中考数学复习线角三角形与证明
中考数学复习专题17:三角形及其性质(含中考真题)
专题17 三角形及其性质☞解读考点知识点名师点晴三角形的重要线段中线、角平分线、高线理解三角形有关的中线、角平分线、高线,并会作三角形的中线、角平分线、高线三角形的中位线理解并掌握三角形的中位线的性质三角形的三边关系两边之和大于第三边,两边之差小于第三边理解三角形的三边关系,并能确定三角形第三边的取值范围三角形的内角和定理三角形的内角和等于180°掌握三角形的内角和定理,并会证明三角形的内角和定理三角形的外角三角形的外角的性质能利用三角形的外角进行角的有关计算与证明☞2年中考【题组】1.(崇左)如果一个三角形的两边长分别是2和5,则第三边可能是()A.2 B.3 C.5 D.8【答案】C.【解析】试题分析:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选C.考点:三角形三边关系.2.(来宾)如图,△ABC中,∠A=40°,点D为延长线上一点,且∠CBD=120°,则∠C=()A.40° B.60° C.80° D.100°【答案】C.【解析】试题分析:由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故选C.考点:三角形的外角性质.3.(柳州)如图,图中∠1的大小等于()A.40° B.50° C.60° D.70°【答案】D .考点:三角形的外角性质.4.(南通)下列长度的三条线段能组成三角形的是( )A .5,6,10B .5,6,11C .3,4,8D .4a ,4a ,8a (a >0) 【答案】A . 【解析】试题分析:A .∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确; B .∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误; C .∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误; D .∵4a+4a=8a ,∴三条线段不能构成三角形,故本选项错误. 故选A .考点:三角形三边关系.5.(宿迁)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为( ) A .9 B .12 C . 7或9 D .9或12 【答案】B . 【解析】试题分析:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12; 当腰长为2时,根据三角形三边关系可知此情况不成立; 所以这个三角形的周长是12. 故选B .考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.6.(雅安)已知等腰三角形的腰和底的长分别是一元二次方程2430x x -+=的根,则该三角形的周长可以是( )A .5B .7C .5或7D .10 【答案】B .考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.7.(绵阳)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=( )A .118°B .119°C .120°D .121° 【答案】C . 【解析】试题分析:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE ,CD 是∠B 、∠C 的平分线,∴∠CBE=21∠ABC ,∠BCD=21∠BCA ,∴∠CBE+∠BCD=21(∠ABC+∠BCA )=60°,∴∠BFC=180°﹣60°=120°,故选C . 考点:三角形内角和定理.8.(广州)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或10 【答案】B .考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.9.(北海)三角形三条中线的交点叫做三角形的( ) A .内心 B .外心 C .中心 D .重心 【答案】D . 【解析】试题分析:三角形的重心是三角形三条中线的交点.故选D . 考点:三角形的重心.10.(百色)下列图形中具有稳定性的是( )A .正三角形B .正方形C .正五边形D .正六边形 【答案】A . 【解析】试题分析:∵三角形具有稳定性,∴A 正确,B .C 、D 错误.故选A .考点:三角形的稳定性.11.(百色)△ABC 的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是( )A .4B .4或5C .5或6D .6 【答案】B . 【解析】试题分析:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么a=24S ,b=212S ,c=2S h ,又∵a ﹣b <c <a+b ,∴22222412412S S S S Sh -<<+,即2233S S Sh <<,解得3<h <6,∴h=4或h=5,故选B .考点:1.一元一次不等式组的整数解;2.三角形的面积;3.三角形三边关系;4.综合题.12.(广安)下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .【答案】D .考点:三角形的角平分线、中线和高.13.(宜昌)下列图形具有稳定性的是( )A .正方形B .矩形C .平行四边形D .直角三角形 【答案】D . 【解析】试题分析:直角三角形具有稳定性.故选D . 考点:1.三角形的稳定性;2.多边形.14.(长沙)如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D . 【答案】A . 【解析】试题分析:为△ABC 中BC 边上的高的是A 选项.故选A . 考点:三角形的角平分线、中线和高.15.(鄂尔多斯)如图,A .B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )A .256B .51C .254D .257【答案】A .考点:1.概率公式;2.三角形的面积.16.(淄博)如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB=AD ,CD=12AB ,点E 、F 分别为AB 、AD 的中点,则△AEF 与多边形BCDFE 的面积之比为( )A.17 B .16 C.15 D.14【答案】C.考点:1.相似三角形的判定与性质;2.三角形的面积;3.三角形中位线定理;4.综合题.17.(淮安)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.【答案】75°.【解析】试题分析:如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB ∥CD ,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°,故答案为:75°.考点:1.三角形的外角性质;2.三角形内角和定理.18.(宜宾)如图,AB ∥CD ,AD 与BC 交于点E .若∠B=35°,∠D=45°,则∠AEC= .【答案】80°.考点:1.平行线的性质;2.三角形的外角性质.19.(巴中)若a 、b 、c 为三角形的三边,且a 、b 满足229(2)0a b -+-=,则第三边c 的取值范围是 .【答案】1<c <5. 【解析】试题分析:由题意得,290a -=,20b -=,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c <5.故答案为:1<c <5.考点:1.三角形三边关系;2.非负数的性质:偶次方;3.非负数的性质:算术平方根. 20.(南充)如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A=80°,∠B=40°,则∠ACE 的大小是 度.【答案】60. 【解析】试题分析:∵∠ACD=∠B+∠A ,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°,∵CE 平分∠ACD ,∴∠ACE=60°,故答案为:60.考点:三角形的外角性质.21.(佛山)各边长度都是整数、最大边长为8的三角形共有 个. 【答案】10. 【解析】试题分析:∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;故各边长度都是整数、最大边长为8的三角形共有10个.故答案为:10. 考点:三角形三边关系.22.(广东省)如图,△ABC 三边的中线AD 、BE 、CF 的公共点为G ,若ABC 12S =△,则图中阴影部分的面积是 .【答案】4.考点:1.三角形的面积;2.综合题.23.(长春)如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为 .【答案】5. 【解析】试题分析:过E 作EM ⊥AB 于M ,∵四边形ABCD 是正方形,∴AD=BC=CD=AB ,∴EM=AD ,BM=CE ,∵△ABE 的面积为8,∴12×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE=22BC CE +=2243+=5,故答案为:5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理.24.(昆明)如图,△ABC是等边三角形,高AD、BE相交于点H,BC=43,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【答案】53 2.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.25.(临沂)如图,在△ABC 中,BD ,CE 分别是边AC ,AB 上的中线,BD 与CE 相交于点O ,则OBOD = .【答案】2. 【解析】试题分析:∵△ABC 的中线BD 、CE 相交于点O ,∴点O 是△ABC 的重心,∴OBOD =2.故答案为:2.考点:1.三角形的重心;2.相似三角形的判定与性质.26.(六盘水)如图,已知, l1∥l2,C1在l1上,并且C1A ⊥l2,A 为垂足,C2,C3是l1上任意两点,点B 在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.考点:1.平行线之间的距离;2.三角形的面积.27.(达州)化简2221432a a a a a a +⋅----,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数.【答案】13a -,1.【解析】试题分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到结果,把a 的值代入计算即可求出值.考点:1.分式的化简求值;2.三角形三边关系.28.(青岛)【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1.n 3 4 5 6m 1 0 1 1【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)n 7 8 9 10m你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③n 4k﹣1 4k 4k+1 4k+2m【问题应用】:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型.【题组】1.(福建南平)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4【答案】B.【解析】试题分析:根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可:A、1+1=2,不能组成三角形,故此选项错误;B、1+2>2,能组成三角形,故此选项正确;C、1+2=3,不能组成三角形,故此选项错误;D、1+2<4,能组成三角形,故此选项正确.故选B.考点:三角形的三边关系.2.(浙江台州)如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为()A.25cm B.50cm C.75cm D.100cm【答案】D.考点:三角形的中位线.3.(•北海)如图△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为()A.8 B.9 C.10 D.11【答案】C.【解析】试题分析:∵D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×5=10.故选C.考点:三角形中位线定理.4.(•营口)如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145°B.152°C.158°D.160°【答案】B.考点:翻折变换(折叠问题);三角形中位线定理.5.(•威海)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【答案】B.【解析】试题分析:根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.试题解析:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=12∠ABC=12×50°=25°,在△ABO中,∠AOB=180°-∠BAC-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=12(180°-60°)=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=12(180°-70°)=55°,故D选项正确.故选B.考点:角平分线的性质;三角形内角和定理.6.(江苏淮安)若一个三角形三边长分别为2,3,x,则x的值可以为(只需填一个整数)【答案】4(答案不唯一).考点:三角形的三边关系.7、(广东广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是___________°.【答案】140..【解析】试题分析:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.考点:三角形的外角的性质.8.(湖北随州)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.【答案】75.【解析】试题分析:如答图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.考点:1.三角形内角和定理;2.对顶角的性质.☞考点归纳归纳 1:三角形的有关线段基础知识归纳:中线:连接一个顶点与它对边中点的线段,三角形的三条中线的交点叫做三角形的重心高线:从三角形一个顶点到它对边所在直线的垂线段.角平分线:一个内角的平分线与这个角的对边相交,顶点与交点之间的线段中位线:连接三角形两边中点的线段基本方法归纳:三角形的中位线平行线于第三边,且等于第三边的一半注意问题归纳:三角形的中线将三角形分成面积相等的两部分【例1】如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,若AB=4,BC=6,则DF=_____.【答案】1.考点:1.三角形中位线定理;2.等腰三角形的判定与性质.归纳 2:三角形的三边关系基础知识归纳:三角形两边的和大于第三边,两边的差小于第三边.基本方法归纳:三角形的三边关系是判断三条线段能否构成三角形的依据,并且还可以利用三边关系列出不等式求某些量的取值范围.注意问题归纳:三角形的三边关系是中考的热点问题之一,是解决三角形的边的有关问题的重要依据.【例2】已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【答案】B.考点:三角形三边关系.归纳 3:内角和定理基础知识归纳:三角形三个内角的和等于180°.基本方法归纳:在同一个三角形中,大边对大角,小边对小角.注意问题归纳:三角形的内角和定理是求三角形一个角的度数或证明角相等的重要工具.【例3】如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°【答案】C.【解析】试题分析:∵∠B=46°,∠C=54°,∴∠BAC=180°-∠B-∠C=180°-46°-54°=80°,∵AD平分∠BAC,∴∠BAD=12∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选C.考点:平行线的性质;三角形内角和定理.归纳 4:三角形的外角基础知识归纳:(1)三角形的外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.基本方法归纳:三角形的外角等于与它不相邻的两个内角的和.注意问题归纳:三角形的外角是解决角的计算与角的大小比较的重要工具.【例4】如图,AB∥CD,AD与BC相交于点O,∠B=30°,∠D=40°,则∠AOC的度数为()A.60°B.70°C.80°D.90°【答案】B.考点:1.平行线的性质;2.三角形的外角性质.☞1年模拟1.(北京市平谷区中考二模)如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10° B.15° C.20° D.25°【答案】D.【解析】试题分析:根据平行线的性质及三角形的内角和定理,有图像可知∠1与∠2互余,因此∠2=90°-65°=25°.故选D.考点:1.平行线的性质;2.三角形内角和定理.2.(安徽省安庆市中考二模)如图所示,AB∥CD,∠D=26°,∠E=35°,则∠ABE的度数是()A.61° B.71° C.109° D.119°【答案】A .考点:1.平行线的性质;2.三角形的外角性质.3.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20° B.40° C.30° D.25°【答案】A.【解析】试题分析:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.考点:1.三角形的外角性质;2.平行线的性质.4.(广东省佛山市初中毕业班综合测试)如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为()A. 120° B. 135° C. 150° D. 180°【答案】D.考点:1.翻折变换(折叠问题);2.三角形内角和定理.5.(山东省济南市平阴县中考二模)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为()A55255225105【答案】A.【解析】试题分析:如图所示:延长AC交网格于点E,连接BE,∵55,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴sinA=55BEAB,故选A.考点:1.锐角三角函数的定义;2.三角形的面积;3.勾股定理;4.表格型.6.(山东省威海市乳山市中考一模)如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC= m2.【答案】4.考点:1.等腰三角形的判定与性质;2.三角形的面积.7.(四川省成都市外国语学校中考直升模拟)长为1、2、3、4、5的线段各一条,从这5条线段中任取3条,能构成钝角三角形的概率是.【答案】1 5.【解析】试题分析:从长度分别为1,2,3,4,5的五条线段中,任取三条,所有的情况共有10种,其中,取出的三边能构成钝角三角形时,必须最大边的余弦值小于零,即:较小的两个边的平方和小于第三边的平方,故满足构成钝角三角形的取法只有:2、3、4 和2、4、5两种,故取出的三条线段为边能构成钝角三角形的概率是21105 . 考点:1.列表法与树状图法;2.三角形三边关系.8.(广东省佛山市初中毕业班综合测试)如图,已知△ABC 中,∠A=40°,剪去∠A 后成四边形,则∠1+∠2= 度.【答案】220.考点:1.三角形的外角性质;2.三角形内角和定理.9.(湖北省黄石市6月中考模拟)如图,点A1,A2,A3,A4,…,An 在射线OA 上,点B1,B2,B3,…,Bn ﹣1在射线OB 上,且A1B1∥A2B2∥A3B3∥…∥An ﹣1Bn ﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn ﹣1,△A1A2B1,△A2A3B2,…,△An ﹣1AnBn ﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于的阴影三角形共有__________个.【答案】12;6.【解析】试题分析:由题意得,△A2B1B2∽△A3B2B3,因此可知2132A B A B =212323A B B A B B S S=12,2233A B A B =212323A B B A B B SS=12,再由考点:1.相似三角形的判定与性质;2.平行线的性质;3.三角形的面积;4.规律型.。
中考数学考点专题复习 三角形与全等三角形
剖析
先看一个事实,如图,将等腰△ABC 的底边 BC 延长线上的任一点和顶 点 A 相连,所得的△DAB 和△DAC 无疑是不全等的,由此可知,有两边及 其一边的对角对应相等的两个三角形(简称“边边角”)不一定全等.因此, 在判定三角形全等时,一定要留心“边边角”,别上当哟.
正解 证明:∵EB=EC,∴∠3=∠4.又∵∠1=∠2,∴∠1+∠3= ∠2+∠4,即∠ABC=∠ACB,∴AB=AC.在△AEB和△AEC中, ∵EB=EC,∠1=∠2,AB=AC,∴△AEB≌△AEC(SAS), ∴∠BAE=∠CAE
的长可能是下列哪个值( B )
A.11
B.5 C.2 D.1
(2)(2015·巴中)若 a,b,c 为三角形的三边,且 a,b 满足 a2-9+(b-
2)2=0,则第三边 c 的取值范围是 1<c<5
.
【点评】 三角形三边关系性质的实质是“两点之间,线段最 短”.根据三角形的三边关系,已知三角形的两边a,b,可确 定三角形第三边长c的取值范围|a-b|<c<a+b.
[对应训练] 1.(1)(2014·宜昌)已知三角形两边长分别为3和8,则该三角形第 三边的长可能是( )B A.5 B.10 C.11 D.12
(2)(2014·淮安)若一个三角形三边长分别为2,3,x,则x的值可 以为___4_.(只需填一个整数)
【例2】 (1)(2014·赤峰)如图,把一块含有30°角(∠A=30°)的 直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌 面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么 ∠AFE=( ) D
A.40° B.50° C.60° D.70°
4.(2015·柳州)如图,下列条件中,不能证明△ABC≌△DCB 的是( D )
2023届初中数学中考复习-一线三垂直与一线三等角
一线三垂直与一线三等角一、基础知识回顾1) 三角形内角和定理:三角形三个内角和等于180°2)1 平角= 180 度二、模型的概述:1) 一线三垂直模型[模型概述] 只要出现等腰直角三角形,可以过直角点作一条直线,然后过45°顶点作直线的垂线,构造三垂直,所得两个直角三角形全等。
根据全等三角形倒边,得到线段之间的数量关系。
基础构造1构造2一线三垂直模型一:如图A B ⊥BC,AB = BC,CE ⊥DE,AD ⊥DE,则∆ABD ≌∆BCE,DE =AD +EC证明:∵CE ⊥DE,AD ⊥DE,AB ⊥BC∴∠CEB = ∠ADB = ∠ABC = 90°∴∠1 + ∠2 = 90°, ∠2 + ∠3 = 90°∴∠1 = ∠3∠1 = ∠3在∆ABD 和∆BCE 中,〈∠CEB = ∠ADB = 90°AB = BC∴∆ABD ≌∆BCE(AAS)∴AD = BE,EC = BD则DE = BE + BD = AD + EC一线三垂直模型二:如图A B ⊥BC,AB = BC,CE ⊥DE,AD ⊥DE,则∆ABD ≌∆BCE,DE =AD - EC证明:∵CE ⊥DE,AD ⊥DE,AB ⊥BC∴∠CEB = ∠ADB = ∠ABC = 90°∴∠A + ∠ABD = 90°, ∠ABD + ∠CBE = 90°∴∠A = ∠CBE∠A = ∠CBE在∆ABD 和∆BCE 中,〈∠CEB = ∠ADB = 90°AB = BC∴∆ABD ≌∆BCE(AAS)∴AD = BE,EC = BD则DE = BE - BD = AD - EC一线三垂直其它模型1) 图1,已知∠AOC = ∠ADB = ∠CED = 90°, AB = DC,得∆ADB ≌∆DEC2) 图2,延长DE 交AC 于点F,已知∠DBE = ∠ABC = ∠EFC = 90°, AC = DE,得∆ABC ≌∆DBE图1图22) 一线三等角模型[模型概述] 三个等角的顶点在同一条直线,这个角可以是直角,也可以是锐角或钝角。
中考数学相似三角形重要模型一线三等角模型
相似三角形重要模型-一线三等角模型相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1)一线三等角模型(同侧型)(锐角型)(直角型)(钝角型)条件:如图,∠1=∠2=∠3,结论:△ACE∽△BED.2)一线三等角模型(异侧型)条件:如图,∠1=∠2=∠3,结论:△ADE∽△BEC.3)一线三等角模型(变异型)图1 图2 图3①特殊中点型:条件:如图1,若C为AB的中点,结论:△ACE∽△BED∽△ECD.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.例1.(2023·山东东营·统考中考真题)如图,A B C为等边三角形,点D,E分别在边B C,A B上,60A D E∠=︒,若4B D D C=, 2.4D E=,则A D的长为()A.1.8B.2.4C.3D.3.2例2.(2023·湖南·统考中考真题)如图,,C A ADE D A D⊥⊥,点B是线段A D上的一点,且C B B E⊥.已知8,6,4A B A C D E===.(1)证明:A B C D E B∽△△.(2)求线段B D的长.例3.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在ABC中,∠BAC=90°,A BA C=k,直线l经过点A,BD⊥直线I,CE上直线l,垂足分别为D、E.求证:B DA E=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在ABC中,A BA C=k,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在ABC中,沿ABC的边AB、AC向外作矩形ABDE和矩形ACFG,A BA E =A CA G=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI之间的数量关系:.例4.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,A B A C=,D 、A 、E 三点都在直线m 上,并且有B D AA E CB AC α∠=∠=∠=.试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论;(2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C αα∠=∠=<<︒.将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设C P Qβ∠=.当β在许可范围内变化时,α取何值总有△ABP ∽△PCQ ?当α在许可范围内变化时,β取何值总有△ABP ∽△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有α、β的值(不写过程);若不可能,请说明理由.例5.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在A B C中,90A C B ∠=︒,A C B C=,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:A D C C E B△≌△.(1)探究问题:如果A CB C≠,其他条件不变,如图②,可得到结论;A D CC E B△∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x=与直线C D 交于点()2,1M ,且两直线夹角为α,且3ta n 2α=,请你求出直线C D 的解析式.(3)拓展应用:如图④,在矩形A B C D 中,3A B=,5B C=,点E为B C 边上—个动点,连接A E ,将线段A E 绕点E 顺时针旋转90︒,点A 落在点P 处,当点P 在矩形A B C D外部时,连接P C ,P D .若D P C △为直角三角形时,请你探究并直接写出B E 的长.Rt ABD中,上一动点,连接折叠得H E F,延长②B E M H E M≅;③当M2B,则正确的有(九年级校考阶段练习)已知A B C是等边三角形,E F和B D F∠,将B C E沿B则A F=P C D△;九年级校考阶段练习)如图,在A B C中,12.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R放在直线l上,分别过两锐角的顶点M,N作l的垂线,垂足分别为P,Q,(1)如图1.观察图1可知:与NQ相等的线段是______________,与N R Q∠相等的角是_____(2)问题探究直角A B C中,90B∠=︒,在AB边上任取一点D,连接CD,分别以AC,DC为边作正方形ACEF 和正方形CDGH,如图2,过E,H分别作BC所在直线的垂线,垂足分别为K,L.试探究EK与HL之间的数量关系,并证明你的结论.(3)拓展延伸:直角A B C中,90B∠=︒,在AB边上任取一点D,连接CD,分别以AC,DC为边作矩形ACEF和矩形CDGH,连接EH交BC所在的直线于点T,如图3.如果A C kC E=,试探究TE与TH=,C D kC H之间的数量关系,并证明你的结论.将.A B P沿着这样的点P,使得点问题解决(3)15.(2023春·四川广安·九年级校考阶段练习)如图1和图2,在平面直角坐标系中,点C的坐标为(0,4),A是x轴上的一个动点,M是线段AC的中点.把线段AM以A为旋转中心、按顺时针方向旋转90°得到AB.过B作x轴的垂线、过点C作y轴的垂线,两直线交于点D,直线DB交x轴于点E.设A点的横坐标为m.(1)求证:△AOC∽△BEA;(2)若m=3,则点B的坐标为;若m=﹣3,则点B的坐标为;(3)若m>0,△BCD的面积为S,则m为何值时,S=6?(4)是否存在m,使得以B、C、D为顶点的三角形与△AOC相似?若存在,求此时m的值;若不存在,请说明理由.16.(2020·四川雅安·中考真题)如图,已知边长为10的正方形A B C D E、不重,是B C边上一动点(与B C 合),连结A E G,是B C延长线上的点,过点E作A E的垂线交D C G∠的角平分线于点F,若F G B G⊥.(1)求证:A B E E G FE C=,求C E F△△;(2)若2∽△的△的面积;(3)请直接写出E C为何值时,C E F面积最大.的何位置时有B E H B A E∽?B C。
中考数学专题复习全攻略:第二节 三角形的基础知识与全等三角形
第二节 三角形的基础知识与全等三角形知识点一:三角形的分类及性质 1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示 三角形有下面三个特性: (1)三角形有三条线段(2)三条线段不在同一直线上, 三角形是封闭图形 (3)首尾顺次相接三角形用符号“∆”表示,顶点是A 、B 、C 的三角形记作“∆ABC ”,读作“三角形ABC ”。
5.三角形的分类(1)按角的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形(2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形6.三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
.变式练习1:等腰三角形两边长分别是3和6,则该三角形的周长为15.[变式练习2:已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A. 5B. 6C. 11D. 16【解析】C组成三角形的三条线段长度须满足“两边之和大于第三边,两边之差小于第三边”.此三角形的两边之和为14,两边之差为6,所以此三角形第三边的长可能是11.变式练习3:下列长度的三根小木棒能构成三角形的是( D )A.2 cm,3 cm,5 cm B.7 cm,4 cm,2 cmC.3 cm,4 cm,8 cm D.3 cm,3 cm,4 cm7.角的关系(1)内角和定理:①三角形的内角和等180°;②推论:直角三角形的两锐角互余.变式练习:在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为( C ) A.35°B.40°C.45°D.50°(2)外角的性质:①三角形的一个外角等于与它不相邻的两个内角和.②三角形的任意一个外角大于任何和它不相邻的内角.8.三角形中的重要线段8.三角形中的重要线段四线性质角平分线(1)角平线上的点到角两边的距离相等(2)三角形的三条角平分线的相交于一点(内心)中线(1)将三角形的面积等分(2)直角三角形斜边上的中线等于斜边的一半高锐角三角形的三条高相交于三角形内部;直角三角形的三条高相交于直角顶点;钝角三角形的三条高相交于三角形的外部中位线平行于第三边,且等于第三边的一半注意:在运用分类讨论思想计算等腰三角形周长时,必须考虑三角形三边关系注意:(1)在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
中考数学专题复习:专题五 三角形
专题五三角形【专题分析】三角形在中考中的常见考点有三角形的边和角,三角形的重要线段;全等三角形的判定,全等三角形的性质及综合应用,角平分线的应用;等腰三角形的性质和判定,等边三角形的性质和判定,直角三角形的性质,勾股定理,线段的垂直平分线;比例线段与黄金分割,相似三角形的性质及判定,相似多边形的性质;锐角三角函数,解直角三角形的应用等.对三角形的考查在中考中既有客观题又有主观题,考查题型多样,关于边角的基础知识一般以选择题或填空题的形式进行考查,证明三角形全等、相似,应用三角形全等、相似解决问题一般以解答题的形式进行考查;三角形在中考中的比重约为15%~20%.【解题方法】解决三角形问题常用的数学思想是转化思想,方程思想和数形结合思想;常用的数学方法有分类讨论法和设参数法等.【知识结构】【典例精选】:如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是( )A.3 B.4 C.6 D.5【思路点拨】过点D作DF⊥AC,由S△ABC=S△ABD+S△ACD可求出AC的长.答案:A已知:如图,△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连结DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.【思路点拨】(1)由AB=AC及AE∥BC易得∠B=∠CAE,然后由AD是中线可得∠ADB=∠CEA,由AAS证明两个三角形全等;(2)由(1)可得AE=BD,结合已知条件AE∥BC可得四边形ABDE是平行四边形,根据平行四边形的性质得出DE与AB平行且相等.【自主解答】(1)证明:∵AB=AC,∴∠B=∠ACB.∵AE∥BC,∴∠EAC=∠ACB.∴∠B=∠EAC.∵AD是BC边上的中线,∴AD⊥BC,即∠ADB=90°.∵CE⊥AE,∴∠CEA=90°. ∴∠CEA=∠ADB.又∵AB=AC,∴△ABD≌△CAE(AAS).(2)解:AB∥DE且AB=DE.由(1)△ABD≌△CAE可得AE=BD,又∵AE∥BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.规律方法:在求线段,角,的长度,度数或证明线段,角相等时,利用全等三角形的对应边,角相等,可将对应边,角进行转化,从而建立已知与未知之间的联系.如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请按要求完成下列各题:(1)试证明△ABC是直角三角形;(2)判断△ABC和△DEF是否相似,并说明理由;(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点,并且与△ABC相似.(要求:用尺规作图,保留痕迹,不写作法与证明) 【思路点拨】(1)分别求出△ABC三边的长度,利用勾股定理进行判断;(2)分别求出△DEF三边的长度,计算△DEF与△ABC三边长度的比值,进而作出判断;(3)观察图形,所求作的三角形满足其三边与△ABC三边的比值相等即可.【自主解答】(1)证明:根据勾股定理,得AB=25,AC=5,BC=5;显然有AB2+AC2=BC2,根据勾股定理的逆定理,得△ABC为直角三角形.(2)解:△ABC和△DEF相似.根据勾股定理,得DE=42,DF=22,EF=210.∵ABDE=ACDF=BCEF=522.∴△ABC∽△DEF.(3)解:如图,△P2P4P5即为所求.规律方法:在网格中证明两个三角形相似,可分别计算两个三角形三边的长度,再计算三组对应边的比是否相等,根据三组对应边的比相等,得两三角形相似.如图,港口B位于港口O正西方向120 km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以v km/h的速度驶离港口O.同时一艘快艇从港口B出发,沿北偏东30°的方向以60 km/h的速度驶向小岛C,在小岛C用1 h加装补给物资后,立即按照原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1 h,求v的值及相遇处与港口O的距离.【思路点拨】(1)根据题意可知∠CBO=60°,∠COB=30°,∴∠C=90°,在Rt△BOC中,根据cos ∠CBO=BCBO,求出BC,根据“路程=速度×时间”求出时间即可;(2)根据题意游船共行驶了3个小时,所以行驶路程为 3v km,设相会点为点E,作CD⊥OA,分点E在线段OD上和在射线DA上两种情况,解非直角三角形OCE,根据DE=90-3v或DE=3v-90,利用CD2+DE2=CE2,求出速度v和路程OE即可.【自主解答】解:(1)∵∠BOC=30°,∠CBO=60°,∴∠BCO=90°,∴BC=OB·cos 60°=120×12=60(km),∴快艇从港口B到小岛C需要的时间为6060=1(h).(2)过点C作CD⊥OA,设相遇处为点E.则OC=OB·cos 30°=603(km),CD=12OC=303(km),OD=OC·cos 30°=90(km).分两种情况:当点E在线段OD上时,如图①,DE=(90-3v)km,∵CE=60 km,CD2+DE2=CE2,∴(303)2+(90-3v)2=602,∴v=20或v=40.∵90-3v>0,∴v=20.当点E在射线DA上时,如图②,DE=(3v-90)km,∵CE=60 km,CD2+DE2=CE2,∴(303)2+(3v-90)2=602,∴v=20或v=40.∵3v-90>0,∴v=40.∴当v=20 km/h时,OE=3×20=60(km);当v=40 km/h时,OE=3×40=120(km).规律方法:解决此类问题的关键在于将斜三角形转化为直角三角形,而转化的关键是作出三角形的某一条高.【能力评估检测】一、选择题1.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于点D,DE∥AB,交AC于点E,则∠ADE的大小是( C )A.45° B.54° C.40° D.50°2.已知三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长是( B )A.14 B.12C.12或14 D.以上都不对3.如图,地面上有三个洞口A,B,C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及三个洞口(到A,B,C三个点的距离相等),尽快抓到老鼠,应该蹲守在( A )A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点4.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB,若BE=2,则AE的长为( B )A. 3 B.1 C. 2 D.25.如图,在Rt△ABC中,∠C=90°,∠A=30°,E为线段AB上一点,且AE∶EB=4∶1,EF⊥AC于点F,连结FB,则tan∠CFB的值等于( C )A.33B.233C.533D.5 36.如图,一艘海轮位于灯塔P的北偏东方向55°,距离灯塔为2海里的点A处.如果海轮沿正南方向航行到灯塔的正东位置B处,海轮航行的距离AB长是( C )A.2海里 B.2 sin 55°海里C.2cos 55°海里 D.2tan 55°海里7.如图,△ABC中,AB=AC=18,BC=12.正方形DEFG的顶点E,F在△ABC 内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为( ) A.1B.2C.122-6D.62-6【解析】如图,过点A作AH⊥BC于点H,交DG于点I,BH=12BC=6,在Rt△ABH中,AH=AB2-BH2=182-62=122,易知D,G分别是AB,AC的中点,则I为AH的中点,IH=62,DG=12BC=6,则正方形DGFE的边长FG=6,于是点F到BC的距离=62-6.故选D.答案: D8.如图,在钝角三角形ABC中,AB=6 cm,AC=12 cm,动点D从A点出发到B点停止,动点E从C点出发到A点停止.点D运动的速度为1 cm/s,点E运动的速度为2 cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是( )A.3 s或4.8 s B.3 sC.4.5 s D.4.5 s或4.8 s【解析】根据题意,设当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是x s,①若△ADE∽△ABC,则ADAB=AEAC,∴x6=12-2x12,解得x=3;②若△ADE∽△ACB,则ADAC=AEAB,∴x12=12-2x6,解得x=4.8.∴当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是3 s或4.8 s.故选A.答案: A二、填空题9.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=15 °.10.如图,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B,D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为13.11.如图,已知AC=BD,要使△ABC≌△DCB,则只需添加一个适当的条件是答案不唯一,如AB=CD或∠ACB=∠DBC(填一个即可).12.如图,在△ABC中,AB=5,AC=3,AD,AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连结DH,则线段DH的长为 .【解析】在△ABC中,∵AE为△ABC的角平分线,CH⊥AE,∴△AFH≌△ACH.∴AF=AC=3.∵AB=5,∴BF=2.∵AF=AC,CH⊥AE,∴FH=HC.∵AD为△ABC的中线,∴DH为△CBF的中位线,DH=12BF=1.答案: 1三、解答题13.已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图①,连结BD,AF,则BD________AF(填“>”“<”或“=”).图①(2)如图②,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连结BH,GF.求证:BH=GF.图②(1)解:=(2)证明:如图,将△DEF沿FE方向平移,使点E与点C重合,设ED平移后与MN相交于R.∵MN∥BC,RC∥EH,∴∠GRC=∠RHE=∠DEF,∠RGC=∠GCB. ∴∠GRC =∠RGC,∴CG=CR.又∵MN∥BF,CR∥EH,∴CR=EH.∴CG=EH.由平移的性质得BC=EF,∴BC+CE=CE+EF,即BE=CF.又∵∠HEB=∠GCF,∴△BEH≌△FCG(SAS),∴BH=FG.14.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80 cm,AO与地面垂直.现调整靠背,把OA绕点O旋转35°到OA′处.求调整后点A′比调整前点A的高度降低了多少厘米?(结果取整数)(参考数据:sin 35°≈0.57,cos 35°≈0.82, tan 35°≈0.70)解:如图,过点A′作A′H⊥OA于点H,由旋转可知,OA′=OA=80 cm,在Rt△OA′H中,OH=OA′cos 35°≈80×0.82=65.6(cm).∴AH=OA-OH=80-65.6=14.4≈14(cm).答:调整后点A′比调整前点A的高度降低了14 cm.15.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E,F分别在菱形的边BC,CD上滑动,且E,F不与B,C,D重合.(1)证明:不论E,F在BC,CD上如何滑动,总有BE=CF;(2)当点E,F在BC,CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.(1)证明:如图,连结AC,在菱形ABCD中,∠BAD=120°,∴∠BAC=60°,∠B=60°.∴△ABC是正三角形,∴AB=AC.又∵△AEF为正三角形,∴∠EAF=60°,AE=AF,而∠BAC=60°,∴∠BAE=∠CAF.∴△ABE≌△ACF.∴BE=CF.(2)解:当点E,F在BC,CD上滑动时,四边形AECF的面积不发生变化,其值为4 3.理由如下:由(1)知,S△ABE=S△ACF.∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE =S△ABC=12×4×4×sin 60°=4 3.△CEF的面积发生变化,其最大值为 3.∵S△CEF=S四边形AECF-S△AEF=43-34×AE2,当AE⊥BC时,AE的长最小,最小值为AB·sin 60°,即AE=4×32=23,∴S△CEF的最大值为43-34×(23)2= 3.。
初中三角形总复习+中考几何题证明思路总结
初中三角形总复习【知识精读】1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2. 三角形中的几条重要线段:(1)三角形的角平分线(三条角平分线的交点叫做内心)(2)三角形的中线(三条中线的交点叫重心)(3)三角形的高(三条高线的交点叫垂心)3. 三角形的主要性质(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边;(2)三角形的内角之和等于180°(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和;(4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角;(5)三角形具有稳定性。
4.⋅S SABE∆基础。
5. 三角形边角关系、性质的应用【分类解析】例1. 锐角三角形ABC 中,∠C =2∠B ,则∠B 的范围是( ) A. 1020︒<<︒∠B B. 2030︒<<︒∠B C. 3045︒<<︒∠B D. 4560︒<<︒∠B分析:因为∆ABC 为锐角三角形,所以090︒<<︒∠B 又∠C =2∠B ,∴︒<<︒0290∠B ∴︒<<︒045∠B又∵∠A 为锐角,()∴=︒-+∠∠∠A B C 180为锐角 ∴+>︒∠∠B C 90∴>︒390∠B ,即∠B >︒30 ∴︒<<︒3045∠B ,故选择C 。
例2. 选择题:已知三角形的一个外角等于160°,另两个外角的比为2:3,则这个三角形的形状是( ) A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定分析:由于三角形的外角和等于360°,其中一个角已知,另两个角的比也知道,因此三个外角的度数就可以求出,进而可求出三个内角的度数,从而可判断三角形的形状。
解:∵三角形的一个外角等于160° ∴另两个外角的和等于200° 设这两个外角的度数为2x ,3x ∴+=23200x x 解得:x =40 2803120x x ==, 与80°相邻的内角为100° ∴这个三角形为钝角三角形 应选C例3. 如图,已知:在∆ABC 中,AB AC ≤12,求证:∠∠C B <12。
中考数学考点专题(六) 与三角形有关的计算与证明
中考数学复习专题(六) 与三角形有关的计算与证明1.(2016·河北)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB =DE ,AC =DF ,BF =EC.(1)求证:△ABC ≌△DEF ;(2)指出图中所有平行的线段,并说明理由.解:(1)证明:∵BF =EC ,∴BF +FC =EC +FC ,即BC =EF.又∵AB =DE ,AC =DF ,∴△ABC ≌△DEF.(2)AB ∥DE ,AC ∥DF.理由:∵△ABC ≌△DEF ,∴∠ABC =∠DEF ,∠ACB =∠DFE.∴AB ∥DE ,AC ∥DF.2.(2017·苏州)如图,∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O.(1)求证:△AEC ≌△BED ;(2)若∠1=42°,求∠BDE 的度数.解:(1)证明:∵AE 和BD 相交于点O ,∴∠AOD =∠BOE.又∵∠A =∠B ,∴∠BEO =∠2.又∵∠1=∠2,∴∠1=∠BEO.∴∠AEC =∠BED.在△AEC 和△BED 中,⎩⎨⎧∠A =∠B ,AE =BE ,∠AEC =∠BED ,∴△AEC ≌△BED(ASA ).(2)∵△AEC ≌△BED ,∴EC =ED ,∠C =∠BDE.在△EDC 中,∵EC =ED ,∠1=42°,∴∠C =∠EDC =69°.∴∠BDE =∠C =69°.3.(2016·襄阳)如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F.(1)求证:AB =AC ;(2)若AD =23,∠DAC =30°,求AC 的长.解:(1)证明:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF.又∵BD =CD ,∴Rt △BDE ≌Rt △CDF.∴∠B =∠C.∴AB =AC.(2)∵AB =AC ,BD =CD ,∴AD ⊥BC.在Rt △ADC 中,∵∠DAC =30°,AD =23,∴AC =AD cos 30°=4.4.(2017·重庆)如图,△ABC 中,∠ACB =90°,AC =BC ,点E 是AC 上一点,连接BE.(1)如图1,若AB =42,BE =5,求AE 的长;(2)如图2,点D 是线段BE 延长线上一点,过点A 作AF ⊥BD 于点F ,连接CD ,CF ,当AF =DF 时,求证:DC =BC.解:(1)∵∠ACB =90°,AC =BC ,∴AC =BC =22AB =4. ∵BE =5,∴CE =BE 2-BC 2=3.∴AE =4-3=1.(2)证明:∵∠ACB =90°,AC =BC ,∴∠CAB =45°.∵AF ⊥BD ,∴∠AFB =∠ACB =90°.∴A ,F ,C ,B 四点共圆.∴∠CFB =∠CAB =45°,∴∠DFC =∠AFC =135°.在△ACF 和△DCF 中, ⎩⎨⎧AF =DF ,∠AFC =∠DFC ,CF =CF ,∴△ACF ≌△DCF.∴AC =DC.又∵AC =BC ,∴DC =BC.5.(2017·北京)在等腰直角△ABC 中,∠ACB =90°,P 是线段BC 上一动点(与点B ,C 不重合),连接AP ,延长BC 至点Q ,使得CQ =CP ,过点Q 作QH ⊥AP 于点H ,交AB 于点M.(1)若∠PAC =α,求∠AMQ 的大小;(用含α的式子表示)(2)用等式表示线段MB 与PQ 之间的数量关系,并证明.解:(1)∵∠PAC =α,△ACB 是等腰直角三角形,∴∠BAC =∠B =45°,∠PAB =45°-α.∵QH ⊥AP ,∴∠AHM =90°.∴∠AMQ =180°-∠AHM -∠PAB =45°+α.(2)PQ =2MB.理由如下:连接AQ ,作ME ⊥QB 于点E ,∵∠PAC +∠APC =∠MQE +∠APC =90°,∴∠PAC =∠MQE.∵AC ⊥QP ,CQ =CP ,∴∠QAC =∠PAC =α.∴∠QAM =45°+α=∠AMQ.∴AP =AQ =QM.在△APC 和△QME 中,⎩⎨⎧∠PAC =∠MQE ,∠ACP =∠QEM ,AP =QM ,∴△APC ≌△QME(AAS ).∴PC =ME.∵△MEB 是等腰直角三角形,∴MB =2ME =2PC =22PQ , 即PQ =2MB.6.如图,已知∠ABC =90°,D 是直线AB 上的点,AD =BC.(1)如图1,过点A 作AF ⊥AB ,并截取AF =BD ,连接DC ,DF ,CF ,判断△CDF 的形状并证明;(2)如图2,E 是直线BC 上一点,且CE =BD ,直线AE ,CD 相交于点P ,∠APD 的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.解:(1)△CDF 是等腰直角三角形.理由如下:∵AF ⊥AD ,∠ABC =90°,∴∠FAD =∠DBC.在△FAD 和△DBC 中,⎩⎨⎧AD =BC ,∠FAD =∠DBC ,AF =BD ,∴△FAD ≌△DBC(SAS ).∴FD =DC.∴△CDF 是等腰三角形.∵△FAD ≌△DBC ,∴∠FDA =∠DCB.∵∠BDC +∠DCB =90°,∴∠BDC +∠FDA =90°,即∠CDF =90°. ∴△CDF 是等腰直角三角形.(2)∠APD 的度数是固定值.作AF ⊥AB 于A ,使AF =BD ,连接DF ,CF. ∵AF ⊥AD ,∠ABC =90°,∴∠FAD =∠DBC ,AF ∥CE. 在△FAD 和△DBC 中,⎩⎨⎧AD =BC ,∠FAD =∠DBC ,AF =BD , ∴△FAD ≌△DBC(SAS ).∴FD =DC.∴△CDF 是等腰三角形.∵△FAD ≌△DBC ,∴∠FDA =∠DCB.∵∠BDC +∠DCB =90°,∴∠BDC +∠FDA =90°,即∠CDF =90°. ∴△CDF 是等腰直角三角形.∴∠FCD =45°.∵AF ∥CE ,且AF =BD =CE ,∴四边形AFCE 是平行四边形.∴AE ∥CF.∴∠APD =∠FCD =45°.。
2023年中考数学常见几何模型归纳(全国通用版):一线三等角模型(从全等到相似)(解析版)
专题05一线三等角(K 型图)模型(从全等到相似)全等三角形与相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型(全等模型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角直角一线三等角(“K 型图”)钝角一线三等角条件:A CED B +CE=DE证明思路:,A B C BED +任一边相等BED ACE异侧型一线三等角:锐角一线三等角直角一线三等角钝角一线三等角条件:FAC ABD CED +任意一边相等证明思路:,A B C BED +任一边相等BED ACE1.(2022·湖南湘潭·中考真题)在ABC 中,90BAC ,AB AC ,直线l 经过点A ,过点B 、C 分别作l 的垂线,垂足分别为点D 、E .(1)特例体验:如图①,若直线l BC ∥,AB AC BD 、CE 和DE 的长;(2)规律探究:①如图②,若直线l 从图①状态开始绕点A 旋转 045 ,请探究线段BD 、CE 和DE 的数量关系并说明理由;②如图③,若直线l 从图①状态开始绕点A 顺时针旋转 4590 ,与线段BC 相交于点H ,请再探线段BD 、CE 和DE 的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD 交线段AC 于点F ,若3CE ,1DE ,求BFC S △.【答案】(1)BD =1;CE =1;DE =2(2)①DE =CE +BD ;理由见解析;②BD =CE +DE ;理由见解析(3)258BFC S【分析】(1)先根据得出90452ABC ACB ,根据l BC ∥,得出45DAB ABC ,45EAC ACE ,再根据90BDA CEA ,求出45ABD ,45ACE ,即可得出45DAB ABD EAC ACE ,最后根据三角函数得出1AD BD ,1AE CE ,即可求出2DE AD AE ;(2)①DE =CE +BD ;根据题意,利用“AAS”证明ABD CAE ≌,得出AD =CE ,BD =AE ,即可得出结论;②BD =CE +DE ;根据题意,利用“AAS”证明ABD CAE ≌,得出AD =CE ,BD =AE ,即可得出结论;(3)在Rt △AEC 中,根据勾股定理求出5AC ,根据DF CE ∥,得出AD AF AE CF ,代入数据求出AF ,根据AC =5,算出CF ,即可求出三角形的面积.(1)解:∵90BAC ,AB AC ,∴90452ABC ACB ,∵l BC ∥,∴45DAB ABC ,45EAC ACE ,∵BD ⊥AE ,CE ⊥DE ,∴90BDA CEA ,∴904545ABD ,904545ACE ,∴45DAB ABD EAC ACE ,∴sin 12AD BD AB DAB ,sin 1AE CE AC EAC ,∴2DE AD AE .(2)①DE =CE +BD ;理由如下:∵BD ⊥AE ,CE ⊥DE ,∴90BDA CEA ,∴90DAB DBA ,∵90BAC ,∴90DAB CAE ,∴DBA CAE ,∵AB =AC ,∴ABD CAE ≌,∴AD =CE ,BD =AE ,∴DE =AD +AE =CE +BD ,即DE =CE +BD ;②BD =CE +DE ,理由如下:∵BD ⊥AE ,CE ⊥DE ,∴90BDA CEA ,∴90DAB DBA ,∵90BAC ,∴90DAB CAE ,∴DBA CAE ,∵AB =AC ,∴ABD CAE ≌,∴AD =CE ,BD =AE ,∴BD =AE =AD +DE =CE +DE ,即BD =CE +DE .(3)根据解析(2)可知,AD =CE=3,∴314AE AD DE ,在Rt △AEC 中,根据勾股定理可得:5AC ,∵BD ⊥AE ,CE ⊥AE ,∴DF CE ∥,∴AD AF AE CF ,即345AF ,解得:154 AF ,∴155544CF AC AF ,∵AB =AC =5,∴1152552248BFC S CF AB .【点睛】本题主要考查了三角形全等的判定和性质,等腰三角形的判定和性质,勾股定理,平行线的性质,解直角三角形,根据题意证明ABD CAE ≌,是解题的关键.2.(2022·黑龙江·九年级期末)(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明∶DE =BD +CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC = ,其中 为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.【答案】(1)见解析(2)成立,证明见解析(3)△DEF为等边三角形,证明见解析【分析】(1)因为DE=DA+AE,故由全等三角形的判定AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE;(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD;(3)由△ADB≌△CEA得BD=AE,∠DBA=∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=60°,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.【详解】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°.∵∠BAC=90°,∴∠BAD+∠CAE=90°.∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.又AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE;(2)成立.证明如下:∵∠BDA=∠BAC= ,∴∠DBA+∠BAD=∠BAD+∠CAE=180°- .∴∠DBA=∠CAE.∵∠BDA=∠AEC= ,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE;(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(SAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°.∴△DEF为等边三角形.【点睛】此题考查了全等三角形的性质和判定、等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定,等边三角形的性质和判定.3.(2022·江苏·九年级专题练习)【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:①如图1,ABC 是等腰直角三角形,90C ,AE =BD ,则AED ≌_______;②如图2,ABC 为正三角形,,60BD CF EDF ,则BDE ≌________;③如图3,正方形ABCD 的顶点B 在直线l 上,分别过点A 、C 作AE l 于E ,CF l 于F .若1AE ,2CF ,则EF 的长为________.【模型应用】(2)如图4,将正方形OABC 放在平面直角坐标系中,点O 为原点,点A 的坐标为,则点C 的坐标为________.【模型变式】(3)如图5所示,在ABC 中,90ACB ,AC BC ,BE CE 于E ,AD ⊥CE 于D ,4cm DE ,6cm AD ,求BE 的长.∵∠EDF =45゜∴∠ADE +∠BDF =180゜−∠EDF =135゜∴∠ADE =∠BFD在△AED 和△BDF 中A B ADE BFD AE BD ∴△AED ≌△BDF (AAS )答案为:△BDF ;②∵△ABC 是等边三角形∴∠B =∠C =60゜∴∠BDE +∠BED =180゜−∠B =120゜∵∠EDF =60゜∴∠BDE +∠CDF =180゜−∠EDF =120゜∴∠BED =∠CDF在△BDE 和△CFD 中B C BED CDF BD CF∴△BDE ≌△CFD (AAS )故答案为:△CFD ;③∵四边形ABCD 是正方形∴∠ABC =90゜,AB =BC∴∠ABE +∠CBF =180゜−∠ABC =90゜∵AE ⊥l ,CF ⊥l ∴∠AEB =∠CFB =90゜∴∠ABE +∠EAB =90゜∴∠EAB =∠CBF在△ABE 和△BCF 中AEB CFB EAB CBF AB BC∴△ABE ≌△BCF (AAS )∴AE =BF =1,BE =CF =2∴EF =BE +BF =2+1=3故答案为:3;(2)分别过A 、C 作x 轴的垂线,垂足分别为点D 、E ,如图所示∵四边形OABC 是正方形∴∠AOC =90゜,AO =OC∴∠COE +∠AOD =180゜−∠ACO =90゜∵AD ⊥x 轴,CE ⊥x 轴∴∠CEO =∠ADO =90゜模型2.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,AB AC ,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC .试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论;(2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C .将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设CPQ .当 在许可范围内变化时, 取何值总有△ABP ∽△PCQ ?当 在许可范围内变化时, 取何值总有△ABP ∽△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有 、 的值(不写过程);若不可能,请说明理由.【答案】(1)DE AE AD BD CE ;证明见解析;(2)30 ;75 ;(3)可能;30 ,30 或52.5 ,75 .【分析】(1)证明△ADB ≌△CEA (AAS ),由全等三角形的性质得出AE =BD ,AD =CE ,则可得出结论;(2)由β=∠2或∠1=∠CQP ,即∠2=30°+β-α=β,解得α=30°,即可求解;由β=∠1或∠2=∠CQP ,同理可得:β=75°,即可求解;(3)①当α=30°,β=30°时,则∠2=∠B =α=30°,即可求解;②当β=75°,α=52.5°时,同理可解.【详解】解:(1)如图1,∵BDA BAC ,∴180DBA BAD BAD CAE ,∴DBA CAE ,在△ADB 和△CEA 中,DBA EAC BDA AEC BA AC,∴△ADB ≌△CEA (AAS ),∴AE BD ,AD CE ,∴DE AE AD BD CE ;(2)在△ABP 中,2230APC B ,∴1150 ,同理可得:230 ;由2 或1CQP ,即230 ,解得30 ,则△ABP ∽△PCQ ;∴当 在许可范围内变化时,30 时,总有△ABP ∽△PCQ ;由1 或2CQP ,同理可得:75 .∴当 在许可范围内变化时,75 总有△ABP ∽△QCP ;(3)可能.①当30 ,30 时,则230B ,则△ABP ∽△PCQ ∽△BCA ;②当75 ,52.5 时,同理可得:115075 ,23052.5 ,∴△ABP ∽△CQP ∽△BCA .【点睛】本题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的性质是解本题的关键.2.(2022·河南新乡·二模)如图,△ABC 和△ADE 是有公共顶点A 的两个等腰直角三角形,∠DAE =∠BAC =90°,AD =AE ,AB =AC =6,D 在线段BC 上,从B 到C 运动,点M 和点N 分别是边BC ,DE 的中点.(1)【问题发现】若点D 是BC 边的中点时,BD MN =,直线BD 与MN 相交所成的锐角的度数为(请直接写出结果)(2)【解决问题]若点D 是BC 边上任意一点时,上述结论是否成立,请说明理由.(3)【拓展探究】在整个运动过程中,请直接写出N 点运动的路径长,及CN 的最小值.,3.(2022·山东菏泽·三模)(1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,当90DPC A B 时,求证:AD BC AP BP .(2)探究:若将90°角改为锐角或钝角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用:如图3,在ABC 中,AB ,45B ,以点A 为直角顶点作等腰Rt ADE △.点D 在BC上,点E 在AC 上,点F 在BC 上,且45EFD ,若CE CD 的长.模型3.一线三直角模型(相似模型)【模型解读与图示】“一线三直角”模型的图形,实则是“一线三等角”型的图形的特例,因为这种图形在正方形和矩形中出现的比较多,对它做一专门研究,这样的图形,因为有三个角是直角,就有两个角相等,再根据“等角的余角相等”可以得到另外一对角相等,从而判定两个三角形相似.1.(2022·湖南郴州·中考真题)如图1,在矩形ABCD 中,4AB ,6BC .点E 是线段AD 上的动点(点E 不与点A ,D 重合),连接CE ,过点E 作EF CE ,交AB 于点F .(1)求证:AEF DCE ∽;(2)如图2,连接CF ,过点B 作BG CF ⊥,垂足为G ,连接AG .点M 是线段BC 的中点,连接GM .①求AG GM 的最小值;②当AG GM 取最小值时,求线段DE 的长.【答案】(1)见解析(2)①5;②3DE或3DE 【分析】(1)证明出DCE AEF 即可求解;(2)①连接AM .先证明132BM CM GM BC .确定出点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点共线时,AG GM AM .此时,AG GM 取最小值.在Rt ABM 中利用勾股定理即可求出AM ,则问题得解.②先求出AF ,求AF 的第一种方法:过点M 作∥MN AB 交FC 于点N ,即有CMN CBF ∽△△,进而有12MN CM BF CB .设AF x ,则4BF x , 142MN x .再根据∥MN AB ,得到AFG MNG ∽△△,得到AF AG MN GM ,则有 21342x x ,解方程即可求出AF ;求AF 的第二种方法:过点G 作GH AB ∥交BC 于点H .即有MHG MBA ∽△△.则有GM GH MH AM AB MB,根据5AM ,可得3543GH MH ,进而求出125GH ,95MH .由GH AB ∥得CHG CBF ∽△△,即可求出AF .求出AF 之后,由(1)的结论可得AF AE DE DC=.设DE y ,则6AE y ,即有164y y ,解得解方程即可求出DE .(1)证明:如图1,∵四边形ABCD 是矩形,∴90A D ,∴90CED DCE .∵EF CE ,∴90CED AEF ,∴DCE AEF ,∴AEF DCE ∽;(2)①解:如图2-1,连接AM .∵BG CF ⊥,∴BGC 是直角二角形.∴132BM CM GM.∴点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点不共线时,由三角形两边之和大于箒三边得:AG GM AM ,当A ,G ,M 三点共线时,AG GM AM .此时,AG GM 取最小值.在Rt ABM中,5AM .∴AG GM 的最小值为5.②(求AF 的方法一)如图2-2,过点M 作∥MN AB 交FC 于点N ,∴CMN CBF ∽△△.∴12MN CM BF CB .设AF x ,则4BF x ,∴ 11422MN BF x .∵∥MN AB ,∴AFG MNG ∽△△,∴AF AG MN GM ,由①知AG GM 的最小值为5、即5AM,又∵3GM ,∴2AG .∴ 21342x x ,解得1x ,即1AF .(求AF 的方法二)如图2-3,过点G 作GH AB ∥交BC 于点H .∴MHG MBA ∽△△.∴GM GH MH AM AB MB,由①知AG GM 的最小值为5,即5AM ,又∵3GM ,∴3543GH MH .∴125GH ,95MH .由GH AB ∥得CHG CBF ∽△△,∴GH CH FB CB ,即1293556FB ,解得3FB .∴1AF AB FB .由(1)的结论可得AF AE DE DC =.设DE y ,则6AE y ,∴164y y,解得3y或3.∵036,036 ,∴3DE或3DE 【点睛】本题主要考查了相似三角形的判定与性质、平行的性质、勾股定理以及一元二次方程的应用等知识,掌握相似三角形的判定与性质是解答本题的关键.2.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R 放在直线l 上,分别过两锐角的顶点M ,N 作l 的垂线,垂足分别为P ,Q ,(1)如图1.观察图1可知:与NQ 相等的线段是______________,与NRQ 相等的角是_____(2)问题探究直角ABC 中,90B ,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作正方形ACEF 和正方形CDGH ,如图2,过E ,H 分别作BC 所在直线的垂线,垂足分别为K ,L .试探究EK 与HL 之间的数量关系,并证明你的结论.(3)拓展延伸:直角ABC 中,90B ,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作矩形ACEF 和矩形CDGH ,连接EH 交BC 所在的直线于点T ,如图3.如果AC kCE ,CD kCH ,试探究TE 与TH 之间的数量关系,并证明你的结论.【答案】(1)PR ,PMR ,(2)EK LH ,证明见解析;(3)ET HT ,证明见解析.【分析】(1)根据等腰直角三角形的性质得到,=MR RN ,90MRN ,根据余角性质得到PMR NRQ ,再证明MPR NRQ ≌△△,即可得到QN PR ,NRQ PMR ;(2)证明ABC CEK ≌△△,得到EK BC ,再证明DCB CHL ≌△△,得到BC HL ,可得到EK LH ;(3)证明ACB ECM ∽△△,得到BC kEM ,证明BCD NHC ∽△△,得到BC kHN ,得到EM HN ,证明NHT EMT ≌△△即可得到ET HT .(1)解:∵MRN △是等腰直角三角形,∴=MR RN ,90MRN ,∵MP PQ ,NQ PQ ,∴90MPR NQR ,∴90PMR MRP MRP NRQ ,∴PMR NRQ ,在MPR △和NRQ △中,PMR NRQ MPR NRQ MR NR∴MPR NRQ ≌△△,∴QN PR ,NRQ PMR ,故答案为:PR ,PMR ;(2)解:∵四边形ACEF 是正方形,∴AC CE ,90ACE ,∵EK BK ∴90B EKC ,∴90BAC ACB ACB ECK ,∴BAC ECK ,∵四边形ACEF 是矩形,∴∴BAC ECM ,∴ACB △同理:BCD NHC ∽△△,∴在NHT △和EMT △中, 3.(2022·浙江·嘉兴一中一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC 中,∠ACB =90°,AC =BC ,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:△ADC ≌△CEB .(1)探究问题:如果AC ≠BC ,其他条件不变,如图②,可得到结论;△ADC ∽△CEB .请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y =12x 与直线CD 交于点M (2,1),且两直线夹角为α,且tanα=32,请你求出直线CD 的解析式.(3)拓展应用:如图④,在矩形ABCD 中,AB =4,BC =5,点E 为BC 边上一个动点,连接AE ,将线段AE 绕点E 顺时针旋转90°,点A 落在点P 处,当点P 在矩形ABCD 外部时,连接PC ,PD .若△DPC 为直角三角形时,请你探究并直接写出BE 的长.由(1)可得:△NFO ∽△OEM ,∴NF OF NO OE ME MO∵点M (2,1),∴OE 1,∵tanα=ON OM =32,∴3NF OF ,∴NF =3,OF =33 ,3课后专项训练:1.(2022·贵州铜仁·三模)(1)探索发现:如图1,已知Rt ABC 中,90ACB ,AC BC ,直线l 过点C ,过点A 作AD l ,过点B 作BE l ,垂足分别为D 、E .求证:CD BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点N 的坐标为 4,2,求点M 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线44y x 与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45 后,所得的直线交x 轴于点R .求点R 的坐标.由已知得OM=ON,且∠OMN=∴由(1)得△OFM≌△MGN,∴MF=NG,OF=MG,设M(∴MF=m,OF=n,∴MG=n,,∵点N的坐标为(4,2)∴42m nn m解得13mn∴点M的坐标为(1,3);(3)如图3,过点Q作QS⊥PQ PR于S,过点S作SH⊥x轴于H,对于直线y=﹣4x+4,由x=0得∴P(0,4),∴OP=4,由y=1,∴Q(1,0),OQ=1,∵∠QPR=45°,∴∠PSQ=45°.∴PQ=SQ.∴由(1)得SH2.(2022·广东·汕头市潮阳区教师发展中心教学研究室一模)(1)模型建立,如图1,等腰直角三角形ABC 中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:①已知直线AB与y轴交于A点,与x轴交于B点,sin∠ABO=35,OB=4,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x 5上的一点,若△APD是以D为直角顶点的等腰直角三角形,请求出所有符合条件的点D的坐标.当D在AB的下方时,过D作DE⊥轴于E,交BC于F,同(1)可证得△ADE≌△DPF,∴=AE=6-(2x-5)=11-2x,DE=x,3.(2022·黑龙江·桦南县九年级期中)如图1,在ABC 中,90ACB ,AC BC ,直线MN 经过点C ,且AD MN 于D ,BE MN 于E .(1)由图1,证明:DE AD BE ;(2)当直线MN 绕点C 旋转到图2的位置时,请猜想出DE ,AD ,BE 的等量关系并说明理由;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).【答案】(1)证明见解析;(2)DE AD BE ,证明过程见解析;(3)DE BE AD ,证明过程见解析【分析】(1)先证明△ADC ≌△CEB ,得到AD=CE ,DC=BE ,进而得到DE=CE+DC=AD+BE 即可;(2)同(1)中思路,证明△ADC ≌△CEB ,进而得到DE=CE -DC=AD -BE 即可;(3)同(1)中思路,证明△ADC ≌△CEB ,进而得到DE=DC -CE=BE -AD 即可.【详解】解:(1)证明:在ABC 中,∵90ACB ,∴90ACD BCE ,∵AD MN ,∴90ACD CAD ,∴BCE ∠∠CA D ,又∵AC BC ,90ADC CEB ,∴() ≌ADC CEB AAS ,∴AD CE ,DC BE ,∵直线MN 经过点C ,∴DE CE DC AD BE ;(2)DE ,AD ,BE 的等量关系为:DE AD BE ,理由如下:∵AD MN 于D ,BE MN 于E ∴90ADC BEC ACB ,∴90CAD ACD ,90ACD BCE ,∴CAD BCE ,在ADC 和CEB △中90CAD BCE ADC BEC AC CB,∴ ADC CEB AAS △≌△∴CE AD ,CD BE ,∴DE CE CD AD BE ;(3)当MN 旋转到图3的位置时,DE 、AD 、BE 所满足的等量关系是DE BE AD ,理由如下:∵AD MN 于D ,BE MN 于E ∴90ADC BEC ACB ,∴90CAD ACD ,90ACD BCE ,∴CAD BCE ,在ADC 和CEB △中90CAD BCE ADC BEC AC CB,∴ ADC CEB AAS △≌△∴CE AD ,CD BE ,∴DE CD CE BE AD .【点睛】本题考查了全等三角形的判定方法、等腰直角三角形的性质及等角的余角相等等知识点,熟练掌握三角形全等的判定方法是求解的关键.4.(2022·山东·九年级课时练习)(1)课本习题回放:“如图①,90ACB ,AC BC ,AD CE ,BE CE ,垂足分别为D ,E , 2.5cm AD , 1.7cm DE .求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图②,点B ,C 在MAN 的边AM 、AN 上,AB AC ,点E ,F 在MAN 内部的射线AD 上,且BED CFD BAC .求证:ABE CAF ≌.(3)拓展应用:如图③,在ABC 中,AB AC ,AB BC .点D 在边BC 上,2CD BD ,点E 、F 在线段AD 上,BED CFD BAC .若ABC 的面积为15,则ACF 与BDE 的面积之和为________.(直接填写结果,不需要写解答过程)【答案】(1)0.8cm ;(2)见解析(3)5【分析】(1)利用AAS 定理证明△CEB ≌△ADC ,根据全等三角形的性质解答即可;(2)由条件可得∠BEA =∠AFC ,∠4=∠ABE ,根据AAS 可证明△ABE ≌△CAF ;(3)先证明△ABE ≌△CAF ,得到ACF 与BDE 的面积之和为△ABD 的面积,再根据2CD BD 故可求解.【详解】解:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,E ADC EBC DCA BC AC∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD=2.5cm.∵DC=CE−DE,DE=1.7cm,∴DC=2.5−1.7=0.8cm,∴BE=0.8cm故答案为:0.8cm;(2)证明:∵∠1=∠2,∴∠BEA=∠AFC.∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,∴∠BAC=∠ABE+∠3,∴∠4=∠ABE.∵∠AEB=∠AFC,∠ABE=∠4,AB=AC,∴△ABE≌△CAF(AAS).(3)∵BED CFD BAC∴∠ABE+∠BAE=∠FAC+∠BAE=∠FAC+∠ACF∴∠ABE=∠CAF,∠BAE=∠ACF又AB AC∴△ABE≌△CAF,∴ABE CAFS S∴ACF与BDE的面积之和等于ABE与BDE的面积之和,即为△ABD的面积,∵2CD BD,△ABD与△ACD的高相同则13ABD ABCS S△△=5故ACF与BDE的面积之和为5故答案为:5.【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.5.(2022·无锡市九年级月考)(1)如图1,直线m经过等腰直角△ABC的直角顶点A,过点B、C分别作BD⊥m,CE⊥m,垂足分别是D、E.求证:BD+CE=DE;(2)如图2,直线m经过△ABC的顶点A,AB=AC,在直线m上取两点D、E,使∠ADB=∠AEC=α,补充∠BAC=(用α表示),线段BD、CE与DE之间满足BD+CE=DE,补充条件后并证明;(3)在(2)的条件中,将直线m绕着点A逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB =∠AEC=(用α表示).通过观察或测量,猜想线段BD、CE与DE之间满足的数量关系,并予以证明.【答案】(1)证明见详解,(2)∠BAC= ,证法见详解,(3)180º- ,DE=EC-BD,证明见详解.【分析】(1)根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA;(2)补充∠BAC=α.利用△ADB≌△CAE,即可得出三角形对应边之间的关系,即可得出答案;(3)180º-α,DE=CE-BD,根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA,即可得出三角形对应边之间的关系,即可得出答案.【详解】证明:(1)∵BD⊥m,CE⊥m,∠ABC=90°,AC=BC,∴△ADB和△AEC都是直角三角形,∴∠DBA+∠DAB=90°,∴∠ECA+∠EAC=90°,∵∠BAC=90°,∠DAB+∠EAC=90º,∴∠DAB=∠ECA,又∵∠ADB=∠CEA=90°,AB=BC,所以△ADB≌△CEA(AAS),BD=AE,DA=EC,DE=DA+AE=EC+BD,BD+CE=DE.(2)∵等腰△ABC中,AC=CB,∠ADB=∠BAC=∠CEA=α,∴∠DAB+∠EAC=180°-α,∠ECA+∠CAE=180º-α,∴∠DAB=∠ECA,∵∠ADB=∠CEA=α,AC=CB,∴△ADB≌△CEA(AAS),∴CE=AD,BD=AE,∴AD+BE=CE+CD,所以BD+CE=DE.(3)180º-α,数量关系为DE=CE-BD,∵∠ADB=∠AEC=180º-α,∠BAC=α,∴∠ABD+∠BAD=α,∠BAD+∠EAC=α,∴∠ABD=∠CAE,∵AB=AC,∴△BAD≌△ACE(AAS),∴AD=CE,BD=AE,∴DE=AD-AE=EC-BD.【点睛】点评:此题主要考查了三角形全等的证明,根据已知得出∠DAB=∠ECA,再利用全等三角形的判定方法得出是解决问题的关键.6.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在 ABC中,∠BAC=90°,ABAC=k,直线l经过点A,BD⊥直线I,CE上直线l,垂足分别为D、E.求证:BDAE=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在 ABC中,ABAC=k,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在 ABC中,沿 ABC的边AB、AC向外作矩形ABDE和矩形ACFG,ABAE=ACAG=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI之间的数量关系:.∠CAE=90°∵∠BAD+∠ABD=∴线段BC 与AI 之间的数量关系为【点睛】此题主要考查相似三角形的判断与性质综合,解题的关键是根据题意找到相似三角形,列出比例式求解.7.(2022·湖北武汉·模拟预测)[问题背景](1)如图1,ABC 是等腰直角三角形,AC BC ,直线l 过点C ,AM l ,BN l ,垂足分别为M ,N .求证:AMC CNB △≌△;[尝试应用](2)如图2,AC BC ,90ACB ,N ,B ,E 三点共线,CN NE ,45E ,1CN ,2BN .求AE 的长;[拓展创新](3)如图3,在DCE 中,45CDE ,点A ,B 分别在DE ,CE 上,AC BC ,90ACB ,若1tan 2DCA ,直接写出AE AD 的值为.8.(2022·黑龙江齐齐哈尔·三模)数学实践课堂上,张老师带领学生们从一道题入手,开始研究,并对此题做适当变式,尝试举一反三,开阔学生思维.(1)原型题:如图1,AB BD 于点B ,CD BD 于点D ,P 是BD 上一点,AP PC ,AP PC ,则ABP △≌△________,请你说明理由.(2)利用结论,直接应用:①如图2,四边形ABCD 、EFGH 、NHMC 都是正方形,边长分别为a 、b 、c ,A 、B 、N 、E ,F 五点在同一条直线上,则CBN △≌△________,c ________(用含a 、b 的式子表示).②如图3,四边形ABCD 中,AB DC ,AB BC ,2AB ,4CD ,以BC 上一点O 为圆心的圆经过A 、D 两点,且90AOD ,则圆心O 到弦AD 的距离为________.(3)弱化条件,变化引申:如图4,M 为线段AB 的中点,AE 与BD 交于点C ,45DME A B ,且DM交AC 于点F ,ME 交BC 于点G ,连接FG ,则AMF 与BGM 的关系为:________,若AB 3AF ,则FG ________.9.(2022•郑州一模)如图,在平面直角坐标系xOy中.边长为4的等边△OAB的边OA在x轴上,C、D、E分别是AB、OB、OA上的动点,且满足BD=2AC,DE∥AB,连接CD、CE,当点E坐标为时,△CDE与△ACE相似.【分析】因为DE ∥AB 得到∠DEC =∠ACE ,所以△CDE 与△ACE 相似分两种情况分类讨论.【解答】解:∵DE ∥AB ,∴∠DEC =∠ACE ,△ODE ∽△OBA ,∴△ODE 也是等边三角形,则OD =OE =DE ,设E (a ,0),则OE =OD =DE =a ,BD =AE =4﹣a .∵△CDE 与△ACE 相似,分两种情况讨论:①当△CDE ∽△EAC 时,则∠DCE =∠CEA ,∴CD ∥AE ,∴四边形AEDC 是平行四边形,∴AC =a ,,∵BD =2AC ,∴4﹣a =2a ,∴a =.∴E ;②当△CDE ∽△AEC 时,∠DCE =∠EAC =60°=∠B ,∴∠BCD +∠ECA =180°﹣60°=120°,又∵∠BDC +∠BCD =180°﹣∠B =120°,∴∠BCD +∠ECA =∠BDC +∠BCD ,∴∠ECA =∠BDC ,∴△BDC ∽△ACE ,∴,∴BC =2AE =2(4﹣a )=8﹣2a ,∴8﹣2a +2=4,∴a =.∴.综上所述,点E 的坐标为或.【点评】本题主要考查相似三角形,考虑分类讨论是本题的关键.10.(2022•广东中考模拟)(1)模型探究:如图1,D 、E 、F 分别为ABC 三边BC 、AB 、AC 上的点,且B C EDF ,BDE 与CFD 相似吗?请说明理由.(2)模型应用:ABC 为等边三角形,其边长为8,E 为边AB 上一点,F 为射线AC 上一点,将AEF 沿EF 翻折,使点A 落在射线CB 上的点D 处,且2BD .①如图2,当点D 在线段BC 上时,求AE AF的值;②如图3,当点D 落在线段CB 的延长线上时,求BDE 与CFD 的周长之比.【答案】(1)~ BDE CFD ,见解析;(2)①57AE AF ;②BDE 与CFD 的周长之比为13.【分析】(1)根据三角形的内角和得到BED CDF ,即可证明;(2)①设AE x ,AF y ,根据等边三角形的性质与折叠可知DE AE x ,DF AF y ,60EDF A ,根据三角形的内角和定理得BED CDF ,即可证明~ BDE CFD ,故BD BE DE CF CD FD ,再根据比例关系求出AE AF的值;②同理可证~ BDE CFD ,得BD BE DE CF CD FD,得28810x x y y ,再得到13x y ,再根据相似三角形的性质即可求解.【详解】解(1)~ BDE CFD ,理由:B C EDF ,在BDE 中,180B BDE BED ,180180BDE BED B ,180BDE EDF CDF ∵,180180BDE CDF EDF ,BED CDF ,B C ∵,~BDE CFD ;(2)①设AE x ,AF y ,ABC ∵是等边三角形,60A B C ,8AB BC AC ,由折叠知,DE AE x ,DF AF y ,60EDF A ,在BDE 中,180B BDE BED ,180120BDE BED B ,180120BDE BED B ∵,180BDE EDF CDF ∵,180120BDE CDF EDF ,BED CDF ,60B C ∵,~BDE CFD ,BD BE DE CF CD FD,8BE AB AE x ∵,8CF AC AF y ,6CD BC BD 2886x x y y , 2868y x y x y x ,105147x y ,57AE AF ;②设AE x ,AF y ,ABC ∵是等边三角形,60A ABC ACB ,8AB BC AC ,由折叠知,DE AE x ,DF AF y ,60EDF A ,在BDE 中,180ABC BDE BED ,180120BDE BED ABC ,180BDE EDF CDF ∵,180120BDE CDF EDF ,BED CDF ,60ABC ACB ∵,120DBE DCF ,~BDE CFD ,BD BE DE CF CD FD8BE AB AE x ∵,8CF AF AC y ,10CD BC BD ,28810x x y y ,2(8)10(8)y x y x y x ,13x y .~BDE CFD ∵.BDE 与CFD 的周长之比为13DE x DF y .【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知等边三角形的性质及相似三角形的判定与性质.11.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在ABC 中,90ACB ,AC BC ,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:ADC CEB △≌△.(1)探究问题:如果AC BC ,其他条件不变,如图②,可得到结论;ADC CEB △∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x与直线CD 交于点 2,1M ,且两直线夹角为 ,且3tan 2,请你求出直线CD 的解析式.(3)拓展应用:如图④,在矩形ABCD 中,3AB ,5BC ,点E 为BC 边上—个动点,连接AE ,将线段AE 绕点E 顺时针旋转90 ,点A 落在点P 处,当点P 在矩形ABCD 外部时,连接PC ,PD .若DPC △为直角三角形时,请你探究并直接写出BE 的长.由(1)得NFO OEM △∽△∵M 坐标 2,1∴2OE ,ME ∵3tan 2 ∴32ON OM 解得:12.(2022·山东青岛·九年级期中)【模型引入】我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形,可以使得我们在观察新问题的时候很迅速地联想,从而借助已有经验,迅速解决问题.【模型探究】如图,正方形ABCD中,E是对角线BD上一点,连接AE,过点E作EF⊥AE,交直线CB于点F.(1)如图1,若点F在线段BC上,写出EA与EF的数量关系并加以证明;(2)如图2,若点F在线段CB的延长线上,请直接写出线段BC,BE和BF的数量关系.【模型应用】(3)如图3,正方形ABCD中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE 于F,过H作HG⊥BD于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH的周长为8.正确的结论有个.(4)如图4,点E是正方形ABCD对角线BD上一点,连接AE,过点E作EF⊥AE,交线段BC于点F,交线段AC于点M,连接AF交线段BD于点H.给出下列四个结论,①AE=EF;DE=CF;③S△AEM=S△MCF;④BE=DE BF;正确的结论有个.【模型变式】(5)如图5,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB 延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,交∠CBE的平分线与点N,求证:MD=MN(6)如图6,在上一问的条件下,连接DN交BC于点F,连接FM,则∠FMN和∠NMB之间有怎样的数量关系?请给出证明.【拓展延伸】(7)已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,且满足OB>OA.点C在线段OA的延长线上,且AC=OB.如图7,在线段BO上截取BE,使BE=OA,连接CE.若∠OBA+∠OCE=β,当点B在射线OM上运动时,β的大小是否会发生变化?如果不变,请求出这个定值;如果变化,请说明理由.(8)如图8,正方形ABCD中,AD=6,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB 于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB边的中点,则△EDM的面积是.。
初中几何部分核心知识梳理
初中数学几何部分分析初中数学几何部分共包含:相交线与平行线、三角形、四边形、圆、图形的变换和解直角三角形六部分。
近几年,宜宾中考中,几何部分考分稳定在45分左右,占总分的37.5%.我将从以下方面分析:(1)初中数学几何部分知识点。
(2)近几年宜宾市中考数学知识点分布。
(3)核心知识梳理,(4)重点难点解析或突破(高频考点、题型、举例、思路分析、答案、点评或解题技巧),进行分析。
一、几何部分知识点二、近几年考试情况统计三、近几年宜宾中考数学几何部分的高频考点。
1.三视图,选择题3分,11年-19年,每年都考。
2.平行线,多考填空题3分。
3. 全等三角形,证明题6(5)分,只有11年没考。
4.解直角三角形,解答题8分,只有12、14年没考。
5.特殊四边形,往往考填空题3分。
6.圆的综合证明,解答题10分,多为23题,每年都考。
(一)三视图:2014年:3.如图1放置的一个机器零件,若其主正视图如图2,则其俯视图是A. B. C. D.2015年:2.如图,立体图形的左视图是A. B.C. D.2016年:3.如图,立体图形的俯视图是A. B. C. D.2017年:3.下面的几何体中,主视图为圆的是A. B. C. D.2018年:3.一个立体图形的三视图如图所示,则该立体图形是A. 圆柱B. 圆锥C. 长方体D. 球2019年:5.已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()个。
A:10B: 9C: 8D: 7(二)全等三角形,证明题6(5)分(近5年没考SSS和H.L)2015年(SAS):18.如图,,,求证:.2016年(ASA):18.如图,已知,.求证:.2017年(AAS):18.如图,已知点B、E、C、F在同一条直线上,,,求证:.2018年(AAS):19.如图,已知,,求证:.∠=∠.2019年(SAS):如图,AB=AD,AC=AE,BAE DAC∠=∠求证:C E(三)解直角三角形,解答题8分2015年(方位角):21.如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造供水站M在笔直公路AD上,测得供水站M在小区A的南偏东方向,在小区B的西南方向,小区A、B之间的距离为米,求供水站M分别到小区A、B的距离结果可保留根号2016年(仰角):21.如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高结果保留根号2017年(测河宽):21.如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得,,量得BC长为100米求河的宽度结果保留根号.2018年(仰角、俯角):18.某游乐场一转角滑梯如图所示,滑梯立柱AB 、CD 均垂直于地面,点E 在线段BD 上,在C 点测得点A 的仰角为,点E 的俯角也为,测得B 、E 间距离为10米,立柱AB 高30米求立柱CD 的高结果保留根号2019年(仰角):21. (本小题满分8分)如图,为了 测得某建筑物的高度AB ,在C 处用高1米的测角仪CF 测得该建筑物顶端A 的仰角为045,再向建筑物方向前进40米,又测得该建筑物顶端A 的仰角为060。
2020年中考数学教案人教版专题复习:与三角形有关的线段
2020年中考数学人教版专题复习:与三角形有关的线段一、学习目标:1. 了解与三角形有关的线段(边、高、中线、角平分线);2. 理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形.3. 会画出任意三角形的高、中线、角平分线.4. 了解三角形的稳定性.二、重点、难点:重点:三角形的有关概念和性质. 难点:三角形两边的和大于第三边.三、考点分析:本讲内容在中考中非常重要,但难度不大,要求理解三角形、三角形的高、中线和角平分线的概念,掌握三边关系及按边分类,认识三角形的稳定性并能灵活应用于实际,主要以填空题、选择题、计算题的形式出现. 知识梳理1. 三角形的边(1)三角形的概念和表示方法由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,组成三角形的线段叫做三角形的边,相邻两边的公共端点叫做三角形的顶点,相邻两边所组成的图形叫做三角形的内角,简称三角形的角.三角形有六个元素:三条边和三个角.ABCabc(2)三角形的分类三角形⎩⎪⎨⎪⎧不等边三角形等腰三角形⎩⎨⎧底边和腰不相等的等腰三角形等边三角形AB C AB C AB C(3)三角形三边之间的关系:三角形两边的和大于第三边. 2. 三角形的高、中线和角平分线 (1)三角形的高从三角形的一个顶点向它的对边画垂线,顶点和垂足之间的线段叫做三角形的高.画三角形的高时,只需向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高;三角形的高是线段;三角形的高线(高所在的直线)交于一点.ABC DEF ABC D EFA BCD EF(1)(2)(3)(2)三角形的中线在三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.一个三角形有三条中线,且都在三角形的内部,并相交于一点.三角形的中线是一条线段.(3)三角形的角平分线三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角平分线.一个三角形有三条角平分线,并且都在三角形的内部,相交于一点.三角形的角平分线是一条线段,而角的平分线是一条射线.3. 三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性.三角形的稳定性在生活和生产中应用很广,有很多需要稳定的东西都制成三角形的形状,四边形等其他的多边形不具有稳定性.典例精析知识点一:三角形的有关概念例1. 如图所示,在△ABC 中,∠1=∠2,G 为AD 中点,延长BG 交AC 于E .F 为AB 上一点,CF ⊥AD 于H ,下列判断正确的有( )①AD 是△ABE 的角平分线;②BE 是△ABD 边AD 上的中线;③CH 是△ACD 边AD 上的高.A .0个B .1个C .2个D .3个A BCDEFGH12思路分析:题意分析:本题考查对三角形的高、中线和角平分线定义的理解.解题思路:由∠1=∠2知AD 平分∠BAE ,但AD 不是△ABE 内的线段,所以①错;同理,BE 经过△ABD 边AD 的中点G ,但BE 不是△ABD 中的线段,故②不正确;③符合三角形的高的定义,是正确的. 解答过程:B解题后的思考:解答本题的关键是正确理解三角形的高、中线和角平分线的定义,三角形的高、中线和角平分线是线段,是三角形的一个顶点与这个顶点对边上某点所连的线段.例2. 如图所示,在△ABC 中,AD 、CE 是△ABC 的两条高,且BC =5cm ,AD =3cm ,CE =4cm ,求AB 的长.A BCE思路分析:题意分析:本题考查对三角形的高的定义的理解.解题思路:在解答时,首先要弄清三角形的边与边上的高的对应关系,然后利用三角形面积公式建立等式求解即可.解答过程:在△ABC 中,AD 、CE 分别是BC 、AB 边上的高,所以S △ABC =12AB ·CE =12BC ·AD , 即12AB ×4=12×5×3,AB =154(cm ).解题后的思考:利用面积相等来求线段的长度是一种特殊方法,这种方法可用于已知三角形的两边和这两边上的高(四条线段中的三条)求第四条线段的长度.例3. 如图,是一个正五边形木架,那么至少需要加钉几根木条才能固定该正五边形木架?思路分析:题意分析:此题考查三角形稳定性的应用.解题思路:这是一个五边形,要把它的各边都分割到三角形中才能将其固定,这样的木条至少需要2根.解答过程:至少需要加钉2根木条.解题后的思考:由于三角形具有稳定性,而其他图形不具有稳定性.因此要确定至少需要几根木条才能固定多边形木架,只需确定该多边形至少能分割成几个互不重叠的三角形.例4. 解答下列问题:(1)△ABC 的中线AD ,把△ABC 分成△ABD 和△ACD ,这两个三角形的面积有什么关系?证明你的结论.(2)你能把一块三角形的土地分成面积相等的四部分分别种西红柿、黄瓜、茄子和土豆吗?画出你的设计图. 思路分析:题意分析:本题考查三角形中线的性质.解题思路:被中线AD 分成的两个三角形△ABD 和△ACD 的边BD =DC ,且这两个三角形中,BD 、DC 边上的高相同,所以这两个三角形面积相等.应用这一结论可将一个三角形分成面积相等的四部分,但应注意分法可能有多种. 解答过程:(1)如图所示,因为AD 是△ABC 的中线,所以BD =DC .过点A 作AE ⊥BC 于E , 则AE 是△ABD 的高,也是△ADC 的高. 所以S △ABD =12BD ·AE ,S △ADC =12DC ·AE . 所以S △ABD =S △ADC .ABCD E(2)方法不唯一,如下图所示.在图①中BE =DE =DF =FC ;在图②中BD =DC ,AE =BE ,AF =FC ;在图③中BD =DC ,AE =DE .还有一些其他分法,原理是一样的.AAABBBC C CD D D EFEFE①②③解题后的思考:三角形的中线把一边平分,并且把这个三角形的面积平分.我们常用这个结论来说明两个三角形面积相等.小结:在三角形的有关概念中,应重点掌握三角形的角平分线、中线和高的定义与性质.如:三角形的中线把三角形分成面积相等的两部分,三角形的边与该边上的高的积相等.知识点二:三角形的三边关系例5.已知三角形的三边长分别为3、8、x,若x的值为偶数,则x的值有()A.6个B.5个C.4个D.3个思路分析:题意分析:本题考查三角形的三边关系.解题思路:x的取值不能太大,因为有3+8>x,即x<11.x的取值也不能太小,因为有3+x>8,即x>5,在这个范围内的偶数有6、8、10,共3个.解答过程:D解题后的思考:解答这个问题要注意两点:①对于x的取值要保证3、8、x能组成三角形,也就是要满足任意两边之和大于第三边.②x的值为偶数.学了不等式的知识后解答本题会更容易一些.例6.以下列长度的三条线段为边,哪些可以构成一个三角形,哪些不能构成三角形?(1)6cm,8cm,10cm;(2)3cm,8cm,11cm;(3)3cm,4cm,10cm;(4)三条线段之比为4∶6∶7.思路分析:题意分析:前三个小题所给线段长度是确定的数值,容易进行决断,第(4)小题的三条线段是比例关系,可以设其长度分别为4x、6x、7x,其中x是任意大于0的常数,再进行判断.解题思路:要构成一个三角形,必须满足任意两边之和大于第三边,在运用时,习惯于检查较小的两边之和是否大于第三边.解答过程:(1)因为6cm+8cm>10cm,所以6cm、8cm、10cm能构成三角形.(2)因为3cm+8cm=11cm,所以3cm、8cm、11cm不能构成三角形.(3)因为3cm+4cm<10cm,所以3cm、4cm、10cm不能构成三角形.(4)设三条线段之比为4x、6x、7x,因为:4x+6x>7x,所以三条线段之比为4∶6∶7时,此三条线段能构成三角形.解题后的思考:判断以三条线段为边能否构成三角形的简易方法是:(1)判断出较长的一边;(2)看较短的两边之和是否大于较长的一边,若是,则能构成三角形,若不是,则不能构成三角形.例7. 在△ABC 中,AB =AC ,AC 边上的中线BD 把△ABC 的周长分为12cm 和15cm 两部分,求三角形的各边长. 思路分析:题意分析:△ABC 是一个等腰三角形,它的周长被BD 分成AB +AD 和BC +DC 两部分,这两部分的长度分别12cm 和15cm .解题思路:因为中线BD 的端点D 是AC 边的中点,所以AD =CD ,造成两部分周长不等的原因是BC 边与AB 、AC 边不等,故应分类讨论.ABCDABC D(1)(2)① ②解答过程:如图①所示,设AB =x ,AD =CD =12x .(1)若AB +AD =12,即x +12x =12,所以x =8, 即AB =AC =8,则CD =4. 故BC =15-4=11.此时AB +AC >BC ,所以三边长为8、8、11.(2)如图②所示,若AB +AD =15,即x +12x =15,所以x =10. 即AB =AC =10,则CD =5. 故BC =12-5=7.显然此时三角形存在,所以三边长为10、10、7.综上所述,此三角形的三边长分别为8、8、11或10、10、7.解题后的思考:由于等腰三角形的腰和底边的长度不相等,所以在求其边长或周长的时候,常要分类讨论.例8. 如图所示,草原上有四口油井,位于四边形ABCD 的四个顶点,现要建一个维修站O ,为了使维修站到四口油井的距离之和最小,试问这个维修站O 建在AC 、BD 的交点处的理由是什么?ABC DO思路分析:题意分析:本题中到A 、B 、C 、D 四个点的距离之和的最小的位置已经给出,要求说出理由. 解题思路:说明这个维修站O 建在AC 、BD 的交点处的理由,就是说明交点O 到A 、B 、C 、D 四点的距离之和最小.可以用举反例的方法说明,取不同于点O 的任意一点O’,说明O’到四个点的距离之和不是最小的就可以了.解答过程:取异于点O 的点O’,根据三角形的两边之和大于第三边有:O’D +O’B >OD +OB ,O’A +O’C >OA +OC . 所以O’D +O’B +O’A +O’C >OD +OB +OA +OC . 即OD +OB +OA +OC 为最小.ABC DOO'解题后的思考:解答实际应用问题的关键是如何将其转化成所学的数学问题.另外,本题还可从另外一个角度思考,因为两点之间,线段最短,所以对于点A 和点C 来说,只有点O 在线段AC 上时,OA +OC 才是最小的,同理,点O 也必须在线段BD 上,所以维修站O 一定要建在AC 和BD 的交点处.小结:三角形的三边关系是三角形的重要性质,也是构成三角形的必要条件,它与不等式的知识是紧密联系在一起的,以后学不等式的时候,同学们要注意记得将它们进行综合学习.提分技巧1.在运用“三角形任意两边的和大于第三边”时,一般情况下,找出较短的两边和最长的边,只判断较短两边的和大于最长的边就可以了,不必一一验证.2.对于三角形的角平分线、中线和高,我们探究出了一些重要性质.如三角形的中线把三角形分成面积相等的两部分;三角形中如果有两条高,在求高或边长时常用等积法.。
中考数学复习----《三角形之与三角形有关的线段》知识点总结与专项练习题(含答案解析)
中考数学复习----《三角形之与三角形有关的线段》知识点总结与专项练习题(含答案解析)知识点总结1.三角形的定义:三条线段首尾顺次连接组成的图形。
2.三角形的分类:①按角分类:锐角三角形,直角三角形,钝角三角形。
②按边分类:不等边三角形,等腰三角形。
等腰三角形底和腰相等时叫做等边三角形。
3.三角形的中线、高线、角平分线:①中线:连接顶点与对边中点得到的线段。
平分三角形的面积。
②高线:过定点做对边的垂线,顶点与垂足之间的线段。
得到两个直角三角形。
③角平分线:作三角形角的平分线与对边相交,顶点与交点间的线段。
4.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
专项练习题1.(2022•大庆)下列说法不正确的是()A.有两个角是锐角的三角形是直角或钝角三角形B.有两条边上的高相等的三角形是等腰三角形C.有两个角互余的三角形是直角三角形D.底和腰相等的等腰三角形是等边三角形【分析】根据直角三角形概念可判断A,C,由等腰三角形,等边三角形定义可判断B,D.【解答】解:∵有两个角是锐角的三角形,第三个角可能是锐角,直角或钝角,∴有两个角是锐角的三角形可能是锐角三角形,直角三角形或钝角三角形;故A不正确,符合题意;有两条边上的高相等的三角形是等腰三角形,故B正确,不符合题意;有两个角互余的三角形是直角三角形,故C正确,不符合题意;底和腰相等的等腰三角形是等边三角形,故D正确,不符合题意;故选:A.2.(2022•玉林)请你量一量如图△ABC中BC边上的高的长度,下列最接近的是()A.0.5cm B.0.7cm C.1.5cm D.2cm【分析】过点A作AD⊥BC于D,用刻度尺测量AD即可.【解答】解:过点A作AD⊥BC于D,用刻度尺测量AD的长度,更接近2cm,故选:D.3.(2022•杭州)如图,CD⊥AB于点D,已知∠ABC是钝角,则()A.线段CD是△ABC的AC边上的高线B.线段CD是△ABC的AB边上的高线C.线段AD是△ABC的BC边上的高线D.线段AD是△ABC的AC边上的高线【分析】根据三角形的高的概念判断即可.【解答】解:A、线段CD是△ABC的AB边上的高线,故本选项说法错误,不符合题意;B、线段CD是△ABC的AB边上的高线,本选项说法正确,符合题意;C、线段AD不是△ABC的BC边上高线,故本选项说法错误,不符合题意;D、线段AD不是△ABC的AC边上高线,故本选项说法错误,不符合题意;故选:B.4.(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形【分析】根据三角形具有稳定性,四边形不具有稳定性即可得出答案.【解答】解:三角形具有稳定性,四边形不具有稳定性,故选:A.5.(2022•永州)下列多边形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性即可得出答案.【解答】解:三角形具有稳定性,其它多边形不具有稳定性,故选:D.6.(2022•常州)如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD 的面积是.【分析】由题意可得CE是△ACD的中线,则有S△ACD=2S△AEC=2,再由AD是△ABC 的中线,则有S△ABD=S△ACD,即得解.【解答】解:∵E是AD的中点,∴CE是△ACD的中线,∴S△ACD=2S△AEC,∵△AEC的面积是1,∴S△ACD=2S△AEC=2,∵AD是△ABC的中线,∴S△ABD=S△ACD=2.故答案为:2.7.(2022•淮安)下列长度的三条线段能组成三角形的是()A.3,3,6 B.3,5,10 C.4,6,9 D.4,5,9【分析】根据三角形的三边关系判断即可.【解答】解:A、∵3+3=6,∴长度为3,3,6的三条线段不能组成三角形,本选项不符合题意;B、∵3+5<10,∴长度为3,5,10的三条线段不能组成三角形,本选项不符合题意;C、∵4+6>9,∴长度为4,6,9的三条线段能组成三角形,本选项符合题意;D、∵4+5=9,∴长度为4,5,9的三条线段不能组成三角形,本选项不符合题意;故选:C.8.(2022•衢州)线段a,b,c首尾顺次相接组成三角形,若a=1,b=3,则c的长度可以是()A.3 B.4 C.5 D.6【分析】根据三角形两边之和大于第三边,两边之差小于第三边直接列式计算即可.【解答】解:∵线段a=1,b=3,∴3﹣1<c<3+1,即2<c<4.观察选项,只有选项A符合题意,故选:A.9.(2022•南通)用一根小木棒与两根长分别为3cm,6cm的小木棒组成三角形,则这根小木棒的长度可以为()A.1cm B.2cm C.3cm D.4cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求第三根木条的取值范围.【解答】解:设第三根木棒长为xcm,由三角形三边关系定理得6﹣3<x<6+3,所以x的取值范围是3<x<9,观察选项,只有选项D符合题意.故选:D.10.(2022•益阳)如图1所示,将长为6的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等,若要将其围成如图2所示的三棱柱形物体,则图中a的值可以是()A.1 B.2 C.3 D.4【分析】本题实际上是长为6的线段围成一个等腰三角形.求腰长的取值范围.【解答】解:长为6的线段围成等腰三角形的腰长为a.则底边长为6﹣2a.由题意得,.解得<a<3.所给选项中分别为:1,2,3,4.∴只有2符合上面不等式组的解集.∴a只能取2.故选:B.11.(2022•西宁)若长度是4,6,a的三条线段能组成一个三角形,则a的值可以是()A.2 B.5 C.10 D.11【分析】根据三角形三边关系定理得出6﹣4<a<6+4,求出2<a<10,再逐个判断即可.【解答】解:∵长度是4,6,a的三条线段能组成一个三角形,∴6﹣4<a<6+4,∴2<a<10,∴只有选项B符合题意,选项A、选项C、选项D都不符合题意;故选:B.12.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.﹣5 B.4 C.7 D.8【分析】由实数与数轴与绝对值知识可知该三角形的两边长分别为3、4.然后由三角形三边关系解答.【解答】解:由题意知,该三角形的两边长分别为3、4.不妨设第三边长为a,则4﹣3<a<4+3,即1<a<7.观察选项,只有选项B符合题意.故选:B.13.(2022•邵阳)下列长度的三条线段能首尾相接构成三角形的是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.4cm,5cm,10cm D.6cm,9cm,2cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形的三边关系,得:A、1+2=3,不能构成三角形;B、3+4>5,能构成三角形;C、4+5<10,不能构成三角形;D、2+6<9,不能构成三角形.故选:B.14.(2022•金华)已知三角形的两边长分别为5cm和8cm,则第三边的长可以是()A.2cm B.3cm C.6cm D.13cm【分析】由三角形的两边长分别为5cm和8cm,可得第三边x的长度范围即可得出答案.【解答】解:∵三角形的两边长分别为5cm和8cm,∴第三边x的长度范围为:3cm<x<13cm,∴第三边的长度可能是:6cm.故选:C.15.(2022•德阳)八一中学九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km.那么杨冲,李锐两家的直线距离不可能是()A.1km B.2km C.3km D.8km【分析】根据三角形的三边关系得到李锐两家的线段的取值范围,即可得到选项.【解答】解:当杨冲,李锐两家在一条直线上时,杨冲,李锐两家的直线距离为2km或8km,当杨冲,李锐两家不在一条直线上时,设杨冲,李锐两家的直线距离为xkm,根据三角形的三边关系得5﹣3<x<5+3,即2<x<8,杨冲,李锐两家的直线距离可能为2km,8km,3km,故选:A.。
中考数学几何模型专题专题三—三角形
专题三三角形模型8 “8字”形模型展现基础模型怎么用?1.找模型两条相交的线段构成含对顶角的两个三角形,简称“有交点,想8字”2.用模型“8字”型的实质是利用三角形内角和定理进行角度转化来解题∠结论分析结论1:∠A+∠B=∠C+∠D证明:AC与BD相交于点0 , 连接AB,CD,在∠ABO中,∠.A+∠B+∠.AOB= 180°在OCD0中,∠C+∠D+∠COD= 180°因为∠AOB=∠COD(对顶角相等),所以∠A+∠B=∠C+∠D.拓展延伸角度和相等,是解决角度转化的重要思想。
“8字”型虽简单,但往往在几何综合题中推导角度时用到.∠模型拓展典例小试例1如图,线段AB , CD,EF两两相交,交点分别为G,H,I,连接AC,BE,DF,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()出现多个模型,分离模型,逐个计算A.180°B.360°C.540°D.720°考什么?对顶角相等,三角形的内角和例2如图,A,B,C,D,E是同一平面上的点,F是AB上一点,则∠A+∠B+∠C+∠D+∠E+∠DFE的度数是( )试着转化到一个四边形中,利用内角和求解A.180°B.360°C.540°D.720°考什么?对顶角相等,四边形的内角和思路点拨“8字”型能得到角度和的关系,在题目未给出具体角度的情况下,考虑将所求角度和转化到同一个多边形中,再利用多边形内角和求解.实战演练1.如图,AB∠BD,AC∠CD,∠A=30°,则∠.D的度数为____.2.一副三角板如图摆放,其中一块三角板的直角边EF落在另.一块三角板的斜边AC上,边BC与DF交于点0,则∠BOD的度数是____。
模型9 “燕尾”型模型展现基础模型怎么用?1.找模型遇到凹四边形的角度问题,考虑用“燕尾”型基础模型1 2.用模型通过“燕尾”型把“凹”的角转换成三个内角之和结论分析结论1:∠BDC=∠A+∠B+∠C证法1:如解图,延长BD交AC于点E.∠∠BEC是∠ABE的外角∠∠BEC=∠A+∠B又∠∠BDC是∠CDE的外角,∠BDC=∠BEC+∠C=∠A+∠B+∠C证法2:如解图,连接AD并延长,则∠1=∠B+∠3,∠2=∠C+∠4,∠BDC=∠1+∠2=∠B+∠3+∠C+∠4=∠A+∠B+∠C.∠∠BDC=∠A+∠B+∠C.结论2:AB+AC>BD+CD证明:如解图,延长BD交AC于点E,则AB+AE>BD+DE , DE+CE>CD,∠AC=AE+CE,∠AB+AC=AB+AE+CE>BD+DE+CE>BD+CD.巧学巧记简记:“凹角等于凸角之和”.拓展延伸也可以连接BC,使用三角形内角和定理来证明,同学们可以试试哦.:AOBAOCS S BD =:AOB COBS S AE =:BOC AOCSSBF =怎么用? 1.找模型遇到共边的两个三角形的面积相关问题,考虑用“燕尾”型基础模型2 2.用模型通过模型将面积问题转化为边的问题 满分技法燕尾相邻的两个三角形共底不等高,常根据三角形的面积公式“12×底×高”可推导“共底不等高”的三角形的面积比即为应高的比. 结论分析 结论3:∠::;AOBAOCSSBD CD =证明:如解图,分别过点B ,C 作 BH , CG 垂直于AD 交于点H , G ,在∠ABC 中,∠11,,22AOBAOCSAO BH S AO CG ==∠11:::,22AOB AOCSSAO BH AO CG BH CG ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭在∠BHD 和∠CGD 中,∠BHD =∠CGD =90°,∠BDH =∠CDG , ∠∠BHD ∠∠CGD ,∠BH BDCG CD =, ∠::.AOBAOCSSBD CD =典例小试例1如图,已知点D ,E 分别在∠ABC 的边AB ,AC 上,将∠A 沿DE 折叠 (点拨:折叠产生相等的角)使点A 落在点F 的位置,已知∠A =50°(点拨:∠F =50°),∠1=130°,则∠2的度数为( ) A .130° B .120° C .150° D .140°考什么?三角形外角的性质,折叠的性质思路点拨 折叠产生三角形全等,即ADE FDE ∆≅∆例2(2021河北)如图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且∠A ,∠B ,∠E 保持不变.为了舒适,需调整∠D 的大小(点拨:先分析哪个角的大小随着D 点变化),使∠EFD =110°,则图中∠D 应(填“增加”或“减少”)____度.考什么?三角形的内角和,对顶角相等实战实演1.将一副直角三角板如图放置,使两直角边重合,则∠1的度数为 () A .75° B .105° C .135° D .165°2.如图,是一块不规则的纸片,∠ABC =∠DEF = 80°,则∠A +∠C +∠D +∠F 的度数为( )A . 80°B . 160°C .240°D . 360°3.如图,∠A = 45°, ∠BDC = 135°,∠ABE =13∠ABD ,∠ACE =13∠ACD ,则∠BEC 的度数是( )A . 30°B .45°C .75°D .90°4.如图,矩形ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接AF ,CE 交于点G ,若矩形ABCD 的面积为3,则四边形AGCD 的面积为________5.如图,在∠ABC 中,点 D ,E 分别在BC ,AC 边上,AD 与BE 交于点F ,若CD =3BD ,EC =4AE ,四边形CDFE 的面积是10,则∠ABC 的面积为________模型10 “风筝”型模型展现基础模型怎么用?1.找模型三角形折叠或者在角内部的角容易产生“风筝”型2.用模型三角形外角性质是解决问题的关键结论分析结论1:∠DBF+∠ECF= ∠A+∠F证明:如解图,连接AF,∠∠DBF是∠ABF的外角,∠∠DBF=∠BAF+∠BF A.∠∠FCE是∠ACF的外角,∠∠FCE=∠CAF+∠CF A,∠∠DBF+∠FCE=∠BAF+∠BF A+∠CAF+∠CF A=∠BAC+∠BFC,即∠DBF+∠ECF= ∠BAC+∠BFC.怎么用?1.找模型遇到与四边形(含对角线)相关的面积问题,考虑用“风筝”型2.用模型共边三角形面积问题可转化为线段问题例1如图,已知点D,E分别在∠ABC的边AB,AC上,将∠A沿DE 折叠(注:折叠性质产生相等的角,且有“风筝”型),使点A落在BC上,对应点为F,已知∠B=50°,∠C=60°,则么∠1+∠2的度数为()A.100°B. 120°C. 140°D. 135°例2如图,∠ABC中,AB=BC,(等腰三角形)延长AB,AC至点D,E,点F是∠DAE内部一点,连接BF,CF.若∠ABC= 40°,∠F= 50°则∠DBF+∠ECF(寻找与求解有关的角度关系)的度数为()A. 90°B. 100°C. 110°D. 120°实战实演1.如图,在平行四边形ABCD中,∠B= 50°,点E是BC上一点,将∠ABE沿边AE翻折得到∠AFE,延长BA至点M.若∠FEC=70°,则∠MAF的度数为()A. 20° B.30° C. 40° D. 50°2.如图,在等边∠ABC中,点D 、E 分别是AB, BC边上一点,把∠BDE沿DE 折叠,使点B落在点B'处, DB', EB'分别交边AC于点F、G ,若∠ADF=70°,则∠AGE的度数为.3.如图,在四边形ABCD中,点E, F分别是AD, BC上的点,将四边形ABCD 沿直线EF折叠,若∠A =130°, ∠B =110°,则∠1+∠2的度数为.4.如图,在四边形ABCD中,对角线AC , BD相交于点E ,∠ADE , ∠ABE ,∠CDE 的面积分别为2,3,4,则∠BCE的面积为, AE : CE的值为.5.如图,平行四边形ABCD 的对角线交于点O,点E , F分别在BC , CD上,连接EF交OC于点G ,连接OE , OF , S∠OEF= S∠ODF =2S∠CEF, S∠BOE =6,则∠OCF的面积为;∠GCE的面为.模型11 角平分线模型模型展现基础模型结论分析结论: P A = PB , OA = OB , ∠APO = ∠BPO 证明:OP 平分∠MON , ∠∠AOP = ∠BOP ,在∠AOP 和∠BOP 中,90AOP BOPOAP OBP OPOP ∠=∠∠=∠==∠∠AOP ∠∠BOP ,∠P A = PB , OA = OB , ∠APO = ∠BPO .怎么用? 1.找模型遇到图形中含角平分线,考虑用角平分线模型 2.用模型一般直接用角平分线的性质,或者构造等腰三角形或全等三角形解决线段和角度问题模型拓展满分技法角平分线性质:角平分线上的点到角两边的距离相等.碰到角平分线,常需要截相等线段来构造三角形全等或者作平行线产生等腰三角形来解决问题.例1(2021青海)如图,在四边形ABCD中, ∠A =90°, AD=3,BC=5,对角线BD平分∠ABC(点拨:考虑角平分线的性质),则∠BCD 的面积为A .8B .7.5 C.15 D .无法确定考什么?角平分线的性质,三角形的面积计算公式思路点拨已知角平分线+边的垂直(直角),考虑作垂直,应用角平分线上的点到角两边的距离相等.例2(2019青岛)如图,BD是∠ ABC的角平分线, AE∠BD(点拨:角平分线的垂线产生全等),垂足为 F .若∠ABC =35°, ∠C =50°,则∠CDE 的度数为A .35°B .40°C .45°D .50°考什么?角平分线的性质,三角形的内角和,全等三角形的判定与性质,三角形的内外角关系,等腰三角形的性质思路点拨已知角平分线+角平分线的垂线,构造出等腰三角形.例3如图,已知∠ABC的平分线交AC于点E ,过点E作DE∠BC(点拨:过角平分线上的点作平行线产生等腰三角形及角相等),交AB于点D.若∠A =70°, ∠AED =50°, BD =2,则BE长为.考什么?角平分线的性质,平行线的性质,三角形的内角和,等腰三角形的判定与性质,特殊角的三角函数值思路点拨已知角平分线+平行线,构造出等腰三角形.实战演练1.如图,已知三角形ABC 中, ∠ABC =60°, BD 是∠ABC的平分线, CE ∠AB于点E ,交BD于点F,若EF =4,则FC 的长为.2.如图,在∠ABC中, BD平分∠ABC,以点B为圆心,AB长为半径画弧,交BC于点E,连接DE,已知∠A=70° ,则∠CED的度数为______.3.如图,在∠ABC中,D,E分别是AB,AC的中点,CF平分∠ACB,交DE于点F,若AC=10,BC=12,则DF的长为________.4.如图,在矩形ABCD中,点E,F分别是BC,CD上的点,连接EF,AE,AF,若AE,AF恰好平分∠BEF,∠DFE.(1)则∠EAF的度数为__________;(2)求证:四边形ABCD是正方形;(3)若BE=EC=3,则DF的长为________.模型12 双角平分线模型模型展现基础模型111怎么用?1. 找模型三角形中,遇到两角平分线,考虑用双角平分线模型2.用模型通过三角形的内角和,内外角关系及角平分线的性质,建立两角之间的数量关系结论分析结论1:∠D=90°+12∠A证明:∠ BD平分∠ABC,CD平分∠ACB∠∠DBC=12∠ABC,∠DCB=12∠ACB∠∠D= 180°-(∠DBC+∠DCB)= 180°-(12∠ABC+12∠ACB)=180°-12(∠ABC+∠ACB)= 180°-12(180°-∠A)=90°+12∠A拓展延伸结论2的证明同学们可参考结论1和结论3,利用三角形的内外角关系进行证明.结论3:∠D =90°-12∠A证明:∠BD平分∠EBC,CD平分∠FCB,∠∠DBC=12∠EBC,∠DCB=12∠FCB,∠∠D= 180°-(∠DBC+∠DCB)= 180°-(12∠EBC +12∠FCB)= 180°-12(∠ACB+∠A+∠ABC+∠A)= 180°-12( 180°+∠A )= 90°-12∠A.模型拓展333111满分技法若将角平分线改为三等分角线,同样根据三角形的内角和及角度的倍数关系求解.典例小试例1 如图,在∠ABC中,∠ B=40°,CD∠AB于点D,∠BCD和∠BDC的平分线相交于点E(结合图形可知是双内角平分线型),则∠E的度数为()A.105°B.110°C.140°D.145°考什么?角平分线的性质,三角形的内角和万唯中考几何模型例2如图,在四边形ABCD中,∠DAB的平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=()A. 10°B.15° C.30° D.40°考什么?角平分线的性质,三角形外角的性质,三角形的内角和思路点拨结合图形可知两角平分线分别为内角、外角平分线,根据“一内一外”角平分线结论求解即可.实战实演1.如图,在∠ABC中, ∠C= 110°,AE平分∠DAB,延长EA,交∠ABC的平分线于点F,则∠F= 。
2021年中考数学专项复习 专题 三角形全等的相关证明及计算含答案
专题二三角形全等的相关证明及计算1.如图,线段AC、BD相交于点E,AE=DE,BE=CE.求证:∠B=∠C.第1题图2.已知,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EA D.第2题图3.如图,在Rt△ACB和Rt△ADB中,∠C=∠D=90°,AD=BC,AD、BC相交于点O.求证:CO=DO.第3题图4.如图,AB=AD,AC=AE,∠BAE=∠DA C.求证:∠C=∠E.第4题图5.如图,点E,F在线段BD上,且BE=DF,AE=CF,AD=C B.求证:∠A=∠C.第5题图6.如图,D是AC上一点,AB=AD,DE∥AB,∠B=∠DAE.求证:BC=AE.第6题图7.如图,已知点E,C在线段BF上,BE=CF,AC∥DF,请添加一个条件(不得添加辅助线),使得△ABC ≌△DEF,并说明理由.第7题图8.如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H,若AB=C D.求证:AG=DH.第8题图9.如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.第9题图10.如图,在△ABC中,D是BC边上一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.第10题图参考答案专题二 三角形全等的相关证明及计算1. 证明:在△AEB 和△DEC 中,⎩⎪⎨⎪⎧AE =DE ,∠AEB =∠DEC ,BE =CE ,∴△AEB ≌△DEC (SAS).∴∠B =∠C .2. 证明:∵∠ECB =70°,∴∠ACB =110°.又∵∠D =110°,∴∠ACB =∠D .∵AB ∥DE ,∴∠CAB =∠E .在△ABC 和△EAD 中,⎩⎪⎨⎪⎧∠ACB =∠D ,∠CAB =∠E ,AB =EA ,∴△ABC ≌△EAD (AAS ).3. 证明:在Rt △ACB 和Rt △BDA 中,∠C =∠D =90°,⎩⎪⎨⎪⎧AB =BA ,AD =BC , ∴Rt △ACB ≌Rt △BDA (HL).∴∠CBA =∠DAB .∴OA =OB .又∵AD =BC ,∴CO =DO .4. 证明:∵∠BAE =∠DAC ,∴∠BAE +∠CAE =∠DAC +∠CAE .∴∠BAC =∠DAE .在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).∴∠C =∠E .5. 证明:∵BE =DF ,∴BE -EF =DF -EF ,即BF =DE .在△ADE 和△CBF 中,⎩⎪⎨⎪⎧DE =BF ,AE =CF ,AD =CB ,∴△ADE ≌△CBF (SSS).∴∠A =∠C .6. 证明:∵DE ∥AB ,∴∠CAB =∠EDA .在△CBA 和△EAD 中,⎩⎪⎨⎪⎧∠B =∠DAE ,AB =AD ,∠CAB =∠EDA ,∴△CBA ≌△EAD (ASA).∴BC =AE .7. 解:添加AC =DF .(答案不唯一)理由:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF .∵AC ∥DF ,∴∠ACB =∠DFE .在△ABC 与△DEF 中,⎩⎪⎨⎪⎧AC =DF ,∠ACB =∠DFE ,BC =EF ,∴△ABC ≌△DEF (SAS).8. 证明:∵AB ∥CD , ∴∠A =∠D .又∵CE ∥BF , ∴∠AHB =∠DGC .在△ABH 和△DCG 中,⎩⎪⎨⎪⎧∠AHB =∠DGC ,∠A =∠D ,AB =CD ,∴△ABH ≌△DCG (AAS ).∴AH =DG .又∵AH =AG +GH , DG =DH +GH ,∴AG =DH .9. (1)证明:∵四边形ABCD 是菱形,∴AD ∥BC ,AB =BC .∴∠A =∠CBF .∵BE ⊥AD ,CF ⊥AB ,∴∠AEB =∠BFC =90°.在△ABE 和△BCF 中,⎩⎪⎨⎪⎧∠AEB =∠BFC ,∠A =∠CBF ,AB =BC ,∴△ABE ≌△BCF (AAS ).∴AE =BF ;(2)解:∵BE ⊥AD ,点E 恰好是AD 中点,∴BE 垂直平分AD .∴BD =AB =2.10. (1)证明:∵BE 平分∠ABC ,∴∠ABE =∠DBE .在△ABE 与△DBE 中,⎩⎪⎨⎪⎧AB =DB ,∠ABE =∠DBE ,BE =BE ,∴△ABE ≌△DBE (SAS);(2)解:∵∠A =100°,∠C =50°,∴∠ABC =30°.∴∠ABE =12∠ABC =15°. ∴∠AEB =180°-∠A -∠ABE =180°-100°-15°=65°.。
人教版九年级数学专题复习:和三角形有关的角
2020年中考数学人教版专题复习:与三角形有关的角一、学习目标:1. 了解与三角形有关的角(如内角、外角);2. 会用平行线的性质与平角的定义证明三角形内角和等于180°;3. 了解三角形的一个外角等于与它不相邻的两个内角的和.二、重点、难点:重点:三角形内角和定理的运用和三角形内角与外角的关系.难点:证明的必要性和添加辅助线的方法.三、考点分析:三角形的内角和定理及三角形外角的性质在中考中多以填空题、选择题和计算题的形式出现,有时和其他知识结合在一起考查,一般情况下,题目的难度都不大.知识梳理知识点一:三角形的内角和定理三角形的内角和等于180°.证明三角形内角和定理的几种辅助线的作法:(1)如图①,过点A 作DE ∥BC ;(2)如图②,过BC 上任意一点,作DE ∥AC ,DF ∥AB ;(3)如图③,过点C 作射线CD ∥AB .A BC AB C A B C D E D EF D ①②③知识点二:三角形的外角及其性质三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质1:三角形的一个外角等于与它不相邻的两个内角的和.性质2:三角形的一个外角大于与它不相邻的任何一个内角.ADBC典型例题知识点一:三角形的内角和定理例1.已知一个三角形三个内角的度数比是1∶5∶6,则其最大内角的度数为()A. 60°B. 75°C. 90°D. 120°思路分析:题意分析:看到题目中出现比例关系时,要想到按比例关系设未知数.解题思路:由于题目中出现比例“1∶5∶6”,我们可设三角形三个内角分别为x°、5x°、6x°,根据三角形内角和定理,三个内角的和为180°,列方程求解即可.解答过程:设三角形三个内角分别为x°、5x°、6x°,根据题意得:x°+5x°+6x°=180°解得x=15.则最大内角的度数为6x°=90°.故选C.解题后的思考:出现与三角形的内角有关的题目时,注意题目中隐含着一个相等关系——三角形三个内角的和为180°.例2.如图所示,D是△ABC的BC边上一点,∠B=∠BAD,∠ADC=80°,∠BAC=70°,求:(1)∠B的度数;(2)∠C的度数.AB CD思路分析:题意分析:本题考查三角形内角和定理的应用.解题思路:由∠ADB 与∠ADC 互补可先求出∠ADB ,再根据三角形内角和定理在△ABD 中求出∠B ,在△ABC 中求出∠C .解答过程:(1)因为∠ADC =80°,所以∠ADB =180°-∠ADC =100°.在△ABD 中,∠B +∠BAD +∠ADB =180°,则∠B =∠BAD =12(180°-∠ADB )=40°.(2)在△ABC 中,因为∠BAC =70°,所以∠C =180°-∠BAC -∠B =70°.解题后的思考:解答这类问题时注意角的多重属性(即属于一个三角形的内角还属于另一个三角形的内角).例3. 如图所示,在△ABC 中,∠B =60°,∠C =40°,AD 是BC 边上的高,AE 平分∠BAC ,求∠DAE 的度数.AB CE思路分析:题意分析:此题综合考查了三角形的内角和定理、三角形角平分线和高的定义以及直角三角形两个锐角互余等知识.解答过程:因为AE 平分∠BAC ,∠B =60°,∠C =40°,所以∠CAE =12∠BAC =12(180°-∠B -∠C )=40°.又因为AD 是BC 边上的高,所以∠C +∠DAC =90°,所以∠DAC =90°-∠C =50°,所以∠DAE =∠DAC -∠CAE =10°.解题后的思考:通过本例题可以得出一个重要结论:从三角形一个顶点作高线和角平分线,它们所夹的角等于三角形另两个角的差的一半.例4. 如图所示,已知在△ABC 中,∠A =60°,∠B 与∠C 的角平分线相交于点D .求∠BDC 的度数.AB C D思路分析:题意分析:本题综合考查三角形内角和定理、三角形角平分线的性质.解题思路:要求∠BDC 的度数,需要利用三角形的内角和定理,设法沟通已知和未知的关系. 解答过程:如图所示,在△BDC 中,∠BDC =180°-(∠DBC +∠DCB ).因为∠DBC =12∠ABC ,∠DCB =12∠ACB ,所以∠DBC +∠DCB =12(∠ABC +∠ACB ).在△ABC 中,∠ABC +∠ACB =180°-∠A =180°-60°=120°,所以∠DBC +∠DCB =12×120°=60°.所以∠BDC =180°-(∠DBC +∠DCB )=180°-60°=120°.解题后的思考:在三角形中,两内角的平分线相交构成的钝角等于90°加上第三个角的一半,即∠BDC =90°+12∠A .小结:三角形内角和等于180°,揭示了三角形三个内角之间的关系,同时为求角的问题提供了一个应用的平台,灵活而有技巧性地运用它,可以解决很多问题.知识点二:三角形的外角例5. 如图所示,△ABC 中,∠A =90°,∠D 是∠B 、∠C 的外角平分线的夹角,求∠D 的度数.ABCD EF 1234思路分析:题意分析:可用邻补角的性质解答.解题思路:要求∠D 的度数,只需要知道∠3+∠4的度数,因为∠3、∠4不可能分别求出,故应将∠3+∠4视为一个整体进行整体求值.解答过程:因为BD 和CD 分别是∠CBE 和∠BCF 的角平分线,所以2∠3+∠1=180°,2∠4+∠2=180°,又因为∠1+∠2=90°,所以∠3+∠4=135°.所以∠D =180°-135°=45°.解题后的思考:本题还可以应用三角形的外角性质来解答.例6. 如图所示,∠C =48°,∠E =25°,∠BDF =140°,求∠A 与∠EFD 的度数.ABC DE F思路分析:题意分析:∠BDF是△BCD的外角,也是△DEF的外角,无论运用哪种关系都可以求解.解题思路:由∠BDF是△BCD的一个外角,且∠C已知,可求∠CBD的度数.通过∠CBD是△ABE的外角,可求∠A,通过∠EFD是△ACF的外角可求∠EFD.解答过程:因为∠BDF=∠C+∠CBD,∠C=48°,∠BDF=140°,所以∠CBD=92°,因为∠CBD=∠A+∠E,∠E=25°,所以∠A=67°,∠EFD=∠A+∠C=115°.解题后的思考:求一个角的度数,应该首先弄清这个角在哪个三角形中,是外角还是内角,跟已知的角有什么联系.例7.如图所示,已知CE是△ABC外角∠ACD的平分线,CE交BA延长线于点E.求证:∠BAC>∠B.ABCD E12思路分析:题意分析:解答涉及角的不等关系的问题时,要想到利用“三角形的一个外角大于与它不相邻的任何一个内角”的性质.解题思路:要证∠BAC>∠B,由于∠BAC、∠B在同一三角形中,没有直接的定理可用,必须通过其他的角进行转换.解答过程:在△ACE中,∠BAC>∠1(三角形的一个外角大于与它不相邻的任何一个内角).同理在△BCE中,∠2>∠B,因为∠1=∠2,所以∠BAC>∠B.解题后的思考:本题中∠1=∠2的作用非常关键,它把∠B和∠2的不等关系与∠BAC和∠1的不等关系联系起来了.例8.(1)如图①所示,CD是直角三角形斜边AB上的高,图中有与∠A相等的角吗?为什么?(2)如图②所示,把图①中的CD 平移得到ED ,图中还有与∠A 相等的角吗?为什么?(3)如图③所示,把图①中的CD 平移得到ED ,交BC 的延长线于E .图中还有与∠A 相等的角吗?为什么?A B C AB CA B C EE ①②③思路分析:题意分析:无论CD 移动到什么位置,与AB 的垂直关系不变.且△ABC 各内角的度数、∠BC (E )D 的度数保持不变.解题思路:无论高CD 怎样移动,因为∠ACB =90°,∠BDC (E )=90°,所以总有∠A +∠B =90°,∠B +∠BC (E )D =90°,根据同角的余角相等,可得∠A =∠BC (E )D . 解答过程:(1)有∠BCD =∠A .理由:因为∠ACB =90°,所以∠A +∠B =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°,所以∠A =∠BCD .(2)有∠A =∠BED .理由:因为∠ACB =90°,所以∠A +∠B =90°.因为DE ⊥AB ,所以∠BED +∠B =90°,所以∠A =∠BED .(3)有∠BED =∠A .理由:因为∠ACB =90°,所以∠A +∠B =90°.因为DE ⊥AB ,所以∠BED +∠B =90°,所以∠A =∠BED .解题后的思考:当图形中有线段运动时,要从变化中寻找不变量,这是解答此题的关键. 小结:在有关三角形角度的计算中“外角等于和它不相邻的两个内角的和”这一性质经常起到桥梁的作用,它把三角形的内角和外角联系起来了.提分技巧和三角形有关的角的度数问题一般有两类:一类是求角的度数,解答这类问题时,通常要综合运用三角形的内角和定理、三角形外角的性质等.另一类是求证角之间的不等关系,解答这类问题时,应该依据“三角形的一个外角大于与它不相邻的任何一个内角”这一性质求解.分析解答这两类问题的共同之处是要分清已知角或所求角是哪一个三角形的内角,或是哪一个三角形的外角.同步测试一、选择题1. 在△ABC 中,∠A =2∠B =80°,则∠C 的度数为( )A . 30°B . 40°C . 50°D . 60°2. 一个三角形的三个内角中至多有( )A . 一个锐角B . 两个锐角C . 一个钝角D . 两个直角3. 如图所示,∠A +∠B +∠C +∠D +∠E +∠F 等于( )A . 480°B . 360°C . 240°D . 180°A BC D E F4. 三角形的一个外角小于与它相邻的内角,这个三角形是( )A . 直角三角形B . 锐角三角形C . 钝角三角形D . 不确定5. 如图所示,已知直线AB ∥CD ,∠C =115°,∠A =25°,则∠E =( )A . 70°B . 80°C . 90°D . 100° A BC D EF6. 如图所示,已知D 是△ABC 中BC 边上的一点,连接AD ,E 是AD 上的任意一点,连接CE ,则∠ADB 和∠DCE 的大小关系是( )A . ∠ADB =∠DCEB . ∠ADB >∠DCEC . ∠ADB <∠DCED . 大小关系不确定B C D E*7. 如图所示,∠C =∠ABC =2∠A ,BD 是AC 边上的高,则∠DBC 等于( )A . 36°B . 18°C . 72°D . 28°AB C D**8. 如图所示,在直角△ADB 中,∠D =90°,C 为AD 上一点,则x 可能是()A . 10°B . 20°C . 30°D . 40°ABD C 6x二、填空题9. 如图所示,l 1∥l 2,∠α=__________度.l 1l 2α25°120°10. 如图所示,用大于号“>”表示∠A 、∠1、∠2三者的关系是__________.B C 1211. 在△ABC 中,∠A ∶∠B =2∶1,∠C =60°,那么∠A =__________.12. 如图所示,∠1+∠2+∠3+∠4=__________度.40°1234**13. 三角形中至少有一个角不小于__________度.**14. 在△ABC 中,若∠A -∠B =50°,最小角为30°,则最大角为__________.三、解答题15. 在△ABC 中,∠A +∠B =100°,∠C =2∠B .求∠A 、∠B 、∠C 的度数.16. 如图所示,∠BAF 、∠CBD 、∠ACE 是△ABC 的三个外角,试求∠BAF +∠CBD +∠ACE 的度数.123ABC E FD*17. 如图所示,P 是△ABC 中∠B 的角平分线与△ABC 的外角∠ACE 平分线的交点,则∠A =2∠P ,试说明理由.AB C EP18. 已知:如图所示,∠1是△ABC 的一个外角,E 为边AC 上一点,延长BC 到D ,连接DE .试说明∠1>∠2的理由.AB C DE F 12345四、拓广探索19. (1)如图甲所示,在五角星中,求∠A +∠B +∠C +∠D +∠E 的度数.(2)把图乙、丙、丁叫做蜕化的五角星形,问它们的五角之和与五角星形的五角之和仍相等吗?A B CD E 甲A BC D E 乙A B C D E 丙ABC DE 丁试题答案一、选择题1. D2. C3. B 解析:∠A+∠B+∠C+∠D+∠E+∠F=180°×3-180°=360°.4. C5. C6. B7. B 解析:因为∠A+∠ABC+∠C=180°,所以∠A+2∠A+2∠A=180°,解得∠A=36°.所以∠C=2∠A=72°.在△BCD中,∠DBC=180°-90°-∠C=18°.8. B 解析:因为∠ACB是△BCD的外角,所以∠ACB=6x>90°,即x>15°.又因为∠ACB是一个钝角,所以6x<180°,即x<30°.所以x在15°到30°之间,故选B.二、填空题9. 3510.∠1>∠2>∠A11.80°解析:设∠B=x,则∠A=2x,则x+2x+60°=180°,解得x=40°,则∠A=2x=80°.12. 280解析:因为∠1+∠2+40°=180°,∠3+∠4+40°=180°,所以∠1+∠2=140°,∠3+∠4=140°,所以∠1+∠2+∠3+∠4=280°.13. 60解析:因为三角形的三个内角之和等于180°,如果三角形的每个内角都小于60°,则三角形的三个内角之和一定小于180°,这就与定理矛盾了,所以三角形中至少有一个角不小于60°.14. 80°或100°解析:因为∠A-∠B=50°,所以最小角有可能是∠B或是∠C.(1)若∠B是最小角,则∠A-30°=50°,得∠A=80°,则∠C=180°-80°-30°=70°,这个三角形的三个内角分别是80°、30°、70°,则最大角是80°.(2)若∠C是最小角,则∠A+∠B=180°-30°=150°,又因为∠A-∠B=50°,所以∠A=50°+∠B,即50°+∠B+∠B=150°,解得∠B=50°,所以∠A=100°,这个三角形的三个内角分别是100°、50°、30°,则最大角是100°.综上所述,最大角为80°或100°.三、解答题15.解:因为∠A+∠B+∠C=180°,∠A+∠B=100°,所以∠C=180°-100°=80°,所以2∠B=80°,所以∠B=40°,所以∠A=180°-40°-80°=60°.16.解:由三角形的外角的性质可知:∠BAF=∠2+∠3,∠CBD=∠1+∠3,∠ACE=∠1+∠2.由此可将求三角形的三个外角和的问题转化为求三角形的内角和.解题过程如下:因为∠BAF、∠CBD、∠ACE是△ABC的三个外角,所以∠BAF=∠2+∠3,∠CBD=∠1+∠3,∠ACE=∠1+∠2,所以∠BAF+∠CBD+∠ACE=2(∠1+∠2+∠3).又因为∠1+∠2+∠3=180°,所以∠BAF+∠CBD+∠ACE=360°.17.解:因为BP、CP分别是∠ABC、∠ACE的平分线,所以∠ABC=2∠PBC,∠ACE=2∠PCE.又因为∠A=∠ACE-∠ABC,所以∠A=2(∠PCE-∠PBC).又因为∠P=∠PCE-∠PBC,所以∠A=2∠P.18.解:因为∠1是△ABC的一个外角,所以∠1>∠3.因为∠3是△DCE的一个外角,所以∠3>∠2,所以∠1>∠2.四、拓广探索19.解:(1)如图所示,标注两个字母.因为∠CGD是△ACG的一个外角,所以∠CGD=∠A+∠C,因为∠EFD是△EFB的一个外角,所以∠EFD=∠B+∠E.所以∠CGD+∠EFD=∠A+∠B+∠C+∠E.又因为∠CGD+∠EFD+∠D=180°,所以∠A+∠B+∠C+∠D+∠E=180°.(2)仍然相等,用类似于(1)中的方法可以证明.AB EGF。
2023年九年级中考数学复习讲义 三角形及其全等
2023年中考数学复习讲义三角形及其全等第一部分:知识点精准记忆一、三角形的基础知识1.三角形的概念:由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边一半.二、全等三角形1.三角形全等的判定定理:(1)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(2)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(3)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(4)角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”);(5)对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.三、线段垂直平分线与角平分线1.线段的轴对称性:线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴.2.定义:垂直于一条线段,并且平分这条线段的直线,叫做这条线段的垂直平分线.注:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.注:对于含有垂直平分线的题目,首先考虑将垂直平分线上的点与线段两端点连接起来.4.角是轴对称图形,角平分线所在的直线是它的对称轴.5.性质:角的平分线上的点到这个角的两边的距离相等.第二部分:考点典例剖析考点一: 三角形的三边关系【例1-1】(2021·广西柳州市·中考真题)若长度分别为3,4,a 的三条线段能组成一个三角形,则整数a 的值可以是________.(写出一个即可)【例1-2】(2021·江苏淮安·中考真题)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是___.考点二: 三角形的内角和外角【例2-1】(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【例2-2】(2021·江苏宿迁市·中考真题)如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是( )A .30°B .40°C .50°D .60°【例2-3】(2021·浙江绍兴市·中考真题)如图,在中,,点D ,E 分別在边AB ,AC 上,,连结CD ,BE .(1)若,求,的度数.(2)写出与之间的关系,并说明理由.考点三:三角形中的重要线段【例3-1】(2022•大庆)下列说法不正确的是( )A .有两个角是锐角的三角形是直角或钝角三角形B .有两条边上的高相等的三角形是等腰三角形C .有两个角互余的三角形是直角三角形D .底和腰相等的等腰三角形是等边三角形ABC 40A ∠=︒BD BC CE ==80ABC ∠=︒BDC ∠ABE ∠BEC ∠BDC∠【例3-2】(2021·江苏泰州市·中考模拟)如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是( )A .点B .点C .点D .点【例3-3】如图,在ABC 中,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ;再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ;连结AP 并延长交BC 于点D .则下列说法正确的是( )A .AD BD AB +<B .AD 一定经过ABC 的重心 C .BAD CAD ∠=∠D .AD 一定经过ABC 的外心考点四: 垂直平分线与角平分线的性质 【例4-1】(2021·青海中考真题)如图,在四边形ABCD 中,∠A=90°,AD=3,BC=5,对角线BD 平分∠ABC ,则△BCD 的面积为( )A .7.5B .8C .15D .无法确定【例4-2】在△ABC 中,∠BAC =115°,DE 、FG 分别为AB 、AC 的垂直平分线,则∠EAG 的度数为 A B C D E F G ABC∆D E FGA .50°B .40°C .30°D .25°【例4-3】如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于D 点,AB =4,BD =5,点P 是线段BC 上的一动点,则PD 的最小值是__________.考点五: 全等三角形的性质与判定【例5-1】2020·湖北省直辖县级行政单位·中考真题)如图,已知和都是等腰三角形,,交于点F ,连接,下列结论:①;②;③平分;④.其中正确结论的个数有( )A .1个B .2个C .3个D .4个【例5-2】(2021·陕西中考真题)如图,,,点在上,且.求证:.【例5-3】(2021·广东广州·中考真题)如图,点E 、F 在线段BC 上,,,ABC ADE 90BAC DAE ∠=∠=︒,BD CE AF BD CE =BF CF ⊥AF CAD ∠45AFE ∠=︒//BD AC BD BC =E BC BE AC =D ABC ∠=∠//AB CD A D ∠=∠,证明:.【例5-4】(2021·江苏淮安·中考真题)(知识再现)学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等(简称HL 定理)”是判定直角三角形全等的特有方法.(简单应用)如图(1),在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别在边AC 、AB 上.若CE =BD ,则线段AE 和线段AD 的数量关系是 .(拓展延伸)在△ABC 中,∠BAC =(90°<<180°),AB =AC =m ,点D 在边AC 上. (1)若点E 在边AB 上,且CE =BD ,如图(2)所示,则线段AE 与线段AD 相等吗?如果相等,请给出证明;如果不相等,请说明理由.(2)若点E 在BA 的延长线上,且CE =BD .试探究线段AE 与线段AD 的数量关系(用含有a 、m 的式子表示),并说明理由.【例5-5】(2020·山东烟台市·中考真题)如图,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF ,连接CF .(问题解决)(1)如图1,若点D 在边BC 上,求证:CE+CF =CD ;(类比探究)(2)如图2,若点D 在边BC 的延长线上,请探究线段CE ,CF 与CD 之间存在怎样的数量关系?并说明理由.考点六: 三角形全等综合【例6-1】(2022·北京)在ABC 中,90ACB ∠=,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC = BE CF =AE DF=αα(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF ,若AF EF ⊥,求证:BD AF ⊥; (2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.【例6-2】(2022·山东泰安·中考真题)正方形ABCD 中,P 为AB 边上任一点,AE DP ⊥于E ,点F 在DP 的延长线上,且DE EF =,连接AF BF 、,BAF ∠的平分线交DF 于G ,连接GC .(1)求证:AEG △是等腰直角三角形;(2)求证:2AG CG DG +=;(3)若2AB =,P 为AB 的中点,求BF 的长.第三部分:中考真题一.选择题1.(2022•鄂尔多斯)如图,15AOE ∠=︒,OE 平分AOB ∠,//DE OB 交OA 于点D ,EC OB ⊥,垂足为C .若2EC =,则OD 的长为( )A .2B .23C .4D .43+2.(2022•荆门)数学兴趣小组为测量学校A 与河对岸的科技馆B 之间的距离,在A 的同岸选取点C ,测得30AC =,45A ∠=︒,90C ∠=︒,如图,据此可求得A ,B 之间的距离为( )A .203B .60C .302D .303.(2022•湘西州)如图,在Rt ABC ∆中,90A ∠=︒,M 为BC 的中点,H 为AB 上一点,过点C 作//CG AB ,交HM 的延长线于点G ,若8AC =,6AB =,则四边形ACGH 周长的最小值是( )A .24B .22C .20D .184.(2022•西宁)若长度是4,6,a 的三条线段能组成一个三角形,则a 的值可以是( )A .2B .5C .10D .117.(2022•西宁)如图,60MON ∠=︒,以点O 为圆心,适当长为半径画弧,交OM 于点A ,交ON 于点B ;分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧在MON ∠的内部相交于点P ,画射线OP ;连接AB ,AP ,BP ,过点P 作PE OM ⊥于点E ,PF ON ⊥于点F .则以下结论错误的是( )A .AOB ∆是等边三角形B .PE PF =C .PAE PBF ∆≅∆D .四边形OAPB 是菱形5.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.5-B.4C.7D.86.(2022•大连)如图,在ABC∆中,90ACB∠=︒.分别以点A和点C为圆心,大于12 AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若3AB=,则CD的长是()A.6B.3C.1.5D.1 7.(2022•青海)如图,在Rt ABC∆中,90ACB∠=︒,D是AB的中点,延长CB至点E,使BE BC=,连接DE,F为DE中点,连接BF.若16AC=,12BC=,则BF的长为( )A.5B.4C.6D.88.(2022•张家界)如图,点O是等边三角形ABC内一点,2OA=,1OB=,3OC=,则AOB∆与BOC∆的面积之和为()A 3B3C33D39.(2022•长沙)如图,在ABC∆中,按以下步骤作图:①分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若22AB=AM的长为()A.4B.2C3D2 10.(2022•海南)如图,直线//m n,ABC∆是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若1140∠=︒,则2∠的度数是()A.80︒B.100︒C.120︒D.140︒11.(2022•黑龙江)如图,ABC∆中,AB AC=,AD平分BAC∠与BC相交于点D,点E 是AB的中点,点F是DC的中点,连接EF交AD于点P.若ABC∆的面积是24, 1.5PD=,则PE的长是()A .90ADC ∠=︒B .DE DF =C .AD BC = D .BD CD =12.(2022•广东)下列图形中有稳定性的是( )A .三角形B .平行四边形C .长方形D .正方形13.(2022•贺州)如图,在Rt ABC ∆中,90C ∠=︒,56B ∠=︒,则A ∠的度数为( )A .34︒B .44︒C .124︒D .134︒14.(2022•永州)如图,在Rt ABC ∆中,90ABC ∠=︒,60C ∠=︒,点D 为边AC 的中点,2BD =,则BC 的长为( )A 3B .23C .2D .415.(2022•荆州)如图,直线12//l l ,AB AC =,40BAC ∠=︒,则12∠+∠的度数是( )A .60︒B .70︒C .80︒D .90︒16.(2022•宜昌)如图,在ABC ∆中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD ∆的周长为( )A .25B .22C .19D .1817.(2022•岳阳)如图,已知//l AB ,CD l ⊥于点D ,若40C ∠=︒,则1∠的度数是( )A .30︒B .40︒C .50︒D .60︒18.(2022•台湾)如图,ABC ∆中,D 点在AB 上,E 点在BC 上,DE 为AB 的中垂线.若B C ∠=∠,且90EAC ∠>︒,则根据图中标示的角,判断下列叙述何者正确?( )A .12∠=∠,13∠<∠B .12∠=∠,13∠>∠C .12∠≠∠,13∠<∠D .12∠≠∠,13∠>∠19.(2022•宜宾)如图,在ABC ∆中,5AB AC ==,D 是BC 上的点,//DE AB 交AC 于点E ,//DF AC 交AB 于点F ,那么四边形AEDF 的周长是( )A .5B .10C .15D .2020.(2022•广元)如图,在ABC ∆中,6BC =,8AC =,90C ∠=︒,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .2.5B .2C .3.5D .321.(2022•宜宾)如图,ABC ∆和ADE ∆都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC ∆内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则23CE =+.其中含所有正确结论的选项是( )A .①②④B .①②③C .①③④D .①②③④22.(2022•杭州)如图,CD AB ⊥于点D ,已知ABC ∠是钝角,则( )A .线段CD 是ABC ∆的AC 边上的高线B .线段CD 是ABC ∆的AB 边上的高线C .线段AD 是ABC ∆的BC 边上的高线D .线段AD 是ABC ∆的AC 边上的高线二.填空题1.(2020·辽宁铁岭市·中考真题)如图,在ABC 中,5,8,9===AB AC BC ,以A 为圆心,以适当的长为半径作弧,交AB 于点M ,交AC 于点N ,分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠的内部相交于点G ,作射线AG ,交BC 于点D ,点F 在AC 边上,AF AB =,连接DF ,则CDF 的周长为___________.2.(2020·辽宁营口市·中考真题)如图,△ABC 为等边三角形,边长为6,AD ⊥BC ,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE +EF 的最小值为_____.3.(2021·辽宁锦州·中考真题)如图,在△ABC 中,AC =4,∠A =60°,∠B =45°,BC 边的垂直平分线DE 交AB 于点D ,连接CD ,则AB 的长为_________________.4题4.(2021·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.5.(2020·湖北中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为_____.6.(2021·湖北十堰市·中考真题)如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,点P 是平面内一个动点,且3AP =,Q 为BP 的中点,在P 点运动过程中,设线段CQ 的长度为m ,则m 的取值范围是__________.7.如图,是一个3×3的正方形网格,则∠1+∠2+∠3+∠4= .三.解答题1.(2022铜仁)如图,点C 在BD 上,,,,⊥⊥⊥=AB BD ED BD AC CE AB CD .求证:ABC CDE △≌△.2.(2022福建)如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .3.(2022广东)如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.4.(2022大庆)如图,在四边形ABDF 中,点E ,C 为对角线BF 上的两点,,,AB DF AC DE EB CF ===.连接,AE CD .(1)求证:四边形ABDF 是平行四边形;(2)若AE AC =,求证:AB DB =.5.(2022云南)如图,在平行四边形ABCD 中,连接BD ,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,∠BDF =90°(1)求证:四边形ABDF 是矩形;(2)若AD =5,DF =3,求四边形ABCF 的面积S .6.(2022梧州)如图,在ABCD 中,E ,G ,H ,F 分别是,,,AB BC CD DA 上的点,且,BE DH AF CG .求证:EF HG =.7.(2022遵义)将正方形ABCD 和菱形EFGH 按照如图所示摆放,顶点D 与顶点H 重合,菱形EFGH 的对角线HF 经过点B ,点E ,G 分别在AB ,BC 上.(1)求证:ADE CDG ≌;(2)若2AE BE ==,求BF 的长8.(2022贵阳)如图,在正方形ABCD 中,E 为AD 上一点,连接BE ,BE 的垂直平分线交AB 于点M ,交CD 于点N ,垂足为O ,点F 在DC 上,且MF AD ∥.(1)求证:ABE FMN ≌△△;(2)若8AB =,6AE =,求ON 的长.9.(2022安徽)已知四边形ABCD 中,BC =CD .连接BD ,过点C 作BD 的垂线交AB 于点E ,连接DE .(1)如图1,若∥DE BC ,求证:四边形BCDE 是菱形;(2)如图2,连接AC ,设BD ,AC 相交于点F ,DE 垂直平分线段AC .(ⅰ)求∠CED 的大小;(ⅱ)若AF =AE ,求证:BE =CF .10.(2022玉林)问题情境:在数学探究活动中,老师给出了如图的图形及下面三个等式:①AB AC = ②DB DC = ③BAD CAD ∠=∠若以其中两个等式作为已知条件,能否得到余下一个等式成立? 解决方案:探究ABD △与ACD △全等.问题解决:(1)当选择①②作为已知条件时,ABD △与ACD △全等吗?_____________(填“全等”或“不全等”),理由是_____________;(2)当任意选择两个等式作为已知条件时,请用画树状图法或列表法求ABD ACD △≌△的概率.11.(2022北部湾)已知MON α∠=,点A ,B 分别在射线,OM ON 上运动,6AB =.(1)如图①,若90α=︒,取AB 中点D ,点A ,B 运动时,点D 也随之运动,点A ,B ,D 的对应点分别为,,A B D ''',连接,OD OD '.判断OD 与OD '有什么数量关系?证明你的结论:(2)如图②,若60α=︒,以AB 为斜边在其右侧作等腰直角三角形ABC ,求点O 与点C 的最大距离:(3)如图③,若45α=︒,当点A ,B 运动到什么位置时,AOB 的面积最大?请说明理由,并求出AOB 面积的最大值.。
中考数学一轮考点复习:三角形(考点解读+考题精析)
三角形考点解读1、了解三角形的有关概念,并探索其性质。
会证三角形全等2、能运用有关三角形的知识解决问题。
3、重点、易错点分析:4、通过证明线段或角相等来考虑三角形的性质和判定;运用勾股定理解决实际问题,三角形中重要线段的性质和判定。
确定边长的取值范围时,容易忽略是不是能构成三角形;等腰三角形注意解的不唯一性。
考题解析1.如图,已知△ABC,AB=AC,∠A=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E、F.给出以下四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;=S△ABC④S四边形AEPF上述结论始终正确的有()A.①②③B.①③C.①③④D.①②③④【考点】KY:三角形综合题.【分析】连接AP,判断出△APE≌△CPF,可得①③结论正确,同理证明△APF ≌△BPE,即可得到④正确;【解答】解:连接AP,EF,∵AB=AC,∠A=90°,∴AP⊥BC,∴∠APC=90°,∴∠APF +∠CPF=90°,∵∠EPF=∠APE +∠APF=90°,∴∠APE=∠CPF ,在等腰直角三角形ABC 中,AP ⊥BC ,∴∠BAP=∠CAP=∠C=45°,AP=CP ,在△APE 和△CPF 中, ∴△APE ≌△CPF ,∴S △APE =S △CPF ,AE=CF ,PE=PF ,∵∠EPF=90°,∴△EPF 是等腰直角三角形;即:①③正确;同理:△APF ≌△BPE ,∴S △APF =S △BPE ,∴S 四边形AEPF =S △APE +S △APF =S △ABC ,即:④正确;∵△△EPF 是等腰直角三角形,∴EF=PE ,当PE ⊥AB 时,AP=EF ,而PE 不一定垂直于AB , ∴AP 不一定等于EF ,∴②错误;故选C .2.如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF 不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C、E、D、F四点在同一个圆上,且该圆的面积最小为4π.其中错误结论的个数是()个.A.1 B.2 C.3 D.4【考点】KY:三角形综合题.【分析】①正确.连接CD.只要证明△ADE≌△CDF(SAS),即可解决问题.②错误.当E、F分别为AC、BC中点时,四边形CEDF为正方形.=××4×4=4,为定值.③错误.四边形CEDF的面积=S△ABC④错误.以EF为直径的圆的面积的最小值=π•(•2)2=2π.【解答】解:连接CD,如图1,∵∠C=90°,AC=BC=4,∵△ABC是等腰直角三角形,∴∠A=∠B=45°,∵D为AB的中点,∴CD⊥AB,CD=AD=BD,∴∠DCB=∠B=45°,∴∠A=∠DCF,在△ADE和△CDF中,∴△ADE≌△CDF(SAS),∴ED=DF,∠CDF=∠ADE,∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=90°,即∠EDF=90°,∴△DFE是等腰直角三角形,所以①正确;当E、F分别为AC、BC中点时,如图2,则AE=CE=CF=BF,DE=AE=CE,∴CE=CF=DE=DF,而∠ECF=90°,∴四边形CDFE是正方形,所以②错误;∵△ADE≌△CDF,∴S△ADE=S△CDF,∴S四边形CEDF =S△CDE+S△CDF=S△CDE+S△ADE=S△ADC=S△ABC=××4×4=4,所以③错误;∵△CEF和△DEF都为直角三角形,∴点C、D在以EF为直径的圆上,即点C、E、D、F四点在同一个圆上,∵△DEF是等腰直角三角形,∴EF=DE,当DE⊥AC时,DE最短,此时DE=AC=2,∴EF的最小值为2,∴以EF为直径的圆的面积的最小值=π•(•2)2=2π,所以④错误;故选C.3.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.【考点】KQ:勾股定理;T1:锐角三角函数的定义.【分析】先设小正方形的边长为1,然后找个与∠B有关的RT△ABD,算出AB 的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.4.如图,△ABC、△ADE中,C、E两点分别在AD、AB上,且BC与DE相交于F点,若∠A=90°,∠B=∠D=30°,AC=AE=1,则四边形AEFC的周长为何()A.2 B.2 C.2+D.2+【考点】KQ:勾股定理;KJ:等腰三角形的判定与性质;KO:含30度角的直角三角形.【分析】根据三角形的内角和得到∠AED=∠ACB=60°,根据三角形的外角的性质得到∠B=∠EFB=∠CFD=∠D,根据等腰三角形的判定得到BE=EF=CF=CD,于是得到四边形AEFC的周长=AB+AC.【解答】解:∵∠A=90°,∠B=∠D=30°,∴∠AED=∠ACB=60°,∵∠AED=∠B+∠EFB=∠ACD=∠∠CFD+∠D=60°,∴∠EFB=∠CFD=30°,∴∠B=∠EFB=∠CFD=∠D,∴BE=EF=CF=CD,∴四边形AEFC的周长=AB+AC,∵∠A=90°,AE=AC=1,∴AB=AB=,∴四边形AEFC的周长=2.故选B.5.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48【考点】KQ:勾股定理.【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE==2,于是得到结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S2=(4)2=48,故选D.6.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6【考点】KR:勾股定理的证明.【分析】观察图形可知,小正方形的面积=大正方形的面积﹣4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.【解答】解:如图所示:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选:C.7.如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【考点】KX:三角形中位线定理.【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选B.8.如图,E是△ABC中BC边上的一点,且BE=BC;点D是AC上一点,且AD= AC,S△ABC=24,则S△BEF﹣S△ADF=()A.1 B.2 C.3 D.4【考点】K3:三角形的面积.【分析】过D作DG∥AE交CE于G,根据已知条件得到CG=3EG,求得AE=DG,CE=CG,求出S△ABD=S△ABC=6.由EC=2BE,S△ABC=24,得到S△ABE=S△ABC=8,于是得到结论.【解答】解:过D作DG∥AE交CE于G,∵AD=AC,∴CG=3EG,∴AE=DG,CE=CG,∵EC=2BE,∴BE=2EG,∴EF=DG,∴AF=DG,∴EF=AF,=24,∵S△ABC∴S △ABD =S △ABC =6.∵EC=2BE ,S △ABC =24,∴S △ABE =S △ABC =8,∵S △ABE ﹣S △ABD =(S △ABF +S △BEF )﹣(S △ADF +S △ABF )=S △BEF ﹣S △ADF ,即S △BEF ﹣S △ADF =S △ABE ﹣S △ABD =8﹣6=2.故选B .9.如图,在Rt △ABC 中,BC=2,∠BAC=30°,斜边AB 的两个端点分别在相互垂直的射线OM 、ON 上滑动,下列结论:①若C 、O 两点关于AB 对称,则OA=2;②C 、O 两点距离的最大值为4;③若AB 平分CO ,则AB ⊥CO ;④斜边AB 的中点D 运动路径的长为; 其中正确的是 ①② (把你认为正确结论的序号都填上).【考点】KY :三角形综合题.【分析】①先根据直角三角形30°的性质和勾股定理分别求AC 和AB ,由对称的性质可知:AB 是OC 的垂直平分线,所以OA=AC ;②当OC 经过AB 的中点E 时,OC 最大,则C 、O 两点距离的最大值为4;③如图2,当∠ABO=30°时,易证四边形OACB 是矩形,此时AB 与CO 互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.【解答】解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,当∠ABO=30°时,∠OBC=∠AOB=∠ACB=90°,∴四边形AOBC是矩形,∴AB与OC互相平分,但AB与OC的夹角为60°、120°,不垂直,所以③不正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π,所以④不正确;综上所述,本题正确的有:①②;故答案为:①②.10.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为18.【考点】KD:全等三角形的判定与性质.【分析】作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.11.如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是15.【考点】KG:线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到DB=DC ,根据三角形的周长公式计算即可.【解答】解:∵DE 是BC 的垂直平分线,∴DB=DC ,∴△ABD 的周长=AB +AD +BD=AB +AD +DC=AB +AC=15,故答案为:15.12.在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则DE +DF= 2 . 【考点】KK :等边三角形的性质.【分析】作AG ⊥BC 于G ,根据等边三角形的性质得出∠B=60°,解直角三角形求得AG=2,根据S △ABD +S △ACD =S △ABC 即可得出DE +DF=AG=2. 【解答】解:如图,作AG ⊥BC 于G ,∵△ABC 是等边三角形,∴∠B=60°,∴AG=AB=2,连接AD ,则S △ABD +S △ACD =S △ABC ,∴AB•DE +AC•DF=BC•AG ,∵AB=AC=BC=4,∴DE +DF=AG=2, 故答案为:2.三.解答题(共7小题)13.已知△ABC ,AB=AC ,D 为直线BC 上一点,E 为直线AC 上一点,AD=AE ,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=20°,β=10°,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.【考点】KY:三角形综合题.【分析】(1)①先利用等腰三角形的性质求出∠DAE,进而求出∠BAD,即可得出结论;②利用等腰三角形的性质和三角形的内角和即可得出结论;(2)①当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论;②当点E在CA的延长线上,点D在CB的延长线上,同(1)的方法即可得出结论.【解答】解:(1)①∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;②设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(2)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠AED=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.14.问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【考点】KY:三角形综合题;KD:全等三角形的判定与性质.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD= AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,∴BF==3.15.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解答】解:(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)16.在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.【考点】KD:全等三角形的判定与性质;KQ:勾股定理.【分析】(1)先由AM=BM=ABcos45°=3可得CM=2,再由勾股定理可得AC的长;(2)延长EF到点G,使得FG=EF,证△BMD≌△AMC得AC=BD,再证△BFG≌△CFE可得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠E.【解答】解:(1)∵∠ABM=45°,AM⊥BM,∴AM=BM=ABcos45°=3×=3,则CM=BC﹣BM=5﹣3=2,∴AC===;(2)延长EF到点G,使得FG=EF,连接BG.由DM=MC,∠BMD=∠AMC,BM=AM,∴△BMD≌△AMC(SAS),∴AC=BD,又CE=AC,因此BD=CE,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠E,所以BD=CE=BG,因此∠BDG=∠G=∠E.17.如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.【考点】KD:全等三角形的判定与性质.【分析】欲证明AC∥BD,只要证明∠A=∠B,只要证明△DEB≌△CFA即可.【解答】证明:∵DE⊥AB,CF⊥AB,∴∠DEB=∠AFC=90°,∵AE=BF,∴AF=BE,在△DEB和△CFA中,,△DEB≌△CFA,∴∠A=∠B,∴AC∥DB.18.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.【考点】KY :三角形综合题.【分析】(1)先利用锐角三角函数表示出QE=4t ,QD=3(2﹣t ),再由运动得出AP=3t ,CR=4t ,BP=3(2﹣t ),AR=4(2﹣t ),最后用三角形的面积公式即可得出结论;(2)借助(1)得出的结论,利用面积差得出S △PQR =18(t ﹣1)2+6,即可得出结论;(3)先判断出∠DQR=∠EQP ,用此两角的正切值建立方程求解即可.【解答】解:(1)如图,在Rt △ABC 中,AB=6,AC=8,根据勾股定理得,BC=10,sin ∠B===,sin ∠C=,过点Q 作QE ⊥AB 于E ,在Rt △BQE 中,BQ=5t ,∴sin ∠B==,∴QE=4t ,过点Q 作QD ⊥AC 于D ,在Rt △CDQ 中,CQ=BC ﹣BQ=10﹣5t ,∴QD=CQ•sin ∠C=(10﹣5t )=3(2﹣t ),由运动知,AP=3t ,CR=4t ,∴BP=AB ﹣AP=6﹣3t=3(2﹣t ),AR=AC ﹣CR=8﹣4t=4(2﹣t ),∴S △APR =AP•AR=×3t ×4(2﹣t )=6t (2﹣t ),S △BPQ =BP•QE=×3(2﹣t )×4t=6t (2﹣t ),S △CQR =CR•QD=×4t ×3(2﹣t )=6t (2﹣t ),∴S △APR =S △BPQ =S △CQR ,∴△APR ,△BPQ ,△CQR 的面积相等;(2)由(1)知,S △APR =S △BPQ =S △CQR =6t (2﹣t ),∵AB=6,AC=8,∴S △PQR =S △ABC ﹣(S △APR +S △BPQ +S △CQR )=×6×8﹣3×6t (2﹣t )=24﹣18(2t ﹣t 2)=18(t ﹣1)2+6,∵0≤t ≤2,∴当t=1时,S △PQR 最小=6;(3)存在,由(1)知,QE=4t ,QD=3(2﹣t ),AP=3t ,CR=4t ,AR=4(2﹣t ), ∴BP=AB ﹣AP=6﹣3t=3(2﹣t ),AR=AC ﹣CR=8﹣4t=4(2﹣t ),过点Q 作QD ⊥AC 于D ,作QE ⊥AB 于E ,∵∠A=90°,∴四边形APQD 是矩形,∴AE=DQ=3(2﹣t ),AD=QE=4t ,∴DR=|AD ﹣AR |=|4t ﹣4(2﹣t )|=|4(2t ﹣2)|,PE=|AP ﹣AE |=|3t ﹣3(2﹣t )|=|3(2t ﹣2)|∵∠DQE=90°,∠PQR=90°,∴∠DQR=∠EQP ,∴tan ∠DQR=tan ∠EQP ,在Rt △DQR 中,tan ∠DQR==, 在Rt △EQP 中,tan ∠EQP==,∴, ∴16t=9(2﹣t ),∴t=.19.问题原型:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.将边AB 绕点B顺时针旋转90°得到线段BD,连结CD.过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为.初步探究:如图②,在Rt△ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积,并说明理由.简单应用:如图③,在等腰三角形ABC中,AB=AC,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.直接写出△BCD的面积.(用含a的代数式表示)【考点】KD:全等三角形的判定与性质;R2:旋转的性质.【分析】初步探究:如图②,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有DE=BC=a.进而由三角形的面积公式得出结论;简单运用:如图③,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,由等腰三角形的性质可以得出BF=BC,由条件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面积公式就可以得出结论.【解答】解:初步探究:△BCD的面积为.理由:如图②,过点D作BC的垂线,与BC的延长线交于点E.∴∠BED=∠ACB=90°.∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°.∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=a.=BC•DE∵S△BCD=;∴S△BCD简单应用:如图③,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,∴∠AFB=∠E=90°,BF=BC=a.∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△AFB≌△BED(AAS),∴BF=DE=a.=BC•DE,∵S△BCD=•a•a=a2.∴S△BCD∴△BCD的面积为.。
中考数学专题复习:三角形的证明
中考数学专题复习:三角形的证明一.选择题1.下列语句中错误的是()A. 角的大小与角两边的长短无关B. 过两点有且只有一条直线C. 若线段,则一定是的中点D. 与两点之间的距离是指连接.两点间的线段的长度2.如图,在△ABC中,AB=AC=5,BC=6,△ABC和△ACB角平分线交于点O,则AO的长度为()A.2.5B.3C.D.3.把一副三角尺ABC与BDE按如图所示那样拼在一起,△ABC=60°,△C=△DBE =90°,其中A,D,B三点在同一直线上,BM为△ABC的平分线,BN为△CBE 的平分线,则△MBN的度数是()A.55°B.30°C.45°D.60°4.如图,△ABC中△ACB=90°,且CD△AB.△B=60°,则△1等于()A.30°B.40°C.50°D.60°5.若点在线段的垂直平分线上,,则( ).A. B. 无法确定 C. D.6.如图,在△ABC中,△ACB=90°,△B=15°,DE垂直平分AB,交BC于点E,AE=6cm,则AC=()A.6cm B.5cm C.4cm D.3cm7.如图,在△ABC中,△C=90°,AD是△BAC的角平分线,E是边AB上一点,若CD=6,则DE的长可以是()A.1B.3C.5D.78.下列命题:△一组对边平行,另一组对边相等的四边形是平行四边形;△对角线互相垂直且平分的四边形是菱形;△一个角为90°且一组邻边相等的四边形是正方形;△对角线相等的平行四边形是矩形.其中真命题的个数是()A.1B.2C.3D.49.在△ABC中,有下列条件:△△A+△B=△C;△△A:△B:△C=1:2:3;△△A=2△B=3△C;△△A=△B=△C.其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个10.如图,DE是△ABC中AC边的垂直平分线,若BC=4cm,AB=5cm,则△EBC 的周长为()A.8cm B.9cm C.10cm D.11cm11.某一实验装置的截面图如图所示,上方装置可看做一长方形,其侧面与水平线的夹角为,下方是一个直径为,高为的圆柱形容器,若使容器中的液面与上方装置相接触,则容器中液体的高度至少应为()A. B. C. D.12.用反证法证明命题“三角形中必有一个内角小于或等于60°时,首先应该假设()A.三角形中每个内角都大于60°B.三角形中至少有一个内角大于60°C.三角形中每个内角都大于或等于60°D.三角形中每一个内角都小于成等于60°二.填空题13.如图,点A.O.E在同一直线上,△AOB=40°,△EOD=28°46′,OD平分△COE,则△COB的度数为__________.14.如图,△ABC中,AB=8,BC=10,BD是△ABC的角平分线,DE△AB于点E,若DE=4,则三角形ABC的面积为__________.15.如图,OP平分△AOB,△AOP=15°,PC△OB,PD△OB于点D,PD=4,则PC等于__________.16.如图,在△ABC中,△ABC和△ACB的平分线交于点E,过点E作MN△BC 交AB于M,交AC于N,若BM+CN=10,则线段MN的长为__________.17.说明命题“如果a.b.c是△ABC的三边,那么长为a﹣1.b﹣1.c﹣1的三条线段能构成三角形”是假命题的反例可以是a=2,b=2,c=__________.18.用反证法证明“已知五个正数的和等于1,求证:这五个正数中至少有一个大于或等于”时,首先要假设__________.三.解答题19.如图:△AOB=160°,OC是△AOB的平分线,OD是△COB的平分线,求△COD 的度数.20.已知:如图,△AOB及M.N两点.请你在△AOB内部找一点P,使它到角的两边和到点M.N的距离分别相等(保留作图痕迹).21.如图,已知:AD是△BAC的平分线,AB=BD,过点B作BE△AC,与AD 交于点F.(1)求证:AC△BD;(2)若AE=2,AB=3,BF=,求△ABF中AB边上的高.22.如图,在△ABC和△DCB中,AC与BD交于点E,现有三个条件:△AB=DC;△△A=△D,△△1=△2,请你从三个条件中选出两个作为条件,另一个作为结论,组成一个真命题,并给予证明.(1)条件是__________;结论是__________(填序号);(2)证明.23.如图所示,在△ABC中.AB=AC.△A=36°,DE垂直平分AB交AC于点D,垂足为点E,求证:AD=BC.24.如图,在四边形中,已知为的角平分线,,.两点分别在.上,且.请完整说明为什么四边形的面积为四边形的一半.25.已知等边△ABC和点P,设点P到△ABC三边AB.AC.BC的距离分别为h1,h2,h3,△ABC的高为h.(1)若点P在一边BC上[如图△],此时h3=0,求证:h1+h2+h3=h;(2)当点P在△ABC内[如图△],以及点P在△ABC外[如图△]这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,h1,h2,h3与h之间又有怎样的关系,请说出你的猜想,并说明理由.参考答案13.82°28′14.3615.816.1017.3(答案不唯一)18.这五个数都小于19.解:△OC是△AOB的平分线,△AOB=160°,△△COB=△AOB=80°,又△OD是△COB的平分线,△△COD=△COB=40°.20.解:点P就是所求的点.如果能正确画出角平分线和中垂线的给满分21.(1)证明:△AD是△BAC的平分线,△△CAD=△BAD,△AB=BD,△△BDA=△BAD,△△CAD=△BDA,△AC△BD;(2)解:作FG△AB于G,在Rt△ABE中,AE=2,AB=3,△BE===,△FE=BE﹣BF=﹣=,△AD是△BAC的平分线,BE△AC,作FG△AB,△FG=FE=,即△ABF中AB边上的高为.22.解:(1)条件是:△AB=DC;△△A=△D,结论是△△1=△2;(2)证明如下:在△ABE与△DEC中,△△ABE△△DEC(AAS),△BE=EC,△△1=△2.故答案为:△△;△23.证明:△△ABC中,AB=AC,△A=36°,△△ABC=72°,△DE是线段AB的垂直平分线,△AD=BD,△△A=△ABD=36°,△△CDB=△A+△ABD=72°,△△CDB=△C,△BD=BC,△AD=BC.24.解:分别作于,于,△为的角平分线,△,△,△,又△,△,△,△,△,△四边形的面积,四边形的面积,△四边形的面积,又△四边形的面积,△四边形的面积,△四边形的面积为四边形的面积的一半.25.解:(1)如图1,连接AP,则S△ABC=S△ABP+S△APC △BC•AM=AB•PD+AC•PF即BC•h=AB•h1+AC•h2又△△ABC是等边三角形△BC=AB=AC,△h=h1+h2;(2)点P在△ABC内时,h=h1+h2+h3,理由如下:如图2,连接AP.BP.CP,则S△ABC=S△ABP+S△BPC+S△ACP △BC•AM=AB•PD+AC•PE+BC•PF即BC•h=AB•h1+AC•h2+BC•h3又△△ABC是等边三角形,△BC=AB=AC.△h=h1+h2+h3;点P在△ABC外时,h=h1+h2﹣h3.理由如下:如图3,连接PB,PC,P A由三角形的面积公式得:S△ABC=S△P AB+S△P AC﹣S△PBC,即BC•AM=AB•PD+AC•PE﹣BC•PF,△AB=BC=AC,△h1+h2﹣h3=h,即h1+h2﹣h3=h.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)相交线与平行线 ①了解补角、余角、对顶角,知
道等角的余角相等、等角的补角相等、 对顶角相等。
②了解垂线、垂线段等概念,了
解垂线段最短的性质,体会点到直线 距离的意义。
③知道过一点有且仅有一条直线
垂直于已知直线,会用三角尺或量角 器过一点画一条直线的垂线。
④了解线段垂直平分线及其性质 [1]。
[5]有两个角互余的三角形是直角三角形。
4.图形与证明
(1)了解证明的含义 ①理解证明的必要性。 ②通过具体的例子,了解定义、命题、定理
的含义,会区分命题的条件(题设)和结论。 ③结合具体例子,了解逆命题的概念,会识
别两个互逆命题,并知道原命题成立其逆命题不 一定成立。
④通过具体的例子理解反例的作用,知道利 用反例可以证明一个命题是错误的。
⑤通过实例,体会反证法的含义。 ⑥掌握用综合法证明的格式,体会证明的过 程要步步有据。
(2)掌握以下基本事实,作为证明的依 据
①一条直线截两条平行直线所得的 同位角相等。
②两条直线被第三条直线所截,若 同位角相等,那么这两条直线平行。
③若两个三角形的两边及其夹角 (或两角及其夹边,或三边)分别相等, 则这两个三角形全等。
2.两条平行线被第三条直线所截,同位角相 等;
3.两边夹角对应相等的两个三角形全等; 4.两角及其夹边对应相等的两个三角形全 等;
5.三边对应相等的两个三角形全等; 6.全等三角形的对应边相等,对应角相等.
三、点,线,角 : 1.点、直线、面(不定义概念)及其表示; 2.射线、线段、线段的中点及其表示、; 3.两点确定一条直线; 4.两点之间线段最短(两点之间的距离); 5.角、角的顶点、边、角平分线的表示及 其性质;
⑤知道两直线平行同位角相等, 进一步探索平行线的性质。
⑥知道过直线外一点有且仅有一
条直线平行于已知直线,会用三角尺 和直尺过已知直线外一点画这条直线 的平行线。
⑦体会两条平行线之间距离的意 义,会度量两条平行线之间的距离。
(4)三角形 ①了解三角形有关概念(内角、
外角、中线、高、角平分线),会 画出任意三角形的角平分线、中线 和高,了解三角形的稳定性。
③直角三角形全等的判定定理。 ④角平分线性质定理及逆定理;三角形 的三条角平分线交于一点(内心)。
⑤垂直平分线性质定理及逆定理;三角 形的三边的垂直平分线交于一点(外心)。
⑥三角形中位线定理。 ⑦等腰三角形、等边三角形、直角三角 形的性质和判定定理。 ⑧平行四边形ቤተ መጻሕፍቲ ባይዱ矩形、菱形、正方形、 等腰梯形的性质和判定定理。
④全等三角形的对应边、对应角分 别相等。
(3)利用(2)中的基本事实证明下列命题[1] ①平行线的性质定理(内错角相等、同
旁内角互补)和判定定理(内错角相等或同旁 内角互补,则两直线平行)。
②三角形的内角和定理及推论(三角形 的外角等于不相邻的两内角的和,三角形的 外角大于任何一个和它不相邻的内角)。
6.角的分类(锐角、直角、钝角、平角、周 角)、度量(度、分、秒)及计算.
四、关系角及其性质 : 1.对顶角、余角、补角(邻补角)、同位角 ,内错角、同旁内角、;
2.对顶角相等、同角(或等角)的余角(或补 角)相等.
五、相交线、平行线 : 1.垂线、垂线段最短(点到直线的距离); 2.过一点(直线上或直线外)有且只有一条 直线和已知直线垂直;
(4)通过对欧几里得《原本》的介绍,,感 受几何的演绎体系对数学发展和人类文明的 价值。
一、“原名” 知多少 1.原名:某些数学名词称为原名. 2.定义:对名称和术语的含义加以描述, 作出明确的规定,也就是给出它们的定 义. 3.命题:判断一件事情的句子,叫做命 题.
4.每个命题都由条件和结论两部分组 成.条件是已知事项,结论是由已事项推
断出的事项.
5.一般地,命题可以写成“如果……, 那么……”的形式,其中“如果”引出的 部分是条件,“那么”引出的部分是结论. 6.正确的命题称为真命题,不正确的的 命题称为假命题. 7.要说明一个命题是假命题,通常可以 举出一个例子,使之具备命题的条件,而 不具备命题的结论,这种例子称为反例. 8.互逆定理与互逆命题.
3.会过一点画(作)已知直线的垂线; 4.线段的垂直平分线及其性质 ;
4.平行线,三线八角与平行线的关系;
①公理:同位角相等,两直线平行. ∵ ∠1=∠2, ∴ a∥b. ②判定定理1:内错角相等,两直线平行. ∵ ∠1=∠2, ∴ a∥b.
③判定定理2:同旁内角互补,两直线平行.
∵∠1+∠2=1800 , ∴ a∥b. ④公理:两直线平行,同位角相等. ∵ a∥b, ∴∠1=∠2. ⑤性质定理1:两直线平行,内错角相等. ∵ a∥b, ∴∠1=∠2.
⑥性质定理2: 两直线平行,同旁内角互补.
∵ a∥b, ∴ ∠1+∠2=1800 .
中考复习
准备好了吗? 时刻准备着!
阳泉市义井中学 高铁牛
课程标准及学习目标
1.图形的认识:有的放矢(课标要求)
(1)点、线、面 通过丰富的实例,进一步认识点、
线、面(如交通图上用点表示城市,屏 幕上的画面是由点组成的)。 (2)角
①通过丰富的实例,进一步认识角。 ②会比较角的大小,能估计一个角
的大小,会计算角度的和与差,认识度、 分、秒,会进行简单换算。
9.公理:公认的真命题称为公理. 10.定理:经过证明的真命题称 为定理. 11.推论:由一个公理或定理直 接推出的定理,叫做这个公理或 定理的推论 12.证明:除了公理外,其它真命 题的正确性都通过推理的方法证 实.推理的过程称为证明.
二、本套教材选用如下命题作为公理
1.两直线被第三条直线所截,如果同位角相 等,那么这两条直线平行;
②探索并掌握三角形中位线的 性质。
③了解全等三角形的概念,探 索并掌握两个三角形全等的条件。
【备注1】: [1]线段垂直平分线上的点到线段两端点 的距离相等,到线段两端点的距离相等 的点在线段的垂直平分线上。
[2]等腰三角形的两底角相等,底边上的 高、中线及顶角平分线三线合一。
[3]有两个角相等的三角形是等腰三角形。 [4]直角三角形的两锐角互余,斜边上的 中线等于斜边一半。