax a x =---,其中0a <.(1)求曲线()y f x =在点()(),a f a 处的切线方程;(2)若存在实数t ,使得不等式()0f x <的解集为(),t -∞,求a 的取值范围.15.已知函数()()33R f x x ax a a =-+∈.(1)讨论函数()f x 的单调性;(2)若函数()f x 在区间[]0,3上的最大值与最小值之差为()g a ,求()g a 的最小值. 16.已知函数3211()()32f x x ax a =-∈R 在[]0,1上的最小值为16-.(1)求a 的值;(2)讨论函数()()2()g x f x x b b =-+∈R 的零点个数.参考答案1.(2024届江苏省镇江市丹阳市高三上学期期初检测)已知函数()()3222f x x mx m x m =-+∈R 在6x =处有极小值. (1)求m 的值;(2)求函数()y f x =在[]0,t 上的最大值.【过程详解】(1)因为()3222f x x mx m x =-+,则()()()22343x mx m f x x m x m =-+'=--,又因为()f x 在6x =处有极小值,则()()()61860f m m '=--=,解得6m =或18m =, (i )当6m =时,则()()()326f x x x -'=-, 当(),2x ∈-∞时,()0f x ¢>,()f x 单调递增, 当()2,6x ∈时,()0f x '<,()f x 单调递减, 当()6,x ∞∈+时,()0f x ¢>,()f x 单调递增, 所以当6x =时,()f x 取得极小值,符合题意; (ii )当18m =时,()()()3618f x x x '=--, 当(),6x ∈-∞时,()0f x ¢>,()f x 单调递增, 当()6,18x ∈时,()0f x '<,()f x 单调递减, 当()18,x ∞∈+时,()0f x ¢>,()f x 单调递增, 所以当6x =时,()f x 取得极大值,不符合题意,舍去 综上所述:6m =.(2)由(1)可知:()321236f x x x x =-+,且()f x 在[)()0,2,6,+∞上单调递增,在()2,6上单调递减,()()8232f f ==,如图所示:又因为[]0,x t ∈,则有:(i )当02t <≤时,则()f x 在[]0,t 上单调递增,所以函数()y f x =在[]0,t 上的最大值为()()32max 1236f x f t t t t ==-+⎡⎤⎣⎦;(ii )当28t <≤时,结合图象可知:函数()y f x =在[]0,t 上的最大值为()()max 232f x f ==⎡⎤⎣⎦; (iii )当8t >时,则()f x 在[)(]0,2,6,t 上单调递增,在()2,6上单调递减,且()()8f t f >,所以函数()y f x =在[]0,t 上的最大值为()()32max 1236f x f t t t t ==-+⎡⎤⎣⎦;综上所述:()(]()(]32max1236,0,28,32,2,8t t t t f x t ∞⎧-+∈⋃+⎪⎡⎤=⎨⎣⎦∈⎪⎩. 2.(2023河南省新未来3月联考)已知函数()()3211132f x x a x ax =+--. (1)若2a =,求函数()f x 的极值;(2)当1a >时,若对0x ∀≥,()e 0xf x x b ++≥恒成立,求4b a -的最小值.【过程详解】(1)若2a =,可得()3211232f x x x x =--, 有()()()2212f x x x x x =--=+-',令()0f x '<,可得12x -<<,令()0f x ¢>,则1x <-或2x >, 故函数()f x 的增区间为(),1-∞-,()2,+∞,减区间为()1,2-, 函数()f x 的极小值为()1023f =-,极大值为()716f -=; (2)令()()()e 0xg x x x x f b =++≥,有()()()()()()()()211e 11e 1e x x xg x a x a x x x a x x x a x '=+--++=+-++=++-,由函数()e x h x x a =+-单调递增及()010h a =-<,()e 0ah a =>,可知存在()0,m a ∈,使得()0h m =,即e m a m =+, 当x >m 时,()0g x '>,当0x m <<时,()0g x '<, 所以函数()g x 的减区间为[)0,m ,增区间为(),m +∞, 可得()()()32min 111e 32mg m m a m am m b g x ==+--++()()32322111111e e e e 32622m m m m m m m m m m b m m m b =+---+++=---+, 由0x ∀≥,()e 0xf x x b ++≥恒成立,有()0g m ≥,可得322111e 622mb m m m ≥++, 有()3221114e 4e 622mm b a m m m m -≥++-+, 可得3221114e 44e 622mm b a m m m m -≥++--, 令()()322111e 44e 0622xx x x x x x x ϕ=++-->, 有()()()2221112e 44e 4e 1222x x x x x x x x x x ϕ⎛⎫'=+++--=+-+ ⎪⎝⎭()()()124e 12x x x =-++, 令()0x ϕ'>,则2x >,令()0x ϕ'<,则02x <<, 所以函数()x ϕ的减区间为()0,2,增区间为()2,+∞, 所以()()222414222e 84e 2e 33x ϕϕ≥=++--=--, 故4b a -的最小值为2142e 3--. 3.(2023届安徽省卓越县中联盟高三上学期第一次联考)已知函数()3223=+f x x ax ,a ∈R .(1)若()f x 在[]1,3-上的值域为[]8,0-,求()f x 在R 上的单调区间;(2)若函数()()()6cos 6sin g x f x x a x x =++-,则当0a ≥时,求()g x 的零点个数.【过程详解】(1)因为()3223=+f x x ax ,所以2()666()f x x ax x x a '=+=+,令()0f x '=,解得0x =或x a =-,当0a ->,即a<0时,令()0f x '<,得0x a <<-;令()0f x '>,得0x <或x a >-;所以()f x 在(),0∞-,(),a -+∞上单调递增,在()0,a -上单调递减,此时0x =是()f x 的极大值点; 当0a -<,即0a >时,令()0f x '<,得0a x -<<;令()0f x '>,得x a <-或0x >;所以()f x 在(),0a -上单调递减,在(),a -∞-,()0,∞+上单调递增,此时0x =是()f x 的极小值点; 当0a =时,()0f x '≥恒成立,则()f x 在[]1,3-上单调递增,此时()32f x x =,易得()12f -=-,()354f =,不满足题意;又(0)0f =,()f x 在[]1,3-上的值域为[8,0]-,所以()f x 在[]1,3-上的最值为(0)0f =,故0x =是()f x 的极大值点, 所以a<0,此时,有()8f a -=-或(1)8f -=-两种情况,都有2a =-,故2a =-满足题意,所以由上述分析可知,()f x 的单调递增区间为(),0∞-和()2,+∞,单调递减区间为()0,2. (2)令()sin t x x x =-,则()1cos 0t x x =-≥', 所以()t x 在R 上单调递增,又()00t =,所以当0x >时,()0t x >,即sin x x >,当0x <时,()0t x <,即sin x x <;因为()()()()326cos 6sin 236cos 6sin g x f x x a x x x ax x a x x =++-=+++-,令()0g x =,则()3211cos sin 032x ax x a x x +++-=,令()()3211cos sin 32h x x ax x a x x =+++-,则()()()sin h x x x x a ='-+, 令()0h x '=,解得0x =或x a =-.①若0a =,则()()sin 0h x x x x =-≥',此时()hx 在R 上单调递增.又()00h =,所以()h x 有且仅有1个零点,即()g x 有且仅有1个零点.②若0a >,0a -<,则当(),x a ∈-∞-时,()0h x '>,当(),0x a ∈-时,()0h x '<,当()0,x ∈+∞时,()0h x '>,故()h x 在(),a -∞-上单调递增,在(),0a -上单调递减,在()0,∞+上单调递增, 则()(0)0h a h a ->=>,故()h x 在(),a -+∞上没有零点,下证3302h a ⎛⎫--< ⎪⎝⎭.当x a <-时,0x a +<.因为cos 1x ≥-,所以()()cos x a x x a +≤-+. 因为sin x x >,所以sin x x -<-, 所以()()32323211111122323232h x x ax x a x x ax x a x ax x <+-+-=+--<+-213632x x ax ⎛⎫=+- ⎪⎝⎭,所以3913310222h a a a ⎛⎫⎛⎫⎛⎫--<-++< ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.从而()h x 在33,2a a ⎛⎫--- ⎪⎝⎭上有唯一零点,所以()h x 在(),a -∞-上有唯一零点,在(),a -+∞上没有零点,综上所述,当0a ≥时,()h x 有且仅有1个零点,故()g x 有且仅有1个零点.4.(2023届湖南省湘潭市部分学校高三上学期期末联考)已知函数()313f x mx kx =-,其中,m k ∈R .(1)当1k =时,求函数()f x 的单调区间;(2)已知函数()2ln g x x x =-(e 是自然对数的底数),若0k ∀>,曲线()y f x '=与曲线()y g x =都有唯一的公共点,求实数m 的取值范围.【过程详解】(1)因为1k =,所以()331133f x mx kx mx x =-=-,所以()2f x m x '=-,当0m ≤时,()20f x m x '=-≤,所以()f x 在R 上单调递减;当0m >时,令()0f x '<,得x <或x >;令()0f x ¢>,得x <<所以()f x 在(,-∞和)+∞上单调递减,在(上单调递增;综上:当0m ≤时,()f x 的单调递减区间为R ;当0m >时,()f x 的单调递减区间为(,-∞和)+∞,单调递增区间为(.(2)因为()313f x mx kx =-,所以()2f x m kx '=-,因为0k ∀>,曲线()y f x '=与曲线()y g x =都有唯一的公共点,所以0k ∀>,方程22ln m kx x x -=-有唯一解,即方程22ln kx x x m +-=有唯一解,令()()22ln 0x kx x x x ϕ=+->,则()222221kx x x kx x xϕ-+'=+-=,对于222y kx x =-+, 当1160k ∆=-≤,即116k ≥时,()0x ϕ'≥,故函数()x ϕ在R 上单调递增, 易知,当x 趋向于0时,ln y x =趋向于无穷小,2y kx x =-趋向于0,故()22ln x kx x x ϕ=+-趋向于无穷小;当x 趋向于无穷大时,ln y x =趋向于无穷大,2y kx x =-趋向于无穷大,故()22ln x kx x x ϕ=+-趋向于无穷大;所以()x ϕ的值域为R ,所以R m ∀∈,()x ϕ与y m =有且只有一个交点,满足题意; 当1160k ∆=->,即1016k <<时,2220kx x -+=有两个实根12,x x ,且12182x x k +=>,12116x x k =>, 若124x x <<,则当10x x <<或2x x >时,()0x ϕ'>,当12x x x <<时,()0x ϕ'<, 所以()x ϕ先增后减再增,存在一个极大值和一个极小值,要使22ln kx x x m +-=有唯一实数根,则m 大于()x ϕ的极大值或小于()x ϕ的极小值,记3x 为极大值点,则304x <<,()233332ln x kx x x m ϕ=+-<恒成立,又233220kx x -+=,即23322kx x =-,则()x ϕ的极大值为()()2333333333112ln 22ln 2ln 122x kx x x x x x x x ϕ=+-=--+=--, 令()()12ln 1042m x x x x =--<<,则()2102m x x '=->,故()m x 在()0,4上单调递增,故()()44ln 23m x m <=-,则()34ln 23x ϕ<-,故4ln 23m ≥-,记4x 为极小值点,则44x >,()244442ln x kx x x m ϕ=+->恒成立,又244220kx x -+=,即24422kx x =-,则()x ϕ的极小值为()44412ln 12x x x ϕ=--, 令()()12ln 142n x x x x =-->,则()2102n x x '=-<, 故()n x 在()4,+∞上单调递减,因为()4M ∀-<-,即4M >,取e 4M x =>,则()11e2ln ee 12e 122MMM M n M =--=--,所以()1e 3e 12M M n M M +=--, 令()()13e 142x h x x x =-->,则()13e 02xh x '=-<,所以()h x 在()4,+∞上单调递减,故()()41412e 102h x h <=-⨯-<,所以()e0Mn M +<,即()e Mn M <-,所以()n x 趋向于无穷小,则()4x ϕ趋向于无穷小,所以不存在R m ∈,使得24442ln kx x x m +->恒成立;若124<<x x ,记5x 为极大值点,则54x >,同理可得()255552ln x kx x x m ϕ=+-<恒成立,因为()n x 在()4,+∞上单调递减,所以()()44ln 23n x n <=-,则()54ln 23x ϕ<-,故4ln 23m ≥-,记6x 为极小值点,则64x >,同理可得不存在R m ∈,使得26662ln kx x x m +->恒成立;综上:要使0k ∀>,曲线()y f x '=与曲线()y g x =都有唯一的公共点,4ln 23m ≥-,即m 的取值范围为[)4ln 23,-+∞.5.(2023届北京市第五中学高三下学期3月检测)设函数()()23f x x x x a =-+,R a ∈(1)当9a =-时,求函数()f x 的单调增区间;(2)若函数()f x 在区间()1,2上为减函数,求a 的取值范围;(3)若函数在区间()0,2内存在两个极值点1x ,2x ,且()()()()2121f x f x f x f x ->+,求a 的取值范围. 【过程详解】(1)当9a =-时,239()()f x x x x =--,则2()3693(1)(3)f x x x x x ==+'---,由()0f x '>解得:1x <-或3x >,所以函数()f x 的单调增区间是(,1)-∞-,(3,)+∞.(2)函数2())3(f x x a x x =-+,则2()36f x x x a '=-+,因函数()f x 在区间()1,2上为减函数,则(1,2)x ∀∈,()0f x '≤成立,即(1,2)x ∀∈,2236036x x a a x x -+≤⇔≤-+,显然236x x -+在()1,2上单调递减,即(1,2)x ∀∈,2360x x -+>,则0a ≤,所以a 的取值范围是0a ≤.(3)由(2)知,2()36f x x x a '=-+,因函数()f x 在区间()0,2内存在两个极值点1x ,2x ,则()0f x '=在区间()0,2内有两个不等根1x ,2x ,即有(0)(2)0(1)30f f a f a '''==>⎧⎨=-+<⎩,解得0<<3a ,且有12122,3a x x x x +==,不妨令1202x x <<<,则123()())(f x x x x x '=--,当10x x <<或22x x <<时,()0f x '>,当12x x x <<时,()0f x '<,则()f x 在1x 处取得极大值1()f x ,在2x 取得极小值2()f x ,显然,12()()f x f x >, 由1212()()()()f x f x f x f x ->+两边平方得12()()0f x f x ⋅<,而2211112222()()()03)3(x x x a x x x f f x a x -+-+⋅=⋅<,即221122()()330x x a x x a +-+<-,整理得:22212121212121212()3()[()2]93()0x x x x x x a x x x x x x a x x a -+++-+-++<,把12122,3a x x x x +==代入上述不等式并整理得:2409a a -<,解得904a <<,综上得904a <<, 所以实数a 的取值范围是904a <<. 6.已知函数32()1f x x ax bx =+++(0,a b R >∈)有极值,且导函数()f x '的极值点是()f x 的零点. (1)求b 关于a 的函数关系式,并写出定义域; (2)求证:23b a >;(3)若(),()f x f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.【过程详解】(1)因为32()1f x x ax bx =+++所以2()32f x x ax b '=++,令()()g x f x '=,所以()62g x x a =+' 令()0g x '=,解得3ax =- 由于当3a x >-时,()0g x '>,所以()()g x f x '=在3ax >-时为单调递增; 当3a x <-时,()0g x '<,所以()()g x f x '=在3ax <-时为单调递减;所以()f x '的极小值点为3ax =-; 由于导函数()f x '的极值点是原函数()f x 的零点,所以(03a f -=,即33102793a a ab-+-+=,所以2239a b a=+;因为()f x 有极值,所以2()32f x x ax b '=++有两个不等的实根,所以24120a b >﹣,即21093a a>-,解得3a >,所以223(3).9a b a a=+>(2)证明:由(13).a =+>设函数23()9t h t t =+,则22227()9t h t t -'=;当t ⎫∈+∞⎪⎪⎝⎭时,()0h t '>,所以()h t 在t ⎫∈+∞⎪⎪⎝⎭上单调递增;又因为3a >,所以2>>,故(h h >=>因此23b a >.(3)设()f x 的极值点是12,x x ,由(1)知,12122,33a b x x x x +=-=,所以22212469a b x x -+=所以323212111222()()11f x f x x ax bx x ax bx +=+++++++即2222121212121212()()()()()()2f x f x x x x x x x a x x b x x +=++-+++++整理得31242()()20273a abf x f x +=-+=所以函数()f x 的两个极值之和为0,()f x '的极值为2213339a a f b a a ⎛⎫-=-=-'+ ⎪⎝⎭, 设(),'()f x f x 这两个函数的所有极值之和为()a ϕ,所以213(),(3)9a a a a ϕ=-+>,而223()09a a a ϕ'=--<;即()a ϕ在()3,+∞上单调递减,而7(6)2ϕ=-,所以由())a ϕϕ≥(6,即得6a ≤; 因此a 的取值范围为(]3,6.7.已知()3222,f x x ax a x a =+-+∈R .(1)当a<0时,求函数()y f x =的单调减区间;(2)当0a =时,曲线()y f x =在相异的两点,A B 点处的切线分别为1l 和21,l l 和2l 的交点位于直线2x =上,证明:,A B 两点的横坐标之和小于4. 【过程详解】(1)()f x 的定义域为R ,()()()22323f x x ax a x a x a '=+-=-+,0a < ,()0f x '∴<的解集为,3a a ⎛⎫- ⎪⎝⎭,故函数()y f x =的单调减区间为,3a a ⎛⎫- ⎪⎝⎭.(2)证明:当0a =时,()32f x x =+,()23f x x '=,设()()331122,2,,2A x x B x x ++,12x x ≠, 点A 处切线方程为()()3211123y x x x x -+=-,点B 处切线方程为()()3222223y x x x x -+=-,故()()()()23231112223232xx x xx x x x -++=-++,解得()()2212121223x x x x x x x ++=+,故两切线交点的横坐标为()()2212121223x x x x x x +++,由题意()()22121212223xx x x x x ++=+()221212123x x x x x x ∴++=+,结合12x x ≠,()()221212121232x x x x x x x x +⎛⎫∴+-+=< ⎪⎝⎭,解得1204x x <+<.故A ,B 两点的横坐标之和小于4.8.(2024届江西省稳派上进教育高三上学期摸底考试)已知函数()321132f x x x ax =++,()1e ln x g x x x x -=+,()f x ',()g x '分别为()f x ,()g x 的导函数,且对任意的(]10,1x ∈,存在(]20,1x ∈,使()()122f x g x ''≤-.(1)求实数a 的取值范围;(2)证明:0x ∀>,有()()'≥g x f x .【过程详解】(1)因为()321132f x x x ax =++,所以()221124f x x x a x a ⎛⎫'=++=++- ⎪⎝⎭,所以()f x '在区间(]0,1上单调递增, 故()()max 12f x f a ''==+. 因为()1e ln x g x x x x -=+,所以()()111ee ln 11e ln 1x x x g x x x x x ---'=+++=+++.令()()11e ln 1x h x x x -=+++,则()()112e x h x x x-'=++, 又(]0,1x ∈,所以()0h x '>, 故()g x '在区间(]0,1上单调递增, 所以()()max 13g x g ''==.又对任意的(]10,1x ∈,存在(]20,1x ∈,使()()122f x g x ''≤-, 所以()()max max 2f x g x ''≤-, 即232a +≤-,解得1a ≤-, 故实数a 的取值范围为(],1-∞-. (2)令()1e-=-x s x x ,0x >,则()1e 1-'=-x s x .令()0s x '=,解得1x =,则当()0,1x ∈时,()0s x '<,()s x 单调递减; 当()1,x ∈+∞时,()0s x '>,()s x 单调递增,所以()()10s x s ≥=,即1e x x -≥(当且仅当1x =时,等号成立). 令()1ln 1F x x x =+-,则()22111x F x x x x-'=-=. 令()0F x '=,解得1x =,则当()0,1x ∈时,()0F x '<,()F x 单调递减;当()1,x ∈+∞时,()0F x '>,()F x 单调递增,所以()()10F x F ≥=,即1ln 1x x≥-+(当且仅当1x =时,等号成立),故11eln 1x x x x-+≥-+(当且仅当1x =时,等号成立). 又0x >,所以12e ln 1x x x x x x -+≥+-. 因为1a ≤-,所以221x x x x a +-≥++, 故12e ln x x x x x x a -+≥++,即()()'≥g x f x .9.已知函数()331f x x ax =++,[]1,1x ∈-,a R ∈,(1)若函数()f x 在区间[]1,1-上不单调,求a 的取值范围; (2)求()f x 的最大值;(3)若()1f x b +≤对任意[]1,1x ∈-恒成立,求a b +的取值范围. 【过程详解】(1)由题意可知,函数()f x 在()1,1-上有极值点, ()331f x x ax =++ ,则()233f x x a '=+,所以,函数()f x '在()1,0-上递减,在()0,1上递增, 所以,()()1330030f a f a ⎧=+>⎪⎨=<''⎪⎩,可得10a -<<; (2)若1a ≤-时,对任意的[]1,1x ∈-,()0f x '≤,()f x 在[]1,1-上递减,()130f a -=->,()123f a =+,()()()2222112391240f f a a a --=+-=+<⎡⎤⎡⎤⎣⎦⎣⎦, 所以,()()11f f <-,则()()max 13f x f a =-=-; 若0a ≥,对任意的[]1,1x ∈-,()0f x '≥,()f x 在[]1,1-上递增,()13f a -=-,()1230f a =+>,()()()2222112391240f f a a a --=+-=+>⎡⎤⎡⎤⎣⎦⎣⎦,所以,()()11f f >-,则()()max 123f x f a ==+;若10a -<<,由()0f x '>,可得1x -<<1x <;由()0f x '<,可得<<x则()f x 在(1,-上递增,在(上递减,在)上递增;()130f a -=->,(21f =-,21f=,()123f a =+.因为()()3331312f x f x x ax x ax +-=++--+=,所以,函数()f x 关于()0,1对称,())212121f f=-=+≥=,则(){}max a 21,2x 3m a f x -=+,若213a -<≤-,230a +≤,()()()()212321232330a a a --+=-+++=-+>,则(){}max 1m 3ax 22,21f x a -+=-+=; 若2134a -<≤-,230a +>,()()()22123101a --+=≥,则2123a -≥+,则()max 21x f -=;若104a -<<,230a +>,()()()22123101a --+=<+,则2123a -<+,则()max 23f x a =+.综上()max3,1121,14123,4a a f x a a a ⎧⎪-≤-⎪⎪=--<≤-⎨⎪⎪+>-⎪⎩;(3)先考虑必要性,若()1f x b +≤对任意[]1,1x ∈-恒成立, 首先必须满足()()max min 2-≤f x f x .①若1a ≤-,()()()max min 332622f x f x a a a -=--+=--≤,可得23a ≥-,不合乎题意; ②若0a ≥,()()()max min 323622f x f x a a a -=++=+≤,解得0a ≤,此时0a =;③若10a -<<时,(()()4211622f f f f a ⎧-=-≤⎪⎨--=+≤⎪⎩,解得0a ≤,此时0a ≤<.综上0a ≤,此时函数()f x在1,⎡-⎣上单调递增,在(上单调递减,在⎤⎦上单调递增. 若104a -≤≤,由(2)可知,()max 23f x a =+,则()()min 13f x f a =-=-,由()()maxmin11f x bf x b⎧+≤⎪⎨+≥-⎪⎩,则231141231b aa ab aa b++≤⎧⇒-+≤+≤--⎨-+≥-⎩,所以12,2a b⎡⎤+∈--⎢⎥⎣⎦若14a-≤,则()max21f x=-,()min21f x=,由()()maxmin11f x bf x b⎧+≤⎪⎨+≥-⎪⎩,则211211bb⎧-+≤⎪⎨+≥-⎪⎩,则222a ab a--++≤≤令12t⎡⎢⎣,则3232222t t a b t t--≤+≤--,对于函数()3222g t t t=-+-,()()2622310g t t t t t'=-=->对任意的12t⎡∈⎢⎣恒成立,所以,函数()g t在12⎡⎢⎣上单调递增,所以,()min122g t g⎛⎫==-⎪⎝⎭,对于函数()232h t t t=--,()2260h t t t'=--<对任意的12t⎡∈⎢⎣恒成立,所以,函数()h t在区间12⎡⎢⎣上单调递减,则()max1122h t h⎛⎫==-⎪⎝⎭,因此,12,2a b⎡⎤+∈--⎢⎥⎣⎦.综上:12,2a b⎡⎤+∈--⎢⎥⎣⎦.10.已知函数32()3f x x x ax b=-++在1x=-处的切线与x轴平行.(1)求a的值和函数()f x的单调区间;(2)若函数()y f x=的图象与抛物线231532y x x=-+恰有三个不同交点,求b的取值范围.【过程详解】(1)由已知得2()36f x x x a'=-+,∵在1x=-处的切线与x轴平行∴(1)0f'-=,解得9a=-.这时2()3693(1)(3)f x x x x x==+'---由()0f x'>,解得3x>或1x<-;由()0f x'<,解13x-<<.∴()f x 的单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-.(2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,则原题意等价于()g x 图象与x 轴有三个交点.∵2()3963(1)(2)g x x x x x '=-+=--, ∴由()0g x '>,解得2x >或1x <;由()0g x '<,解得12x <<.∴()g x 在1x =时取得极大值1(1)2g b =-;()g x 在2x =时取得极小值(2)1g b =-. 依题意得1210b b ⎧->⎪⎨⎪-<⎩,解得112b <<. 故b 的取值范围为1,12⎛⎫⎪⎝⎭.11.已知函数.0)0,(,2)(,)()(22<-∞∈=-=a x x a x g a x x x f 且 (1)(i )求函数)()(x g y x f y ==与的图象的交点A 的坐标;(ii )设函数)(),(x g y x f y ==的图象在交点A 处的切线分别为,,21l l 是否存在这样的实数a, 使得21l l ⊥若存在,请求出a 的值和相应的点A 坐标;若不存在,请说明理由.(2)记[)0,1)(-=在x f y 上最小值为F (a ),求aa F )(的最小值. 【过程详解】(I )(i )设点A 的坐标为022(,2)(),,(2222=++-=-a x a a x x a a x x y x 得由得.2,2;8,2,2,232231121a y a x a y a x a x a x ======时当时且当故函数)(x f y =与)(x g y =图象的交点A 坐标为)2,2(),8,2(33a a a a(ii ),43)(',)('22a ax x x f ax x g +-==若存在a,使得.21l l ⊥则当点A 坐标为,12(')2(',8,2(3-=⋅af ag a a 时又8)243(2)2(')2('4222a a a a a a a f a g -=+-⨯⋅⋅=⋅,则8,0,1844-=<=a a a 故又,此时点A 坐标为)22,28(44--当点A 坐标为,1)2(')2(',)2,2(3-=⋅a f a g a a 时又422210)843()2()2(')2('a a a a a a a f a g =+-⨯⋅⋅=⋅, 则1104-=a ,无解.综上,存在)22,28(,,844214--⊥-=A l l a 此时使得(2)令,2742,3.,30)('322321a x a ax x a x a x a x x f =+-====时当得整理得 )(274,03)(34(32x f y a y a x a x ===--与即直线图象另一交点横坐标.34a x =结合图象可得:(1)若;)1()1()()(,3,132min +-=-==-<-<a f x f a F a a时即 (2)若;274)3()()(,433,31343min a a f x f a F a a ===-<≤-≤-<时即 (3)若.)1()1()()(,043,1342min +-=-==<≤--≥a f x f a F a a 时即综上⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫⎢⎣⎡--∈⎪⎭⎫⎢⎣⎡---∞∈+-=43,3,2740,43)3,(,)1()(32a a a a a F所以⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫⎢⎣⎡--∈⎪⎭⎫⎢⎣⎡---∞∈---=43,3,2740,43)3,(,21)(2a a a a a a a F当,1212)1()(21)(,0,43)3,(≥--+-=---=⎪⎭⎫⎢⎣⎡---∞∈a a a a a a F a 时且当43-=a 时取到“=”;当⎪⎭⎫⎢⎣⎡--∈43,3a 时,函数2274)(a a a F =单调递减,此时.121)(>a a F 综上,.121)((min =a a F 12.已知函数32()1f x x ax bx =-+++在1x =时有极小值. (1)当4a =时,求()f x 在0x =处的切线方程;(2)求()f x 在33,2⎡⎤-⎢⎥⎣⎦上的最小值.【过程详解】 (1)因为函数32()1f x x ax bx =-+++在1x =时有极小值, 故2()32f x x ax b '=-++,(1)320f a b '=-++=,解得:23a b +=. 当4a =时,5b =-,故32()451f x x x x =-+-+,2()385f x x x '=-+-, 则(0)1,(0)5f f '==-,则()f x 在0x =处的切线方程为:15(0)y x -=--,整理得:510x y +-=. 故()f x 在0x =处的切线方程为510x y +-=.(2)由(1)得2()32f x x ax b '=-++,且23a b +=, 故2()3(3)(1)(332)f x x b x b x x a '=-+-+=--+-, 令()0f x '=,解得12231,3a x x -==, 因为32()1f x x ax bx =-+++,所以(1)3f a =-,(3)1519f a -=+,3317(248f a =-+.又函数()f x 在1x =时有极小值,当2313a -<时,23(,3a x -∈-∞或(1,)+∞,()0f x '<,函数()f x 单调递减, 当23(,1)3a x -∈时,()0f x '>,函数()f x 单调递增, 故函数()f x 在11x =有极大值,与题意不符,故12x x <,即2313a ->,即3a >,所以,当(,1)x ∞∈-或23(,)3a -+∞,()0f x '<,函数()f x 单调递减,当23(1,3a x -∈时,()0f x '>,函数()f x 单调递增, 故函数()f x 在2233a x -=有极大值. 当23332a -≥,即154a ≥时,函数()f x 在区间[)3,1-单调递减,在区间31,2⎛⎤⎥⎝⎦单调递增,故在区间33,2⎡⎤-⎢⎥⎣⎦上得最小值为min ()(1)3f x f a ==-, 当233132a -<<,即1534a <<时,函数()f x 在区间[)3,1-和233,32a -⎛⎤⎥⎝⎦单调递减,在区间231,3a -⎛⎫ ⎪⎝⎭单调递增,且3317(248f a =-+,(1)3f a =-, 37(1)(284a f f -=-. 故当732a <≤时,3(1)()02f f -≥,min 3176()()28a f x f -==, 当71524a <<时,3(1)(02f f -<,min ()(1)3f x f a ==-. 综上所述:当732a <≤时,函数()f x 在33,2⎡⎤-⎢⎥⎣⎦上的最小值为1768a -, 当72a <时,函数()f x 在33,2⎡⎤-⎢⎥⎣⎦上的最小值为3a -. 13.已知函数()3222312f x x ax a x =+-,其中a ∈R .(1)求函数()f x 的单调区间;(2)设函数()f x 在区间2,2a a ⎡⎤⎣⎦上的最大值为()g a ,证明:()32g a <.【过程详解】 (1)因为()3222312f x x ax a x =+-,R x ∈,所以()()()22661262f x x ax a x a x a '=+-=+-.①若0a >,当2a x a -<<时,()0f x '<;当2x a <-或x a >时,()0f x '>.即()f x 在()2,a a -上单调递减,在(),2a -∞-和(),a +∞上单调递增;②若0a =,恒有()0f x '≥.即()f x 在定义域R 上单调递增;③若0a <,当2a x a <<-时,()0f x '<;当x a <或2x a >-时,()0f x '>.即()f x 在(),2a a -上单调递减,在(),a -∞和()2,a -+∞上单调递增;综上,当0a >时,函数()f x 的单调递减区间为()2,a a -,单调递增区间为(),2a -∞-,(),a +∞; 当0a =时,函数()f x 的单调递增区间为(),-∞+∞;当0a <时,函数()f x 的单调递减区间为(),2a a -,单调递增区间为(),a -∞,()2,a -+∞.(2)由题意,有22a a <,∴()0,2a ∈.由(1)知①当12a ≤<时,()f x 在2,2a a ⎡⎤⎣⎦上单调递增.∴()()32432g a f a a ==<.②当01a <<时,()f x 在)2,a a ⎡⎣上单调递减,在(],2a a 上单调递增. 由()324f a a =,01a <<,∴()024f a <<;又()()26544223122312f a a a a a a a =+-=+-.∵01a <<,∴223120a a +-<.∴()20f a <. ∴()()324432g a f a a ==<<.综上,有()32g a <.14.已知函数()3221f x x ax a x =---,其中0a <.(1)求曲线()y f x =在点()(),a f a 处的切线方程;(2)若存在实数t ,使得不等式()0f x <的解集为(),t -∞,求a 的取值范围.【过程详解】由()3221f x x ax a x =---得()2232f x x ax a '=--.(1)所以()0f a ¢=.又因为()31f a a =--.故所求的切线方程为31y a =--.(2)因为()()()22323f x x ax a x a x a =--+=-'令()0f x '=,得13a x =-,2x a =, 此时()f x ',()f x 随x 的变化如下:由题意,要想存在实数t ,使得不等式()0f x <的解集为(),t -∞只需()003f a a f ⎧>⎪⎨⎛⎫-> ⎪⎪⎝⎭⎩或()003f a a f ⎧<⎪⎨⎛⎫-< ⎪⎪⎝⎭⎩ 因为3510327a f a ⎛⎫-=-< ⎪⎝⎭, 所以()310f a a =--<所以a 的取值范围为()1,0-.15.已知函数()()33R f x x ax a a =-+∈.(1)讨论函数()f x 的单调性;(2)若函数()f x 在区间[]0,3上的最大值与最小值之差为()g a ,求()g a 的最小值.【过程详解】 (1)因为()()33f x x ax a a R =-+∈,所以()()22'333f x x a x a =-=-.①当0a ≤时,()'0f x ≥恒成立,()f x 在R 上单调递增;②当0a >时,(),x ∈-∞+∞ 时,()'0f x >;(x ∈时,()'0f x <; 故()f x在(,-∞和)+∞上单调递增,在(上单调递减. (2)由(1)可知:①当0a ≤时,()f x 在[]0,3上单调递增,()()()30279g a f f a =-=-;②3≥,即9a ≥时,()f x 在[]0,3上单调递减,()()()0927g a f f a a =-=-; ③当03<<,即09a <<时,()f x在⎡⎣上单调递减,在⎤⎦上单调递增, 于是()min 2f x f a ==-+,又()0f a =,()3278f a =-.故当0<<3a 时,()2792g a a =-+39a ≤<时,()2g a =综上可得:279,027923()29927,9a a a a g a a a a -≤⎧⎪-+<<⎪=⎨≤<⎪⎪-≥⎩,当0<<3a 时,()2792g a a =-+x 则0x <<,设23()2792h x x x =-+,2()6186(3)0h x x x x x '=-=-<,所以()h x 在上递减,又x ,所以()g a 在(0,3)上递增,所以()g a 在(3),-∞上递减,在(3,)+∞上递增,所以故()g a 的最小值为()3g =16.已知函数3211()()32f x x ax a =-∈R 在[]0,1上的最小值为16-. (1)求a 的值; (2)讨论函数()()2()g x f x x b b =-+∈R 的零点个数.【过程详解】(1)由3211()32f x x ax =-,2()()f x x ax x x a =--'=, 当0a …时,()'f x 在[0,)+∞上恒大于等于0,所以()f x 在[0,1]上单调递增,min ()(0)0f x f ==,不合题意;当01a <<时,则[0,]x a ∈时,()0f x '<,()f x 单调递减;[,1]x a ∈时,()0f x '>,()f x 单调递增, 所以333min 111()()326f x f a a a a ==-=-,31166a -=-, 所以1a =,不满足01a <<;当1a =时,在[0,1]上,()0f x '…且不恒为0,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f ==-=-,适合题意; 当1a >时,在[0,1]上,()0f x '<,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f a ==-=-,所以1a =,不满足1a >; 综上,1a =.(2)由(1)3211()232g x x x x b =--+,所以3211232b x x x =-++, 令3211()232h x x x x =-++,则2()2(2)(1)h x x x x x =-++=--+', 所以(2)0,(1)0h h ''=-=,且当1x <-时,()0h x '<;当12x -<<时,()0h x '>;当2x >时,()0h x '<,所以()()11712326h x h =-=+-=-极小,()()11102844323h x h ==-⨯+⨯+=极大, 如图:当76b<-或103b>时,函数()g x有1个零点;当76b=-或103b=时,函数()g x有2个零点;当71063b-<<时,函数()g x有3个零点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学函数压轴题:1. 已知函数在处取得的极小值是.31()(,)3f x x ax b a b R =++∈2x =43-(1)求的单调递增区间;()f x (2)若时,有恒成立,求实数的取值范围.[4,3]x ∈-210()3f x m m ≤++m 2. 某造船公司年最高造船量是20艘. 已知造船x 艘的产值函数R (x)=3700x + 45x 2 – 10x 3(单位:万元), 成本函数为C (x) = 460x + 5000 (单位:万元). 又在经济学中,函数f(x)的边际函数Mf (x)定义为: Mf (x) = f (x+1) – f (x). 求:(提示:利润 = 产值 – 成本)(1) 利润函数P(x) 及边际利润函数MP(x);(2) 年造船量安排多少艘时, 可使公司造船的年利润最大?(3) 边际利润函数MP(x)的单调递减区间, 并说明单调递减在本题中的实际意义是什么?3. 已知函数,函数的图象与的图象关于点中心对称。

155)(2++=x x x ϕ)(R x ∈)(x f y =)(x ϕ21,0((1)求函数的解析式;)(x f y =(2)如果,,试求出使成)()(1x f x g =)2,)](([)(1≥∈=-n N n x g f x g n n 0)(2<x g 立的取值范围;x (3)是否存在区间,使对于区间内的任意实数,只要,且时,都有E {}Φ=<⋂0)(x f x E x N n ∈2≥n 恒成立?0)(<x g n 4.已知函数:)(1)(a x R a xa ax x f ≠∈--+=且 (Ⅰ)证明:f(x)+2+f(2a -x)=0对定义域内的所有x 都成立.(Ⅱ)当f(x)的定义域为[a+,a+1]时,求证:f(x)的值域为[-3,-2];21(Ⅲ)设函数g(x)=x 2+|(x -a)f(x)| ,求g(x) 的最小值 .5.设是定义在上的函数,若存在,使得在上单调递增,在上单调递减,则称()f x ]1,0[*x )1,0(∈()f x ],0[*x ]1,[*x 为上的单峰函数,为峰点,包含峰点的区间为含峰区间. 对任意的上的单峰函数,下面研究缩()f x ]1,0[*x ]1,0[()f x 短其含峰区间长度的方法.(1)证明:对任意的,,若,则为含峰区间;若,则21,x x )1,0(∈21x x <)()(21x f x f ≥),0(2x )()(21x f x f ≤为含峰区间;)1,(1x (2)对给定的,证明:存在,满足,使得由(1)所确定的含峰区间的长度不)5.00(<<r r 21,x x )1,0(∈r x x 212≥-大于;r +5.06. 设关于的方程的两根分别为、,函数x 0222=--ax x αβ()βα<14)(2+-=x a x x f (1)证明在区间上是增函数;)(x f ()βα,(2)当为何值时,在区间上的最大值与最小值之差最小a )(x f []βα,7. 甲乙两公司生产同一种新产品,经测算,对于函数,,及任意的,当甲公司投()8+=x x f ()12+=x x g 0≥x入万元作宣传时,乙公司投入的宣传费若小于万元,则乙公司有失败的危险,否则无失败的危险;当乙公司x ()x f 投入万元作宣传时,甲公司投入的宣传费若小于万元,则甲公司有失败的危险,否则无失败的危险. 设甲公x ()x g 司投入宣传费x 万元,乙公司投入宣传费y 万元,建立如图直角坐标系,试回答以下问题:(1)请解释;()()0,0g f (2)甲、乙两公司在均无失败危险的情况下尽可能少地投入宣传费用,问此时各应投入多少宣传费?(3)若甲、乙分别在上述策略下,为确保无失败的危险,根据对方所投入的宣传费,按最少投入费用原则,投入自己的宣传费:若甲先投入万元,乙在上述策略下,投入最少费用;而甲根据乙的情况,调整宣传费为;121=a 1b 2a 同样,乙再根据甲的情况,调整宣传费为如此得当甲调整宣传费为时,乙调整宣传费为;试问是否存2b ,, n a n b 在,的值,若存在写出此极限值(不必证明),若不存在,说明理由.lim n n a →∞n n b ∞→lim 8. 设是定义域在上的奇函数,且其图象上任意两点连线的斜率均小于零.)(x f ]1,1[-(l )求证在上是减函数;)(x f ]1,1[-(ll )如果,的定义域的交集为空集,求实数的取值范围;)(c x f -)(2c x f -c (lll )证明若,则,存在公共的定义域,并求这个公共的空义域.21≤≤-c )(c x f -)(2c x f -9. 已知函数f (x )=ax 2+bx +c ,其中a∈N *,b∈N,c∈Z。

(1)若b>2a ,且f (sinx )(x∈R)的最大值为2,最小值为-4,试求函数f (x )的最小值;(2)若对任意实数x ,不等式4x≤f(x )≤2(x 2+1)恒成立,且存在x 0,使得f (x 0)<2(x 02+1)成立,求c 的值。

10. 已知函数在区间[0,1]上单调递增,在区间[1,2]上单调递减;14)(234-+-=ax x x x f (1)求a 的值;(2)求证:x=1是该函数的一条对称轴;(3)是否存在实数b ,使函数的图象与函数f(x)的图象恰好有两个交点?若存在,求出b 的值;若不1)(2-=bx x g 存在,请说明理由.11. 定义在区间(0,)上的函f(x)满足:(1)f(x)不恒为零;(2)对任何实数x 、q,都有.∞)()(x qf x f q=(1)求证:方程f(x)=0有且只有一个实根;(2)若a>b>c>1,且a 、b 、c 成等差数列,求证:;)()()(2b fc f a f ∙(3)(本小题只理科做)若f(x) 单调递增,且m>n>0时,有,求证:)2(2)()(nm f n f m f +==32m <<+12. 已知三次函数在y 轴上的截距是2,且在上单调递增,在(-1,2)c bx ax x x f +++=23)(),2(),1,(+∞--∞上单调递减.(Ⅰ)求函数f (x)的解析式;(Ⅱ)若函数,求的单调区间.)ln()1()2(3)()(m x m x x f x h ++--'=)(x h 13. 已知函数(且).()f x =+0a ≠1a ≠(1) 试就实数的不同取值,写出该函数的单调递增区间;a (2) 已知当时,函数在上单调递减,在上单调递增,求的值并写出函数的解析式;0x>)+∞a (3) (理)记(2)中的函数的图像为曲线,试问是否存在经过原点的直线,使得为曲线的对称轴?若存在,C l l C 求出的方程;若不存在,请说明理由.l (文) 记(2)中的函数的图像为曲线,试问曲线是否为中心对称图形?若是,请求出对称中心的坐标并C C 加以证明;若不是,请说明理由.14. 已知函数和 的图象在处的切线互相平行.()log a f x x =()2log (22),(0,1,)a g x x t a a t R =+->≠∈2x =(Ⅰ) 求的值;t (Ⅱ)设,当时,恒成立,求的取值范围.)()()(x f x g x F -=[]1,4x ∈()2F x ≥a 15. 设函数定义在上,对任意的,恒有,且当时,。

试解()f x R +,m n R +∈()()()f m n f m f n ⋅=+1x >()0f x <决以下问题:(1)求的值,并判断的单调性;(1)f ()f x (2)设集合,若,求实数{}{}(,)|()()0,(,)|(2)0,A x y f x y f x y B x y f ax y a R =++->=-+=∈A B ≠∅ 的取值范围;a (3)若,满足,求证:0ab <<|()||()|2|(|2a bf a f b f +==32b <<+16. (理科)二次函数f(x)=)(2R b a b ax x ∈++、(I )若方程f(x)=0无实数根,求证:b>0;(II )若方程f(x)=0有两实数根,且两实根是相邻的两个整数,求证:f(-a)=;)1(412-a (III )若方程f(x)=0有两个非整数实根,且这两实数根在相邻两整数之间,试证明存在整数k ,使得.41)(≤k f (文科)已知函数f(x)=,其中c bx ax ++2.,,*Z c N b N a ∈∈∈(I )若b>2a,且 f(sinx)(x∈R)的最大值为2,最小值为-4,试求函数f(x)的最小值;(II )若对任意实数x ,不等式恒成立,且存在成立,求c 的值。

)1(2)(42+≤≤x x f x )1(2)(0200+<xx f x 使得17. 定义在(-1,1)上的函数f(x)满足:对任意x 、y (-1,1)都有。

(I )求证:函数f(x)是奇函数;(II )如果当时,有f(x)>0,判断f(x)在(-1,1)上的单调性,并加以证明;(III )设-1<a<1,解不等式:18. 已知二次函数设方程f(x)=x 有两个实数根x 1、x 2.),,0(1)(2R b a bx ax x f ∈>++=(Ⅰ)如果,设函数f(x)的对称轴为x =x 0,求证x 0>—1;4221<<<x x (Ⅱ)如果,且f(x)=x 的两实根相差为2,求实数b 的取值范围.201<<x 19. 函数的定义域为R ,并满足以下条件:①对任意,有;)(x f R x ∈0)(>x f ②对任意、,有;③ 则x R y ∈yx f xy f )]([)(=.131(>f (1)求的值; (4分))0(f (2)求证:在R 上是单调增函数; (5分))(x f (3)若,求证:ac b c b a =>>>2,0且).(2)()(b f c f a f >+20. (理)已知)0()1()(2≤++=a ax x In x f (1)讨论的单调性;)(x f (2)证明:其中无理数.2),(11(311)(211(*444≥∈<+++n N n e n)71828.2 =e (文)设函数,其图象在点处的切线的斜率分别为)(31)(23c b a cx bx ax x f <<++=))(,()),1(,1(m f m B f A .a o -,(1)求证:;10<≤ab(2)若函数的递增区间为,求的取值范围.)(x f ],[t s ]-[t s 21.设函数)10(3231)(223<<+-+-=a b x a ax x x f (1)求函数f(x)的单调区间,并求函数f(x)的极大值和极小值; (2)当x∈[a+1, a+2]时,不等,求a 的取值范围.a x f ≤'|)(|22. 已知函数,函数.1x x716x )x (f --+=m x ln 6)x (g +=(1)当时,求函数f(x)的最小值;1x >(2)设函数h(x)=(1-x)f(x)+16,试根据m 的取值分析函数h(x)的图象与函数g(x)的图象交点的个数.23. 已知二次函数为常数);.若直线l 1、l 2与函t t t t y l c bx ax x f .20(8:,)(212≤≤+-=++=其中直线2:2=x l 数f (x )的图象以及l 1,y 轴与函数f (x )的图象所围成的封闭图形如阴影所示. (Ⅰ)求a 、b 、c 的值;(Ⅱ)求阴影面积S 关于t 的函数S (t )的解析式;(Ⅲ)若问是否存在实数m ,使得y=f (x )的图象与y=g (x )的图象有且只有两个不同的交点?,ln 6)(m x x g +=若存在,求出m 的值;若不存在,说明理由.24. 已知,点A(s,f(s)), B(t,f(t))()()()f x x x a x b =-- (I) 若,求函数的单调递增区间;1a b ==()f x (II)若函数的导函数满足:当|x|≤1时,有||≤恒成立,求函数的解析表达式;()f x ()f x '()f x '23()f x (III)若0<a<b, 函数在和处取得极值,且证明:与不可能垂直.()f x x s =x t =a b +=OA OB 25. 已知函数().)(2R m xx m x f ∈-=(1)设,当m≥时,求g(x)在[]上的最大值;x x f x g ln )()(+=41221,(2)若上是单调减函数,求实数m 的取值范围.),1[)](8[log 31+∞-=在x f y 26. (本小题满分12分)已知常数a > 0, n 为正整数,f n ( x ) = x n – ( x + a)n ( x > 0 )是关于x 的函数.(1) 判定函数f n ( x )的单调性,并证明你的结论.(2) 对任意n ≥ a , 证明f `n + 1 ( n + 1 ) < ( n + 1 )f n `(n)答案:1.解:(1),由题意,2()f x x a '=+(2)404844(2)233f a a b f a b '=+=⎧=-⎧⎪⇒⎨⎨==++=-⎩⎪⎩令得的单调递增区间为和.2()40f x x '=->()f x (,2)-∞-(2,)∞(2) ,当变化时,与的变化情况如下表:31()443f x x x =-+x ()f x '()f x x- 4(-4,--2(-2,2)2(2,3)32)()f x 'AAA()f x 43-单调递增283单调递减43-单调递增1所以时,.于是在上恒成立等价于,求[4,3]x ∈-max 28()3f x =210()3f x m m ≤++[4,3]x ∈-2102833m m ++≥得.(,3][2,)m ∈-∞-⋃+∞2.解:(1) P(x) = R (x) – C (x) = – 10x 3 + 45x 2 + 3240x – 5000 (x ∈N 且x ∈[1, 20]); 2分 MP (x) = P ( x + 1 ) – P (x) = – 30x 2 + 60x +3275 (x ∈N 且x ∈[1, 20]). 4分(2) P`(x) = – 30x 2 + 90x + 3240 = – 30( x +9 )(x – 12) (x ∈N 且x ∈[1, 20]) 7分 当1< x < 12时, P`(x) > 0, P(x)单调递增,当 12 <x < 20时, P`(x) < 0 , P ( x ) 单调递减.∴ x = 12 时, P(x)取最大值, 10分 即, 年建造12艘船时, 公司造船的年利润最大. 11分 (3) 由MP(x ) = – 30( x – 1) 2 + 3305 (x ∈N 且x ∈[1, 20]).∴当1< x ≤ 20时,MP (x)单调递减. 12分 MP (x)是减函数说明: 随着产量的增加,每艘利润与前一台比较,利润在减少.13.解:(1) ………………………………………………………………(6分)255)(x x x f -=(2)由解得0)(5)(5)(2112<-=x g x g x g 1)(0)(11><x g x g 或即15505522>-<-x x x x 或解得…………………………………(12分)1055105510+<<-><x x x 或或(1)由,{}}{100)(><=<x x x x f x 或又,{}Φ=><⋂+-10)1055,1055(x x x 或当时,,,1055,1055(+-∈x 0)(2<x g 0)(5)(5)(2223<-=x g x g x g ∴对于时,,命题成立。

相关文档
最新文档