中考数学第一轮复习 三角形专题训练

合集下载

2020年中考数学一轮复习基础考点题型练 《三角形》专题测试-提高 (含答案)

2020年中考数学一轮复习基础考点题型练 《三角形》专题测试-提高 (含答案)

专题:《三角形》(专题测试-提高)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(每题4分,共48分)1.如图,在△ABC中,D为AC边上一点,以点A为圆心,AD为半径画弧,交BA的延长线于点E,连接ED.若∠C=50°,∠B=60°,则∠CDE的度数为()A.130°B.135°C.140°D.145°2.下列各组数中,不能作为直角三角形的三边长的是()A.1,,2 B.7,12,15 C.3,4,5 D.5,12,13 3.三角形的重心是()A.三角形三边的高所在直线的交点B.三角形的三条中线的交点C.三角形的三条内角平分线的交点D.三角形三边中垂线的交点4.如图,已知点O为△ABC的两条角平分线的交点,过点O作OD⊥BC,垂足为D,且OD=4.若△ABC的面积是34,则△ABC的周长为()A.8.5 B.15 C.17 D.345.如图所示的钢架中,∠A=18°,焊上等长的钢条P1P2,P2P3,P3P4,P4P5…来加固钢架.∠P5P4B的度数是()A.80°B.85°C.90°D.100°6.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,连接EF交AD于G.下列结论:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④当∠BAC为60°时,△AEF是等边三角形,其中正确的结论的个数为()A.2 B.3 C.4 D.17.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上(不含端点B,C)的动点.若线段AD长为正整数,则点D的个数共有()A.5个B.3个C.2个D.1个8.如图,在△ABC中高AD和BE交于点H,∠ABC=45°,BE平分∠ABC,下列结论:①∠DAC=225°;②BH=2CE;③若连结CH,则CH⊥AB;④若CD=1,则AH=2,其中正确的有()A.1个B.2个C.3个D.4个9.如图,△ABC是等边三角形,AB=12,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF的长是()A.6 B.5 C.12 D.810.∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O,若∠1=40°,则∠BDE为()度.A.30°B.40°C.60°D.70°11.如图,点E是Rt△ABC、Rt△ABD的斜边AB的中点,AC=BC,∠DBA=20°,则∠DCE的度数是()A.25°B.30°C.35°D.40°12.如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,且A、C、B在同一直线上,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN;④PC平分∠APB;⑤∠APD=60°.其中不正确的结论是()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)二.填空题(每题4分,共20分)13.如图,在△ABC中,AB=AC,点D、E在边BC上,∠DAE=∠B=30°,且,那么的值是.14.已知,如图,在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,AC=8cm,△ABE的周长为15cm,则AB的长是.15.如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN 长度的最小值是.16.如图,在四边形AB CD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为.17.如图,等边△ABC外一点P,连接AP、BP、CP,AH垂直平分PC于点H,∠BAP 的平分线交PC于点D,连接BD,有以下结论:①DP=DB;②DA+DB=DC;③DA⊥BP;④若连接BH,当△BDH为等边三角形时,则CP=3DP,其中正确的有.(只需要填写序号)三.解答题(每题8分,共32分)18.点D为△ABC外一点,∠ACB=90°,AC=BC.(1)如图1,∠DCE=90°,CD=CE,求证:∠ADC=∠BEC;(2)如图2,若∠CDB=45°,AE∥BD,CE⊥CD,求证:AE=BD;(3)如图3,若∠ADC=15°,CD=,BD=n,请直接用含n的式子表示AD的长.19.如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣12n+36+|n﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,求OE的长;(3)如图2,若点P(x,﹣2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.20.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA =AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的21.如图所示,在平面直角坐标系中,A点坐标(m,n),且m,n满足+(n﹣2)2=0(1)如图(1)当△ABO为等腰直角三角形时;①点A坐标为;点B坐标为.②在(1)的条件下,分别以AB和OB为边作等边△ABC和等边△OBD,连结OC,求∠COB的度数.(2)如图(2),过点A作AM⊥y轴于点M,点E为x轴正半轴上一点,K为ME延长线上一点,以MK为直角边作等腰直角三角形MKJ,∠MKJ=90°,过点A作AN⊥x 轴交MJ于点N,连结EN,求证:AN=OE+NE.参考答案一.选择题1.解:∵在△ABC中,∠C=50°,∠B=60°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣50°=70°,∵以点A为圆心,AD为半径画弧,交BA的延长线于点E,连接ED,∴AD=AE.∴∠ADE=∠BAC=×70°=35°.∴∠CDE=180°﹣∠ADE=180°﹣35°=145°.故选:D.2.解:A、12+()2=22,能作为直角三角形的三边长;B、72+122≠152,不能作为直角三角形的三边长;C、32+42=52,能作为直角三角形的三边长;D、52+122=132,能作为直角三角形的三边长.故选:B.3.解:∵三角形的重心是三角形三条边中线的交点,∴选项B正确.故选:B.4.解:∵点O为△ABC的两条角平分线的交点,∴点O到△ABC各边的距离相等,而OD⊥BC,OD=4,∴点O到△ABC各边的距离为4,∵S△ABC=S△AOB+S△BOC+S△AOC,∴×AB×4+×AC×4+×BC×4=34,∴AB+AC+BC=17,即△ABC的周长为17.故选:C.5.解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A,∵∠P3P5P4+∠BP5P4=180°,∠A=18°,∴∠P3P5P4=72°,∴∠BP5P4=90°.故选:C.6.解:∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∠ADE=∠ADF,∴AD平分∠EDF;③正确;∵AD平分∠BAC,∵AE=AF,DE=DF,∴AD垂直平分EF,①正确;②错误,∵∠BAC=60°,∴AE=AF,∴△AEF是等边三角形,④正确.故选:B.7.解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故选:B.8.解:∵在△ABC中高AD和BE交于点H,∴∠BEA=∠BEC=90°,∠ADB=∠ADC=90°,∵∠ABC=45°,BE平分∠ABC,∴∠CBE=∠ABE=22.5°,∴∠BAE=∠BCE,∴BA=BC,∵∠CBE+∠C=∠DAC+∠C=90°,∴∠DAC=∠CBE=22.5°,①正确;∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BA=BC,BE平分∠ABC,∴AE=CE,在△BDH和△ADC中,,∴△BDH≌△ADC(ASA),∴BH=AC=2CE,②正确;∵△ABC的高AD和BE交于点H,∴E是△ABC的三条高的交点,∴CH⊥AB,③正确;∵△BDH≌△ADC,∴DH=CD=1,∴CH==,∵△ABC是等腰三角形,BA=BC,BE平分∠ABC,∴直线BE是△ABC的对称轴,∴AH=CH=≠2,④不正确;故选:C.9.解:设BD=x,则CD=20﹣x,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BDE=30°,∠CDF=30°,∴BE=BD=,同理可得,CF=,∴BE+CF=+=6,故选:A.10.解:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,∴∠BDE=∠C=70°.故选:D.11.解:∵点E是Rt△ABD的斜边AB的中点,∴ED=EB=AB,∴∠EDB=∠DBA=20°,∴∠DEA=∠EDB+∠DBA=40°,∵点E是Rt△ABC的斜边AB的中点,AC=BC,∴EC=AB,CE⊥AB,∴∠DEC=130°,ED=EC,∴∠DCE=25°,故选:A.12.解:∵△DAC和△EBC都是等边三角形,∴∠ACD=∠BCE=60°,∴∠ACE=∠DCB=120°,在△ACE与△DCB中,,∴△ACE≌△DCB(SAS),故①正确;∴∠CAM=∠CDN,在△ACM与△DCN中,∴△ACM≌△DCN(ASA),∴CM=CN,故②正确;DN=AM,在△AMC中,AC>AM,∴AC≠DN,故③错误;如图,过C作CQ⊥DB于Q,CH⊥AE于H,∵△ACM≌△DCN,∴△ACM和△DCN的面积相等,∵DN=AM,∴由三角形面积公式得:CQ=CH,∴CP平分∠APB,∴④正确;∵△ACE≌△DCB,∴∠AEC=∠DBC,∵∠ECB=60°,∴∠EAC+∠AEC=∠ECB=60°,∴∠APD=∠EAC+∠ABP=∠EAC+∠AEC=60°,∴⑤正确;故选:A.二.填空题(共5小题)13.解:∵AB=AC,∴∠C=∠B=30°,∵∠DAE=∠B=30°,∴∠DAE=∠B=∠C,∵∠AED=∠BEA,∴△ADE∽△BAE,∴==,∴AE2=DE×BE,同理:△ADE∽△CDA,∴=,∴AD2=DE×CD,∴==()2=,设CD=9x,则BE=4x,∵=,∴AB=×BE=×4x=6x,作AM⊥BC于M,如图所示:∵AB=AC,∴BM=CM=BC,∵∠B=30°,∴AM=AB=3x,BM=AM=3x,∴BC=2BM=6x,∴DE=BE+CD﹣BC=13x﹣6x,∴==﹣1;故答案为:﹣1.14.解:∵DE是BC的垂直平分线,∴BE=CE,∴△ABE的周长=AB+AE+BE=AB+AE+CE=AB+AC,∵AC=8cm,△ABE的周长为15cm,∴AB+8=15,解得AB=7cm,故答案为:7cm.15.解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CM=×2.5=1.25,∴HN=1.25,故答案为:1.25.16.解:∵BD⊥CD,∠A=90°,∴∠ABD+∠ADB=90°,∠CBD+∠C=90°,∴∠ABD=∠CBD,由垂线段最短得,DP⊥BC时DP最小,此时,DP=AD=3.故答案为:3.17.解:①∵AH是PC的垂直平分线,∴PA=AC=AB,∵AD平分∠PAB,∴∠PAD=∠BAD,在△PAD和△BAD中,,∴△PAD≌△BAD(SAS),∴DP=DB;故①符合题意;②在CP上截取CQ=PD,连接AQ,如图所示:∵AP=AC,∴∠APD=∠ACQ,在△APD和△ACQ中,,∴△APD≌△ACQ(SAS),∴AD=AQ,∠CAQ=∠PAD,∴∠BAC=∠CAQ+∠BAQ=∠PAD+∠BAQ=∠BAD+∠BAQ=∠DAQ=60°,∴△ADQ为等边三角形,∴DA=DQ,∴DC=DQ+CQ=DA+DB,即DA+DB=DC.故②符合题意;③∵AB=AP,AD平分∠PAB,∴AD⊥PB,故③符合题意;④∵AH垂直平分PC,∴PH=CH,∵△BDH为等边三角形,∴DB=DH,∵PD=DB,∴PD=DH,∴PH=2PD,∴CP=4PD,故④不合题意,故答案为:①②③.三.解答题(共4小题)18.(1)证明:∵∠DCE=∠ACB=90°,∴∠ACD=∠BCE,又∵AC=BC,CE=CD,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC.(2)如图1,延长DC交AE于F,连BF,∵AE∥BD,∴∠EFC=∠CDB=45°.∵EC⊥CD,∠CEF=∠CFE=45°,∴EC=CF.∵∠ACE=∠BCF,AC=BC,∴△ACE≌△BCF(SAS),∴AE=BF,∠BFC=∠AEC=45°=∠FDB,∴BF=BD,∴AE=BD;(3)如图2,过点C在CD上方作CE⊥CD,CE=CD,连BE、DE.设AD、BE交于点O,由(1)知△ACD≌△BCE(SAS),∠BEC=∠ADC=15°,∴∠DOE=∠DCE=90°.又∵∠CED=∠CDE=45°,∴=2,∴∠BED=30°,∴OD=DE=×2=1,∴=,OB==,∴AD=BE=OB+OE=+.19.解:(1)∵n2﹣12n+36+|n﹣2m|=0,∴(n﹣6)2+|n﹣2m|=0,∵(n﹣6)2≥0,|n﹣2m|≥0,∴(n﹣6)2=0,|n﹣2m|=0,∴m=3,n=6,∴点A为(3,0),点B为(0,6);(2)如图,延长DE交x轴于点F,延长FD到点G,使得DG=DF,连接BG,设OE=x,∵OC平分∠AOB,∴∠BOC=∠AOC=45°,∵DE∥OC,∴∠EFO=∠FEO=∠BEG=∠BOC=∠AOC=45°,∴OE=OF=x,在△ADF和△BDG中,,∴△ADF≌△BDG(SAS),∴BG=AF=3+x,∠G=∠AFE=45°,∴∠G=∠BEG=45°∴BG=BE=6﹣x∴6﹣x=3+x,解得:x=1.5,∴OE=1.5;(3)分别过点F、P作FM⊥y轴于点M,PN⊥y轴于点N,设点E为(0,m),∵点P的坐标为(x,﹣2x+6),∴PN=x,EN=m+2x﹣6,∵∠PEF=90°,∴∠PEN+∠FEM=90°,∵FM⊥y轴,∴∠MFE+∠FEM=90°,∴∠PEN=∠MFE,在△EFM和△PEN中,,∴△EFM≌△PEN(AAS),∴ME=NP=x,FM=EN=m+2x﹣6,∴点F为(m+2x﹣6,m+x),∵F点的横坐标与纵坐标相等,∴m+2x﹣6=m+x,解得:x=6,∴点P为(6,﹣6).20.解:(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12﹣t,∵AQ=AP,∴12﹣t=2t,∴t=4.∴t=4s时,AQ=AP.(2)当Q在线段CA上时,设CQ=t,则AQ=12﹣t,∵三角形QAB的面积等于三角形ABC面积的,∴•AB•AQ=וAB•AC,∴×16×(12﹣t)=×16×12,解得t=9.∴t=9s时,三角形QAB的面积等于三角形ABC面积的.(3)由题意可知,Q在线段CA上运动的时间为12秒,P在线段AB上运动时间为8秒,①当0<t≤8时,P在线段AB上运动,Q在线段CA上运动,设CQ=t,AP=2t,则AQ=12﹣t,BP=16﹣2t,∵AQ=BP,∴12﹣t=(16﹣2t),解得t=16(不合题意舍弃).②当8<t≤12时,Q在线段CA上运动,P在线段BC上运动,设CQ=t,则AQ=12﹣t,BP=2t﹣16,∵AQ=BP,∴12﹣t=(2t﹣16),解得t=.③当t>12时,Q在线段AB上运动,P在线段BC上运动时,∵AQ=t﹣12,BP=2t﹣16,∵AQ=BP,∴t﹣12=(2t﹣16),解得t=16,综上所述,t=s或16s时,AQ=BP.21.(1)解:①作AE⊥OB于E,如图(1)所示:∵+(n﹣2)2=0,∴m+2=0,n﹣2=0,∴m=﹣2,n=2,∴A(﹣2,2),∴OE=AE=2,∵△ABO为等腰直角三角形,∴AB=AO,BO=2OE=4,∴B(﹣4,0);故答案为:(﹣2,2),(﹣4,0);②∵△ABO为等腰直角三角形,∴AB=AO,∠BAO=90°,∠AOB=45°,∵△ABC是等边三角形,∴∠BAC=60°,AC=AB,∴∠CAO=90°+60°=150°,AC=AO,∴∠ACO=∠AOC=(180°﹣150°)=15°,∴∠COB=45°﹣15°=30°;(2)证明:在AC上取一点P,使AP=OE,连接PM,如图(2)所示:∵AM⊥y轴,AN⊥x轴,∴∠AQO=∠AMO=90°,∵∠MOQ=90°,∴四边形AMOQ是矩形,∵A(﹣2,2),∴AQ=OQ=2,∴四边形AMOQ是正方形,∴∠A=∠MOE=∠AM O=90°,AM=OM,在△APM和△OEM中,,∴△APM≌△OEM(SAS),∴MP=ME,∠AMP=∠OME,∵∠AMP+∠PMO=90°,∴∠OME+∠PMO=90°,∴∠PME=90°,∵△MKJ是等腰直角三角形,∴∠JMK=45°,∴∠PMN=45°,∴∠PMN=∠EMN,在△PMN和△EMN中,,∴△PMN≌△EMN(SAS),∴PN=EN,∵AN=AP+PN,AP=OE,∴AN=OE+NE.。

中考数学一轮复习专题突破训练—相似三角形

中考数学一轮复习专题突破训练—相似三角形

中考数学一轮复习专题突破训练—相似三角形一、单选题1.(2022·北京市第十三中学九年级期中)如图,点D,E分别在△ABC的AB,AC边上,且DE△BC,如果AD:AB=2:3,那么DE:BC等于()A.3:2B.2:5C.2:3D.3:5【答案】C【分析】根据相似三角形的判定与性质即可得出结果.【详解】解:△DE∥BC,△△ADE△△ABC,△DE:BC=AD:AB=2:3;故选:C.2.(2022·辽宁鞍山市·九年级期末)如图,在平行四边形ABCD中,点E是AB 的中点,CE和BD交于点O,若S△EOB=1,则四边形AEOD的面积为()A.4B.5C.6D.7【答案】B根据平行四边形的性质和相似的判定和性质,可以得到△BOC和△COD的面积,从而可以得到△BCD的面积,再根据△ABD和△BCD的面积一样,即可得到四边形AEOD的面积.【详解】解:△在平行四边形ABCD中,点E是AB的中点,△CD△AB,CD=AB=2BE△△DOC△△BOE,△OC CDOE BE=2,△S△EOB=1,△S△BOC=2,S△DOC=4,△S△BCD=6,△S△DAB=6,△四边形AEOD的面积为:S△DAB-S△EOB=6-1=5,故选:B.3.(2022·全国九年级专题练习)如图,已知AB△CD△EF,AD:AF=3:5,BE=12,那么CE的长等于()A.2B.4C.245D.365【分析】根据平行线分线段成比例得到3125BC =,然后利用比例性质计算出BC ,从而求出CE 即可. 【详解】解:△AB △CD △EF , △BC AD BE AF =,即3125BC =, △BC =365, △CE =BE -BC =12-365=245, 故选C .4.(2022·全国九年级专题练习)下列四条线段中,不能成比例的是( ) A.a =2,b =4,c =3,d =6 B .a ,b c =1,d C .a=6,b =4,c =10,d =5 D .a b =c d =2【答案】C 【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案. 【详解】解:A 、2×6=3×4,能成比例; B1 C 、4×10≠5×6,不能成比例;D 、523152⨯=⨯,能成比例. 故选:C .5.(2022·四川省成都市石室联合中学)如图,在ABC 中,点E 和点F 分别在边AB ,AC 上,且//EF BC ,若3AE =,6EB =,9BC =,则EF 的长为( )A .1B .92C .12D .3【答案】D 【分析】证明△AEF △△ABC ,根据相似三角形的性质列出比例式,代入计算得到答案. 【详解】 △//EF BC , △AEF ABC ∽, △EF AEBCAB, △3AE =,6EB =, 9BC =, △399EF =, △3EF =. 故选D .6.(2022·全国九年级课时练习)将三角形纸片(ABC )按如图所示的方式折叠,使点C 落在AB 边上的点D ,折痕为EF .已知3,4AB AC BC ===,若以点B 、D 、F 为顶点的三角形与ABC 相似,那么CF 的长度是( )A .2B .127或2 C .127D .125或2 【答案】B 【分析】分两种情况:若BFD C ∠=∠或若BFD A ∠=∠,再根据相似三角形的性质解题 【详解】△ABC 沿EF 折叠后点C 和点D 重合, △FD CF =,设CF x =,则,4FD CF x BF x ===-,以点B 、D 、F 为顶点的三角形与ABC 相似,分两种情况: △若BFD C ∠=∠,则BF FDBC AC =,即443x x -=,解得127x =; △若BFD A ∠=∠,则BF FD AB AC =,即433x x -=,解得2x =. 综上,CF 的长为127或2, 故选:B .7.(2022·全国九年级课时练习)已知线段a 、b 、c 、d 满足ab cd =,把它改写成比例式,错误的是( ) A .::a d c b = B .::a b c d =C .::d a b c =D .::a c d b =【答案】B【分析】根据比例的基本性质:外项之积等于内项之积,对选项一一分析,选出正确答案即可.【详解】解:A、a:d=c:b△ab=cd,故正确;B、a:b=c:d△ad=bc,故错误;C、d:a=b:c△dc=ab,故正确;D、a:c=d:b△ab=cd,故正确.故选:B.8.(2022·全国九年级课时练习)下列结论不正确的是()A.所有的矩形都相似B.所有的正三角形都相似C.所有的等腰直角三角形都相似D.所有的正八边形都相似【答案】A【分析】根据相似图形的判定判断即可;【详解】所有的矩形不一定都相似,故A错误,符合题意;因为正三角形的每个角都等于60︒,满足两个角对应相等,所有的正三角形都相似,故B正确;︒︒︒,满足两个角对应相等,因为等腰直角三角形的三个角分别为,45,45,90所有的等腰直角三角形都相似,故C正确;因为正八边形的每个角都相等,每条边都相等,所有的正八边形都相似,故D 正确; 故选A .9.(2022·全国)如果23a b =,那么2a bb-的结果是( ) A .12- B .43-C .43D .12【答案】B 【分析】根据比例的性质即可得到结论. 【详解】 △a b=23,△可设a =2k ,b =3k , △2a bb -=2k-6k 3k =-43. 故选B .10.(2022·沙坪坝·重庆一中)下列命题正确的是( ) A .位似图形一定是相似图形 B .任意两个菱形一定相似CD .23、24、25能作为直角三角形的三边长 【答案】A 【分析】根据位似图形,相似图形的定义可判断A 、B ,根据平方根的定义和勾股定理的逆定理,可判断C 、D . 【详解】解:A. 位似图形一定是相似图形,故原命题正确,符合题意; B. 任意两个菱形不一定相似,故原命题错误,不符合题意;C.±D. 23、24、25不能作为直角三角形的三边长,故原命题错误,不符合题意, 故选A . 二、填空题11.(2022·山东省青岛第二十六中学九年级期中)如果2x =3y ,那么x yy +=___. 【答案】52【分析】直接利用已知得出x =32y ,进而代入得出答案. 【详解】 解:△2x =3y , △x =32y ,△3522y yx y y y ++==.故答案为:52.12.(2022·全国九年级专题练习)ABC 中,D 、E 分别在AB 、AC 上,DE △BC ,ADE 是ABC 缩小后的图形,若DE 把ABC 的面积分成相等的两部分,则AD :AB =_____【分析】如图根据BC △DE ,可以得到△ADE △△ABC ,则21=2AED ABC S AD S AB ⎛⎫= ⎪⎝⎭△△ ,由此即可求解. 【详解】 解:△BC △DE , △△ADE △△ABC ,△DE 把△ABC 的面积分成相等的两部分,△21()2AED ABCS AD SAB ∆∆==, △22AD AB =, 故答案为:22.13.(2022·全国)如图,AC 与BD 相交于点O ,在△AOB 和△DOC 中,已知OA OBOD OC=,又因为________,可证明△AOB △△DOC .【答案】△AOB=△DOC【分析】根据相似三角形的判定,两边对应成比例,夹角相等,两三角形相似解答.【详解】解:△OA OBOD OC=,△AOB=△DOC,△△AOB△△DOC(两边对应成比例,夹角相等,两三角形相似).故答案为:△AOB=△DOC.14.(2022·全国九年级专题练习)如图:梯形ADFE相似于梯形EFCB,若AD=3,BC=4,则AEBE=__.3【分析】根据相似的性质,列出比例式,根据已知条件即可求得.【详解】因为梯形ADFE相似于梯形EFCB,所以AD EFEF BC=,即EF=23所以323AE ADBE EF===315.(2022·合肥市第四十五中学九年级)如图,正方形ABCD中,点E是BC的中点,点F是CD上一点,分别以AE、AF为对称轴,折叠△ABE、△ADF,使得AB和AD与AG重合,连接BG交AE于点H,连接CG.(1)HE:AH=______;(2)S△AFE:S正方形ABCD=______.【答案】1:4 5:12【分析】(1)根据翻折的性质得到△GHE=△BHE=90°,再根据△HEB=△BEA,从而证明△HEB△△BEA,得出HE BEBE AE=,设正方形边长为2x,则BE=x,AB=2x,由勾股定理求出AE,从而求出HE和AH,得出结论;(2)由S△AFE=12(S正方形ABCD﹣S△FCE),正方形ABCD的边长为2x,FG=DF=m,则EF =x + m,CF=2 x﹣m,,由勾股定理求出m即可.【详解】解:(1)△AE为对称轴,△△AEG△△AEB,BG△AE,△△GHE=△BHE=90°,又△△HEB=△BEA,△△HEB△△BEA,△HE BEBE AE=,在正方形ABCD 中,设边长为2x ,△点E 是BC 的中点,则BE =x ,AB =2x ,△AE=,△HE =225BE x AE ==,△AH =AE ﹣HE=,△HE :AH x =1:4. 故答案为:1:4;(2)设正方形ABCD 的边长为2x ,则S 正方形ABCD =4x 2,△S △AFE =12(S 正方形ABCD ﹣S △FCE ),CE =BE =GE =x ,设FG =DF =m ,则EF =x + m ,CF =2 x ﹣m ,在△EFC 中,△EF 2=CE 2+CF 2,△(m +x )2=(2 x ﹣m )2+ x 2,解得:m =23x ,△CE =2 x ﹣m =43x ,△S △CFE =12×CE ×CF =12×24233x x x ⨯=, △S △AFE =12×(4 x 2﹣223x )=253x , △S △AFE :S 正方形ABCD =225:43x x =5:12.故答案为:5:12.三、解答题16.(2022·辽宁鞍山市·九年级期末)如图,将△ABC绕点A旋转得到△ADE,连接BD,CE.求证:△ADB△△AEC.【答案】见解析.【分析】由题知,将△ABC绕点A旋转得到△ADE,可得到AC=AE,AB=AD,△CAE=△BAD,即可证明.【详解】△将△ABC绕点A旋转得到△ADE,△AC=AE,AB=AD,△CAE=△BAD,△AE AC,AD AB△△ADB△△AEC.17.(2022·广西贺州市·九年级期中)如图,已知在△ABC中,DE△BC,EF△AB,AE=2CE,AB=6,BC=9.求:(1)求BD的长度;(2)求DE的长度.【答案】(1)2;(2)6【分析】(1)由平行线分线段成比例得出比例式,即可得出结果;(2)由平行线分线段成比例得出比例式,即可得出结果.【详解】解:(1)△AE =2CE , △12CE AE =, △DE △BC , △13BD CE AB AC ==, △AB =6,△BD =2;(2)△EF △AB , △23AE BF AC BC ==, △BC =9,△BF =6,又△DE △BC ,△四边形BDEF 是平行四边形,△DE =BF =6.18.(2022·全国九年级专题练习)已知:如图,△ABC =△CDB =90°,AC =a ,BC =b ,当BD 与a 、b 之间满足怎样的关系时,这两个三角形相似?【答案】2b BD a =或22b a b BD -=【分析】由AB △BC ,BD △CD 得到△ABC =△BDC =90°,再利用勾股定理计算出22AB a b -根据直角三角形相似的判定方法,当AB BD AC BC =,Rt △ABC △Rt △BDC ;当=BC AC BD BC时然后分别利用比例性质可表示出BD 与a 和b 的关系. 【详解】解:△AC =a ,BC =b ,△ABC =△CDB =90°,△AB 22a b -△当BD BC AB AC=时, 即22b a b BD -=Rt △ABC △Rt △BDC ; △当BD BC CB AC=时, 即2b BD a=时,Rt △ABC △Rt △CDB ,. 19.(2020·北京市第六十六中学九年级期中)如图,在Rt△ABC 中,△C =90°,D 是AB 上一点,E 是BC 上一点,AC =6,BC =8,BD =4,BE =5.求证:DE △AB .【答案】见解析【分析】利用勾股定理可求得AB =10,则有12BE AB =,12BD BC =,结合△B =△B ,可证得△BDE △△BCA ,从而有△BDE =△C =90°,即可得证.【详解】证明:△△C =90°,AC =6,BC =8,△AB 2210AC BC +=,△BD =4,BE =5, △12BE AB =,12BD BC =, △△B =△B ,△△BDE △△BCA ,△△BDE =△C =90°,即DE △AB .20.(2022·全国九年级专题练习)如图:小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m ,已知小明的身高是1.6 m ,他的影长是2 m .(1)图中△ABC 与△ADE 是否相似?为什么?(2)求古塔的高度.【答案】(1)相似,见解析;(2)16m【分析】(1)根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似;(2)利用相似三角形的性质求得相应线段的长即可.【详解】解:(1)△ABC△△ADE.△BC△AE,DE△AE,△△ACB=△AED=90°.△△A=△A,△△ABC△△ADE;(2)由(1)得△ABC△△ADE,△AC BC=AE DE△AC=2m,AE=2+18=20m,BC=1.6m,△2 1.6=,20DE△DE=16m,即古塔的高度为16m.21.(2022·全国九年级专题练习)在锐角△ABC中,AD,CE分别为BC,AB边上的高,△ABC 和△BDE 的面积分别等于18和2,DE =2,求AC 边上的高.【答案】6【分析】由已知条件得到△CEB =△ADB =90°,推出△ADB △△CEB ,根据相似三角形的性质得到BD :AB =BE :BC ,证得△BDE △△BAC ,得到S △BDE :S △ABC =(DE :AC )2,于是求得AC =6,然后根据三角形的面积公式即可得到结果.【详解】过点B 做BF △AC ,垂足为点F ,△AD ,CE 分别为BC ,AB 边上的高,△△ADB =△CEB =90°,又△△B =△B ,△Rt △ADB △Rt △CEB , △BD AB BE CB =,即BD BE AB CB=, 且△B =△B ,△△EBD △△CBA , △221189BED BCA S DE S AC ⎛⎫=== ⎪⎝⎭, △13DE AC =, 又△DE =2,△AC =6,△1182ABCS AC BF =⋅=, 6BF ∴=.22.(2022·湖南师大附中博才实验中学)如图,在正方形ABCD 中,点G 是对角线上一点,CG 的延长线交AB 于点E ,交DA 的延长线于点F ,连接AG .(1)求证:AG CG =;(2)若9GE GF ⋅=,求CG 的长.【答案】(1)见解析;(2)CG =3【分析】(1)根据正方形的性质得到△ADB =△CDB =45°,AD =CD ,从而利用全等三角形的判定定理推出△ADG △△CDG (SAS ),进而利用全等三角形的性质进行证明即可;(2)根据正方形的性质得到AD △CB ,推出△FCB =△F ,由(1)可知△ADG △△CDG ,利用全等三角形的性质得到△DAG =△DCG ,结合图形根据角之间的和差关系△DAB -△DAG =△DCB -△DCG ,推出△BCF =△BAG ,从而结合图形可利用相似三角形的判定定理得到△AEG △△F AG ,进而根据相似三角形的性质进行求解即可.【详解】解:(1)证明:△BD 是正方形ABCD 的对角线,△△ADB =△CDB =45°,又AD =CD ,在△ADG 和△CDG 中,AD CD ADG CDG DG DG =⎧⎪∠=∠⎨⎪=⎩, △△ADG △△CDG (SAS ),△AG =CG ;(2)解:△四边形ABCD 是正方形,△AD △CB ,△△FCB =△F ,由(1)可知△ADG △△CDG ,△△DAG =△DCG ,△△DAB -△DAG =△DCB -△DCG ,即△BCF =△BAG ,△△EAG =△F ,又△EGA =△AGF ,△△AEG △△F AG ,△GE GA GA GF =,即GA 2=GE •GF ,△GA =3或GA =-3(舍去),根据(1)中的结论AG =CG ,△CG =3.23.(2022·浙江杭州·翠苑中学九年级)如图,在矩形ABCD 中,E 是CD 上一点,AE AB =,作BF AE ⊥.(1)求证:ADE BFA ≅△△;(2)连结BE ,若BCE 与ADE 相似,求AD AB . 【答案】(1)见解析;(23【分析】(1)根据矩形的性质得出90D DAB ∠=∠=︒,求出90DAE FAB ∠+∠=︒,90FBA FAB ∠+∠=︒,求出D AFB ∠=∠,DAE FBA ∠=∠,再根据全等三角形的判定推出即可;(2)根据矩形的性质得出90C D ∠=∠=︒,//DC AB ,根据平行线的性质得出CEB ABE ∠=∠,设CEB ABE x ∠=∠=︒,根据等腰三角形的性质求出AEB EBA x ∠=∠=︒,根据相似三角形的性质得出两种情况:△DEA CEB x ∠=∠=︒,根据180DEA AEB CEB ∠+∠+∠=︒得出180x x x ++=,求出x ,再解直角三角形求出AE 和AD ,再求出答案即可;△DEA EBC ∠=∠,设DEA EBC y ∠=∠=︒,求出(2)180DEA AEB CEB y x ∠+∠+∠=+︒=︒,()90EBC CEB y x ∠+∠=+︒=︒,求出x ,再得出答案即可.【详解】解:(1)证明:四边形ABCD 是矩形,90D DAB ∴∠=∠=︒,90DAE FAB ∴∠+∠=︒,BF AE ⊥,90AFB ∴∠=︒,D AFB ∴∠=∠,90FBA FAB ∠+∠=︒,DAE FBA ∴∠=∠,在ADE ∆和BFA ∆中DAE FBA D AFB AE AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE BFA AAS ∴∆≅∆;(2)四边形ABCD 是矩形,90C D ∴∠=∠=︒,//DC AB ,CEB ABE ∴∠=∠,设CEB ABE x ∠=∠=︒,AE AB =,AEB EBA x ∴∠=∠=︒,当BCE ∆与ADE ∆相似时,有两种情况:△DEA CEB x ∠=∠=︒,180DEA AEB CEB ∠+∠+∠=︒,180x x x ∴++=,解得:60x =,即60DEA ∠=︒,906030DAE ∴∠=︒-︒=︒,2AE DE ∴=,由勾股定理得:AD , AE AB =,∴AD AD AB AE = △DEA EBC ∠=∠,设DEA EBC y ∠=∠=︒,CEB EBA AEB x ∠=∠=∠=︒,则(2)180DEA AEB CEB y x x y x ∠+∠+∠=︒+︒+︒=+︒=︒, 在Rt BCE ∆中,()90EBC CEB y x y x ∠+∠=︒+︒=+︒=︒, 即218090y x y x +=⎧⎨+=⎩, 解得:90x =︒,即90CEB ∠=︒,此时点E 和点C 重合,BEC ∆不存在,舍去;△AD AB =。

2024年中考数学一轮复习基础训练:相似三角形(无答案)

2024年中考数学一轮复习基础训练:相似三角形(无答案)

中考数学一轮复习基础训练(相似三角形)班级 姓名 学号 成绩一、选择题(每题4分,共28分)1.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△A 1B 1C 1相似的是( )A .BC .D .2.如图,在△ABC 中,点D 、E 分别在AB 和AC 边上,DE △BC ,M 为BC 边上一点(不与点B 、C 重合)连接AM 交DE 于点N ,则 ( ) A .AE AN AN AD = B .CEMNMN BD = C .MC NE BM DN = D .BMNE MC DN =第2题图 第3题图 第4题图 第5题图3.如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且△CAD =△B . 若△ADC 的面积为a ,则△ABD 的面积为( )A .2a B .2.5a C .3a D .3.5a4.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为( )A .61B .31C .51D .41 5.如图,在△ABC 中,D 在AC 边上,AD ∶DC = 1∶2,点O 是BD 的中点,连接AO 并延长交BC 于 E ,则BE △EC =( )A . 1△2B . 1△3C . 1△4D . 2△36.如图, ABCD 中,点F 为BC 的中点,延长AD 至E ,使DE :AD =1:3,连接EF 交DC 于点G ,则S △DEG :S △CFG =( )A .2:3B .3:2C .9:4D .4:9第6题图 第7题图 第12题图 第13题图7.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为16,阴影部分三角形的面积为9,若AA'=1,则A'D 等于( )A .2B .3C .4D .32 二、填空题(每空4分,共36分) N EAB C D M B A CD8.若23=+x y x ,则xy = . 9.在某一时刻,侧的一根高为1.8m 的竹竿的影长为3m ,同时同地测得一栋楼的影长为90m ,则这栋楼的高度为 m .10.在平面直角坐标系中,点A (4,2),B (5,0),以点O 为位似中心,相似比为1:2,把△ABO 缩小,得到△A 1B 1O ,则点A 的对应点A 1的坐标为 .11.若△ABC ∽△A B C ''',相似比为1﹕2,则△ABC 与△A B C '''的周长的比为 .12.如图,D 、E 分别是△ABC 边AB 、AC 上的点,∠ADE =∠ACB ,若AD =2,AB =6,AC =4,则AE 的长是 .13.如图,在△ABC 中,D 、E 分别是AB 、AC 边上的点,DE ∥BC ,若AD =2,AB =3,DE =4,则BC 等于 .14.如图,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,CD ∥AB ,∠ABC 的平分线BD 交AC 于点E ,DE = .第14题图 第15题图 第16题图15.如图,在一斜边长30cm 的直角三角形木板(即Rt △ACB )中截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若AF :AC =1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为 .16.如图,在△ABC 中,点D 为BC 边上的一点,AD △AB 且AD =AB =2,过点D 作DE △AD ,DE 交AC 于点E .若DE =1,则△ABC 的面积为 .三、解答题(17至19题每题8分,20题12分,共36分)17.如图,为了测量一栋楼的高度OE ,小明同学先在操场上A 处放一面镜子,向后退到B 处,恰好在镜子中看到楼的顶部E ;再将镜子放到C 处,然后后退到D 处,恰好再次在镜子中看到楼的顶部E (O 、A 、B 、C 、D 在同一条直线上),测得AC =2m ,BD =2.1m ,如果小明眼睛距地面髙度BF ,DG 为1.6m ,试确定楼的高度OE .第17题图18.如图,△ABD =△BCD =90°,DB 平分△ADC ,过点B 作BM △CD 交AD 于M .连接CM 交DB 于N .(1)求证:BD 2 =AD ·CD ;(2)若CD =6,AD =8,求MN 的长.第18题图19.如图,Rt△ABC 中,△ACB =90°,以AC 为直径的△O 交AB 于点D 过点D 作△O 的切线交BC 于点E ,连接OE .(1)求证:△DBE 是等腰三角形;(2)求证:△COE △△CA B.第19题图 20.如图,在等腰Rt △ABC 中,∠ACB =90°,ABD ,E 分别在边AB ,BC 上,将线段ED 绕点E 按逆时针方向旋转90°得到EF .(1)如图1,若AD =BD ,点E 与点C 重合,AF 与DC 相交于点O ,求证:BD =2DO .(2)已知点G 为AF 的中点.如图2,若AD =BD ,CE =2,求DG 的长.第20题图E B 图图2图1G F AB (E)CD E。

2025年湖南中考数学一轮复习考点研析 第四章 三角形技法4 解直角三角形的应用的常见模型

2025年湖南中考数学一轮复习考点研析 第四章 三角形技法4 解直角三角形的应用的常见模型

解:如解图,延长EF交AB于点H.
由题意可知,HB=DF=CE=1米,FE=CD=2米.
设HF=x米,则EH=HF+FE=x+2(米).
在Rt△AHF中,∠AFH=45°,∴AH=HF=x米.


3
在Rt△AHE中,tan∠AEH= ,即
= ,解得x=

+2 3
∴AB=AH+HB= 3+2(米).
3+1,
解图
答:AB的高为( 3+2)米.


A.10.5米
B.16.1米
C.20.7米
D.32.2米
答案
9.如图,数学实践小组测量某路段上一处标识脱落的车辆限高杆MN的高度
AB,如图,他们先用测角仪在C处测得点A的仰角∠AEG=30°,然后在D处测
得点A的仰角∠AFG=45°.已知点C,D,B在同一条直线上,测角仪离地面高度
CE=1 m,CD=2 m,求AB的高.
DE=(BE-BF)·tan β
已知线段BC的长度,AB⊥BC,
AB=BC·tan α,
DC⊥BC,∠ACB=α,∠DBC=β
CD=BC·tan β
已知线段BC,CE的长度,AB⊥
AB=BC·tan α,
BE,DE⊥BE,∠ACB=α,∠DCE=β
DE=CE·tan β
3.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得
A.25 3米
B.25米
C.25 2米
D.50米
答案
8.如图,为测量观光塔AB的高度,冬冬在坡度i=5 ∶12的斜坡CD的D点测得塔
顶A的仰角为52°,斜坡CD长为26米,C到塔底B的水平距离为9米.图中点
A,B,C,D在同一平面内,则观光塔AB的高度约为(结果精确到0.1米,参考数

中考数学一轮复习《三角形及其性质》练习题(含答案)

中考数学一轮复习《三角形及其性质》练习题(含答案)

中考数学一轮复习《三角形及其性质》练习题(含答案)课时1一般三角形及等腰三角形(建议答题时间:40分钟)1. (2017泰州)三角形的重心是()A. 三角形三条边上中线的交点B. 三角形三条边上高线的交点C. 三角形三条边垂直平分线的交点D. 三角形三条内角平分线的交点2. (2017金华)下列各组数中,不可能成为一个三角形三边长的是()A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,103. (2017株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD的度数是()A. 145°B. 150°C. 155°D. 160°第3题图4. (2017甘肃)已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A. 2a+2b-2cB. 2a+2bC. 2cD. 05. (2017德阳)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是()A. 15°B. 20°C. 25°D. 30°第5题图第6题图6. (2017滨州)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A. 40°B. 36°C. 30°D. 25°7. (2017荆州)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC 于点D,则∠CBD的度数为()A. 30°B. 45°C. 50°D. 75°第7题图第8题图第9题图8. (2017郴州)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A. 180°B. 210°C. 360°D. 270°9. (2017天津)如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是().A. BCB. CEC. ADD. AC10. (2017泰州)将一副三角板如图叠放,则图中∠α的度数为________.第10题图第12题图第13题图11. (2017成都)在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A的度数为________.12. (2017江西)如图①是一把园林剪刀,把它抽象为图②,其中OA=OB,若剪刀张开的角为30°,则∠A=________度.13. (2017湘潭)如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为点E,请任意写出一组相等的线段________.14. (2017徐州)△ABC中,点D、E分别是AB、AC的中点,DE=7,则BC=________.15. (2017丽水)等腰三角形的一个内角为100°,则顶角的度数是________.16. (2017陕西)如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A =52°,则∠1+∠2的度数为________.第16题图第18题图17. (2017淄博)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=________. 18. (2017宁夏)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=13DM,当AM⊥BM时,则BC的长为________.19. (2017达州)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是________.20. (2017内江)如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.第20题图21. (2017北京)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC 于点D.求证:AD=BC.第21题图22. (2017连云港)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.第22题图课时2直角三角形及勾股定理(建议答题时间:40分钟)1. 下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. 3,4,5B. 1,2, 3C. 6,7,8D. 2,3,42. (2016沈阳)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A. 433 B.4 C. 83 D. 4 3第2题图第3题图3. (2017大连)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A. 2aB. 22aC. 3aD. 43 3a4. (2017黄石)如图,在△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=32,则∠CDE+∠ACD=()A. 60°B. 75°C. 90°D. 105°第4题图第5题图5. (2017重庆巴蜀月考)如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AC于点D,交AB于点E.若BC=4,AC=8,则BD=()A. 3B. 4C. 5D. 66. (2017陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A. 3 3B. 6C. 3 2D. 21第6题图第7题图7. 关注数学文化(2017襄阳)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A. 3B. 4C. 5D. 68. (2017株洲)如图,在Rt△ABC中,∠B的度数是________度.第8题图第11题图第12题图9. (2017安顺)三角形三边长分别为3,4,5,那么最长边上的中线长等于________.10. (2017岳阳)在△ABC中,BC=2,AB=23,AC=b,且关于x的方程x2-4x +b=0有两个相等的实数根,则AC边上的中线长为________.11. (2017常德)如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是________.12. (2017娄底)如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是________.(用含m的代数式表示)13. (2017杭州)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连接AE,则△ABE的面积等于________.第13题图第14题图14. (2017武汉)如图,在△ABC中,AB=AC=23,∠BAC=120°,点D,E都在边BC上,∠DAE=60°,BD=2CE,则DE的长为________.15. (2017山西)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB =∠BCD=90°,∠A=60°,∠CBD=45°.E为AB的中点,过点E作EF⊥CD于点F.若AD=4 cm,则EF的长为________cm.第15题图第16题图16. (2017河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终..落在边AC上,若△MB′C为直角三角形,则BM的长为________.17. (2018原创)如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)第17题图18. (2018原创)如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.第18题图19. 在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15,(1)求AB的长;(2)求CD的长.第19题图20. (2017徐州)如图,已知AC⊥BC,垂足为C,AC=4,BC=33,将线段AC 绕点A按逆时针方向旋转60°,得到线段AD,连接DC、DB.(1)线段DC=________;(2)求线段DB的长度.第20题图答案课时1 一般三角形及等腰三角形1. A2. C3. B4. D【解析】由三角形中任意两边之和大于第三边,得:a+b>c,∴c-a-b =c-(a+b)<0,∴|c-a-b|=a+b-c,|a+b-c|=a+b-c,∴|a+b-c|-|c-a -b|=0.5. B【解析】∵BE是∠ABC的角平分线,∴∠ABC=2∠ABE=50°,又∵∠BAC =60°,则∠C=70°,又∵∠ADC=90°,∴∠DAC=20°.6.B【解析】设∠C=x°,∵AD=DC,∴∠DAC=∠C=x°,∴∠ADB=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,∴∠B=180°-4x°,∵AB=AC,∴∠B=∠C=x°,∴180°-4x°=x°,解得x=36,∴∠B=∠C=36°.7.B【解析】∵∠A=30°,AB=AC,∴∠ABC=∠C=75°,又∵l为AB的垂直平分线,∴DB=DA,∠DBA=∠A=30°∴∠CBD=∠CBA-∠DBA=75°-30°=45°.8. B【解析】如解图,∵∠C=∠F=90°,∴∠3+∠4=90°,∠2+∠5=90°,又∵∠2=∠4,∴∠3=∠5,∵∠1=∠3,∴∠1=∠5=180°-∠β,∵∠α=∠D+∠1=∠D+180°-∠β,∴∠α+∠β=∠D+180°=30°+180°=210°.第8题解图9. B【解析】∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点B关于AD的对应点为点C,∴CE等于BP+EP的最小值.10. 15°11. 40°12. 7513. CD=DE14. 1415. 100°【解析】由三角形内角和定理可知,若等腰三角形的一个内角为100°,则这个内角为顶角,此时两底角均为40°,即该三角形顶角的度数是100°.16. 64°【解析】∵在△ABC中,BD和CE是△ABC的两条角平分线,∴∠1=∠ABD=12∠ABC,∠2=∠ACE=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB),∵∠ABC+∠ACB+∠A=180°,∴∠ABC+∠ACB=180°-∠A=180°-52°=128°,∴∠1+∠2=12(∠ABC+∠ACB)=12×128°=64°.17. 23【解析】假设点D与点B重合,可得DE+DF为等边三角形AC边上的高,再由等边三角形的边长为4,可求AC边上的高为23,故DE+DF=2 3.18. 8【解析】∵AM⊥BM,∴∠AMB=90°,在Rt△ABM中,∵D是AB的中点,∴DM=12AB=3,∵ME=13DM,∴ME=1,DE=4,又∵DE∥BC,∴DE是△ABC的中位线,∴BC=8.19. 1<m<4【解析】如解图,延长AD到点E,使AD=ED,连接CE,∵AD 是△ABC的中线,∴BD=CD,∵在△ABD和△ECD中,BD=CD,DE=AD,∠ADB=∠EDC,∴△ABD≌△ECD(SAS),∴AB=EC,在△AEC中,∵AC+EC>AE,且EC-AC<AE,即AB+AC>2AD,AB-AC<2AD,∴2<2AD<8,∴1<AD<4即1<m<4.第11题解图20. 证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵DE∥AC,∴∠ADE=∠DAC.∴∠BAD=∠ADE,∵AD⊥BD,∴∠ADB=90°,∴∠BAD+∠B=90°.∵∠BDE+∠ADE=90°,∴∠B=∠BDE,∴BE=DE,∴△BDE是等腰三角形.21. 解:∵AB=AC∴在△ABC中,∠ABC=∠C=12(180°-∠A)=12×(180°-36°)=72°,又∵BD平分∠ABC,∴∠ABD=∠DBC=12∠ABC=12×72°=36°,∴∠ABD=∠A,∴AD=BD,又∵在△ABC中,∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BC.22. (1)解:∠ABE=∠ACD.理由如下:∵AB=AC,∠BAE=∠CAD,AE=AD,∴△ABE≌△ACD(SAS).∴∠ABE=∠ACD;(2)证明:∵AB=AC,∴∠ABC=∠ACB.由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC.又∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即过点A、F的直线垂直平分线段BC.课时2直角三角形及勾股定理1. B2. D3. B【解析】∵CD⊥AB,CD=DE=a,∴CE=2a,∵在△ABC中,∠ACB =90°,点E是AB的中点,∴AB=2CE=22a.4. C【解析】∵点E为BC边的中点,CD⊥AB,DE=32,∴BE=CE=DE=32,∴∠CDE =∠DCE ,BC = 3.在△ABC 中,AC 2+BC 2=1+(3)2=4=AB 2,∴∠ACB =90°,∴∠CDE +∠ACD =∠DCE +∠ACD =90°.5. C 【解析】设BD =x ,∵边AB 的垂直平分线交AC 于点D ,∴AD =BD =x ,则CD =8-x ,在Rt △BCD 中,根据勾股定理,得x 2-(8-x )2=42,解得x =5.6. A 【解析】∵∠ACB =∠A ′C ′B ′=90°,AC =BC =3,∴△ABC 是等腰直角三角形,∴∠CAB =45°,在Rt △ABC 中,AB =AC 2+BC 2=32+32=32,又∵△ABC ≌△A ′B ′C ′, ∴A ′B ′= AB =32, ∠C ′A ′B ′=∠CAB =45°,∴∠CAB ′=∠C ′AB ′+∠CAB = 45°+45°=90°,在Rt △CAB ′中,AC =3,AB ′=32,∴B ′C =AC 2+AB′2=32+(32)2=3 3.7. C 【解析】如解图,∵S 正方形ABCD =13,∴AB =13,∵AG =a ,BG =b ,∴a 2+b 2=AB 2=13,∵(a +b )2=a 2+2ab +b 2=21,∴2ab =(a +b )2-a 2-b 2=21-13=8,∴ab =4,∴S △ABG =12ab =12×4=2,∴S 小正方形=S 大正方形-4S △ABG =13-4×2=5.第7题解图8. 25 9. 5210. 2 【解析】∵方程x 2-4x +b =0有两个相等的实数根,∴b 2-4ac =16-4b =0,解得b =4.又∵BC =2,AB =23,AC =b =4,∴AB 2+BC 2=(23)2+22=42=AC 2,∴∠B =90°,∴AC 边上的中线长为2.11. 0<CD ≤5 【解析】如解图,取BE 的中点F ,连接AF ,∵∠A =90°,则AF =12BE =EF =5,∴∠EAF =∠E =90°-∠B =30°,又∵∠CDE =30°,∴∠CDE=∠EAF ,∴CD ∥AF ,∴CD AF =EDEA .当D 与A 重合时,CD 与AF 重合,取得最大值为5,当D 接近于E 时,DE 越小,CD 越小,∵线段CD 不能为0,∴0<CD≤5.第11题解图12. 2+2m【解析】如解图,连接BD,∵D为AC的中点,∴BD⊥AC,BD 平分∠ABC,∴∠BDC=90°,∠ABD=∠C=45°,∴∠BDF+∠FDC=90°,又∵∠EDF=90°,∴∠BDF+∠BDE=90°,∴∠CDF=∠BDE,∴△BED≌△CFD(ASA),∴BE=CF,DE=DF,则BE+BF+EF=BC+EF=2+EF,而Rt △DEF中,DE=DF=m,∴EF=2m,则△BEF的周长为2+ 2 m.第12题解图13. 78【解析】如解图,过点A作AH⊥BC于点H,∵AB=15,AC=20,∠BAC=90°,∴由勾股定理得,BC=152+202=25,∵AD=5,∴DC=20-5=15,∵DE⊥BC,∠BAC=90°,∴△CDE∽△CBA,∴CECA=CDCB,∴CE=1525×20=12.第13题解图14. 33-3【解析】∵AB=AC=23,∠BAC=120°,∴BC=6,∠B=∠BCA =30°,如解图,将△ABD绕点A逆时针旋转120°得到△ACD′,∴∠D′CA=∠B =30°,AD=AD′,∴∠D′CE=60°,∵∠DAE=60°,∠DAD′=120°,∴∠EAD′=60°,∴△EAD′≌∠EAD(SAS),∴ED′=ED,∴ED′+BD+EC=6,∴EC=6-DE3,∵CD ′=BD =2CE ,∠D ′CE =60°,∴∠D ′EC =90°,∴D ′E 2+EC 2=D ′C 2,即DE 2+(6-DE 3)2=(6-DE3×2)2,解得DE =33-3(负根舍去).第14题解图15. 2+6 【解析】如解图,连接DE ,在EF 上找一点G ,使得DG =EG ,连接DG ,在Rt △ABD 中,∠A =60°, ∴AD =12AB ,又∵E 为AB 的中点,∴AE =12AB =DE ,∴AD =AE =DE ,∴△ADE 为等边三角形 ,∴DE =AD =4 cm ,∠DEA =60°,又∵EF ⊥CD ,∠C =90°,∴EF ∥CB ,∴∠AEF =∠ABC =75°,∴∠DEF =15°,在Rt △EFD 中,∠EFD =90°,∵DG =EG ,∴∠GDE =∠DEF =15°,∴∠DGF =30°,设DF =x ,则EG =DG =2x ,FG =3x ,EF =(2+3)x ,根据勾股定理得DF 2+EF 2=DE 2,即x 2+(2+3)2x 2=16,解得x =6-2,∴EF =(2+6) cm .第15题解图16. 2+12或1 【解析】(1)当∠B ′MC 为直角时,此时点M 在BC 的中点位置,点B ′与点A 重合,如解图①,则BM 长度为12BC =2+12;(2)当∠MB ′C 为直角时,如解图②,根据折叠性质得,BM =B ′M ,BN =B ′N ,B ′M ∥BA ,∴MC BC =B ′MAB ,即MC B ′M =BC AB =2,∴MC B ′M=2,即MC +BM BM =2+11,即BCBM =2+11,∵BC=2+1,∴BM=1.故BM长为2+12或1.第16题解图17. 解:∵∠BDC=45°,∠ABC=90°,∴△BDC为等腰直角三角形,∴BD=BC,∵∠A=30°,∴BC=12AC,在Rt△ABC中,根据勾股定理得AC2=AB2+BC2,即(2BC)2=(4+BD)2+BC2,解得BC=BD=2+23(负根舍去).18. 解:(1)∵DB⊥BC,BC=4,CD=5,∴BD=52-42=3;(2)如解图,延长CB,过点A作AE⊥CB交CB延长线于点E,∵DB⊥BC,AE⊥BC,∴AE∥DB,∵D为AC边的中点,∴BD=12AE,∴AE=6,即BC边上高的长为6.第18题解图19. 解:(1)在Rt△ABC中,∠ACB=90°,BC=15,AC=20,∴AB=AC2+BC2=202+152=25,即AB的长是25;(2)∵S△ABC=12AC·BC=12AB·CD,∴20×15=25·CD,∴CD=12.20. 解:(1) 4;【解法提示】在△ACD中,∵∠A=60°,AC=AD,∴△ACD是等边三角形,∴DC=AC=4.(2)如解图,过点D作DE⊥BC于点E.第20题解图在△CDE中,∠DCE=∠ACB-∠ACD=90°-60°=30°,CD=4,∴DE=2,根据勾股定理得CE=CD2-DE2=23,∴BE=BC-CE=33-23=3,∴DB=BE2+DE2=(3)2+22=7.。

中考一轮复习数学《三角形》压轴题备考专题练习(无答案)

中考一轮复习数学《三角形》压轴题备考专题练习(无答案)

中考一轮复习九年级数学《三角形》压轴题备考专题练习1、如图,在ABC 中,120ACB ∠=︒,BC AC >,点E 在BC 上,点D 在AB 上,CE CA =,连接DE ,180ACB ADE ∠+∠=︒,CH AB ⊥,垂足为H .证明:DE AD +=.2、如图,在△ABC 中,∠B=60°,△ABC 的角平分线AD 、CE 相交于点O,求证:AE+CD=AC.3、如图,在ABC ∆中,AD 是BAC ∠的平分线,G 为AD 上一动点,GH AD ⊥,交BC 的延长线于点H .(1)若30B ∠=︒,40BAC ∠=︒,求H ∠的度数;(2)当点G 在AD 上运动时,探求H ∠与B 、ACB ∠之间的数量关系,并证明.4、如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD=15°,∠B=40°. (1)求∠C 的度数.(2)若:∠EAD=α,∠B=β,其余条件不变,直接写出用含α,β的式子表示∠C 的度数.5、在△ABC 中,已知△A =α.(1)如图1,△ABC 、△ACB 的平分线相交于点D .求△BDC 的大小(用含α的代数式表示);(2)如图2,若△ABC 的平分线与△ACE 的平分线交于点F ,求△BFC 的大小(用含α的代数式表示);(3)在(2)的条件下,将△FBC 以直线BC 为对称轴翻折得到△GBC ,△GBC 的平分线与△GCB 的平分线交于点M (如图3),求△BMC 的度数(用含α的代数式表示).6、图,ABC 中,AC BC =,DCE 中,DC EC =,且DCE ACB ∠=∠,当把两个三角形如图△放置时,有AD BE =.(不需证明)(1)当把DCE 绕点C 旋转到图△△△的情况,其他条件不变,AD 和BE 还相等吗?请在图△△中选择一种情况进行证明;(2)若图△中AD 和BE 交于点P ,连接PC ,求证:PC 平分BPD ∠.7、已知在Rt ABC ∆中,90ACB ∠=︒,AC BC =,CD AB ⊥于D .(1)如图1,将线段CD 绕点C 顺时针旋转90︒得到CF ,连接AF 交CD 于点G . 求证:AG GF =;(2)如图2,点E 是线段CB 上一点(12CE CB <),连接ED ,将线段ED 绕点E 顺时针旋转90︒得到EF ,连接AF 交CD 于点G . △求证:AG GF =;△若7AC BC ==,2CE =,求DG 的长.8、在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCES 最大值.9、如图,已知 B (-1, 0) , C (1, 0) , A 为 y 轴正半轴上一点, AB = AC ,点 D 为第二象限一动点,E 在 BD 的延长线上, CD 交 AB 于 F ,且∠BDC = ∠BAC . (1)求证: ∠ABD = ∠ACD ; (2)求证: AD 平分∠CDE ;(3)若在 D 点运动的过程中,始终有 DC = DA + DB ,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数?10、如图,ABC 是边长为2的等边三角形,BDC 是顶角为120°的等腰三角形,以点D 为顶点作60MDN ∠=︒,点M 、N 分别在AB 、AC 上. (1)如图①,当//MN BC 时,则AMN 的周长为______; (2)如图②,求证:BM NC MN +=.11、已知Rt△OAB和Rt△OCD的直角顶点O重合,∠AOB=∠COD=90°,且OA=OB,OC=OD.(1)如图1,当C、D分别在OA、OB上时,AC与BD的数量关系是AC BD(填“>”,“<”或“=”)AC与BD的位置关系是AC BD(填“∥”或“⊥”);(2)将Rt△OCD绕点O顺时针旋转,使点D在OA上,如图2,连接AC,BD,求证:AC=BD;(3)现将Rt△OCD绕点O顺时针继续旋转,如图3,连接AC,BD,猜想AC与BD的数量关系和位置关系,并给出证明.12、在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.(1)连接EC,如图△,试探索线段BC,CD,CE之间满足的等量关系,并证明你的结论;(2)连接DE,如图△,求证:BD2+CD2=2AD2(3)如图△,在四边形ABCD中,△ABC=△ACB=△ADC=45°,若则AD的长为 .(直接写出答案)13、(1)问题发现与探究:如图1,,ACB DCE ∆∆都是等腰直角三角形,90ACB DCE ︒∠=∠=,点A,D,E 在同一直线上,CM AE ⊥于点M,连接BD,则:(1)线段AE,BD 之间的大小关系是_________________; ADB =∠ ; (2)求证:AD=2CM+BD ;如图2,3,在等腰直角三角形ABC 中,90ACB ︒∠=,过点A 作直线,在直线上取点D,45ADB ︒∠=,连接BD,BD=1,AC= ,则点C 到直线的距离是多少.14、在△ABC中,若存在一个内角角度是另外一个内角角度的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=75°,∠C=25°,可知∠B=3∠C,所以△ABC为3倍角三角形.(1)在△ABC中,∠A=80°,∠B=60°,则△ABC为倍角三角形;(2)若锐角三角形MNP是3倍角三角形,且最小内角为α,请直接写出α的取值范围为.(3)如图,直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,若△AEF为4倍角三角形,求∠ABO的度数.15、(1)操作发现:将等腰Rt ABC与等腰Rt ADE按如图1方式叠放,其中ACB ADE,点D,E分别在AB,AC边上,M为BE的中点,连结CM,DM.小∠=∠=90︒=,你认为正确吗?请说明理由.明发现CM DM(2)思考探究:小明想:若将图1中的等腰Rt ADE绕点A沿逆时针方向旋转一定的角度,上述结论会如何呢?为此进行以下探究:探究一:将图1中的等腰Rt ADE绕点A沿逆时针方向旋转45︒(如图2),其他条件不变, =依然成立.请你给出证明.发现结论CM DM探究二:将图1中的等腰Rt ADE绕点A沿逆时针方向旋转135︒(如图3),其他条件不变, =还成立吗?请说明理由.则结论CM DM=,点P在平面内,连接AP,并将线段AP绕A顺时针方向旋转与16、在ABC中,AB AC∠相等的角度,得到线段AQ,连接BQ.BAC(1)如图,如果点P是BC边上任意一点.则线段BQ和线段PC的数量关系是__________.(2)如图,如果点P为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图所示的位置关系加以证明(或说明);(3)如图,在DEF 中,8DE =,60EDF ∠=︒,75DEF ∠=︒,P 是线段EF 上的任意一点,连接DP ,将线段DP 绕点D 顺时针方向旋转60°,得到线段DQ ,连接EQ .请直接写出线段EQ 长度的最小值.。

九年级数学中考复习第一轮复习基础训练三角函数(一)三角函数与解直角三角形 课时作业同步练习含答案解析

九年级数学中考复习第一轮复习基础训练三角函数(一)三角函数与解直角三角形 课时作业同步练习含答案解析

微专题8 三角函数(一)三角函数与解直角三角形考点1锐角三角函数的定义1.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则 sin A 等于( ) A.35 B.45 C.34 D.432.如图,边长为1的小正方形网格中, ⊙O 的圆心在格点上,cos ∠AED = .3.如图,在△ABC 中,CA=CB =4, cos C =14,则sinB 的值为 . 考点2 特殊角的三角函数值4.(1) sin 30°= ; cos 60°= ;tan 45"= ;(2)3sin 60"—2cos 30°—tan 60°= .5.在△ABC 中,∠A ,∠B 为锐角,若|sinA 一22|+(32-cosB )2=0,则∠C = 度. 考点3 解直角三角形及其实际应用6.如图,在△ABC 中,∠B =30°,AC=2,cosC =35.则AB 边的长为 .7.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B,C 在同一水平面上),为了测量B ,C 两地之间的距离,某工程队员乘坐热气球从C 地出发垂直上升100m 到达A 处,在A 处观察B 地的俯角为30°,则B,C 两地间的距离为 m .8.如图,一艘船由A 港沿北偏东65°方向航行302km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A,C 两港之间的距离为 km.DOB AECAC ABCB第1题图第2题图第3题图30°30°B CC A CAB AB 第6题图 第7题图 第8题图9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1.(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由. :C BC微专题8 三角函数(一)三角函数与解直角三角形考点精练精练1锐角三角函数的定义1.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则 sin A 等于( A ) A.35 B.45 C.34 D.432.如图,边长为1的小正方形网格中, ⊙O 的圆心在格点上,cos ∠AED =255. 3.如图,在△ABC 中,CA=CB =4, cos C =14,则sinB 的值为104.精练2 特殊角的三角函数值4.(1) sin 30°=12; cos 60°=12;tan 45"= 1 ;(2)3sin 60"—2cos 30°—tan 60°= 32 .5.在△ABC 中,∠A ,∠B 为锐角,若|sinA 一22|+(32-cosB )2=0,则∠C =105度. 精练3 解直角三角形及其实际应用6.如图,在△ABC 中,∠B =30°,AC=2,cosC =35.则AB 边的长为165.DOB AECAC ABCB第1题图第2题图第3题图30°30°BC CACABAB第6题图第7题图第8题图7.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程队员乘坐热气球从C地出发垂直上升100m到达A处,在A处观察B地的俯角为30°,则B,C两地间的距离为.8.如图,一艘船由A港沿北偏东65°方向航行至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为(30+km.9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD.解:设AD=x米,则BDx米.CD=AD=xx-x=100.解得:x=50.答:山高为(50)米.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1.(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由. 解:(1)30°:(2)过点C作CD⊥AB于点D.则BD=CD=6.AD∴AB=AD-BD一6<8∴文化培PM不需要拆除.C B。

中考数学第一轮复习直角三角形与三角形函数的应用试题

中考数学第一轮复习直角三角形与三角形函数的应用试题

角三角形与三角形函数的应用【知识重温】1、直角三角形及其性质勾股定理:Rt△⇔直角边2 +另一直角边2 = 斜边2勾股数:其它定理:◇直角边×另一直角边= 斜边×斜边上的高〔=面积的2倍〕◇Rt△⇔斜边上的中线是斜边的一半◇Rt△两锐角互余。

◇射影定理2、锐角三角函数名称定义记作30°45°60°角A的sinA角A的cosA角A的tanA3、解三角形及其应用求法◇两边◇一边一角◇一边一函数4、解三角形应用步骤①构建适宜的Rt△②利用三角函数把和要求的联络起来③求解④据实际情况答复详细问题【才能训练】◇直角三角形及其性质◇1、如图,64、400分别为所在正方形的面积,那么图中字母A 所代表的正方形面积是 _________ 。

2、直角三角形两条直角边的长分别为5、12,那么斜边上的高为 。

3、如图,在由24个边长都为1的小正三角形的网格中,点P 是正六边形的一个顶点,以点P 为直角顶点作格点直角三角形〔即顶点均在格点上的三角形〕,请你画出所有可能的Rt △,求出直角三角形的斜边长 .◇锐角三角函数◇ 4、△ABC 中,∠C=90º,BC=2,AB=3,那么=∠B cos _________。

5、计算◇ 解三角形及其应用◇PPPP6、:Rt △ABC 中,∠C=90°,cosA=,AB=15,那么AC 的长是 。

7、斜坡的坡角︒=30α,那么该斜坡的坡度为 。

8、半径为R 的圆内接正三角形边长是 ,边心距为 。

9、点P 〔3,1〕求:(1) PO 〔2〕α∠10、如图,天空中有一个静止的广告气球C,从地面A 点测得C 点的仰角为45°,从地面B 点测得C 点的仰角为60°.AB=20m.点C 和直线AB 在同一铅垂平面上,求气球离地面的高度(结果保存根号).11、如图,两建筑物AB 和CD 的程度间隔 为30米,从A 点测D 点的俯角为30°,测C 点的俯角为60°,求的高.12、去年山洪爆发,好几所被山体滑坡推倒教学楼,为防止滑坡,经勘测,当坡角不超过45°时,可以体不滑坡.某小学紧挨一座山坡,如图示,AF BC ∥,斜坡AB 长30米, 60ABC ∠=°.改造后斜坡BE 与地面成45°角,求AE 至少是多少米?〔准确到〕励志赠言经典语录精选句;挥动**,放飞梦想。

2023年九年级中考数学一轮复习:锐角三角函数(含答案)

2023年九年级中考数学一轮复习:锐角三角函数(含答案)

2023年中考数学一轮复习:锐角三角函数(含答案)一、单选题1.如图,在ABC 中, 45B ∠=︒ , 30C ∠=︒ ,分别以 A 、 B 为圆心,大于12AB 的长为半径画弧,两弧相交于点 D 、 E .作直线 DE ,交 BC 于点 M ;同理作直线 FG 交 BC 于点 N ,若 6AB = ,则 MN 的长为( )A .1B 3C .3D .232.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则sin∠OMN 的值为( )A .12B .1C .2 D 33.如图,在 Rt ABC 中, 9053C AB BC ∠=︒==,, ,则 sin B 的值为( )A .45B .34C .35D .43二、填空题4.cos60︒ = .5.两块等腰直角三角形纸片 AOB 和 COD 按图1所示放置,直角顶点重合在点O 处,210AB = , 4CD = .保持纸片 AOB 不动,将纸片 COD 绕点O 逆时针旋转 α()090α<<︒ .当BD 与 CD 在同一直线上(如图2)时, α 的正切值等于 .6.在 ABC ∆ 中, 903016ACB A AB ︒︒∠=∠==,, ,点 P 是斜边 AB 上一点,过点 P 作PQ AB ⊥ ,垂足为 P ,交边 AC (或边 CB )于点 Q ,设 AP x = ,当 APQ ∆ 的面积为 3时, x 的值为 .三、综合题7.如图,在直角三角形ABC 中,∠C =90°,∠A =30°,AC =4,将∠ABC 绕点A 逆时针旋转60°,使点B 落在点E 处,点C 落在点D 处.P 、Q 分别为线段AC 、AD 上的两个动点,且AQ =2PC ,连接PQ 交线段AE 于点M .(1)AQ = ,∠APQ 为等边三角形;(2)是否存在点Q ,使得∠AQM 、∠APQ 和∠APM 这三个三角形中一定有两个三角形相似?若存在请求出AQ 的长;若不存在请说明理由; (3)AQ = ,B 、P 、Q 三点共线.8.(1)计算:3tan30°-(cos60°)-1+8 cos45°+()1tan 60-︒(2)先化简,再求代数式 221(1)122x x x --÷++ 的值,其中x=4cos30°-tan45° 9.如图,AB 是∠O 的直径,点P 在∠O 上,且PA =PB ,点M 是∠O 外一点,MB 与∠O 相切于点B ,连接OM ,过点A 作AC OM 交∠O 于点C ,连接BC 交OM 于点D .(1)求证:MC是∠O的切线;(2)若152OB=,12BC=,连接PC,求PC的长.10.如图,在∠ABC中,过点C作CD//AB,E是AC的中点,连接DE并延长,交AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形;(2)若AB=6,∠BAC=60°,∠DCB=135°,求AC的长.11.如图,∠ABC内接于∠O,AB是∠O的直径,∠O的切线AP与OC的延长线相交于点P,∠P=∠BCO.(1)求证:AC=PC;(2)若AB=6 3,求AP的长.12.(12744 sin603233-︒-(2)先化简,再求值:342111xxx x-⎛⎫+-÷⎪--⎝⎭,其中22x=.13.如图,以AB为直径作O,过点A作O的切线AC,连接BC,交O于点D,点E是BC边的中点,连结AE.(1)求证: 2AEB C ∠=∠ ; (2)若 5AB = , 3cos 5B =,求 DE 的长. 14.(1)计算: 2cos 45sin 30tan 45︒︒︒+⋅ . (2)求二次函数 21212y x x =++ 图象的顶点坐标. 15. 如图,直线y =-x +b 与反比例函数 3y x=-的图象相交于点A (a ,3),且与x 轴相交于点B .(1) 求a 、b 的值;(2) 若点P 在x 轴上,且∠AOP 的面积是∠AOB 的面积的12,求点P 的坐标. 16.如图, PA 、 PB 为O 的切线,A 、B 为切点,点C 为半圆弧的中点,连 AC 交 PO于E 点.(1)求证: PB PE = ; (2)若 3tan 5CPO ∠=,求 sin PAC ∠ 的值. 17.(120313213(202248)64---⨯--().(2)先化简,再求值:2243()22ab a ba b a b b a a b---⨯÷+-+,代入你喜欢的a ,b 值求结果. 18.矩形AOBC 中,OB =4,OA =3,分别以OB ,OA 所在直线为x 轴,y 轴,建立如图所示的平面直角坐标系,F 是BC 边上一个动点(不与B ,C 重合),过点F 的反比例函数 ky x= (k >0)的图象与边AC 交于点E.(1)当点F 为边BC 的中点时,求点E 的坐标; (2)连接EF ,求∠EFC 的正切值.19.如图1,已知矩形ABCD 中,AB=6,BC=8,O 是对角线AC 的中点,点E 从A 点沿AB 向点B运动,运动过程中连接OE ,过O 作OF∠OE 交BC 于F ,连接EF ,(1)当点E 与点A 重合时,如图2,求 tan OEF ∠ 的值;(2)运动过程中, tan OEF ∠ 的值是否与(1)中所求的值保持不变,并说明理由; (3)当EF 平分∠OEB 时,求AE 的长.20.如图1,已知二次函数()20y ax bx c a =++>的图象与x 轴交于点()10A -,、()20B ,,与y 轴交于点C ,且2tan OAC ∠=.(1)求二次函数的解析式;(2)如图2,过点C 作CD x 轴交二次函数图象于点D ,P 是二次函数图象上异于点D 的一个动点,连接PB 、PC ,若PBCBCDSS=,求点P 的坐标;(3)如图3,若点P 是二次函数图象上位于BC 下方的一个动点,连接OP 交BC 于点Q.设点P 的横坐标为t ,试用含t 的代数式表示PQ OQ 的值,并求PQOQ的最大值. 21.如图1,四边形 ABCD 内接于O , BD 为直径, AD 上存在点E ,满足AE CD = ,连结 BE 并延长交 CD 的延长线于点F , BE 与 AD 交于点G.(1)若 DBC α∠= ,请用含 α 的代数式表列 AGB ∠ . (2)如图2,连结 ,CE CE BG = .求证; EF DG = . (3)如图3,在(2)的条件下,连结 CG , 2AG = . ①若 3tan 2ADB ∠=,求 FGD 的周长. ②求 CG 的最小值.22.如图,直线364y x =+分别与x 轴、y 轴交于点A 、B ,点C 为线段AB 上一动点(不与A 、B 重合),以C 为顶点作OCD OAB ∠=∠,射线CD 交线段OB 于点D ,将射线OC 绕点O 顺时针旋转90︒交射线CD 于点E ,连接BE .(1)证明:CD ODDB DE=;(用图1) (2)当BDE 为直角三角形时,求DE 的长度;(用图2) (3)点A 关于射线OC 的对称点为F ,求BF 的最小值.(用图3)23.如图,在二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象与x 轴交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D.其对称轴与线段BC 交于点E ,与x 轴交于点F.连接AC ,BD.(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求 OBC ∠ 的度数; (2)若 ACO CBD ∠=∠ ,求m 的值;(3)若在第四象限内二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象上,始终存在一点P ,使得 75ACP ∠=︒ ,请结合函数的图象,直接写出m 的取值范围.24.如图,已知 AB 是O 的直径,点 E 是O 上异于 A , B 的点,点 F 是 EB 的中点,连接 AE , AF , BF ,过点 F 作 FC AE ⊥ 交 AE 的延长线于点 C ,交 AB 的延长线于点 D , ADC ∠ 的平分线 DG 交 AF 于点 G ,交 FB 于点 H .(1)求证: CD 是 O 的切线;(2)求 sin FHG ∠ 的值; (3)若 GH 42=, HB 2= ,求 O 的直径.25.如图,在平面直角坐标系中,二次函数 ()240y ax bx a =++≠ 的图象经过 ()3,0A - ,()4,0B 两点,且与 y 轴交于点 C .点 D 为 x 轴负半轴上一点,且 BC BD = ,点 P ,Q 分别在线段 AB 和 CA 上.(1)求这个二次函数的表达式.(2)若线段 PQ 被 CD 垂直平分,求 AP 的长. (3)在第一象限的这个二次函数的图象上取一点 G ,使得 GCBGCASS= ,再在这个二次函数的图象上取一点 E (不与点 A , B , C 重合),使得 45GBE ∠=︒ ,求点 E 的坐标.参考答案1.【答案】A【解析】【解答】如解图,连接AM、AN,由作法可知,DE、FG分别为线段AB、AC的垂直平分线,∴AM=BM,AN=CN.∵∠B=45°,∠C=30°,∴∠BAM=45°,∠CAN=30°.∴∠AMB=∠AMC=90°.∴∠MAN=90°−∠C−∠CAN=30°.∵AB= 6,∴AM= 3,∴MN=AM·tan30°=1,故答案为:A.【分析】利用线段垂直平分线的性质得到AM=BM,AN=CN,∠BAM=45°,∠CAN=30°.求得∠MAN=90°−∠C−∠CAN=30°,利用特殊角的三角函数值即可求解。

中考数学一轮复习《全等三角形》练习题(含答案)

中考数学一轮复习《全等三角形》练习题(含答案)

中考数学一轮复习《全等三角形》练习题(含答案)(建议答题时间:60分钟)基础过关1. 如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A. ∠BB. ∠AC. ∠EMFD. ∠AFB第1题图第2题图2. (人教八上第44页11题改编)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A. AB=DEB. AC=DFC. ∠A=∠DD. BF=EC3. 如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对第3题图第4题图第5题图4. 注重开放探究(2017怀化)如图,AC=DC,BC=EC,请你添加一个适当的条件:____________________________,使得△ABC≌△DEC.5. 如图,AB∥CF,E为DF的中点,AB=10,CF=6,则BD=________.6. 如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为________.第6题图7. (2017福建)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.第7题图8. (2017武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.第8题图9. (2017南充)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.第9题图10. (2017重庆巴南区期中检测)如图,在四边形ABCD中,点E在对角线AC上,AB∥DE,∠ACB=∠ADE,AB=EA,求证:AC=ED.第10题图11. (人教八上第44页4题改编)如图所示,已知∠1=∠2,请你添加一个条件,证明:AB=AC.(1)你添加的条件是________________;(2)请写出证明过程.第11题图12. (2017重庆一中期中考试)如图,AF∥DE,点B、C在线段AD上,且∠E=∠F,连接FC、EB,延长EB交AF于点G.(1)求证:BE∥CF;(2)若CF=BE,求证:AB=CD.第12题图13. (2017苏州)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.第13题图14. (2017哈尔滨)已知,△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE =90°,连接AE、BD交于点O.AE与DC交于点M,BD与AC交于点N.(1)如图①,求证:AE=BD;(2)如图②,若AC=DC,在不添加任何辅助线的情况下,请直接写出图②中四对全等的直角三角形.第14题图满分冲关1. (2017滨州)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 1第1题图第2题图2. (2018原创) 如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A. 4个B. 3个C. 2个D. 1个3. (2017新疆建设兵团)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD互相平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=12AC·BD,正确的是________.(填写所有正确结论的序号)第3题图4. (2017温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC =AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.第4题图5. (2017荆门)如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,DE=2,求BC的长.第5题图6. (2017齐齐哈尔)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.第6题图7. (2017德阳)如图,在平行四边形ABCD中,E、F分别是AB、BC的中点,CE ⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G.(1)证明:△CFG≌△AEG;(2)若AB=4,求四边形AGCD的对角线GD的长.第7题图8. (2017北京)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B,C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示);(2)用等式表示线段MB与PQ之间的数量关系,并证明.第8题图9. (2018原创)已知△ABC和△ADE都是等边三角形,点B,D,E在同一条直线上.(1)如图①,当AC⊥DE,且AD=2时,求线段BC的长度;(2)如图②,当CD⊥BE时,取线段BC的中点F,线段DC的中点G,连接DF,EG,求证:DF=EG.第9题图答案基础过关 1. A 2. C3. D 【解析】∵AB =AC ,D 为BC 中点,∴CD =BD ,∠BDO =∠CDO =90°,在△ABD 和△ACD 中,⎩⎨⎧AB =AC AD =AD BD =CD ,∴△ABD ≌△ACD (SSS ),∵EF 垂直平分AC ,∴OA =OC ,AE =CE ,在△AOE 和△COE 中,⎩⎨⎧OA =OCOE =OE AE =CE ,∴△AOE ≌△COE (SSS ); 在△BOD 和△COD 中,⎩⎨⎧BD =CD∠BDO =∠CDO OD =OD ,∴△BOD ≌△COD (SAS );在△AOC和△AOB 中,⎩⎨⎧AC =ABOA =OA OC =OB,∴△AOC ≌△AOB (SSS ).4. AB =DE (答案不唯一)5. 4 【解析】∵AB ∥CF ,∴∠ADE =∠CFE ,∵E 是DF 的中点,∴DE =EF ,在△ADE 与△CFE 中,⎩⎨⎧∠ADE =∠CFEDE =FE∠AED =∠CEF,∴△ADE ≌△CFE (ASA ),∴AD =CF ,∵AB =10,CF =6,∴BD =AB -AD =10-6=4.6. 120° 【解析】∵△ACD 和△BCE 均为等边三角形,∴∠DCA =∠BCE =60°,AC =DC ,BC =EC ,∴∠DCB =∠DCA +∠ACB =∠BCE +∠ACB =∠ACE ,∴△DCB ≌△ACE (SAS ),∴∠CDB =∠CAE ,∴∠AOB =∠DAO +∠ADO =∠DAC +∠CAE +∠ADC -∠CDB =∠ADC +∠DAC =120°.7. 证明:∵BE =CF , ∴BC =EF ,在△ABC 和△DEF 中,⎩⎨⎧AB =DE AC =DF BC =EF,∴△ABC ≌△DEF (SSS ), ∴∠A =∠D .8. 解:CD ∥AB ,CD =AB . 证明: ∵CE =BF , ∴CF =BE ,又∵∠CFD =∠BEA ,DF =AE , ∴△CFD ≌△BEA (SAS ), ∴CD =AB ,∠C =∠B , ∴CD ∥AB .9. 证明:∵DE ⊥AB ,CF ⊥AB , ∴∠BED =∠AFC =90°, 又∵AE =BF , ∴AE +EF =BF +EF , ∴AF =BE .在△ACF 和△BDE 中,⎩⎨⎧AF =BE∠AFC =∠BED CF =DE,∴△ACF ≌△BDE (SAS ), ∴∠A =∠B , ∴AC ∥BD .10. 证明:∵AB ∥DE , ∴∠BAC =∠AED ,在△ABC 和△EAD 中,⎩⎨⎧∠ACB =∠ADE∠BAC =∠AED AB =EA,∴△ABC ≌△EAD (AAS ), ∴AC =ED .11. (1)解:∠B =∠C 或∠ADB =∠ADC 等;(2)证明:若添加的条件为∠B =∠C ,在△ABD 和△ACD 中,⎩⎨⎧∠B =∠C∠1=∠2AD =AD,∴△ABD ≌△ACD (AAS ), ∴AB =AC ;若添加的条件为∠ADB =∠ADC ,在△ABD 和△ACD 中,⎩⎨⎧∠1=∠2AD =AD ∠ADB =∠ADC,∴△ABD ≌△ACD (ASA ), ∴AB =AC .12. 证明:(1)∵AF ∥DE , ∴∠E =∠AGE , ∵∠E =∠F , ∴∠F =∠AGE , ∴BE ∥CF ; (2)∵AF ∥DE ∴∠A =∠D ,在△ACF 和△DBE 中,⎩⎨⎧∠A =∠D∠F =∠E CF =BE,∴△ACF ≌△DBE (AAS ), ∴AC =DB , ∴AB =CD .13. (1)证明:∵AE 和BD 相交于点O , ∴∠AOD =∠BOE ,在△AOD 和△BOE 中,∠A =∠B , ∴∠BEO =∠2, 又∵∠1=∠2, ∴∠1=∠BEO , ∴∠AEC =∠BED ,在△AEC 和△BED 中,⎩⎨⎧∠A =∠BAE =BE ∠AEC =∠BED,∴△AEC ≌△BED (ASA ); 解:(2)∵△AEC ≌△BED , ∴EC =ED ,∠C =∠BDE ,在△EDC 中 ,∵EC =ED ,∠1=42°, ∴∠C =∠EDC =69°, ∴∠BDE =∠C =69°.14. (1)证明:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°, ∴AC =BC ,DC =EC ,∠ACB +∠ACD =∠DCE +∠ACD , ∴∠BCD =∠ACE , ∴△ACE ≌△BCD (SAS ), ∴AE =BD ;(2)解:△ACB ≌△DCE ,△AON ≌△DOM ,△AOB ≌△DOE ,△NCB ≌△MCE . 满分冲关1. B 【解析】如解图,过点P 分别作OA 、OB 的垂线PC 、PD ,根据角平分线的性质可得PC =PD ,∵OP 一定,∴OC =OD .∵∠AOB 是定角,∠MPN 与∠AOB 互补,∴∠MPN 也为定角.∵∠CPD 与∠AOB 也互补,∴∠MPN =∠CPD ,∴∠MPC =∠NPD ,∴△MPC ≌△NPD (ASA ),∴CM =DN ,MP =NP .故(1)正确;∵OM +ON =OC +CM +OD -DN ,∴OM +ON =OC +OD ,∵OC =OD 为定长,∴OM +ON 为定长.故(2)正确;∵△MPC ≌△NPD ,∴S四边形MONP=S △CMP +S四边形CONP=S △NPD +S 四边形CONP =S 四边形CODP .∴四边形MONP 面积为定值.故(3)正确;∵Rt △MPC 中,MP 为斜边,CP 为直角边,∴可设MP =kCP ,∴PN =kDP ,∵∠MPN =∠CPD ,∴△MPN ∽△CPD ,其相似比为k ,∴MN =kCD ,当点M 与点C 重合,点N 和点D 重合时,MN =CD ,当点M 与点C 不重合,点N 与点D 不重合时,MN ≠CD ,∴MN 的长度在发生变化.故(4)错误.第1题解图2. A 【解析】∵BF ∥AC ,∴∠C =∠CBF ,∵BC 平分∠ABF ,∴∠ABC =∠CBF ,∴∠C =∠ABC ,∴AB =AC ,∵AD 是△ABC 的角平分线,∴BD =CD ,AD ⊥BC ,故②③正确,在△CDE 与△BDF 中,⎩⎨⎧∠C =∠CBF CD =BD ∠EDC =∠BDF,∴△CDE ≌△BDF (ASA ),∴DE =DF ,CE =BF ,故①正确;∵AE =2BF ,∴AC =3BF ,故④正确.故选A .3. ①④【解析】在△ABC 与△ADC 中,⎩⎨⎧AB =ADBC =DC AC =AC,∴△ABC ≌△ADC (SSS ),∴∠ABC =∠ADC ,故①正确;∵△ABC ≌△ADC ,∴∠BAC =∠DAC ,∠BCA =∠DCA ,∴AC 平分∠BAD 、∠BCD ,故③错误;又∵AB =AD ,∠BAC =∠DAC ,∴OB =OD ,∴AC ,BD 互相垂直,但不平分,故②错误;∵AC ,BD 互相垂重,∴四边形ABCD 的面积S =12AC ·BO +12AC ·OD =12AC ·BD .故④正确,综上所述,正确的结论是①④. 4. (1)证明:∵AC =AD , ∴∠ACD =∠ADC ,∴∠BCD -∠ACD =∠EDC -∠ADC 即∠BCA =∠EDA ,在△ABC 与△AED 中,BC =ED ,∠BCA =∠EDA ,AC =AD , ∴△ABC ≌△AED (SAS ); (2)解:∵△ABC ≌△AED , ∴∠E =∠B =140°,∵五边形ABCDE 内角和为(5-2)×180°=540°,∴∠BAE =540°-2×90°-2×140°=80°. 5. (1)证明:∵点E 是CD 的中点, ∴DE =CE , ∵AB ∥CF , ∴∠BAF =∠AFC ,在△ADE 与△FCE 中,⎩⎨⎧∠DAE =∠CFE ∠AED =∠FEC DE =CE,∴△ADE ≌△FCE (AAS ); (2)解:由(1)知CD =2DE , ∵DE =2, ∴CD =4,在Rt △ABC 中,点D 为AB 的中点, ∴AB =2CD =8,AD =CD =12AB . ∵AB ∥CF ,∴∠BDC =180°-∠DCF =180°-120°=60°, ∴∠DAC =∠ACD =12∠BDC =12×60°=30°, ∴在Rt △ABC 中,BC =12AB =12×8=4. 6. (1)证明:∵AD ⊥BC , ∴∠ADB =∠ADC =90°,在△BDG 和△ADC 中,⎩⎨⎧BD =AD∠BDG =∠ADC DG =DC,∴△BDG ≌△ADC (SAS ), ∴BG =AC ,∠BGD =∠C ,∵∠ADB =∠ADC =90°,E ,F 分别是BG ,AC 的中点, ∴DE =12BG =EG ,DF =12AC =AF ,∴DE =DF ,∠EDG =∠EGD ,∠FDA =∠F AD , ∴∠EDG +∠FDA =90°,∴DE ⊥DF ; (2)解:∵AC =10, ∴DE =DF =5,由勾股定理得,EF =DE 2+DF 2=5 2. 7. (1)证明:∵E 是AB 的中点,且CE ⊥AB , ∴CA =CB .∵F 是BC 的中点,且AF ⊥BC , ∴AB =AC , ∴AB =AC =BC ,∴12AB =12BC ,∴AE =CF ,在△CFG 和△AEG 中,⎩⎨⎧∠CGF =∠AGE∠CFG =∠AEG CF =AE,∴△CFG ≌△AEG (AAS ); (2)解:如解图,连接GD ,第7题解图∵AB =AC =BC ,∴△ABC 为等边三角形,从而△CAD 也为等边三角形, ∵AF ⊥BC ,∴∠GAC =∠EAF =30°, 又∵AE =12AB =2, ∴在Rt △AEG 中,AG =23AE =433, ∵∠GAD =∠GAC +∠CAD =90°,∴在Rt △ADG 中,根据勾股定理得:GD 2=AG 2+AD 2,即GD 2=(433)2+42,∴GD 2=643, ∴GD =833.8. 解:(1) ∵∠ACP =90°,∴在Rt △ACP 中,∠CAP +∠APC =90°, ∵HQ ⊥AP ,∴在Rt △HPQ 中,∠Q +∠HPQ =90°, 又∵∠APC =∠HPQ ,∠CAP =α, ∴∠Q =α,又∵在等腰Rt △ABC 中,∠B =∠BAC =45°, ∴∠AMQ =∠B +∠Q =45°+α; (2)PQ =2BM .证明:如解图,连接AQ ,过点M 作MN ⊥BQ 于点N .第8题解图∵∠ACP =90°,CQ =CP ,∠CAP =α, ∴∠CAQ =∠CAP =α,AP =AQ ,PQ =2CP , 又∵∠BAC =45°,∴∠MAQ =∠BAC +∠CAQ =45°+α=∠AMQ , ∴AQ =MQ , ∴AP =MQ , 又∵MN ⊥BQ , ∴∠ACP =∠QNM =90°.在Rt △APC 和Rt △QMN 中,⎩⎨⎧∠CAP =∠NQM∠ACP =∠QNM =90°AP =MQ,∴Rt △APC ≌Rt △QMN (AAS ), ∴CP =MN ,∴PQ =2MN , 又∵在Rt △BMN 中,∠B =45°, ∴BM =2MN ,∴PQ =2BM .9. (1)解:∵△ABC 和△ADE 都是等边三角形,AC ⊥DE ,AD =2, ∴BC =AC ,DE =AD =2,DF =12DE =1,AF =CF , ∴AF =AD 2-DF 2=3, ∴AC =2AF =23,∴BC =23; (2)证明:连接CE ,FG ,如解图所示:第9题解图∵△ABC 和△ADE 都是等边三角形,点B ,D ,E 同一在一条直线上. ∴AB =AC ,AD =AE ,∠BAC =∠DAE =∠AED =60°, ∴∠ADB =120°,∠BAD =∠CAE ,在△ABD 和△ACE 中,⎩⎨⎧AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE (SAS ),∴BD =CE ,∠AEC =∠ADB =120°, ∴∠CED =∠AEC -∠AED =60°, ∵CD ⊥BE , ∴∠DCE =30°, ∴DE =12CE ,∵线段BC的中点为F,线段DC的中点为G,∴FG∥BD,FG=12BD,∴FG∥DE,FG=DE,∴四边形DFGE是平行四边形,∴DF=EG.。

最新中考数学第一轮复习—三角形

最新中考数学第一轮复习—三角形

A1 CDE 2 题2图 a a c 丙︒72︒50 乙︒50甲a ︒507250︒︒︒58c b a C BA A D BE 图6 i =1:3 C 九年级数学第一轮《三角形》测试卷一、选择题(本题共5小题,每小题6分,共30分)1.(2008太原)如果三角形的两边分别为3和5,那么这个三角形的周长可能是( ) A .15 B .16 C .8 D .72.(2007临沂)如图,△ABC 中,∠A =50°,点D 、E 分别在AB 、AC 上,则∠1+∠2的大小为( ) A .130° B .230° C .180° D .310° 3. 四边形的内角和与外角和的和是( ) A.360° B.180° C.540° D.720° 4.(2007诸暨)如图,已知△ABC 的六个元素, 则下列甲、乙、丙三个三角形中和△ABC 全等的图形是( )A .甲乙B .甲丙C .乙丙D .乙5. 在Rt ⊿ABC 中,若各边的长度同时都扩大2倍,则锐角A 的正弦值与余弦值的情况( )A 都扩大2倍B 都缩小2倍C 都不变D 不确定二、填空题(本题共5小题,每小题6分,共30分)6. (2007济南)已知一个三角形三个内角度数的比是1:5:6__________7.(2007陕西)如图,50ABC AD ∠= ,垂直平分线段BC于点D ABC ∠,的平分线BE 交AD 于点E ,连结EC ,则AEC ∠的度数是 .8.(2008南京)若等腰三角形的一个外角为70,则它的底角为 度. 9.已知△ABC 中,90=∠C ,3cosB=2,BC=AB= .10.(自贡)6.已知α为锐角,且tan (90°-α)=3,则α的度数为___________. 三、解答题(11题13分,12题13分,13题14分,共40分) 11.(2007乐山)如图,在等边ABC △中,点D E ,分别在边BC AB ,上,且BD AE =,AD 与CE 交于点F .(1)求证:AD CE =;(2)求DFC ∠的度数.12.(广东)如图6,梯形ABCD 是拦水坝的横断面图,(图中3:1=i 是指坡面的铅直高度DE 与水平宽度CE 的比),∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD 的面积.(结果保留三位有效数字.参考数据:3≈1.732,2≈1.414)13.(2006娄底改编)如图所示,一根长10m 的木棍(AB ),斜靠在与地面(OM )垂直的墙(ON )上,木棍的顶端距地面的垂直距离为8m 。

2023年江苏中考数学一轮复习专题训练第13讲 三角形

2023年江苏中考数学一轮复习专题训练第13讲 三角形

第13讲三角形 2023年中考数学一轮复习专题训练(江苏专用)一、单选题1.(2022·徐州)如图,若方格纸中每个小正方形的边长均为1,则阴影部分的面积为()A.5B.6C.163D.173 2.(2022·南通)用一根小木棒与两根长分别为3cm,6cm的小木棒组成三角形,则这根小木棒的长度可以为()A.1cm B.2cm C.3cm D.4cm 3.(2022·南通模拟)在如图的方格中,△ABC的顶点A、B、C都是方格线的交点,则三角形ABC的外角∠ACD的度数等于()A.130°B.140°C.135°D.145°4.(2022·无锡)如图,在▱ABCD中,AD=BD,∠ADC=105∘,点E在AD上,∠EBA= 60∘,则EDCD的值是()A.23B.12C.√32D.√225.(2022·无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为()A.12πB.15πC.20πD.24π6.(2022·宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm 7.(2022·海陵模拟)在▱ABCD中,对角线AC、BD的长分别为4、6,则边BC的长可能为()A.4B.5C.6D.78.(2022九下·沭阳模拟)如图①,在△ABC中,点P从点B出发,沿B→C方向以1cm/s的速度匀速运动到点C,图②是点P运动时,线段AP的长y(cm)随时间x(s)变化的关系图象,当△ABP与△APC 面积相等时,AP的长为()A .√3B .2C .2√3D .4二、填空题9.(2022·徐州)如图,将矩形纸片ABCD 沿CE 折叠,使点B 落在边AD 上的点F 处.若点E 在边AB 上,AB =3,BC =5,则AE = .10.(2022·镇江)一副三角板如图放置,∠A =45°,∠E =30°,DE ∥AC ,则∠1= °. 11.(2022·南通)平面直角坐标系xOy 中,已知点A(m ,6m),B(3m ,2n),C(−3m ,−2n)是函数y =k x (k ≠0)图象上的三点。

2021届中考数学一轮复习热点题型专练 三角形【含答案】

2021届中考数学一轮复习热点题型专练 三角形【含答案】

2021届中考数学一轮复习热点题型专练三角形一、选择题1.如图,在△ABC 中,△B=90°,tan△C=,AB=6cm .动点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.若P ,Q 两点分别从A ,B 两点同时出发,在运动过程中,△PBQ 的最大面积是( )A .18cm 2B .12cm 2C .9cm 2D .3cm 2 【答案】C【解析】△tan△C=34 ,AB=6cm ,△AB BC =6BC =34 ,△BC=8,由题意得:AP=t ,BP=6﹣t ,BQ=2t ,设△PBQ 的面积为S ,则S=12 ×BP×BQ=12 ×2t×(6﹣t ),S=﹣t 2+6t=﹣(t 2﹣6t+9﹣9)=﹣(t ﹣3)2+9,P :0≤t≤6,Q :0≤t≤4,△当t=3时,S 有最大值为9,即当t=3时,△PBQ 的最大面积为9cm 2;故选C .2.如图,D ,E 分别是△ABC 的边AB ,AC 上的中点,如果△ADE 的周长是6,则△ABC 的周长是( )A .6B .12C .18D .24【答案】B【解析】因为DE//BC ,所以△ADE△△ABC ,k=12,所以△ABC 的周长为12 3.如图,已知等腰三角形ABC ,AB=AC ,若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE=ECB .AE=BEC .△EBC=△BACD .△EBC=△ABE【答案】C【解析】△AB=AC ,△△ABC=△ACB ,△以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,△BE=BC ,△△ACB=△BEC ,△△BEC=△ABC=△ACB ,△△A=△EBC ,故选C .4.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20B.24C.D.【答案】B【解析】设小正方形的边长为x,△a=3,b=4,△AB=3+4=7,在Rt△ABC中,AC2+BC2=AB2,即(3+x)2+(x+4)2=72,整理得,x2+7x﹣12=0,解得x=或x=(舍去),△该矩形的面积=(+3)(+4)=24,故选:B.5.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8B.12C.14D.16【答案】D【解析】△在△ABC中,点D、E分别是AB、AC的中点,△DE△BC,DE=BC,△△ADE△△ABC,△=,△=,△△ADE的面积为4,△△ABC的面积为:16,故选:D.6.如图,点B、F、C、E在一条直线上,AB△ED,AC△FD,那么添加下列一个条件后,仍无法判定△ABC△△DEF的是()A.△A=△D B.AC=DFC.AB=ED D.BF=EC【答案】A【解析】选项A、添加△A=△D不能判定△ABC△△DEF,故本选项正确;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加AB=DE可用AAS进行判定,故本选项错误;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:A.7.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【答案】B【解析】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,△AC2+BC2=AB2,△△ABC是直角三角形,且△ACB=90°,故选:B.8.下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm【答案】B【解析】A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.故选:B.9.已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个【答案】D【解析】△若n+2<n+8≤3n,则,解得,即4≤n<10,△正整数n有6个:4,5,6,7,8,9;△若n+2<3n≤n+8,则,解得,即2<n≤4,△正整数n有2个:3和4;综上所述,满足条件的n的值有7个,故选:D.10.如图,在Rt ABC∆中,90B∠=︒,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于12DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若1BG=,4AC=,则ACG∆的面积是()A.1B.32C.2D.52【答案】C【解析】由作法得AG平分BAC∠,G∴点到AC的距离等于BG的长,即G点到AC的距离为1,所以ACG∆的面积14122=⨯⨯=.故选:C.11.满足下列条件时,△ABC不是直角三角形的为()A.AB=,BC=4,AC=5B.AB:BC:AC=3:4:5C.△A:△B:△C=3:4:5D.|cos A﹣|+(tan B﹣)2=0【答案】C【解析】A、△,△△ABC是直角三角形,错误;B、△(3x)2+(4x)2=9x2+16x2=25x2=(5x)2,△△ABC是直角三角形,错误;C、△△A:△B:△C=3:4:5,△△C=,△△ABC不是直角三角形,正确;D、△|cos A﹣|+(tan B﹣)2=0,△,△△A=60°,△B=30°,△△C=90°,△△ABC 是直角三角形,错误;故选:C.12.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A.8B.11C.16D.17【答案】B【解析】因为DE垂直平分AB,所以BE=AE,所以BC=BE+CE=AE+CE=6又AC=5所以△ACE的周长为5+6=11故选B13.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【答案】C【解析】设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的长=a ﹣(c ﹣b ),宽=a ,则较小两个正方形重叠部分底面积=a (a +b ﹣c ),△知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积, 故选:C .14.如图,在ABC ∆中,AC BC =,40A ∠=︒,观察图中尺规作图的痕迹,可知BCG∠的度数为( )A .40︒B .45︒C .50︒D .60︒【答案】C【解析】由作法得CG AB ⊥,AB AC =,CG ∴平分ACB ∠,A B ∠=∠,1804040100ACB ∠=︒-︒-︒=︒, 1502BCG ACB ∴∠=∠=︒. 故选:C .15.如图,点D 在BC 的延长线上,DE △AB 于点E ,交AC 于点F .若△A =35°,△D =15°,则△ACB 的度数为( )A .65°B .70°C .75°D .85° 【答案】B【解析】△DE △AB ,△A =35°△△AFE=△CFD=55°,△△ACB=△D+△CFD=15°+55°=70°.故选:B.二、填空题16.腰长为5,高为4的等腰三角形的底边长为.【答案】6或25或45【解析】△如图1当5AD=,==,4AB AC则3BD CD==,∴底边长为6;△如图2.当5AB AC==,4CD=时,则3AD=,∴=,2BD22∴=+=,BC2425∴此时底边长为25;△如图3:当5==,4AB ACCD=时,则223AD AC CD =-=,8BD ∴=,45BC ∴=,∴此时底边长为45.故答案为:6或25或45.17.如图,在Rt△ABC 中,△ACB =90°,△B =60°,DE 为△ABC 的中位线,延长BC 至F ,使CF =BC ,连接FE 并延长交AB 于点M .若BC =a ,则△FMB 的周长为 . 【答案】【解析】在Rt△ABC 中,△B =60°, △△A =30°, △AB =2a ,AC =a .△DE 是中位线, △CE =a .在Rt△FEC 中,利用勾股定理求出FE =a , △△FEC =30°. △△A =△AEM =30°, △EM =AM .△FMB 周长=BF +FE +EM +BM =BF +FE +AM +MB =BF +FE +AB =.故答案为.18.如图,在△ABC中,△ACB=120°,BC=4,D为AB的中点,DC△BC,则△ABC的面积是.【答案】8【解析】△DC△BC,△△BCD=90°,△△ACB=120°,△△ACD=30°,延长CD到H使DH=CD,△D为AB的中点,△AD=BD,在△ADH与△BCD中,,△△ADH△△BCD(SAS),△AH=BC=4,△H=△BCD=90°,△△ACH=30°,△CH=AH=4,△CD=2,△△ABC的面积=2S△BCD=2××4×2=8,故答案为:8.19.如图,已知直线121//l ,含30︒角的三角板的直角顶点C 在1l 上,30︒角的顶点A 在2l 上,如果边AB 与1l 的交点D 是AB 的中点,那么1∠= 度.【答案】120 【解析】D 是斜边AB 的中点,DA DC ∴=,30DCA DAC ∴∠=∠=︒,260DCA DAC ∴∠=∠+∠=︒,121//l ,12180∴∠+∠=︒,118060120∴∠=︒-︒=︒.故答案为120.20.等腰三角形的两边长分别为6cm,13cm,其周长为cm.由题意知,应分两种情况:【答案】32【解析】(1)当腰长为6cm时,三角形三边长为6,6,13,6+6<13,不能构成三角形;(2)当腰长为13cm时,三角形三边长为6,13,13,周长=2×13+6=32cm.故答案为32.三、证明题21.已知:如图,△ABC是任意一个三角形,求证:△A+△B+△C=180°.【证明】:过点A作EF△BC,△EF△BC,△△1=△B,△2=△C,△△1+△2+△BAC=180°,△△BAC+△B+△C=180°,即△A+△B+△C=180°.22.如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出△A与△B的和与△C的大小关系;(2)求证:△ABC的内角和等于180°;(3)若=,求证:△ABC是直角三角形.【解】:(1)△在△ABC中,a=6,b=8,c=12,△△A+△B<△C;(2)如图,过点A作MN△BC,△MN△BC,△△MAB=△B,△NAC=△C(两直线平行,同位角相等),△△MAB+△BAC+△NAC=180°(平角的定义),△△B+△BAC+△C=180°(等量代换),即:三角形三个内角的和等于180°;(3)△=,△ac=(a+b+c)(a﹣b+c)=[(a2+2ac+c2)﹣b2],△2ac=a2+2ac+c2﹣b2,△a2+c2=b2,△△ABC是直角三角形.23.已知,在如图所示的“风筝”图案中,AB AD =,AC AE =,BAE DAC ∠=∠.求证:E C ∠=∠.【证明】:BAE DAC ∠=∠BAE CAE DAC CAE ∴∠+∠=∠+∠ CAB EAD ∴∠=∠,且AB AD =,AC AE =()ABC ADE SAS ∴∆≅∆C E ∴∠=∠24.如图,等腰直角三角板如图放置.直角顶点C 在直线m 上,分别过点A 、B 作AE △直线m 于点E ,BD △直线m 于点D . △求证:EC =BD ;△若设△AEC 三边分别为a 、b 、c ,利用此图证明勾股定理. △【证明】:△△ACB =90°, △△ACE +△BCD =90°. △△ACE +△CAE =90°, △△CAE =△BCD . 在△AEC 与△BCD 中,△△CAE △△BCD (AAS ).△EC=BD;△解:由△知:BD=CE=aCD=AE=b△S梯形AEDB=(a+b)(a+b)=a2+ab+b2.又△S梯形AEDB=S△AEC+S△BCD+S△ABC=ab+ab+c2=ab+c2.△a2+ab+b2=ab+c2.整理,得a2+b2=c2.25.如图,已知:在△ABC中,△BAC=90°,延长BA到点D,使AD=AB,点E,F分别是边BC,AC的中点.求证:DF=BE.【证明】:△△BAC=90°,△△DAF=90°,△点E,F分别是边BC,AC的中点,△AF=FC,BE=EC,FE是△ABC的中位线,△FE=AB,FE△AB,△△EFC=△BAC=90°,△△DAF=△EFC,△AD =AB ,△AD =FE ,在△ADF 和△FEC 中,,△△ADF △△FEC (SAS ), △DF =EC , △DF =BE . 四、作图题26.如图,已知等腰ABC ∆顶角30A ∠=︒.(1)在AC 上作一点D ,使AD BD =(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:BCD ∆是等腰三角形. (1)解:如图,点D 为所作;(2)证明:AB AC =,1(18036)722ABC C ∴∠=∠=︒-︒=︒,DA DB =,36ABD A ∴∠=∠=︒,363672BDC A ABD ∴∠=∠+∠=︒+︒=︒, BDC C ∴∠=∠,BCD ∴∆是等腰三角形.五、应用题27.如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为37°,旗杆底部B 点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) 解:在Rt △BCD 中,BD=9米,∠BCD=45°,则BD=CD=9米.在Rt △ACD 中,CD=9米,∠ACD=37°,则AD=CD•tan37°≈9×0.75=6.75(米). 所以,AB=AD+BD=15.75米,整个过程中旗子上升高度是:15.75﹣2.25=13.5(米), 因为耗时45s , 所以上升速度v==0.3(米/秒).答:国旗应以0.3米/秒的速度匀速上升.28.在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程..................根据勾股定理,利用AD 作为“桥梁”,建立方程模型求出x作AD ⊥BC 于D ,设BD = x ,用含x的代数式表示CD 利用勾股定理求出AD 的长,再计算三角形面积ADCB【解】:如图,在△ABC 中,AB =15,BC =14,AC =13, 设BD x =,△14CD x =-.由勾股定理得:2222215AD AB BD x =-=-,2222213(14)AD AC CD x =-=--,△2215x -=2213(14)x --, 解之得:9x =. △12AD =.△12ABC S BC AD ∆=•11412842=⨯⨯=.六.探究题29.如图△,△ABC 与△CDE 是等腰直角三角形,直角边AC 、CD 在同一条直线上,点M 、N 分别是斜边AB 、DE 的中点,点P 为AD 的中点,连接AE 、BD .(1)猜想PM 与PN 的数量关系及位置关系,请直接写出结论;(2)现将图△中的△CDE 绕着点C 顺时针旋转α(0°<α<90°),得到图△,AE 与MP 、BD 分别交于点G 、H .请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图△中的等腰直角三角形变成直角三角形,使BC=kAC ,CD=kCE ,如图△,写出PM 与PN 的数量关系,并加以证明.【解析】(1)PM=PN ,PM△PN ,理由如下:C△△ACB和△ECD是等腰直角三角形,△AC=BC,EC=CD,△ACB=△ECD=90°.在△ACE和△BCD中,,△△ACE△△BCD(SAS),△AE=BD,△EAC=△CBD,△点M、N分别是斜边AB、DE的中点,点P为AD的中点,△PM=BD,PN=AE,△PM=PM,△△NPD=△EAC,△MPN=△BDC,△EAC+△BDC=90°,△△MPA+△NPC=90°,△△MPN=90°,即PM△PN;(2)△△ACB和△ECD是等腰直角三角形,△AC=BC,EC=CD,△ACB=△ECD=90°.△△ACB+△BCE=△ECD+△BCE.△△ACE=△BCD.△△ACE△△BCD.△AE=BD,△CAE=△CBD.又△△AOC=△BOE,△CAE=△CBD,△△BHO=△ACO=90°.△点P、M、N分别为AD、AB、DE的中点,△PM=BD,PM△BD;PN=AE,PN△AE.△PM=PN.△△MGE+△BHA=180°.△△MGE=90°.△△MPN=90°.△PM△PN.(3)PM=kPN△△ACB和△ECD是直角三角形,△△ACB=△ECD=90°.△△ACB+△BCE=△ECD+△BCE.△△ACE=△BCD.△BC=kAC,CD=kCE,△=k.△△BCD△△ACE.△BD=kAE.△点P、M、N分别为AD、AB、DE的中点,△PM=BD,PN=AE.△PM=kPN.30.已知:如图,△ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在△ABC内部,且点P到△ABC两边的距离相等.【解析】:△点P在△ABC的平分线上,△点P到△ABC两边的距离相等(角平分线上的点到角的两边距离相等),△点P在线段BD的垂直平分线上,△PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:。

初中数学中考一轮复习专题6 三角形 重点、考点知识、方法总结及真题练习

初中数学中考一轮复习专题6  三角形 重点、考点知识、方法总结及真题练习

A.
B.
【答案】A.
C.
D.
【解析】解:三角形具有稳定性.
故选:A.
知识点 2 等腰三角形
等腰三角形的概念不性质
1、等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两边叫做三角形的腰,第三
边叫做三角形的底.
2、等腰三角形的性质
①等腰三角形的腰相等
②等腰三角形的两个底角相等(简记为”等边对等角“)
2.如图,在△ABC 中,AB=AC.以点 C 为圆心,以 CB 长为半径作圆弧,交 AC 的延长线于
点 D,连结 BD.若∠A=32°,则∠CDB 的大小为 度.
【答案】37 【解析】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°, 又∵BC=DC,∴∠CDB=∠CBD= ∠ACB=37°.

【答案】40° 【解析】解:∵BO、CO 分别平分∠ABC、∠ACB, ∴∠OBC= ∠ABC,∠OCB= ∠ACB,
而∠BOC+∠OBC+∠OCB=180°, ∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣ (∠ABC+∠ACB),
∵∠A+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=180°﹣∠A, ∴∠BOC=180°﹣ (180°﹣∠A)=90°+ ∠A,
3.如图,在△ABC 中,∠A=36°,AB=AC,BD 平分∠ABC,则图中等腰三角形的个数


【答案】3
【解析】解:∵AB=AC,∠A=36°∴△ABC 是等腰三角形,
∠ABC=∠ACB=
=72°,
BD 平分∠ABC,∴∠EBD=∠DBC=36°,
∴在△ABD 中,∠A=∠ABD=36°,AD=BD,△ABD 是等腰三角形,

2022年中考数学九年级一轮复习:三角形综合练习题

2022年中考数学九年级一轮复习:三角形综合练习题
∴∠APQ+∠QPC=∠QPC+∠CPD,即∠APC=∠QPD,
在△APC和△QPD中,

∴△APC≌△QPD(ASA),
∴AC=QD=BC,
∴BP=BC-PC=QD-CD=CQ,
∴ ;
(2) ,理由如下:
过P作 交BA于F,
∴∠FPA=∠PAC,
∵∠APE=∠ECQ= ,∠AEP=∠QEC,
∴∠PAE=180°-∠AEP- =180°-∠QEC- =∠PQC,
(3)当点P在直线BC上,当 , , 时,请利用备用图探究 面积的大小(直接写出结果即可).
23.如图,在等边 中,点 在 边上,点 为 延长线上一点,连接 ,过点 作 交 延长线于点 .
(1)如图1,若 , , ,求 的长;
(2)如图2,若 ,点 在 的垂直平分线上,点 在 边上,连接 交 于点 ,且 ,求证: ;
∴AF∥DG,
∴∠GDB=∠AEB,
∵ , ,
∴ , ,
∴ ,
∵△ABC是等边三角形,
∴∠DAG=60°,AC=AB=8,
∴∠ADG=30°,
∴ ,
∴ ,
∴ ,
∵ ,
∴ ,
∴ ,
∵∠ABP=∠APQ=90°,
∴∠APB+∠BAP=∠APB+∠HPQ=90°,
∴∠BAP=∠HPQ,
∴△APB∽△PQH,
∴ ,即 ,
∵∠ACQ=90°,
∴∠QCH=∠ACB=45°,
∴∠CQH=90°-∠QCH=45°,
∴CH=QH,
设PH=8m,QH=15m,
∴CH-PH=CP=7,
∴15m-8m=7m=7,
∴∠EAG=∠F,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A C
B D
中考数学第一轮复习 三角形专题训练
一、填空题:(每题 3 分,共 36 分)
1、△ABC 中,AB =AC ,∠B =50°,则∠A =____。

2、在Rt △ABC 中,∠C =90°,a =4,c =5,则 sinA =____。

3、等腰三角形一边长为 5cm ,另一边长为 11cm ,则它的周长是____cm 。

4、△ABC 的三边长为 a =9,b =12,c =15,则∠C =____度。

5、已知 tan α=0.7010,利用计算器求锐角α=____(精确到1')。

6、如图,木工师傅做好门框后,为防止变形常常像图中所示那样钉上
两条斜拉的木条(即图中的AB 、CD 两个木条),这样做的数学道理是_______。

第6题 第7题 第8题 第11题
7、如图,DE 是△ABC 的中位线,DE =6cm ,则BC =____。

8、在△ABC 中,AD ⊥BC 于D ,再添加一个条件____就可确定,△ABD ≌△ACD 。

9、如果等腰三角形的底角为15°,腰长为6cm ,那么这个三角形的面积为______。

10、有一个斜坡的坡度记 i =1∶3,则坡角α=____。

11、如图,△ABC 的边BC 的垂直平分线MN 交AC 于D ,若AC =6cm ,AB =4cm ,则△ADB 的周长=____。

12、如图,已知图中每个小方格的边长为 1,则点 B 到直线 AC 的距离等于____。

二、选择题:(每题 4 分,共 24 分)
1、下列哪组线段可以围成三角形( )
A 、1,2,3
B 、1,2,3
C 、2,8,5
D 、3,3,7
2、能把一个三角形分成两个面积相等的三角形的线段,是三角形的( )
A 、中线
B 、高线
C 、边的中垂线
D 、角平分线
3、如图,□ABCD 中,对角线AC 、BD 相交于O 点,则图中全等的三角形共有( )
A 、1对
B 、2对
C 、3对
D 、4对
4、如图,在固定电线杆时,要求拉线AC 与地面成75°角,现有拉线AC 的长
A B D

C
A D E
B
C
O
A C
B
A
B
C D
D A B
N
C
M
为8米,则电线杆上固定点C 距地面( )
A 、8sin75°(米)
B 、
8
sin75°(米)
C 、8tcm75°(米)
D 、
8
tan75°
(米)
5、若三角形中最大内角是60°,则这个三角形是( ) A 、不等边三角形 B 、等腰三角形 C 、等边三角形 D 、不能确定
6、已知一直角三角形的周长是 4+26,斜边上的中线长为 2,则这个三角形的面积是( )
A 、5
B 、3
C 、2
D 、1 三、解答题:(每题 9 分,共 54 分)
1、已知:CD 平分∠ACB ,BF 是△ABC 的高,若∠A =70°∠ABC =60°求∠BMC 的度数。

2、等腰△ABC 中,AB =AC =13,底边BC 边上的高AD =5,求△ABC 的面积。

3、已知:梯形ABCD 中,AD ∥BC ,且AB =CD ,E 是BC 中点
求证:△ABE ≌△DCE 。

4、在Rt △ABC 中,∠C =90°,已知 a =6,∠A =30°,解直角三角形(边长精确到0.01)
A
B
D
A
D
B
E
C
5、BE 、CD 是△ABC 的高,F 是BC 边的中点,求证:△DEF 是等腰三角形。

6、已知:△ABC 中,AB =AC ,∠B =30°,BF =2,AB 的垂直平分线EF 交AB 于E ,交BC 于F ,求CF 的长。

四、(12分)一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,这时测得BD 的长为0.5米,求梯子顶端A 下滑了多少米?
五、(13分)已知:ABC 在同一直线上,BE ⊥AC ,AB =BE ,AD =CE
求证:①∠A =∠E ②AF ⊥CE
六、(13分)下表是学校数学兴趣小组测量教学楼高的实验报告的部分内容。

A B
C
F D
E

①完成上表中的平均值数据。

②若测量仪器高度为1.52m ,根据上表数据求教学楼高AB 。

答案 :
(十)
一、1、80° 2、45
3、27
4、90
5、35°2′
6、三角形具有稳定性
7、12cm
8、BD =DC 9、9 10、30° 11、10cm 12、22 二、1、B 2、A 3、D 4、A 5、C 6、C
三、1、∵∠ACB =50° ∴∠ACD =12
∠ACB =25° ∴∠BMC =90°+25° =115°
2、解:∵AB =13,AD =5,是AD ⊥BC ∴BD =AB 2-AD 2 =12 ∴S △ABC =12
BC ·AD =12
×24×5=60
3、解:∵AD ∥BC ,AB =CD ∴∠B =∠C 又∵BE =EC ∴△ABE ≌△DCE
测 量 图 形
所 得 数 据
测量值 ∠α ∠β CD 长 第一次 30°16′ 59°42′ 50.81m 第二次 29°50′ 60°10′ 49.25m 第三次 29°54′ 60°8′ 49.94m
平均值
4、解:∠B=60°b=63≈10.39c=12
5、证明:∵DF=1
2
BC EF=1
2
BC∴DE=EF
6、∵∠FAC=90°BF=AF=2,∠C=30°∴CF=2AF=4
四、AC=AB2-BC2=2EC=BE2-DC2=1.5AE=2-1.5=0.5米
五、∵BE⊥AC AB=BE AD=CE∴△ABD≌△EBC(HL)∴∠A=∠E
又∵∠E+∠C=90°∴∠A+∠C=90°∴AF⊥CE
六、①30°,60°,50m②44.82m。

相关文档
最新文档