高等代数与解析几何 6.7 复数域和实数域上多项式

合集下载

复数域与实数域上多项式的因式分解

复数域与实数域上多项式的因式分解
其中an为f ( x)的首项系数, c1 , , cs , p1 , , pr , q1 , , qr 全是实数, l1 , , ls ,k1 , , kr是正整数,且pi2 4qi 0, i 1, 2, , r;l1 ls 2(k1 kr ) n ( f ( x)).
10
首页 上页 下页 返回 结束
设 f ( x) C[x], 并且( f ( x)) 1, 则存在 C, 使得f ( x) ( x ) f1( x),其中( f1( x)) 0.
2
首页 上页 下页 返回 结束
推论1 设 p( x) C[x], 则p( x)是C上的不可约多 项式 ( p( x)) 1.
即:在复数域C上所有次数大于1的多项式全是 可约的.
an n
a n1 n1
a1 a0 0
即 f ( ) 0, 所以也是 f ( x)的根.
7
首页 上页 下页 返回 结束
因此 f ( x)能被
g( x) ( x )( x ) x2 -( )x
整除.
因 和 都是实数,所以g( x)是实系数多
项式, 故有
f ( x) g( x)h(x),
证 对f ( x)的次数用数学归纳法. 因一次多项式本身不可约,定理成立. 假设定理对次数 n的多项式来说成立.
设f ( x)是n次多项式,由代数基本定理, f ( x)有一复根.
如果是实数, 那么
f ( x) ( x ) f1( x)
其中f1 ( x)是n 1次实系数多项式.
如果不是实数, 那么也是f ( x)的根,于是
次式与二次不可约多项式的乘积. 故f ( x)也可以分解成实系数的一次式与二次不
可约多项式的乘积.
12
首页 上页 下页 返回 结束

复系数,实系数,有理系数多项式

复系数,实系数,有理系数多项式

任意一个有理系数多项式总可转化 为整系数多项式.
介绍一类重要的整系数多项式: 介绍一类重要的
1、本原多项式
设 f (x) = anxn + an-1xn-1 + … + a0 是一有理系数多项式. 选取适当的整数 c 乘 f (x) , 总可以使 c f (x) 是一整系数多项式. 如果 c f (x) 的 各项系数有公因子,就可以提出来,得到 c f (x) = d g(x) , 也即
f (α ) = anα n + an-1α n-1 + … + α0 = 0 .
定理 4.6 (实系数多项式因式分解定理)每个次数≥1 的实系数多项式 f (x) 在实数域上都可以唯一地分解 成一次因式与二次不可约因式的乘积.
证明 定理对一次多项式显然成立.
假设定理对次数 < n 的多项式结论成立. 则当 f (x) 是 n 次实系数多项式时, 由代数基本定理, f (x) 在复数域内一定有一根 α . 如果 α 是实数,那么 数域内 f (x) = (x - α ) f1(x) , 其中 f1(x) 是 n - 1 次实系数多项式.
多项式. 由归纳法假设, f1(x) 或 f2(x) 可以分解成 一次与二次不可约多项式的乘积,因此,实系数多 项式在实数域上都可以唯一地分解成一次因式与二 次不可约因式的乘积.
证毕
实系数多项式的标准分解式
f ( x) = an ( x − c1 )
l1
( x − cs ) ( x + p1 x + q1 )
2 例如, 方程 x − 2 = 0 在有理数域上没有根, 但在实数域 上有根: x = ± 2.
2 又如,方程 x + 1 在实数域上没有根,但是,在复数域上 有根:

《高等代数》第一章 多项式

《高等代数》第一章  多项式

§1 数域关于数的加、减、乘、除等运算的性质通常称为数的代数性质.代数所研究的问题主要涉及数的代数性质,这方面的大部分性质是有理数、实数、复数的全体所共有的.定义1 设P 是由一些复数组成的集合,其中包括0与1.如果P 中任意两个数的和、差、积、商(除数不为零)仍然是中的数,那么P 就称为一个数域.显然全体有理数组成的集合、全体实数组成的集合、全体复数组成的集合都是数域.这三个数域分别用字母Q 、R 、C 来代表.全体整数组成的集合就不是数域.如果数的集合P 中任意两个数作某一种运算的结果都仍在P 中,就说数集P 对这个运算是封闭的.因此数域的定义也可以说成,如果一个包含0,1在内的数集P 对于加法、减法、乘法与除法(除数不为零)是封闭的,那么P 就称为一个数域.例1 所有具有形式2b a +的数(其中b a ,是任何有理数),构成一个数域.通常用)2(Q 来表示这个数域.例2 所有可以表成形式m m nn b b b a a a ππππ++++++ 1010 的数组成一数域,其中m n ,为任意非负整数,),,1,0;,,1,0(,m j n i b a j i ==是整数.例 3 所有奇数组成的数集,对于乘法是封闭的,但对于加、减法不是封闭的.性质:所有的数域都包含有理数域作为它的一部分.一、一元多项式定义2 设n 是一非负整数,形式表达式111a x a x a x a n n n n ++++-- ,(1) 其中n a a a ,,,10 全属于数域P ,称为系数在数域P 中的一元多项式,或者简称为数域P 上的一元多项式.在多项式(1)以后用 ),(),(x g x f 或 ,,g f 等来表示多项式.注意:这里定义的多项式是符号或文字的形式表达式.定义3 如果在多项式)(x f 与)(x g 中,除去系数为零的项外,同次项的系数全相等)()(x g x f =.系数全为零的多项式称为零多项式,记为0.在(1)中,如果0≠n a n a 称为首项系数,n 称为多项式(1)的次数.零多项式是唯一不定义次数的多项式.多项式)(x f二、多项式的运算设0111)(a x a x a x a x f n n n n ++++=--0111)(b x b x b x b x g m m m m ++++=--是数域P 上两个多项式,那么可以写成∑==ni i i x a x f 0)(∑==mj j j x b x g 0)(在表示多项式)(x f 与)(x g 的和时,如m n ≥,为了方便起见,在)(x g 中令011====+-m n n b b b ,那么)(x f 与)(x g 的和为∑=---+=++++++++=+n i i i i n n n n n n xb a b a x b a x b a x b a x g x f 00011111)()()()()()()(而)(x f 与)(x g 的乘积为其中s 次项的系数是∑=+--=++++s j i j i s s s sb a b a b a b a b a 011110所以)(x f )(x g 可表成显然,数域P 上的两个多项式经过加、减、乘运算后,所得结果仍然是数域P 上的多项式.对于多项式的加减法,不难看出对于多项式的乘法,可以证明,若0)(,0)(≠≠x g x f ,则0)()(≠x g x f ,并且由以上证明看出,多项式乘积的首项系数就等于因子首项系数的乘积.显然上面的结果都可以推广到多个多项式的情形.多项式的运算满足以下的一些规律:1. 加法交换律:)()()()(x f x g x g x f +=+.2. 加法结合律:))()(()()())()((x h x g x f x h x g x f ++=++3. 乘法交换律:. )()()()(x f x g x g x f =4. 乘法结合律:))()()(()())()((x h x g x f x h x g x f =5. 乘法对加法的分配律:)()()()())()()((x h x f x g x f x h x g x f +=+6. 乘法消去律:若)()()()(x h x f x g x f =且0)(≠x f ,则)()(x h x g =.定义4 所有系数在数域P 中的一元多项式的全体,称为数域P 上的一元多项式环,记为][x P ,P 称为][x P 的系数域.§3 整除的概念在一元多项式环中,可以作加、减、乘三种运算,但是乘法的逆运算—除法—并不是普遍可以做的.因之整除就成了两个多项式之间的一种特殊的关系.一、整除的概念带余除法 对于][x P 中任意两个多项式)(x f 与)(x g ,其中0)(≠x g ,一定有][x P 中的多项式)(),(x r x q 存在,使(1))(),(x r x q 是唯一决定的.带余除法中所得的)(x q 通常称为)(x g 除)(x f 的商,)(x r 称为)(x g 除)(x f 的余式.定义5 数域P 上的多项式)(x g 称为整除)(x f ,如果有数域P 上的多项式)(x h 使等式成立.用表示)(x g 整除)(x f ,用“)(|)(x f x g /”表示)(x g 不能整除)(x f .当)(|)(x f x g 时,)(x g 就称为)(x f 的因式,)(x f 称为)(x g 的倍式.当0)(≠x g 时,带余除法给出了整除性的一个判别条件.定理1 对于数域P 上的任意两个多项式)(x f ,)(x g ,其中0)(≠x g ,)(|)(x f x g 的充要条件是)(x g 除)(x f 的余式为零.带余除法中)(x g 必须不为零.但)(|)(x f x g 中,)(x g 可以为零.这时0)(0)()()(=⋅=⋅=x h x h x g x f .当)(|)(x f x g 时,如0)(≠x g ,)(x g 除)(x f 的商)(x q 有时也用)()(x g x f 来表示.二、整除的性质1. 任一多项式)(x f 一定整除它自身.2. 任一多项式)(x f 都能整除零多项式.3. 零次多项式,即非零常数,能整除任一个多项式.4. 若)(|)(),(|)(x f x g x g x f ,则)()(x cg x f =,其中c 为非零常数.5. 若)(|)(),(|)(x h x g x g x f ,则)(|)(x h x f (整除的传递性).6. 若r i x g x f i ,,2,1),(|)( =,则))()()()()()((|)(2211x g x u x g x u x g x u x f r r +++ ,其中)(x u i 是数域P 上任意的多项式.通常,)()()()()()(2211x g x u x g x u x g x u r r +++ 称为)(,),(),(21x g x g x g r 的最后,两个多项式之间的整除关系不因系数域的扩大而改变.即若)(x f ,)(x g 是][x P 中两个多项式,P 是包含P 的一个较大的数域.当然,)(x f ,)(x g 也可以看成是][x P 中的多项式.从带余除法可以看出,不论把)(x f ,)(x g 看成是][x P 中或者是][x P 中的多项式,用)(x g 去除)(x f 所得的商式及余式都是一样的.因此,若在][x P 中)(x g 不能整除)(x f ,则在][x P 中,)(x g 也不能整除)(x f .例1 证明若)()(|)(),()(|)(2121x f x f x g x f x f x g -+,则)(|)(),(|)(21x f x g x f x g例2 求l k ,,使1|32++++kx x l x x .例3 若)(|)(),(|)(x h x g x f x g /,则)()(|)(x h x f x g +/.§4 多项式的最大公因式一 、多项式的最大公因式如果多项式)(x ϕ既是)(x f 的因式,又是)(x g 的因式,那么)(x ϕ就称为)(x f 与)(x g 的一个公因式.定义 6 设)(x f 与)(x g 是][x P 中两个多项式. ][x P 中多项式)(x d 称为)(x f ,)(x g 的一个公因式,如果它满足下面两个条件:1))(x d 是)(x f 与)(x g 的公因式;2))(x f ,)(x g 的公因式全是)(x d 的因式.例如,对于任意多项式)(x f ,)(x f 就是)(x f 与0的一个最大公因式.特别地,根据定义,两个零多项式的最大公因式就是0.引理 如果有等式)()()()(x r x g x q x f += (1)成立,那么)(x f ,)(x g 和)(x g ,)(x r 有相同的公因式.定理2 对于][x P 的任意两个多项式)(x f ,)(x g ,在][x P 中存在一个最大公因式)(x d ,且)(x d 可以表成)(x f ,)(x g 的一个组合,即有][x P 中多项式)(),(x v x u 使由最大公因式的定义不难看出,如果)(),(21x d x d 是)(x f ,)(x g 的两个最大公因式,那么一定有)(|)(21x d x d 与)(|)(12x d x d ,也就是说0),()(21≠=c x cd x d .这就是说,两个多项式的最大公因式在可以相差一个非零常数倍的意义下是唯一确定的.两个不全为零的多项式的最大公因式总是一个非零多项式.在这个情形,我们约定,用来表示首项系数是1的那个最大公因式.定理证明中用来求最大公因式的方法通常称为辗转相除法(division algorithm).例 设343)(234---+=x x x x x f32103)(23-++=x x x x g求()(x f ,)(x g ),并求)(),(x v x u 使)()()()()(x g x v x f x u x d +=.注:定理2的逆不成立.例如令1)(,)(+==x x g x x f ,则122)1)(1()2(2-+=-+++x x x x x x .但1222-+x x 显然不是)(x f 与)(x g 的最大公因式.但是当(2)式成立,而)(x d 是)(x f 与)(x g 的一个公因式,则)(x d 一定是)(x f 与)(x g 的一个最大公因式.二、多项式互素定义7 ][x P 中两个多项式)(x f ,)(x g 称为互素(也称为互质)的,如果显然,两个多项式互素,那么它们除去零次多项式外没有其他的公因式,反之亦然.定理3 ][x P 中两个多项式)(x f ,)(x g 互素的充要条件是有][x P 中多项式)(),(x v x u 使推论2 如果1))(),((1=x g x f ,1))(),((2=x g x f ,那么1))(),()((21=x g x f x f 推广:对于任意多个多项式)2)((,),(),(21≥s x f x f x f s ,)(x d 称为)2)((,),(),(21≥s x f x f x f s 的一个最大公因式,如果)(x d 具有下面的性质:1)s i x f x d i ,,2,1),(|)( =;2)如果s i x f x i ,,2,1),(|)( =ϕ,那么)(|)(x d x ϕ.我们仍用))(,),(),((21x f x f x f s 符号来表示首项系数为1的最大公因式.不难证明)(,),(),(21x f x f x f s 的最大公因式存在,而且当)(,),(),(21x f x f x f s 全不为零时,))()),(,),(),(((121x f x f x f x f s s -就是)(,),(),(21x f x f x f s 的最大公因式,即))(,),(),((21x f x f x f s =))()),(,),(),(((121x f x f x f x f s s -同样,利用以上这个关系可以证明,存在多项式s i x u i ,,2,1),( =,使))(,),(),(()()()()()()(212211x f x f x f x f x u x f x u x f x u s s s =+++如果1))(,),(),((21=x f x f x f s ,那么)(,),(),(21x f x f x f s 就称为互素的.同样有类似定理3的结论.注意 1)当一个多项式整除两个多项式之积时,若没有互素的条件,这个多项式一般不能整除积的因式之一.例如222)1()1(|1-+-x x x ,但22)1(|1+/-x x ,且22)1(|1-/-x x .2) 推论1中没有互素的条件,则不成立.如1)(2-=x x g ,1)(1+=x x f , )1)(1()(2-+=x x x f ,则)(|)(),(|)(21x g x f x g x f ,但)(|)()(21x g x f x f .注意:s )2(≥s 个多项式)(,),(),(21x f x f x f s 互素时,它们并不一定两两互素.例如,多项式34)(,65)(,23)(232221+-=+-=+-=x x x f x x x f x x x f是互素的,但2))(),((21-=x x f x f . 令P 是含P 的一个数域, )(x d 是][x P 的多项式)(x f 与)(x g 在][x P 中的首项系数为1的最大公因式,而)(x d 是)(x f 与)(x g 在][X P 中首项系数为1的最大公因式,那么)()(x d x d =.即从数域P 过渡到数域P 时, )(x f 与)(x g 的最大公因式本质上没有改变. 互素多项式的性质可以推广到多个多项式的情形:1)若多项式),()()(|)(21x f x f x f x h s )(x h 与)(,),(),(,),(111x f x f x f x f s i i +- 互素,则)1)((|)(s i x f x h i ≤≤.2) 若多项式)(,),(),(21x f x f x f s 都整除)(x h ,且)(,),(),(21x f x f x f s 两两互素,则)(|)()()(21x h x f x f x f s .3) 若多项式)(,),(),(21x f x f x f s 都与)(x h 互素,则1))(),()()((21=x h x f x f x f s .§5 因式分解定理一、不可约多项式Con i x i x x x R on x x x Q on x x x )2)(2)(2)(2()2)(2)(2()2)(2(42224+-+-=++-=+-=-. 定义8 数域P 上次数1≥的多项式)(x p 称为域P 上的不可约多项式(irreducible polynomical),如果它不能表成数域P 上的两个次数比)(x p 的次数低的多项式的乘积.根据定义,一次多项式总是不可约多项式.一个多项式是否可约是依赖于系数域的.显然,不可约多项式)(x p 的因式只有非零常数与它自身的非零常数倍)0)((≠c x cp 这两种,此外就没有了.反过来,具有这个性质的次数1≥的多项式一定是不可约的.推广:如果不可约多项式)(x p 整除一些多项式)(,),(),(21x f x f x f s 的乘积)()()(21x f x f x f s ,那么)(x p 一定整除这些多项式之中的一个.二、因式分解定理因式分解及唯一性定理 数域P 上次数1≥的多项式)(x f 都可以唯一地分解成数域P 上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式)()()()()()()(2121x q x q x q x p x p x p x f t s ==,那么必有t s =,并且适当排列因式的次序后有s i x q c x p i i i ,,2,1,)()( ==.其中),,2,1(s i c i =是一些非零常数.应该指出,因式分解定理虽然在理论上有其基本重要性,但是它并没有给出一个具体的分解多项式的方法.实际上,对于一般的情形,普遍可行的分解多项式的方法是不存在的.在多项式)(x f 的分解式中,可以把每一个不可约因式的首项系数提出来,使它们成为首项系数为1的多项式,再把相同的不可约因式合并.于是)(x f 的分解式成为)()()()(2121x p x p x cp x f s r s r r =,其中c 是)(x f 的首项系数,)(,),(),(21x p x p x p s 是不同的首项系数为1的不可约多项式,而s r r r ,,,21 是正整数.这种分解式称为标准分解式.如果已经有了两个多项式的标准分解,就可以直接写出两个多项式的最大公因式.多项式)(x f 与)(x g 的最大公因式)(x d 就是那些同时在)(x f 与)(x g 的标准分解式中出现的不可约多项式方幂的乘积,所带的方幂的指数等于它在)(x f 与)(x g 中所带的方幂中较小的一个.由以上讨论可以看出,带余除法是一元多项式因式分解理论的基础.若)(x f 与)(x g 的标准分解式中没有共同的不可约多项式,则)(x f 与)(x g 互素.注意:上述求最大公因式的方法不能代替辗转相除法,因为在一般情况下,没有实际分解多项式为不可约多项式的乘积的方法,即使要判断数域P 上一个多项式是否可约一般都是很困难的.例 在有理数域上分解多项式22)(23--+=x x x x f 为不可约多项式的乘积.§6 重因式一、重因式的定义定义9 不可约多项式)(x p 称为多项式)(x f 的k 重因式,如果)(|)(x f x p k ,但)(|)(1x f x p k /+.如果0=k ,那么)(x p 根本不是)(x f 的因式;如果1=k ,那么)(x p 称为)(x f 的单因式;如果1>k ,那么)(x p 称为)(x f 的重因式.注意. k 重因式和重因式是两个不同的概念,不要混淆.显然,如果)(x f 的标准分解式为)()()()(2121x p x p x cp x f s r s r r =,那么)(,),(),(21x p x p x p s 分别是)(x f 的1r 重,2r 重,… ,s r 重因式.指数1=i r 的那些不可约因式是单因式;指数1>i r 的那些不可约因式是重因式.使得)()()(x g x p x f k =,且)(|)(x g x p /.二、重因式的判别设有多项式0111)(a x a x a x a x f n n n n ++++=-- ,规定它的微商(也称导数或一阶导数)是1211)1()(a x n a nx a x f n n n n ++-+='--- .通过直接验证,可以得出关于多项式微商的基本公式:).()()()()()(()())((),()())()((x g x f x g x f x g x f x f c x cf x g x f x g x f '+'=''=''+'='+)))()(())((1x f x f m x f m m '='-同样可以定义高阶微商的概念.微商)(x f '称为)(x f 的一阶微商;)(x f '的微商)(x f ''称为)(x f 的二阶微商;等等. )(x f 的k 阶微商记为)()(x f k .一个)1(≥n n 次多项式的微商是一个1-n 次多项式;它的n 阶微商是一个常数;它的1+n 阶微商等于0.定理6 如果不可约多项式)(x p 是多项式)(x f 的一个)1(≥k k 重因式,那么)(x p 是微商)(x f '的1-k 重因式.分析: 要证)(x p 是微商)(x f '的1-k 重因式,须证)(|)(1x f x p k '-,但)(|)(x f x p k '/.注意:定理6的逆定理不成立.如333)(23++-=x x x x f , 22)1(3363)(-=+-='x x x x f ,1-x 是)(x f '的2重因式,但根本不是)(x f 是因式.当然更不是三重因式.推论 1 如果不可约多项式)(x p 是多项式)(x f 的一个)1(≥k k 重因式,那么)(x p 是)(x f ,)(x f ',…,)()1(x f k -的因式,但不是)()(x f k 的因式.)(x f 与)(x f '的公因式.推论3 多项式)(x f 没有重因式1))(),((='⇔x f x f这个推论表明,判别一个多项式有无重因式可以通过代数运算——辗转相除法来解决,这个方法甚至是机械的.由于多项式的导数以及两个多项式互素与否的事实在由数域P 过渡到含P 的数域P 时都无改变,所以由定理6有以下结论:若多项式)(x f 在][x P 中没有重因式,那么把)(x f 看成含P 的某一数域P 上的多项式时, )(x f 也没有重因式.例1 判断多项式2795)(234+-+-=x x x x x f有无重因式三、去掉重因式的方法设)(x f 有重因式,其标准分解式为s r s r r x p x p x cp x f )()()()(2121 =.那么由定理5),()()()()(1121121x g x p x p x p x f s r s r r ---='此处)(x g 不能被任何),,2,1)((s i x p i =整除.于是11211)()()()())(),((21---=='s r s r r x p x p x p x d x f x f用)(x d 去除)(x f 所得的商为)()()()(21x p x p x cp x h s =这样得到一个没有重因式的多项式)(x h .且若不计重数, )(x h 与)(x f 含有完全相同的不可约因式.把由)(x f 找)(x h 的方法叫做去掉重因式方法.例2 求多项式16566520104)(23456++++--=x x x x x x x f的标准分解式.§7 多项式函数到目前为止,我们始终是纯形式地讨论多项式,也就是把多项式看作形式表达式.在这一节,将从另一个观点,即函数的观点来考察多项式.一、多项式函数设0111)(a x a x a x a x f n n n n ++++=-- (1)是][x P 中的多项式,α是P 中的数,在(1)中用α代x 所得的数0111a a a a n n n n ++++--ααα称为)(x f 当α=x 时的值,记为)(αf .这样,多项式)(x f 就定义了一个数域上的函数.可以由一个多项式来定义的函数就称为数域上的多项式函数.因为x 在与数域P 中的数进行运算时适合与数的运算相同的运算规律,所以不难看出,如果,)()()(,)()()(21x g x f x h x g x f x h =+=那么.)()()(,)()()(21ααααααg f h g f h =+=定理7(余数定理)用一次多项式去除多项式)(x f ,所得的余式是一个常数,这个常数等于函数值)(αf .如果)(x f 在α=x 时函数值0)(=αf ,那么α就称为)(x f 的一个根或零点. 由余数定理得到根与一次因式的关系.推论 α是)(x f 的根的充要条件是)(|)(x f x α-.由这个关系,可以定义重根的概念. α称为)(x f 的k 重根,如果)(α-x 是)(x f 的k 重因式.当1=k 时,α称为单根;当1>k 时,α称为重根.定理8 ][x P 中n 次多项式)0(≥n 在数域P 中的根不可能多于n 个,重根按重数计算.二、多项式相等与多项式函数相等的关系在上面看到,每个多项式函数都可以由一个多项式来定义.不同的多项式会不会定义出相同的函数呢?这就是问,是否可能有)()(x g x f ≠,而对于P 中所有的数α都有)()(ααg f =?由定理8不难对这个问题给出一个否定的回答.定理9 如果多项式)(x f ,)(x g 的次数都不超过n ,而它们对n+1个不同的数有相同的值即)()(i i g f αα=,1,,2,1+=n i ,那么)(x f =)(x g .因为数域中有无穷多个数,所以定理9说明了,不同的多项式定义的函数也不相同.如果两个多项式定义相同的函数,就称为恒等,上面结论表明,多项式的恒等与多项式相等实际上是一致的.换句话说,数域P 上的多项式既可以作为形式表达式来处理,也可以作为函数来处理.但是应该指出,考虑到今后的应用与推广,多项式看成形式表达式要方便些.三、综合除法根据余数定理,要求)(x f 当c x =时的值,只需用带余除法求出用c x -除)(x f 所得的余式.但是还有一个更简便的方法,叫做综合除法.设n n n n n a x a x a x a x a x f +++++=---122110)(并且设r x q c x x f +-=)()()(. (2)其中.)(12322110-----+++++=n n n n n b x b x b x b x b x q比较等式(2)中两端同次项的系数.得到.,,,,121112201100-----=-=-=-==n n n n n cb r a cb b a cb b a cb b a b a⇒ .,,,,112121210100n n n n n a cb r a cb b a cb b a cb b a b +=+=+=+==---- 这样,欲求系数k b ,只要把前一系数1-k b 乘以c 再加上对应系数k a ,而余式r 也可以按照类似的规律求出.因此按照下表所指出的算法就可以很快地陆续求出商式的系数和余式:rb b b b cb cb cb cb a a a a ac n n n n n |)|12101210121---------------------------------+ 表中的加号通常略去不写.例1 用3+x 除94)(24-++=x x x x f .例2 求k 使355)(234+++-=kx x x x x f 能被3-x 整除注意 :若)(x f 缺少某一项,在作综合除法时该项系数的位置要补上零.四、拉格朗日插值公式已知次数n ≤的多项式)(x f 在)1,,2,1(+==n i c x i 的值)1,,,2,1()(+==n i b c f i i .设∑+=++-----=111111)())(()()(n i n i i i c x c x c x c x k x f依次令c x =代入)(x f ,得)())(()(1111++-----=n i i i i i i i i c c c c c c c c b k ∑+=++-++---------=1111111111)())(()()())(()()(n i n i i i i i i n i i i c c c c c c c c c x c x c x c x b x f 这个公式叫做拉格朗日(Lagrange)插值公式.例3 求次数小于3的多项式)(x f ,使3)2(,3)1(,1)1(==-=f f f .下面介绍将一个多项式表成一次多项式α-x 的方幂和的方法.所谓n 次多项式)(x f 表成α-x 的方幂和,就是把)(x f 表示成0111)()()()(b x b x b x b x f n n n n +-++-+-=--ααα的形式.如何求系数011,,,,b b b b n n -,把上式改写成01211)]()()([)(b x b x b x b x f n n n n +-++-+-=---ααα ,就可看出0b 就是)(x f 被α-x 除所得的余数,而12111)()()(b x b x b x q n n n n ++-+-=--- αα就是)(x f 被α-x 除所得的商式.又因为123121)]()()([)(b x b x b x b x q n n n n +-++-+-=---ααα .又可看出1b 是商式)(1x q 被α-x 除所得的余式,而233122)()()()(b x b x b x b x q n n n n +-++-+-=---ααα .就是)(1x q 被α-x 除所得商式.这样逐次用α-x 除所得的商式,那么所得的余数就是n n b b b b ,,,,110- .例4 将5)2()2(3)2(2)2()(234+-+---+-=x x x x x f 展开成x 的多项式. 解 令2-=x y ,则2+=y x .于是532)2(234++-+=+y y y y y f .问题变为把多项式532234++-+y y y y 表成2+y (即x )的方幂和,-2 | 1 2 -3 1 5+) -2 0 6 -14--------------------------------------------------------2 | 1 0 -3 7 | -9+) -2 4 -2-------------------------------------------------------2 | 1 -2 1 | 5+) -2 8------------------------------------------------2 | 1 -4 | 9+) -2----------------------------------1 | -6所以9596)(234-++-=x x x x x f .注意:将)(x f 表成α-x 的方幂和,把α写在综合除法的左边,将α-x 的方幂和展开成x 的多项式,那么相当于将)(x f 表成c c x +-)(的方幂和,要把c -写在综合除法的左边.§8 复系数和实系数多项式的因式分解一、 复系数多项式因式分解定理代数基本定理 每个次数1≥的复系数多项式在复数域中有一个根.利用根与一次因式的关系,代数基本定理可以等价地叙述为:每个次数1≥的复系数多项式在复数域上一定有一个一次因式.由此可知,在复数域上所有次数大于1的多项式都是可约的.换句话说,不可约多项式只有一次多项式.于是,因式分解定理在复数域上可以叙述成:复系数多项式因式分解定理 每个次数1≥的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.因此,复系数多项式具有标准分解式s l s l l n x x x a x f )()()()(2121ααα---=其中s ααα,,,21 是不同的复数,s l l l ,,,21 是正整数.标准分解式说明了每个n 次复系数多项式恰有n 个复根(重根按重数计算).二、实系数多项式因式分解定理对于实系数多项式,以下事实是基本的:如果α是实系数多项式)(x f 的复根,那么α的共轭数α也是)(x f 的根,并且α与α有同一重数.即实系数多项式的非实的复数根两两成对.实系数多项式因式分解定理 每个次数1≥的实系数多项式在实数域上都可以唯一地分解成一次因式与含一对非实共轭复数根的二次因式的乘积.实数域上不可约多项式,除一次多项式外,只有含非实共轭复数根的二次多项式.因此,实系数多项式具有标准分解式r s k r r k l s l l n q x p x q x p x c x c x c x a x f )()()()()()(211221121++++---= 其中r r s q q p p c c ,,,,,,,,111 全是实数,s l l l ,,,21 ,r k k ,,1 是正整数,并且),,2,1(2r i q x p x i i =++是不可约的,也就是适合条件r i q p i i ,,2,1,042 =<-..代数基本定理虽然肯定了n 次方程有n 个复根,但是并没有给出根的一个具体的求法.高次方程求根的问题还远远没有解决.特别是应用方面,方程求根是一个重要的问题,这个问题是相当复杂的,它构成了计算数学的一个分支.三、n 次多项式的根与系数的关系.令.)(11n n n a x a x x f +++=- (1)是一个n (>0)次多项式,那么在复数域C 中)(x f 有n 个根,,,,21n ααα 因而在][x C 中)(x f 完全分解为一次因式的乘积:).())(()(21n x x x x f ααα---=展开这一等式右端的括号,合并同次项,然后比较所得出的系数与(1)式右端的系数,得到根与系数的关系.,)1(),()1(),(),),(21323112111124213213131212211n n n n n n n n n n n n n n a a a a a αααααααααααααααααααααααααααααα-=+++-=+++-=+++=+++-=------(其中第),,2,1(n k k =个等式的右端是一切可能的k 个根的乘积之和,乘以k )1(-.若多项式 n n n a x a x a x f +++=- 110)(的首项系数,10≠a 那么应用根与系数的关系时须先用0a 除所有的系数,这样做多项式的根并无改变.这时根与系数的关系取以下形式:.)1(,),(21013121022101n n n n n n a a a a a a αααααααααααα-=+++=+++-=-利用根与系数的关系容易求出有已知根的多项式.例1 求出有单根5与-2,有二重根3的四次多项式.例2. 分别在复数域和实数域上分解1-n x 为标准分解式.§9 有理系数多项式作为因式分解定理的一个特殊情形,有每个次数≥1的有理系数多项式都能分解成不可约的有理系数多项式的乘积.但是对于任何一个给定的多项式,要具体地作出它的分解式却是一个很复杂的问题,即使要判别一个有理系数多项式是否可约也不是一个容易解决的问题,这一点是有理数域与复数域、实数域不同的.在这一节主要是指出有理系数多项式的两个重要事实:第一,有理系数多项式的因式分解的问题,可以归结为整(数)系数多项式的因式分解问题,并进而解决求有理系数多项式的有理根的问题.第二,在有理系数多项式环中有任意次数的不可约多项式.一、有理系数多项式的有理根设011)(a x a x a x f n n n n +++=--是一个有理系数多项式.选取适当的整数c 乘)(x f ,总可以使)(x cf 是一个整系数多项式.如果)(x cf 的各项系数有公因子,就可以提出来,得到)()(x dg x cf =,也就是)()(x g cd x f = 其中)(x g 是整系数多项式,且各项系数没有异于±1的公因子.如果一个非零的整系数多项式011)(b x b x b x g n n n n +++=-- 的系数01,,,b b b n n -没有异于±1的公因子,也就是说它们是互素的,它就称为一个本原多项式.上面的分析表明,任何一个非零的有理系数多项式)(x f 都可以表示成一个有理数r 与一个本原多项式)(x g 的乘积,即)()(x rg x f =.可以证明,这种表示法除了差一个正负号是唯一的.亦即,如果)()()(11x g r x rg x f ==,其中)(),(1x g x g 都是本原多项式,那么必有)()(,11x g x g r r ±=±=因为)(x f 与)(x g 只差一个常数倍,所以)(x f 的因式分解问题,可以归结为本原多项式)(x g 的因式分解问题.下面进一步指出,一个本原多项式能否分解成两个次数较低的有理系数多项式的乘积与它能否分解成两个次数较低的整系数多项式的乘积的问题是一致的.定理10(Gauss 引理) 两个本原多项式的乘积还是本原多项式.定理11 如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定可以分解两个次数较低的整系数多项式的乘积.以上定理把有理系数多项式在有理数域上是否可约的问题归结到整系数多项式能否分解成次数较低的整系数多项式的乘积的问题.推论 设)(x f ,)(x g 是整系数多项式,且)(x g 是本原多项式,如果)()()(x h x g x f =,其中)(x h 是有理系数多项式,那么)(x h 一定是整系数多项式.这个推论提供了一个求整系数多项式的全部有理根的方法. 定理12 设011)(a x a x a x f n n n n +++=--是一个整系数多项式.而sr是它的一个有理根,其中s r ,互素,那么(1) 0|,|a r a s n ;特别如果)(x f 的首项系数1=n a ,那么)(x f 的有理根都是整根,而且是0a 的因子.(2) ),()()(x q srx x f -= 其中)(x q 是一个整系数多项式.给了一个整系数多项式)(x f ,设它的最高次项系数的因数是k v v v ,,,21 ,常数项的因数是.,,,21l u u u 那么根据定理12,欲求)(x f 的有理根,只需对有限个有理数ji v u 用综合除法来进行试验.当有理数jiv u 的个数很多时,对它们逐个进行试验还是比较麻烦的.下面的讨论能够简化计算.首先,1和-1永远在有理数jiv u 中出现,而计算)1(f 与)1(-f 并不困难.另一方面,若有理数)1(±≠a 是)(x f 的根,那么由定理12,)()()(x q x x f α-=而)(x q 也是一个整系数多项式.因此商)1(1)1(),1(1)1(--=+-=-q af q af 都应该是整数.这样只需对那些使商a f a f +--1)1(1)1(与都是整数的ji v u来进行试验.(我们可以假定)1(f 与)1(-f 都不等于零.否则可以用1-x 或1+x 除)(x f 而考虑所得的商.)例1 求多项式2553)(234-+++=x x x x x f的有理根.例2 证明15)(3+-=x x x f在有理数域上不可约.二、有理数域上多项式的可约性定理13 (艾森斯坦(Eisenstein)判别法) 设011)(a x a x a x f n n n n +++=--是一个整系数多项式.若有一个素数p ,使得1. n a p |/;2. 021,,,|a a a p n n --;3. 02|a p /.则多项式)(x f 在有理数域上不可约.由艾森斯坦判断法得到:有理数域上存在任意次的不可约多项式.例如2)(+=n x x f .,其中n 是任意正整数.艾森斯坦判别法的条件只是一个充分条件.有时对于某一个多项式)(x f ,艾森斯坦判断法不能直接应用,但把)(x f 适当变形后,就可以应用这个判断法.例3 设p 是一个素数,多项式1)(21++++=--x x x x f p p叫做一个分圆多项式,证明)(x f 在][x Q 中不可约.证明:令1+=y x ,则由于1)()1(-=-p x x f x ,yCyC y y y yf p pp ppp 1111)1()1(--+++=-+=+ ,令)1()(+=y f y g ,于是1211)(---+++=p p p p p C yC y y g ,由艾森斯坦判断法,)(y g 在有理数域上不可约,)(x f 也在有理数域上不可约.第一章 多项式(小结)一元多项式理论,主要讨论了三个问题:整除性理论(整除,最大公因式,互素);因式分解理论(不可约多项式,典型分解式,重因式);根的理论(多项式函数,根的个数).其中整除性是基础,因式分解是核心.一、基本概念.1.一元多项式(零多项式),多项式的次数.多项式的相等,多项式的运算,一元多项式环.2.基本结论:(1) 多项式的加法,减法和乘法满足一些运算规律.(3) 多项式乘积的常数项(最高次项系数)等于因子的常数项(最高次项系数)的乘积.二、整除性理论1.整除的概念及其基本性质.2.带余除法. (1) 带余除法定理.(2) 设1)()()()(|)(,0)(][)(),(=⇔≠∈x r x f x g x f x g x g x F x g x f 的余式除,. 因此多项式的整除性不因数域的扩大而改变.3. 最大公因式和互素. (1) 最大公因式,互素的概念.(2) 最大公因式的存在性和求法------辗转相除法.(3) 设)(x d 是)(x f 与)(x g 的最大公因式,反之不然.三、 因式分解理论 1.不可约多项式(1) 不可约多项式的概念.(2) 不可约多项式p(x)有下列性质:(4) 艾森斯坦判断法. 2.因式分解的有关结果: (1) 因式分解及唯一性定理.(2) 次数大于零的复系数多项式都可以分解成一次因式的乘积.(3) 次数大于零的实系数多项式都可以分解成一次因式和二次不可约因式的乘积.3.重因式(1) 重因式的概念.(2) 若不可约多项式)(x p 是)(x f 的k 重因式)1(≥k ,则)(x p 是)(x f 的1-k 重因式.(4) 消去重因式的方法:))(),(()(x f x f x f '是一个没有重因式的多项式,它与)(x f 具有完全相同的不可约因式.四、多项式根的理论1.多项式函数,根和重根的概念.2.余数定理.c x -去除)(x f 所得的余式为)(x f ,则.0)()(|=⇔-c f x f c x3.有理系数多项式的有理根的求法.4.实系数多项式虚根成对定理.5.代数基本定理.每个)1(≥n n 次复系数多项式在复数域中至少有一个根.因而n 次复系数多项式恰有n 个复根(重根按重数计算).6.韦达定理.。

复数域和实数域上的多项式

复数域和实数域上的多项式
1i j n

i j x
n2
1 1 2 n
n
—(2) 比较(1)与(2)的展开式中同次项的系数,
第一章 多项式
得根与系数的关系为:
a1 1 n
a2 12 13 n1n
a3 123 124 n2n1n

an 1 1
n 1
1 2 n1 1 3 n 2 3 n
an 1 1 2 n
n
如果 f x a0 xn a1xn1 an1x an 根与系数的关系又如何?
第一章 多项式
能整除 f x ,即存在多项式 h x ,
使
f x g x h x ,
g x 是实系数多项式,
故 h x 也是实系数多项式。 若
是 f x 的重根,由于 , 故 必是 h x 的根, h x 是实系数,故 也是 h x 的根,故 也是 f x 的重根。
k1
x 2
k2
x r
kr
其中 1 ,, r 是不同的复数, k1 ,, kr 是自然数且
k
i 1
r
i
n.
韦达定理: 设 1,2 是 ax 2 bx c 的两个根,则
1 2 , 1 2
b a c a
第一章
多项式
C上多项式的根与系数关系:
解:
设 g x x4 b1x3 b2 x2 b3 x b4 为多求多项式。
a1 1 2 3 4 a0
a2 1 2 1 3 1 4 2 3 2 4 3 4 a0

高等代数与解析几何 6.7 复数域和实数域上多项式

高等代数与解析几何 6.7 复数域和实数域上多项式
高等代数与解析几何 6.7 复数域 和实数域上多项式
6.7 复数域和实数域上的多项式
高等代数与解析几何
6.7 复数域和实数域上的多项式
6.7.1 复数域上的多项式
定理 6.21(代数基本定理) nn 0 次多项式 f x 在 C 内
必有一个根.
定理 6.22 n 次多项式 f x 在复数域内必有 n 个根(重根按 重数计算); f x 总可以分解成一次因式之积.
证 1 n 0 时, f x 有零个根,结论成立;
2 设 n 0 ,且当 n 1时结论成立,而由定理 6.21 知: f x
必有一个根 .于是, x - f (x) .设
3
高等代数与解析几何
6.7 复数域和实数域上的多项式
f (x) (x ) f1(x) ,则( f1(x)) n 1(?)
含共轭虚根的二次多项式.
定理 6.25 实系数 nn 0 次多项式 f x 可以分解成一次与二
次不可约因式之积.
7
结束
谢谢大家!
由归纳假设知, f1(x) 在C 内有n 1个根. 故
f x 在C 内有n 个根;
而根与一次因式相当,故 f x 总可以分解成一次因式之积.
注:在C 内, f x 的典型分解式为 f (x) a0 x 1 m1 x 2 m2 x r mr
其中, a0 为 f x 的首项系数,且 m1 m2 mr 0 f x
a0 n an1 an 0 取共轭得a0 n an1 an 0
则 a0 n an1 an 0 ,此即 f 0 ,所以 也是 f x 的根, ( ? ).
5
高等代数与解析几何
6.7 复数域和实数域上的多项式
从而, x-,x- 都是 f x 的因式.

《高等代数》考试大纲

《高等代数》考试大纲

《高等代数》考试大纲(适用专业:数学与应用数学、应用统计学)第一章基本概念一.主要内容1、集合子集集的相等集合的交与并及其运算律笛卡儿积2、映射映射满射单射双射映射的相等映射的合成可逆映射映射可逆的充要条件3、数学归纳法自然数的最小数原理第一数学归纳法第二数学归纳法4、整数的一些整除性质5、数环和数域二. 考试要求(一)掌握1、集合的交与并及其运算律2、映射满射单射双射映射的相等映射的合成3、数环和数域的定义及性质4、数学归纳法的运用(二)理解1、集合的交与并及其运算律2、可逆映射映射可逆的充要条件3、数环和数域的判别(三)了解自然数的最小数原理第一数学归纳法、第二数学归纳法的证明整数的一些整除性质第二章多项式一. 主要内容1、一元多项式的定义和运算2、多项式的整除性整除的基本性质带余除法定理3、多项式的最大公因式最大公因式概念、性质辗转相除法多项式互素概念、性质4、多项式的唯一因式分解定理不可约多项式概念唯一因式分解定理典型分解式5、多项式的重因式多项式的重因式概念多项式有重因式的充要条件6、多项式函数与多项式的根多项式函数的概念余式定理综合除法多项式的根的概念根与一次因式的关系多项式根的个数7、复数域和实数域上多项式的因式分解(代数基本定理不证明)8、有理数域上多项式的可约性及有理根本原多项式的定义Gauss引理整系数多项式在有理数域上的可约性问题Eisenstein判别法有理数域上多顶式的有理根9、多元多项式多元多项式的概念字典排列法多元多项式的和与积的次数10、对称多项式对称多项式的概念初等对称多项式对称多项式基本定理二. 考试要求(一)掌握1、一元多项式的定义和运算2、整除的基本性质带余除法定理3、最大公因式概念、性质辗转相除法多项式互素概念、性质4、唯一因式分解定理典型分解式5、多项式的重因式概念多项式有重因式的充要条件6、余式定理综合除法多项式的根的概念7、复数域和实数域上多项式的因式分解有理数域上多顶式的有理根(二)理解1、不可约多项式概念2、多项式的重因式概念3、多项式函数与多项式的根4、多项式函数的概念5、本原多项式的定义 Gauss引理6、整系数多项式在有理数域上的可约性问题Eisenstein判别法(三)了解1、对称多项式的概念2、多元多项式的概念3、多元多项式的概念字典排列法初等对称多项式对称多项式基本定理三. 说明本章主要介绍数域上一元多项式的概念及其运算、整除性、因式分解和有理系数多项式有理根的求法,简单介绍了多元多项式及对称多项式。

高等代数实系数和复系数多项式的因式分解

高等代数实系数和复系数多项式的因式分解


n−2
(ε 2
+
ε
n+2 2
)x
+
1].
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
例题选讲
例 设 f(x), g(x) 是两多项式,且 f(x3) + xg(x3) 可被 x2 + x + 1 整除, 则 f(1) = g(1) = 0.
两边取共轭数,有
f(α¯) = anα¯n + an−1α¯n−1 + · · · + a0 = 0,
这就是说,f(α¯) = 0,α¯ 也是 f(x) 的根.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
实系数多项式因式分解定理
. .. . . ..
高斯与代数基本定理
代数基本定理在代数乃至整个数学中起着基础作用. 据说,关于 代数学基本定理的证明,现有 200 多种证法. 迄今为止,该定理 尚无纯代数方法的证明. 大数学家 J.P. 塞尔曾经指出:代数基本 定理的所有证明本质上都是拓扑的. 美国数学家 John Willard Milnor 在数学名著《从微分观点看拓扑》一书中给了一个几何直 观的证明,但是其中用到了和临界点测度有关的 sard 定理. 复变 函数论中,对代数基本定理的证明是相当优美的,其中用到了很 多经典的复变函数的理论结果.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
高斯与代数基本定理
该定理的第一个证明是法国数学家达朗贝尔给出的,但证明不完 整. 接着,欧拉也给出了一个证明,但也有缺陷,拉格朗日于 1772 年又重新证明了该定理,后经高斯分析,证明仍然很不严 格的. 代数基本定理的第一个严格证明通常认为是高斯给出的 (1799 年在哥廷根大学的博士论文),高斯后来又给出了另外三个 证法,其中第四个证法是他 71 岁公布的,并且在这个证明中他 允许多项式的系数是复数.

高代多项式

高代多项式

第一章 多项式多项式是高等代数的重要组成部分一、基本概念1、一元多项式定义 设n 是一非负整数,形式表达式()111n n n n 0f x a x a x a x a −−=++++", (1)其中全属于数域n a a a ,,,10"P ,称为系数在数域P 中的一元多项式,或者简称为数域上的一元多项式.P 在多项式(1)中,称为i 次项,称为次项的系数. 称为常数项. 如果,那么称为多项式的首项,称为首项系数,n 称为多项式的次数.多项式的次数记为.系数全为零的多项式称为零多项式. 零多项式是唯一不定义次数的多项式.i i x a i a i 0a 0≠n a n n x a n a )(x f ))((x f ∂2、整除 设(),()[]f x g x P x ∈,若存在()[]h x P x ∈,使)()()(x h x g x f =,则称整除.记,其中称为的因式.)(x g )(x f )(|)(x f x g )(x g )(x f 3、最大公因式 设(),(),()[]f x g x d x P x ∈,若(i),即为与的一个公因式;()|(),()|()d x f x d x g x )(x d )(x f )(x g (ii)对与的任一公因式,都有,)(x f )(x g ()h x ()|()h x d x 则称为与的最大公因式.把首系数为1的最大公因式记作)(x d )(x f )(x g ()(),()f x g x .4、互素 设(),()[]f x g x P x ∈,若与除零次多项式外没有其它的公因式,则称与互素,记为())(x f )(x g )(x f )(x g (),()1f x g x =上述两个定义可推广到n 个多项式的情形.需要注意的是,个多项式(2n n >)12(),(),()n f x f x f x "互素时,它们不一定两两互素.5、不可约多项式 中次数大于零的多项式不能表示成数域上的两个次数比的次数低的多项式的乘积,则称为数域上不可约多项式.换句话说,在中只有平凡因式.[]P x )(x p P )(x p )(x p P )(x p []P x 对此需注意两点,其一对零和零多项式不定义它们的可约性;其二多项式的可约性依赖于系数域.6、重因式 设是数域上的不可约多项式,且,但, )(x p P )(|)(x f x p k )(|)(1x f x p k /+则称是的重因式.特别地,当)(x p )(x f k 1k =时,称是的单因式.)(x p )(x f 7、多项式的微商 设1110()[]n n n n f x a x a x a x a P x −−=++++∈",规定它的微商(也称导数或一阶导数)是1211)1()(a x n a nx a x f n n n n ++−+=′−−−"此定义不是用函数与极限概念给出的,而是借用于数学分析中函数的导数形式的定义.上述诸定义都是把多项式看作形式表达式给出的,并且定义2~7都限制在数域上一元多项式环中讨论.多项式的重要性在于它是最基本的函数,用它可去逼近一个比较复杂的函数,这对数学分析、微分方程等学科,在理论和实际求解上有重要意义.因此下面我们将从函数观点来讨论多项式.P []P x 8、多项式函数 设0111)(a x a x a x a x f n n n n ++++=−−" (2)是中的多项式,][x P α是中的数,在(2)中用P α代x 所得的数0111a a a a n n n n ++++−−ααα"称为当)(x f α=x 时的值,记为)(αf .这样,多项式就定义了一个数域上的函数.可以由一个多项式来定义的函数就称为数域上的多项式函数.)(x f 9、本原多项式 系数互素的整系数多项式.二、基本理论1、次数定理:设(),()[]f x g x P x ∈(i) )))(()),((max())()((x g x f x g x f ∂∂≤+∂(ii) 若,则0)(,0)(≠≠x g x f 0)()(≠x g x f ,且))(())(())()((x g x f x g x f ∂+∂=∂2、整除性质:(1) 任一多项式都能整除零多项式0.)(x f (2) ,,都有∀0c ≠∀()[]g x P x ∈|(),()|()c f x cf x f x(3) 若,则.(整除的传递性))(|)(),(|)(x h x g x g x f )(|)(x h x f (4) 若,则)(|)(),(|)(x f x g x g x f )()(x cg x f =,其中c 为非零常数.(5) 若,则()|(),()|()h x f x h x g x ()()|()()h x f x g x ±(6) 若,对,则()|()h x f x ∀()[]g x P x ∈()|()()h x f x g x (7) ,对都有()|()i h x f x ∀()[]i g x P x ∈()11()|()()()()r r h x f x g x f x g x ±±",其中 1,2,,i r =".3、带余除法: 对于中任意两个多项式与,其中,一定有中的多项式存在,使][x P )(x f )(x g 0)(≠x g ][x P )(),(x r x q )()()()(x r x g x q x f += (3)成立,其中或者))(())((x g x r ∂<∂0)(=x r ,并且这样的是唯一决定的. )(),(x r x q 多项式和称为除的商式和余式.)(x q )(x r )(x g )(x f 因此得到两个推论(1)()|()()0g x h x r x ⇔=(2) 多项式的整除性不因数域的扩大而改变.4、最大公因式存在唯一定理:中任意两个多项式与一定有最大公因式,除相差一个零次因式外,与的最大公因式是唯一的.][x P )(x f )(x g )(x f )(x g 需注意的是两个多项式的最大公因式不因数域的扩大而改变,但它们的公因式却不然.5、倍式和定理: 对于的任意两个多项式,,在中存在一个最大公因式,且可以表成,的一个组合,即有中多项式使][x P )(x f )(x g ][x P )(x d )(x d )(x f )(x g ][x P )(),(x v x u )()()()()(x g x v x f x u x d +=6、互素判别: 中两个多项式,互素][x P )(x f )(x g ⇔1))(),((=x g x f ⇔(),()[]u x v x P x ∃∈,使1)()()()(=+x g x v x f x u互素性质:(1) 如果,且,那么.1))(),((=x g x f )()(|)(x h x g x f )(|)(x h x f (2) 如果,1))(),((1=x g x f 1))(),((2=x g x f ,那么1))(),()((21=x g x f x f (3) 如果,且)(|)(),(|)(21x g x f x g x f 1))(),((21=x f x f ,那么. )(|)()(21x g x f x f 此性质可推广大有限多个多项式的情形.7、不可约多项式的判别:在上不可约的充要条件是在中任一分解式)(x f P )(x f ][x P 12()()()f x f x f x =中的因式1()f x 与2()f x 总有一个是零次的 不可约多项式的性质:(1) 若是不可约多项式,则)(x p )0)((≠c x cp 也是不可约多项式.即不可约多项式的相伴元仍是不可约的.(2) 若是不可约多项式,对)(x p ∀()[]f x P x ∈,则有或者或者)(|)(x f x p 1))(),((=x f x p (3) 若是不可约多项式,对于)(x p ∀(),()[]f x g x P x ∈,有,则或)()(|)(x g x f x p )(|)(x f x p )(|)(x g x p 8、多项式因式分解唯一定理:数域上次数的多项式都可以唯一地分解成数域P 1≥)(x f P 上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式)()()()()()()(2121x q x q x q x p x p x p x f t s ""==,那么必有,并且适当排列因式的次序后有t s =s i x q c x p i i i ,,2,1,)()("==.其中是一些非零常数.),,2,1(s i c i "=一般地有(4))()()()(2121x p x p x cp x f s r s r r "=其中其中c 是的首项系数,是互不相同的首项系数为1的不可约多项式,而是正整数.这种分解式称为的标准分解式或典型分解式.)(x f )(,),(),(21x p x p x p s "s r r r ,,,21")(x f9、重因式的判别:(1) 如果不可约多项式是的一个重因式,那么是的重因式.)(x p )(x f )1(≥k k )(x p )(x f ′1−k (2) 如果不可约多项式是的一个重因式, 那么是,,…,)的因式,但不是的因式. )(x p )(x f )1(≥k k )(x p )(x f )(x f ′()1(x f k −)()(x f k 特别,当时不是的因式.反之,若,且为的重因式,则是的重因式1k =)(x p )(x f ′()|()p x f x )(x p )(x f ′1k −)(x p )(x f )1(≥k k (3) 不可约多项式是的重因式的充要条件是是与的公因式)(x p )(x f )(x p )(x f )(x f ′(4) 无重因式)(x f 1))(),((=′⇔x f x f .由此可知无重因式不因数域扩大而改变.同时当形如(4)式,则)(x f )(x f ()12'()()()()()(),()s f x q x cp x p x p x f x f x ==" 即与有完全相同的不可约多项式,且都是单因式.()q x )(x f 10、余式定理:设()[]f x P x ∈,P α∈,用x α−除所得余式是常数)(x f ()f α11、因式定理:()()0x f x f αα−⇔=12、中次多项式在数域中的根不可能多于个,重根按重数计算. ][x P n )0(≥n P n 13、。

高等代数多项式(2021年整理)

高等代数多项式(2021年整理)

高等代数多项式(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高等代数多项式(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高等代数多项式(word版可编辑修改)的全部内容。

第二章 多项式1. 设f (x ),g (x )和h (x )是实数域上的多项式.证明:若f (x )2= x g (x )2+x h (x )2,那么 f (x ) = g (x ) = h (x ) = 0.1. 求f (x )被g (x )除所得的商式和余式:(i) 14)(24--=x x x f ,13)(2--=x x x g(ii) 13)(235-+-=x x x x f ,23)(3+-=x x x g证明:kx f x )(|必要且只要)(|x f x2. 令)(),(),(,)(2121x g x g x f x f 都是数域F 上的多项式,其中0)(1≠x f 且)()(21x g x g |)()(21x f x f ,)(1x f |)(1x g .证明:)(2x g |)(2x f .3. 实数m, p , q 满足什么条件时多项式12++mx x 能够整除多项式q px x ++4?、4. 设F 是一个数域,F a ∈.证明:a x -整除nn a x -.5. 考虑有理数域上多项式 1)1)(2()1()(-+++++=n k n k x x x x fn k x x )1()2(++⋅⋅⋅+,这里n 和k 都是非负整数.证明:1+k x |1)1()()1(++++-n k x x f x .6. 证明:1-d x 整除1-nx 必要且只要d 整除n1. 计算以下各组多项式的最大公因式:(i )32103)(,343)(23234-++=---+=x x x x g x x x x x f ;(ii)i x i x i x i x x f ----+-+-+=1)21()42()22()(234; i x i x x g -+-+=1)21()(2.2. 设)()()(1x f x d x f =,)()()(1x g x d x g =.证明:若)())(),((x d x g x f =,且)(x f 和)(x g 不全为零,则1))(),((=x g x f ,反之,若1))(),((=x g x f ,则)(x d 是)(x f 与)(x g 的一个最大公因式.从而可知)(x ϕ|)(x f ,)(x ϕ|)(x g .既)(x ϕ是)(x f 、)(x g 的一个公因式,所以)(x ϕ|)(x d .由定义知))(),(()(11x g x f x d =.3. 证明:(i) h g f ),(是fh 和gh 的最大公因式;4. 、设432()242f x x x x x =+---,432()2f x x x x x =+-- 2-都是有理数Q 域上的多项式.求u (x ),][)(x Q x v ∈使得))(),(()()()()(x g xd f x v x g x u x f =+.5. 设(f , g )=1.令n 是任意正整数,证明:( f , g n) = 1.由此进一步证明,对于任意正整数m ,n ,都有( f m , g n) = 1.、6. 设( f , g ) = 1.证明:( f , f + g ) = ( f + g , g ) = 1.证明:因为( f , g ) = 1.所以有u ,v 使uf + vg = 1,进而有( u – v ) f +v ( g + f ) = 1, 所以( f , g + f ) = 1.同理( g + f , g ) = 1利用互素性质得( fg , f + g ) = 17. 证明:对于任意正整数n 都有( f , g )n= ( f n, g n).8. 证明:若是f ( x )与g ( x )互素,并且的次数都大于0.那么定理2。

第一讲高等代数选讲之多项式理论

第一讲高等代数选讲之多项式理论
对于多元多项式,则要理解 n 元多项式、对称多项 式等有关概念,掌握对称多项式表成初等对称多项式的 多项式的方法。
一、数域的判定
1、数域的概念
设P是至少含有两个数(或包含0与1)的数集,如果 P中任意两个数的和、差、积、商(除数不为零)仍是P 中的数,则称P为一个数域。
2、数域的有关结论 (1)所有的数域都包含有理数域,即有理数域是最
(3)因式分解理论:包括不可约多项式、因式分解、 重因式、实系数与复系数多项式的因式分解、有理系数多 项式不可约的判定等。
(4)根的理论:包括多项式函数、多项式的根、代 数基本定理、有理系数多项式的有理根求法、根与系数 的关系等。
一元多项式的内容十分丰富,重点是整除与因式分 解的理论,最基本的结论是带余除法定理、最大公因式 存在定理、因式分解唯一性定理。在学习的过程中,如 能把握这两个重点和三大基本定理,就能够整体把握一 元多项式的理论。
验根法:现设出g x 的全部复根,并假设 g x无重根,即
g x ax 1x 2 x k
其中1,2, ,k互异。再证 f i 0 i 1, 2, , k , 则有
x i f x i 1, 2, ,k , 从而 g x f x. 这是因为
称为数域P上文字 x 的一元多项式,其中 a0 , a1, , an P,
n 是非负整数。当 an 0 时,称多项式 f x的次数为 n.
记为 f x n.
2、多项式的相等关系 设
f x anxn an1xn1 a1x a0
g x bnxn bn1xn1 b1x b0
bn1 an , bn2 an1 abn1, , b0 a1 ab1, c0 a0 ab0

高等代数最重要的基本概念汇总

高等代数最重要的基本概念汇总

第一章 基本概念1.5 数环和数域定义1 设S 是复数集C 的一个非空子集,如果对于S 中任意两个数a 、b 来说,a+b,a-b,ab 都在S 内,那么称S 是一个数环。

定义2 设F 是一个数环。

如果 (i )F 是一个不等于零的数; (ii )如果a 、b ∈F,,并且b 0≠,aF b∈,那么就称F 是一个数域。

定理 任何数域都包含有理数域,有理数域是最小的数域。

定义1( 中的数。

项式()1叫作零次项或常数项,i i a x 叫作一次项,一般,定义2 ()f x 定义 3 n n a x ++,作多项式n n a x ++,的次数。

定理2.1.1 )x 是数环R 多项式的加法和乘法满足以下运算规则: 1) 加法交换律:()()()()f x g x g x f x +=+;2) 加法结合律:()()()()()()()()f x g x h x f x g x h x ++=++;3)乘法交换律:()()()()f x g x g x f x =;4) 乘法结合律:()()()()()()()()f x g x h x f x g x h x =;5) 乘法对加法的分配律: ()()()()()()()()f x g x h x f x g x f x h x +=+。

推论2.1.1()()0f x g x = 当且仅当()f x 和()g x 中至少有一个是零多项式 推论2.1.2 若()()()()f x g x f x h x =,且()0f x ≠,那么()()g x h x =设F 定义 令()h x ,使(g 1) 如果2) 如果3) 如果4) 果(,2,3,,,ht 那么对于5) 中不等于零的数,整除任意多项式。

6) 7) 如果设()f x )()x r x +,这里定理2.2.1 设()f x 和()g x 是[]f x 的任意两个多项式,并且()0g x ≠。

那么在[]f x 中可以找到多项式()q x 和()r x ,使(3)()()()()f xg x q x r x =+这里或者()0rx =,或者()r x 的次数小于()g x 的次数,满足以上条件的多项式()()q x r x 和只有一对。

复数和实数域上的多项式.

复数和实数域上的多项式.
前页 后页 返回
由归纳假设,
f1 ( x )在C中有n 1个根 2 , 3 ,
f ( x )在C中有n个根1 , 2 ,
推论 1
, n . 因 此 ,
(证毕)
, n .
1) 任意一个 n( n 0)多项式 f ( x )在C [ x ]
中都能分解成一次因式的乘积;
2)C [ x ]中的不可约多项式只有一次的.
*1)可用归纳法证;2)用 1)来证 2)
前页 后页 返回
这样, 任意一个 n( n 0) 多项式 f ( x ) 在 C [ x ] 中的典型分解式为以下形式:
f ( x ) a( x a1 )k1 ( x a2 )k2
其中 k1 k2
kt n.
( x a t ) kt ,
a4 5 ( 2) 3 3 90.
前页 后页 返回
所以
例2
f ( x ) x 4 9 x 3 17 x 2 33 x 90, 或
试求 3 次多项式
f ( x ) ax 4 9ax 3 17ax 2 33ax 90a (a 0).
f ( x ) 2 x 3 6 x 2 3 x 4 的根是α ,β ,γ ,
数域 a F , F 是任意数域。 )
前页 后页 返回
二、实数域上多项式
1、实系数多项式非复根的重要性质
定理 4.8.3 设 f ( x ) R[ x ],非实复数
是f ( x )的根,则 的共轭复数
是f ( x )的根,并且 与 有相同的重数。

设f ( x ) a0 x n a1 x n1
前页 后页 返回
根据上面韦达定理,由根1 , 2 , n ,可以求出

(完整版)高等代数多项式

(完整版)高等代数多项式

第二章 多项式1. 设f (x ),g (x )和h (x )是实数域上的多项式.证明:若f (x )2 = x g (x )2+x h (x )2,那么 f (x ) = g (x ) = h (x ) = 0.1. 求f (x )被g (x )除所得的商式和余式:(i) 14)(24--=x x x f ,13)(2--=x x x g(ii) 13)(235-+-=x x x x f ,23)(3+-=x x x g证明:kx f x )(|必要且只要)(|x f x2. 令)(),(),(,)(2121x g x g x f x f 都是数域F 上的多项式,其中0)(1≠x f 且)()(21x g x g |)()(21x f x f ,)(1x f |)(1x g .证明:)(2x g |)(2x f .3. 实数m, p , q 满足什么条件时多项式12++mx x 能够整除多项式q px x ++4?、4. 设F 是一个数域,F a ∈.证明:a x -整除nn a x -.5. 考虑有理数域上多项式 1)1)(2()1()(-+++++=n k n k x x x x fn k x x )1()2(++⋅⋅⋅+,这里n 和k 都是非负整数.证明:1+k x |1)1()()1(++++-n k x x f x .6. 证明:1-d x 整除1-nx 必要且只要d 整除n1. 计算以下各组多项式的最大公因式:(i)32103)(,343)(23234-++=---+=x x x x g x x x x x f ;(ii) i x i x i x i x x f ----+-+-+=1)21()42()22()(234;i x i x x g -+-+=1)21()(2.2. 设)()()(1x f x d x f =,)()()(1x g x d x g =.证明:若)())(),((x d x g x f =,且)(x f 和)(x g 不全为零,则1))(),((=x g x f ,反之,若1))(),((=x g x f ,则)(x d 是)(x f 与)(x g 的一个最大公因式.从而可知)(x ϕ|)(x f ,)(x ϕ|)(x g .既)(x ϕ是)(x f 、)(x g 的一个公因式,所以)(x ϕ|)(x d .由定义知))(),(()(11x g x f x d =.3. 证明:(i) h g f ),(是fh 和gh 的最大公因式;4. 、设432()242f x x x x x =+---,432()2f x x x x x =+--2-都是有理数Q 域上的多项式.求u (x ),][)(x Q x v ∈使得))(),(()()()()(x g xd f x v x g x u x f =+.5. 设(f , g )=1.令n 是任意正整数,证明:( f , g n ) = 1.由此进一步证明,对于任意正整数m ,n ,都有( f m , g n ) = 1.、6. 设( f , g ) = 1.证明:( f , f + g ) = ( f + g , g ) = 1.证明:因为( f , g ) = 1.所以有u ,v 使uf + vg = 1,进而有( u – v ) f + v ( g + f ) = 1, 所以( f , g + f ) = 1.同理( g + f , g ) = 1利用互素性质得( f g , f + g ) = 17. 证明:对于任意正整数n 都有( f , g )n = ( f n , g n ).8. 证明:若是f ( x )与g ( x )互素,并且的次数都大于0.那么定理2.3.3里的可以如此选取,u ( x )次数低于g ( x )的次数,v ( x )次数低于f ( x )的次数,并且这样的u ( x )与v ( x )是唯一的.9. 决定k ,使2(6)42x k x k ++++与2(2)2x k x k +++的最大公因式是一次的.10. 证明:如果 ( f ( x ) , g ( x ) ) =1,那么对于任意正整数m ,( f ( x m ) , g ( x m ) ) =1 11. 设f ( x ) , g ( x )是数域F 上的多项式.f ( x )与g ( x )的最小公陪式指的是F [x ]中满足以下条件的一个多项式m ( x ):(a) f (x ) | m (x ) 且 g (x ) | m (x );(b) h (x )∈F [x ] 且 f (x ) | h (x ),g (x ) | h (x ),那么m (x ) | h (x ).(i) 证明: F [x ]中任意两个多项式都有最小公倍式,并且除了可能的零次因式差别外,是唯一的.(ii)设f (x ), g (x )都是最高次项系数是1的多项式.令[ f (x ), g (x )]表示 f (x )与g (x )的最高次项系数是1的那个最小公倍式.证明: f (x ) g (x )= (f (x ) , g (x )) [ f (x ), g (x )].12. 设g (x )|)()(1x f x f n ⋅⋅⋅,并且(f i (x ), g (x )) =1, i =1,1,,2-⋅⋅⋅n . 证明 g (x ) | f n (x ).13. 设][)(,),(1x F x f x f n ∈⋅⋅⋅.证明:(i) ()(,),(1x f x f n ⋅⋅⋅)=(()(,),(1x f x f k ⋅⋅⋅), ()(,),(1x f x f n k ⋅⋅⋅+)), 1≤k ≤n -1.(ii))(,),(1x f x f n ⋅⋅⋅互素的充要条件是存在多项式][)(,),(1x F x u x u n ∈⋅⋅⋅使得1)()()()(11=+⋅⋅⋅+x u x f x u x f n n14. 设][)(,),(1x F x f x f n ∈⋅⋅⋅.令I ={+⋅⋅⋅+)()(11x g x f f n (x ) g n (x )|][)(x F x g i ∈, 1≤i ≤n } .比照定理1.4.2,证明:)(,),(1x f x f n ⋅⋅⋅有最大公因式.[提示:如果)(,),(1x f x f n ⋅⋅⋅不全为零,取d (x )是中次数最底的一个多项式,则d (x )就是)(,),(1x f x f n ⋅⋅⋅的一个最大公因式.]2.4 多项式的分解1. 在有理数域上分解以下多项式为不可约因式的乘积:2. 分别在复数域,实数域和有理数域上分解多项式x 4+1为不可约因式的乘积.3. 证明:g (x )2|f (x )2,当且仅当g (x )|f (x ). 4.5. (i)求f (x )= x 5-x 4-2x 3+2x 2+x -1在Q (x )内的典型分解式; 6.(ii)求f (x )= 2x 5-10x 4+16x 3-16x 2+14x -6在R (x )内的典型分解式.7. 证明:数域F 上一个次数大于零的多项式f (x )是F [x ]中某一不可约多项式的幂的充分必要条件是对于任意g (x )∈F [x ],或者(f (x ), g (x )) =1,或者存在一个正整数m 使得f (x )|g (x )m .8. 设p (x )是F [x ]中一个次数大于零的多项式.如果对于任意f (x ), g (x )∈F [x ],只要p (x )|f (x )g(x )就有p (x )| f (x )或p (x )| g(x ),那么p (x )不可约.2.5 重因式1. 证明下列关于多项式的导数的公式: a) )(')('))'()((x g x f x g x f +=+; b))(')()()('))'()((x g x f x g x f x g x f +=2. 设)(x p 是)(x f 的导数)('x f 的1-k 重因式.证明: a) )(x p 未必是)(x f 的k 重因式;b))(x p 是)(x f 的k 重因式的充分必要条件是)(|)(x f x p3. 证明有理系数多项式!!21)(2n x x x x f n++++= 没有重因式. 4. a,b 应该满足什么条件,下列的有理系数多项式才能有重因式?a) b ax x ++33 b) b ax x ++445. 证明:数域F 上的一个n 次多项式)(x f 能被它的导数整除的充分必要条件是:n b x a x f )()(-=,这里a,b 是F 中的数.2.6 多项式函数 多项式的根1.设f (x )=2x 5-3x 4-5x 3+1.求f (3),f (-2).2.数环R 的一个数c 说是f (x )∈R(x )的一个k 重根,如果f (x )可以被(x -c )k 整除,但不能被(x -c )k +1整除.判断5是不是多项式f (x )=3x 5-224x 3+742x 2+5x +50的根.如果是的话,是几重根?3.设2x 3-x 2+3x -5=a (x -2)3+b (x -2)2+c (x -2)+d .求a,b,c,d .4.将下列多项式f (x )表成x-a 的多项式.a) f (x )= x 5 ,a =1; b) f (x )=x 4-2x 2+3,a =-2.5.求一次数小于4的多项式,使f (2)=3,f (3)=-1,f (4)=0,f (5)=2.6.求一个2次多项式,使它在x =0,,2ππ处于函数 sin x 有相同的值.结果:24()()f x x x ππ=--7.令f (x ) , g (x ),是两个多项式,并且f (x 3) +x g (x 3)可以被x 2+x +1.证明: f (1) = g (1) =0. 8.令c 是一个复数,且是Q [x ]中一个非零多项式的根.令J ={ f (x )∈Q [x ] | f (c ) = 0}.b) p (x )在Q [x ]中不可约.如果c =32+,求上述的p (x ).9.设C [x ]中多项式f (x )≠0且f (x )| f (x n ),n 是一个对于1的整数.证明: f (x )的根只能是零或单位根.2.7 复数和实数域上多项式1.设n 次多项式n n na x a x a x f +++=-10)( 的根是n αα,,1 .a) 求以n c c αα,,1 为根的多项式,这里c 是一个数;b) 以n a 1,,11α(假定0,,1≠n αα )为根的多项式.2.设f (x )是一个多项式,用)(x f 表示把f (x )的系数分别换成它们的共轭数后所得多项式.证明:a) 若是g (x )|f (x ),那么)(x g |)(x f ;b) 若是d (x )是f (x )和)(x f 的一个最大公因式,并且d (x )的最高次项系数是1,那么d (x )是一个实系数多项式.3.给出实系数四次多项式在实数域上所有不同类型的典型分解式.4.在复数和实数域上分解x n -2为不可约因式的乘积.5.证明:数域F 上任意一个不可约多项式在复数域内没有重根.2.8 有理数域上多项式1.证明以下多项式在有理域上不可约: a) x 4-2x 3+8x -10; b) 2x 5+18x 4+6x 2+6 c) x 4-2x 3+2x -3 d) x 6+x 3+12利用艾森斯坦判断法,证明:若是t p p p ,,,21 是t 个不相同的素数,而n 是一个大于1的整数,那么nt p p p 21是一个无理数.3.设f (x )是一个整数系数多项式,证明:若是f (0)和f (1)都是奇数,那么f (x )不能有整数根.4.求以下多项式的有理数根: a) x 3-6x 2+15x -14; b) 4x 4-7x 2-5x -1;c) x 5-x 4-25x 3+2x 2-21x -3.2.9 多元多项式1.写出一个数域F 上三元三次多项式的一般形式.2.设 f (n x x ,,1 )是一个r 次齐次多项式.t 是任意数.证明:f (n tx tx ,,1 )=t r f (n x x ,,1 ).3. 设f (n x x ,,1 )是数域F 上一个n 元齐次多项式,证明:如果f (n x x ,,1 )=g (n x x ,,1 )h (n x x ,,1 ),则g ,h 也是n 元齐次多项式.4.把多项式x 3+y 3+z 3+3xyz 写成两个多项式的乘积.5.设F 是数域. f ,g ∈F [n x x ,,1 ]是F 上n 元多项式. 如果存在h ∈F [n x x ,,1 ]使得f =gh ,那么就说g 是f 的一个因式.或者说g |f .a) 证明,每一f 都可以被零次多项式c 和cf 整除c ∈F , c ≠0.b) f ∈F [n x x ,,1 ]说是不可约的,如果除了a)中那种类型的因式外f 没有其它因式,证明在F [x ,y ]里多项式x ,y ,x +y ,x 2-y 都不可约.c) 举反例证明,当n ≥2时,类似于一元多项式的带余除法不成立.d) f ,g ∈F [n x x ,,1 ]说是互素的,如果除了零次多项式外,它们没有次数大于零的公因式.证明x ,y ∈F [x ,y ]是互素的多项式.能是否找到u (x ,y ), v (x ,y ) ∈F [x ,y ],使得x u (x ,y )+y v (x ,y )=1?2.10 对称多项式1. 写出某一数环R 上三元三次对称多项式的一般形式.2.令R [n x x ,,1 ]是数环R 上n 元多项式环, S 是由一切n 元对称多项式组成的R [n x x ,,1 ]的子集.证明存在R [n x x ,,1 ]到S 的一个双射.3.把下列多元多项式表成初等对称多项式的多项式: a) ∑231xx ; b) ∑41x; c) 32221x x x ∑;4.证明:如果一个三次多项式x 3+ax 2+bx +c 的一个根的平方等于其余两个根的平方和那么这个多项式的系数满足以下关系: 2324)22(2)2(c ab a b a a +-=-.5.设n αα,,1 是某一数域F 上多项式x n +a 1x n -1++ a n -1x +a n 在复数域内的全部根.证明:2,,n αα的每一个对称多项式都可以表成F 上关于1α的多项式.。

高等代数--第八章 多项式

高等代数--第八章 多项式

r(x)=f(x)-q(x)g(x)
由此可见,如果g(x),r(x)有一个最大 公
因式d(x),那么d(x)也是f(x),g(x)的一个 最大公 因式。
h
36
定理2 对于P[x]中任意两个多项式 f(x),g(x),在P[x]中存在一个最大公因式d(x), 且d(x)可以表示成f(x),g(x)的一个线性组合, 即有P[x]中多项式u(x),v(x)使
g ( x ) q 2 ( x ) r 1 ( x ) r 2 ( x )r 2 0
h
25
例题
f 3 x 3 4 x 2 5 x 6 ,g x 2 3 x 1
x2 3x1
|3x34x25x6 | |_3_x_3__9_x2__3_x____ |
3x 13
| 13x28x6 |
|___1_3_x_2__3__9x__1_ |3
f(x)
31x7
(3x13)g(x)(31x7)
h
26
定义5 数域P上的多项式g(x)称为整除f(x), 如果有数域P上的多项式h(x)使得
f (x) 0 ,那么 g(x)=h(X)
定义4 所有系数在数域P中的多项式的全体,
称为数域P上的一元多项式环,记为P[x],
P称为P[x]的系数域
BACK
h
19
§3 整除的概念
以后讨论都是在某一固定的数域P上的 多项式环中进行。
带余除法 整除 整除的性质
h
20
带余除法
对于P[x]中任意两个多项式f(x)与g(x),其
35
Байду номын сангаас
h
最大公因式的求法
结论:如果有等式
f(x)=q(x)g(x)+r(x)

高等代数与解析几何

高等代数与解析几何

高等代数与解析几何
高等代数与解析几何(Advanced Algebra and Analytic Geometry)是数学中的两个重要分支,主要讨论的是代数结构和几何结构的性质和关系。

高等代数(Advanced Algebra)是对于代数结构的深入研究,其中包括了群论、环论和域论等内容。

群论(Group Theory)主要研究集合上带有二元运算的代数结构,探讨了群的性质、群的分类以及群之间的关系等。

环论(Ring Theory)则研究了一个集合上定义了两种二元运算的代数结构,即环,探讨了环的性质、环的分类以及环之间的关系等。

最后,域论(Field Theory)研究了含有加法、乘法两种二元运算的代数结构,即域,探讨了域的性质、域的分类以及域之间的关系等。

解析几何(Analytic Geometry)则是通过运用代数工具来研究几何结构的一门学科。

它主要研究的是平面空间或者更高维空间中的几何对象,其中包括点、线、圆、曲线、曲面等。

解析几何将代数工具和几何结构相结合,通过代数方程和坐标系统来描述、分析和研究几何对象的性质和关系。

通过解析几何,可以进行几何对象的刻画、对几何问题的求解以及几何对象之间的关系推导等。

高等代数与解析几何相互渗透,相互为对方提供理论和工具。

高等代数提供了解析几何所需的代数结构和工具,而解析几何则提供了
高等代数的应用背景和几何直观。

两个学科的交叉呈现出了更丰富、更深入的数学理论和应用领域。

高等代数与解析几何大纲

高等代数与解析几何大纲

《高等代数》考试大纲(草稿)(一)多项式考试内容数域;一元多项式;整除的概念及性质;最大公因式及辗转相除法;互素的概念及性质;不可约多项式的概念及性质;因式分解及唯一性定理。

考试要求1. 掌握数域、一元多项式的概念,了解一元多项式的运算及性质。

2. 掌握多项式整除的概念,了解相关的性质。

3. 掌握最大公因式的概念,了解辗转相除法。

4. 理解互素的概念,掌握两个一元多项式互素的充分必要条件。

5. 了解不可约多项式的概念及其性质。

6. 了解一般系数的多项式的因式分解定理,掌握复系数与实系数多项式的因式分解定理。

(二)行列式考试内容行列式的概念和基本性质;行列式计算;行列式按行(列)展开;拉普拉斯(Laplace)定理及行列式的乘法法则。

考试要求1.理解行列式的概念,掌握行列式的性质,了解拉普拉斯(Laplace)定理及行列式的乘法法则。

2.会应用行列式概念计算行列式,会利用行列式的性质和行列式按行(列)展开定理计算行列式,会运用矩阵的初等行(列)变换计算行列式。

(三)向量和矩阵考试内容向量的线性组合和线性表示;向量组的等价;向量组的线性相关与线性无关;向量组的极大线性无关组;向量组的秩;向量组的秩与矩阵的秩之间的关系。

矩阵的概念;矩阵的基本运算;矩阵的转置、伴随矩阵、逆矩阵的概念和性质;矩阵可逆的充分必要条件;矩阵的初等变换和初等矩阵;矩阵的秩;矩阵的等价;分块矩阵及其运算考试要求1.理解n维向量、向量的线性组合与线性表示等概念。

2.理解向量组线性相关、线性无关的定义、熟练掌握判断向量组线性相关、线性无关的方法。

3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。

4.理解向量组等价的概念、清楚向量组的秩与矩阵秩的关系。

5.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,熟悉它们的基本性质。

6.掌握矩阵的数乘、加法、乘法、转置等运算。

掌握方阵的多项式概念。

6.7 复数域和实数域上的多项式讲解

6.7 复数域和实数域上的多项式讲解

mr
其中, a0 为 f x 的首项系数,且 m1 m2 mr 0 f x
3
高等代数与解析几何
6.7 复数域和实数域上的多项式
6.7.2 实数域上的多项式
定理 6.23 设 f x 为实系数多项式, 为 f x 的虚根,则 也是 f x 的根,且 与 的重数相同.
4
高等代数与解析几何
6.7 复数域和实数域上的多项式
从而, x - , x - 都是 f x 的因式.
令 g( x) x x x2 x R x 因 g ( x) f ( x) (?) ,则可令 f ( x) g ( x)h( x), h( x) R x .
5
高等代数与解析几何
6.7 复数域和实数域上的多项式
证 因 p x 不可约,则 0 ( p x )> 0 ,故 p x 在 C 内必有一个根
.若 为实数,则因 x - p x ,令 p x x q x ,但 p x 不可
约,则 q x c c 0 ,可见, p x c x ;若 为虚数,则 也 是 p x 的根, 从而 g x x x x 2 x 为 p x 的因 式,但 p x 不可约,则 p x b[ x 2 x ] (b 0) ,即 p x 是 含共轭虚根的二次多项式.
证 1 n 0 时, f x 有零个根,结论成立;
2 设 n 0 ,且当 n 1 时结论成立,而由定理 6.21 知: f x
必有一个根 .于是, x - f ( x ) .设
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是 p x的根,从而 g x x x x2 x 为 p x的因 式,但 p x不可约,则 p x b[x2 x ] (b 0) ,即 p x是
含共轭虚根的二次多项式.
定理 6.25 实系数 nn 0 次多项式 f x 可以分解成一次与二
次不可约因式之积.
6
结束
则 f () 0,即
a0 n an1 an 0 取共轭得a0 n an1 an 0
则 a0 n L an1 an 0 ,此即 f 0 ,所以 也是 f x 的根, ( ? ).
4
高等代数与解析几何
6.7 复数域和实数域上的多项式
从而, x-,x- 都是 f x 的因式.
令g(x) x x x2 x Rx
因 g(x) f (x)(?) ,则可令 f (x) g(x)h(x), h(x) Rx .
若 为 f x 的重根,则 也是 hx 的根,从而, 也是 hx 的 根.于是 也是 f x 的重根,依次向下推便知, 与 的重数相同.
3
高等代数与解析几何
6.7 复数域和实数域上的多项式
6.7.2 实数域上的多项式
定理 6.23 设 f x 为实系数多项式, 为 f x 的虚根,则 也是 f x 的根,且 与 的重数相同.
证 设 f (x) a0xn L an1x an Rx,因 为 f x 的根,
定理 6.24 令 p x为实系数多项式,若 p x不可约,则 p x 为一次的,或 p x为二次的(含共轭虚根)
5
高等代数与解析几何
6.7 复数域和实数域上的多项式
证 因 p x不可约,则 0( px)> 0 ,故 p x在 C 内必有一个根 .若 为实数,则因 x - p x ,令 px x qx,但 p x不可 约,则 qx cc 0 ,可见, px cx ;若 为虚数,则 也
6.7 复数域和实数域上的多项式
高等代数与解析几何
6.7 复数域和实数域上的多项式
6.7.1 复数域上的多项式
定理 6.21(代数基本定理) nn 0 次多项式 f x 在 C 内
必有一个根.
定理 6.22 n 次多项式 f x 在复数域内必有 n 个根(重根按 重数计算); f x 总可以分解成一次因式之积.
证 1o n 0 时, f x 有零个根,结论成立;
2o 设 n 0 ,且当 n 1时结论成立,而由定理 6.21 知: f x
必有一个根 .于是, x - f (x) .设

高等代数与解析几何
6.7 复数域和实数域上的多项式
f (x) (x ) f1(x) ,则( f1(x)) n 1(?)
由归纳假设知, f1(x) 在C 内有n 1个根. 故
f x 在C 内有n 个根;
而根与一次因式相当,故 f x 总可以分解成一次因式之积.
注:在C 内, f x 的典型分解式为 f (x) a0 x 1 m1 x 2 m2 x r mr
其中, a0 为 f x 的首项系数,且 m1 m2 mr 0 f x
相关文档
最新文档