《2.3.2离散型随机变量的方差》导学案
离散型随机变量的方差导学案
《2.3.2离散型随机变量的方差》导学案学习目标:1、 理解离散型随机变量的方差的概念,掌握两点分布、二项分布的方差的计算公式2、 利用离散型随机变量的方差解决一些相关的实际问题 重点: 离散型随机变量的方差的概念、计算公式及其应用 难点:离散型随机变量的方差的应用 I 复习回顾数学期望是反映离散型随机变量的平均水平 2、数学期望的性质: 3、如果随机变量X 服从两点分布为,则 4、如果随机变量X 服从二项分布,即X ~ B (n,p ),则 II 新课导入引例:甲、乙两名射手在同一条件下射击,所得环数X1, X2分布列如下:从中选一名射手参加比赛,问题1:应该选哪名射手参加比赛?III 新课讲授一、离散型随机变量取值的方差一般地,若离散型随机变量X 的概率分布为则称_______________________________________________为随机变量X 的方差。
称________________为随机变量X 的标准差。
它们反映了离散型随机变量取值的__________________。
它们的值_______,则随机变量偏离于均值的平均程度________,即越集中于均值.1122i i n n EX x p x p x p x p =+++++()E aX b aEX b+=+EX p =EX np =练一练:1、已知随机变量X 的分布列求DX 和σX 。
3、 若随机变量X 满足P (X =c )=1,其中c 为常数,求EX 和DX 。
回顾:引例问题2:如果其他对手的射击成绩都在8环左右,应派哪一名选手参赛? 问题3:如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛? 二、范例讲解例1(课本66页例4) 例2(课本66页例5) 三、方差的几个常用公式练一练:11313,8D D ηξξη=+==、已知,且则3、一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不作出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为________;方差为________.2()D aX b a DX +=~(,)(1)X B n p DX np p =-若,则(1)X DX p p =-若服从两点分布,则2(,)EX 8,DX 1.6,n X B n p p ====、已知~,则。
高中数学《离散型随机变量的方差》导学案
2.3.2 离散型随机变量的方差知识点 方差、标准差的定义及方差的性质(1)设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则称D (X )=□01∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,其算术平方根D (X )为随机变量X 的□02标准差. (2)随机变量的方差和标准差都反映了随机变量取值偏离于均值的□03平均程度,方差或标准差越小,则随机变量偏离于均值的□04平均程度越小. 知识点 两点分布与二项分布的方差X X 服从两点分布X ~B (n ,p ) D (X ) □01p (1-p )(其中p 为成功概率) □02np (1-p )方差的性质: D (aX +b )=a 2D (X ), D (C )=0(C 是常数).1.判一判(正确的打“√”,错误的打“×”)(1)离散型随机变量的方差越大,随机变量越稳定.( ) (2)若a 是常数,则D (a )=0.( )(3)离散型随机变量的方差反映了随机变量偏离于期望的平均程度.( ) 答案 (1)× (2)√ (3)√ 2.做一做(1)若随机变量X 服从两点分布,且成功的概率p =0.5,则E (X )和D (X )分别为________.(2)设随机变量ξ~B ⎝ ⎛⎭⎪⎫6,12,则D (ξ)=________.(3)如果X 是离散型随机变量,Y =3X +2,那么D (Y )=________D (X ). 答案 (1)0.5和0.25 (2)32 (3)9 解析 (1)因为X 服从两点分布, 所以X 的概率分布为X 0 1 P0.50.5所以E (X )=0×0.5+1×0.5=0.5, D (X )=0.52×0.5+(1-0.5)2×0.5=0.25. (2)因为随机变量ξ~B ⎝ ⎛⎭⎪⎫6,12,所以D (ξ)=6×12×⎝ ⎛⎭⎪⎫1-12=32.(3)由于X 是离散型随机变量,Y =3X +2呈线性关系,代入公式,则D (Y )=32D (X )=9D (X ).探究1 方差及标准差的计算 例1 已知随机变量X 的分布列为X 0 10 20 50 60 P1325115215115(1)求X 的方差及标准差; (2)设Y =2X -E (X ),求D (Y ).[解] (1)E (X )=0×13+10×25+20×115+50×215+60×115=16,D (X )=(0-16)2×13+(10-16)2×25+(20-16)2×115+(50-16)2×215+(60-16)2×115=384.∴D(X)=8 6.(2)∵Y=2X-E(X),∴D(Y)=D(2X-E(X))=4D(X)=4×384=1536.拓展提升求方差和标准差的关键是求分布列,只要有了分布列,就可以依据定义求数学期望,进而求出方差、标准差,同时还要注意随机变量aX+b的方差可用D(aX +b)=a2D(X)求解.[跟踪训练1]已知随机变量ξ的分布列如下表:(1)求ξ的均值、方差和标准差;(2)设η=2ξ+3,求E(η),D(η).解(1)均值E(ξ)=(-1)×12+0×13+1×16=-13;方差D(ξ)=(x1-E(ξ))2·p1+(x2-E(ξ))2·p2+(x3-E(ξ))2·p3=59;标准差D(ξ)=53.(2)E(η)=2E(ξ)+3=73;D(η)=4D(ξ)=209.探究2两点分布与二项分布的方差例2(1)篮球比赛中每次罚球命中得1分,不中得0分.已知某运动员罚球命中的概率为0.7,求他一次罚球得分的方差;(2)将一枚硬币连续抛掷5次,求正面向上的次数的方差;(3)老师要从10名同学中随机抽3名同学参加社会实践活动,其中男同学有6名,求抽到男同学人数的方差.[解](1)设一次罚球得分为X,X服从两点分布,即∴D (X )=p (1-p )=0.7×0.3=0.21.(2)设正面向上的次数为Y ,则Y ~B ⎝ ⎛⎭⎪⎫5,12,D (Y )=np (1-p )=5×12×12=1.25. (3)设抽到男同学的人数为ξ. ξ服从超几何分布,分布列为即∴E (ξ)=0×130+1×310+2×12+3×16=0.3+1+0.5=1.8,D (ξ)=(0-1.8)2×130+(1-1.8)2×310+(2-1.8)2×12+(3-1.8)2×16=0.56.拓展提升解决此类问题的第一步是判断随机变量ξ服从什么分布,第二步代入相应的公式求解.若ξ服从两点分布,则D (ξ)=p (1-p );若ξ服从二项分布,即ξ~B (n ,p ),则D (ξ)=np (1-p ).[跟踪训练2] (1)若随机变量X 的分布列如下表所示则E (X )=________,D (X )=________;(2)若随机变量X ~B (3,p ),D (X )=23,则p =________. 答案 (1)0.6 0.24 (2)13或23解析(1)∵E(X)=0×0.4+1×0.6=0.6,D(X)=0.6×(1-0.6)=0.6×0.4=0.24.(2)∵X~B(3,p),∴D(X)=3p(1-p),由3p(1-p)=23,得p=13或p=23.探究3方差的实际应用例3有甲、乙两名同学,据统计,他们在解答同一份数学试卷时,各自的分数在80分,90分,100分的概率分布大致如下表所示:试分析甲、乙两名同学谁的成绩好一些.[解]在解答同一份数学试卷时,甲、乙两人成绩的均值分别为E(X甲)=80×0.2+90×0.6+100×0.2=90,E(X乙) =80×0.4+90×0.2+100×0.4=90.方差分别为D(X甲)=(80 -90)2×0.2+(90 -90)2×0.6+(100-90)2×0.2 =40,D(X乙)=(80-90)2×0.4+(90-90)2×0.2+(100 -90)2×0.4=80.由上面数据,可知E(X甲)=E(X乙),D(X甲)<D(X乙).这表示甲、乙两人所得分数的均值相等,但两人的分数的稳定程度不同,甲同学分数较稳定,乙同学分数波动较大,所以甲同学的成绩较好.拓展提升离散型随机变量的均值反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此,在实际决策问题中,需先计算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定.因此,在利用均值和方差的意义去分析解决实际问题时,两者都要分析.[跟踪训练3]甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ与η,且ξ,η的分布列为:ξ12 3P a 0.10.6η12 3P 0.3 b 0.3(1)求a,b的值;(2)计算ξ,η的期望与方差,并依此分析甲、乙技术状况.解(1)由离散型随机变量分布列的性质得a+0.1+0.6=1,解得a=0.3;同理0.3+b+0.3=1,解得b=0.4.(2)E(ξ)=1×0.3+2×0.1+3×0.6=2.3;E(η)=1×0.3+2×0.4+3×0.3=2;D(ξ)=(1-2.3)2×0.3+(2-2.3)2×0.1+(3-2.3)2×0.6=0.81;D(η)=(1-2)2×0.3+(2-2)2×0.4+(3-2)2×0.3=0.6.由于E(ξ)>E(η),说明在一次射击中,甲的平均得分比乙高,但D(ξ)>D(η),说明甲得分的稳定性不如乙,因此甲、乙两人技术水平都不够全面,各有优势与劣势.1.随机变量的方差和标准差都反映了随机变量取值的稳定与波动、集中与离散的程度,以及随机变量取值偏离于均值的平均程度.方差D (X )或标准差越小,则随机变量X 偏离均值的平均程度越小;方差越大,表明平均偏离的程度越大,说明X 的取值越分散.2.求离散型随机变量X 的均值、方差的步骤 (1)理解X 的意义,写出X 的所有可能的取值; (2)求X 取每一个值的概率; (3)写出随机变量X 的分布列; (4)由均值、方差的定义求E (X ),D (X ).特别地,若随机变量服从两点分布或二项分布,可根据公式直接计算E (X )和D (X ).1.已知随机变量X 的分布列为X 0 1 2 P131313设Y =2X +3,则D (Y )=( ) A.83 B.53 C.23 D.13 答案 A解析 ∵E (X )=0×13+1×13+2×13=1,∴D (X )=(0-1)2×13+(1-1)2×13+(2-1)2×13=23, ∴D (Y )=D (2X +3)=4D (X )=83.2.一批产品中,次品率为14,现有放回地连续抽取4次,若抽取的次品件数记为X ,则D (X )的值为( )A.43B.83C.34D.116 答案 C解析 由题意,次品件数X 服从二项分布,即X ~B ⎝ ⎛⎭⎪⎫4,14,故D (X )=np ·(1-p )=4×14×34=34.3.已知ξ~B (n ,p ),且E (3ξ+2)=9.2,D (3ξ+2)=12.96,则二项分布的参数n ,p 的值为( )A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.1 答案 B解析 由E (3ξ+2)=3E (ξ)+2,D (3ξ+2)=9D (ξ),及ξ~B (n ,p )时,E (ξ)=np ,D (ξ)=np (1-p )可知⎩⎪⎨⎪⎧ 3np +2=9.2,9np (1-p )=12.96,所以⎩⎪⎨⎪⎧n =6,p =0.4.故选B. 4.袋中有大小相同的三个球,编号分别为1,2,3,从袋中每次取出一个球,若取到球的编号为奇数,则取球停止,用 X 表示所有被取到的球的编号之和,则X 的方差为________.答案 179解析 X 的分布列为则E (X )=1×13+3×12+5×16=83,D (X )=179.5.一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是13.(1)求这位司机遇到红灯数ξ的期望与方差;(2)若遇上红灯,则需等待30秒,求司机总共等待时间η的期望与方差. 解 (1)易知司机遇上红灯次数ξ服从二项分布,且 ξ~B ⎝ ⎛⎭⎪⎫6,13,∴E (ξ)=6×13=2,D (ξ)=6×13×⎝ ⎛⎭⎪⎫1-13=43.(2)由已知η=30ξ,∴E (η)=30E (ξ)=60, D (η)=900D (ξ)=1200.A 级:基础巩固练一、选择题1.已知X 的分布列为X -1 0 1 P131313则①E (X )=13,②D (X )=2327,③P (X =0)=13,其中正确的个数为( ) A .0 B .1 C .2 D .3 答案 B解析 E (X )=(-1)×13+0×13+1×13=0,故①不正确;D (X )=(-1+0)2×13+(0+0)2×13+(1+0)2×13=23,故②不正确;③P (X =0)=13显然正确.2.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取1球,有放回地摸取5次,设摸得白球的个数为X ,已知E (X )=3,则D (X )=( )A.85B.65C.45D.25 答案 B解析 由题意知X ~B ⎝ ⎛⎭⎪⎫5,3m +3,所以E (X )=5×3m +3=3,解得m =2,所以X ~B ⎝ ⎛⎭⎪⎫5,35,故D (X )=5×35×25=65.3.设随机变量ξ的分布列为P (ξ=k )=C k n ⎝ ⎛⎭⎪⎫23k ·⎝ ⎛⎭⎪⎫13n -k,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( )A .8B .12 C.29 D .16 答案 A解析 由题意可知ξ~B ⎝ ⎛⎭⎪⎫n ,23,∴23n =E (ξ)=24.∴n =36.又D (ξ)=n ×23×⎝ ⎛⎭⎪⎫1-23=29×36=8.4.掷一枚质地均匀的骰子12次,则出现向上的一面是3的次数的均值和方差分别是( )A .2和5B .2和53C .4和83 D.72和1 答案 B解析 由题意知出现向上的一面为3的次数符合二项分布,掷12次骰子相当于做12次独立重复试验,且每次试验出现向上的一面为3的概率是16,∴E (ξ)=12×16=2,D (ξ)=12×16×56=53.故选B.5.随机变量X 的分布列为若a ,b ,c 成等差数列,E (X )=13,则D (X )=( ) A.49 B.59 C.13 D.23 答案 B解析 由题可得⎩⎪⎨⎪⎧a +b +c =1,-a +c =13,2b =a +c ,解得⎩⎪⎨⎪⎧a =16,b =13,c =12,所以D (X )=169×16+19×13+49×12=59.故选B.二、填空题6.设X ~B (n ,p ),且E (X )=15,D (X )=454,则n ,p 的值分别为________和________.答案 60 14 解析由题意,可知⎩⎨⎧E (x )=np =15,D (X )=np (1-p )=454,解得⎩⎨⎧n =60,p =14.7.两封信随机投入A ,B ,C 三个空邮箱中,则A 邮箱的信件数ξ的方差D (ξ)=________.答案 49解析 ξ的所有可能取值为0,1,2,P (ξ=0)=2×29=49,P (ξ=1)=C 12×29=49,P (ξ=2)=19,所以E (ξ)=0×49+1×49+2×19=23,D (ξ)=⎝ ⎛⎭⎪⎫0-232×49+⎝ ⎛⎭⎪⎫1-232×49+⎝ ⎛⎭⎪⎫2-232×19=49. 8.设p 为非负实数,随机变量X 的分布列为则E (X )的最大值为________,D (X )的最大值为________. 答案 32 1解析 E (X )=0×⎝ ⎛⎭⎪⎫12-p +1×p +2×12=p +1.又0≤12-p ≤12,∴0≤p ≤12. ∴E (X )max =32.D (X )=(p +1)2⎝ ⎛⎭⎪⎫12-p +p 2·p +(p -1)2·12=-p 2-p +1=-⎝ ⎛⎭⎪⎫p +122+54≤1, ∴当p =0时,D (X )max =1. 三、解答题9.如图,左边为四大名著,右边为名著作者,一位小学语文教师为了激发学生阅读名著的热情,在班内进行名著和其作者的连线游戏,作为奖励,参加连线的同学每连对一个奖励一朵小红花.假定一名小学生对四大名著没有了解,只是随机地连线,试求该学生得到小红花数X 的分布列及其均值、方差.《三国演义》罗贯中《水浒传》施耐庵《西游记》吴承恩《红楼梦》曹雪芹解该小学生连线的情况有都连错,连对一个,连对二个,连对四个,故其得小红花数可能为0个,1个,2个,4个.P(X=0)=9A44=924=38,P(X=1)=C14×2A44=824=13,P(X=2)=C24×1A44=624=14,P(X=4)=1A44=124.故所以E(X)=0×38+1×13+2×14+4×124=1,D(X)=38×(0-1)2+13×(1-1)2+14×(2-1)2+124×(4-1)2=9+0+6+924=1.B级:能力提升练10.甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.这两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:甲保护区:乙保护区:解甲保护区的违规次数ξ1的均值和方差为:E(ξ1)=0×0.3+1×0.3+2×0.2+3×0.2=1.3;D(ξ1)=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.乙保护区的违规次数ξ2的均值和方差为:E(ξ2)=0×0.1+1×0.5+2×0.4=1.3;D(ξ2)=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.因为E(ξ1)=E(ξ2),D(ξ1)>D(ξ2),所以两个保护区内每季度发生的违规事件平均次数是相同的,但乙保护区内发生的违规事件次数更集中和稳定,而甲保护区内发生的违规事件次数相对分散和波动.因此乙保护区的管理水平较高.。
高中数学《离散型随机变量的方差》导学案
§2.3.2离散型随机变量的方差(导学案)一、学习目标:1:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。
2:了解方差公式“D (aξ+b )=a 2Dξ”,以及“若ξ~Β(n ,p ),则Dξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。
3:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:离散型随机变量的方差、标准差教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 二、学习过程: 复习引入:1. 期望的一个性质: b aE b a E +=+ξξ)(2.若ξB (n,p ),则E ξ=np导入新课: 1. 方差:对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么,ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+n n p E x ⋅-2)(ξ+…称为随机变量ξ的均方差,简称为方差,式中的ξE 是随机变量ξ的期望.2. 标准差:ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.3.方差的性质:(1)ξξD a b a D 2)(=+; (2)22)(ξξξE E D -=;(3)若ξ~B (n ,p ),则=ξD np (1-p )三、讲解范例:例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差.例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息:根据工资待遇的差异情况,你愿意选择哪家单位? 解:例4.47177127111=⨯+⋅⋅⋅+⨯+⨯=ξE ; 471)47(71)42(71)41(2221=⨯-+⋅⋅⋅+⨯-+⨯-=ξD ;211==ξσξD4713.4718.3717.32=⨯+⋅⋅⋅+⨯+⨯=ξE ;2ξD =0.04, 2.022==ξσξD .三、总结反思 :⑴求离散型随机变量ξ的方差、标准差的步骤:⑵对于两个随机变量1ξ和2ξ,在1ξE 和2ξE 相等或很接近时,比较1ξD 和2ξD ,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要四、随堂检测: 一、选择题1.已知随机变量X 的分布列是则E(X)和D(X)分别等于( ) A.1和0 B.1和1.8 C.2和2D.2和0.82.(2015·安徽高考)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( ) A.8B.15C.16D.32【解题指南】应用标准差、方差公式和性质计算标准差.3.(2015·菏泽高二检测)已知随机变量X+η=8,若X ~B(10,0.6),则E(η),D(η)分别是( )A.6和2.4B.2和2.4C.2和5.6D.6和5.64.已知随机变量ξ的分布列如表,则随机变量ξ的方差D(ξ)的最大值为( )ξ0 1 2P y 0.4 xA.0.72B.0.6C.0.24D.0.48【解题指南】根据三个变量对应的概率之和是1,写出y与x之间的关系,写出变量的期望和变量平方的期望,写出方差的表示式,表示式是一个关于x的二次函数,根据二次函数求最值可得答案.【解析】5.抛掷一枚硬币,规定正面向上得1分,反面向上得-1分,则得分X的均值与方差分别为( )A.E(X)=0,D(X)=1B.E(X)=,D(X)=C.E(X)=0,D(X)=D.E(X)=,D(X)=1【解题指南】要计算随机变量的均值和方差,应先列出其分布列.抛掷一枚硬币,规定正面向上得1分,反面向上得-1分,得X的分布列,再求均值和方差.二、填空题6.已知随机变量X的分布列为:X 1 2 3P 0.4 0.5 x则X的方差为________.7.某射手击中目标的概率为p,则他射击n次,击中目标次数ξ的方差为________.【解析】8.某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或选错得0分.小王选对每题的概率为0.8,则其第一大题得分的方差为________.【补偿训练】从装有除颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸取的白球数为X,已知E(X)=3,则D(X)=________.【解析】三、解答题(每小题10分,共20分)9.抛掷一枚质地均匀的骰子,用X表示掷出偶数点的次数.(1)若抛掷一次,求E(X)和D(X).(2)若抛掷10次,求E(X)和D(X).10.甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ与η,且ξ,η的分布列为(1)求a,b的值.(2)计算ξ,η的均值与方差,并以此分析甲、乙的技术状况.【解题指南】利用概率和是1求得a,b;再利用公式求得均值和方差,并做出分析.。
高中数学 2.3.2 离散型随机变量的方差学案 新人教A版选修2-3(2021年整理)
2016-2017学年高中数学2.3.2 离散型随机变量的方差学案新人教A版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学2.3.2 离散型随机变量的方差学案新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学2.3.2 离散型随机变量的方差学案新人教A版选修2-3的全部内容。
2.3.2 离散型随机变量的方差1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.(重点)3.掌握方差的性质以及两点分布、二项分布的方差的求法,会利用公式求它们的方差.(难点)[基础·初探]教材整理1 离散型随机变量的方差的概念阅读教材P64~P66上面第四自然段,完成下列问题.1.离散型随机变量的方差、标准差(1)定义:设离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p n则(x i-E(X))2描述了x i(i=1,2,…,n)相对于均值E(X)的偏离程度,而D(X)=错误!为这些偏离程度的加权平均,刻画了随机变量X与其均值E(X)的平均偏离程度.称D(X)为随机变量X的方差,其算术平方根D X为随机变量X的标准差.(2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小.2.随机变量的方差与样本方差的关系随机变量的方差是总体的方差,它是一个常数,样本的方差则是随机变量,是随样本的变化而变化的.对于简单随机样本,随着样本容量的增加,样本的方差越来越接近于总体的方差.1.下列说法正确的有________(填序号).①离散型随机变量ξ的期望E(ξ)反映了ξ取值的概率的平均值;②离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平;③离散型随机变量ξ的期望E(ξ)反映了ξ取值的波动水平;④离散型随机变量ξ的方差D(ξ)反映了ξ取值的波动水平.【解析】①错误.因为离散型随机变量ξ的期望E(ξ)反映了ξ取值的平均水平.②错误.因为离散型随机变量ξ的方差D(ξ)反映了随机变量偏离于期望的平均程度.③错误.因为离散型随机变量的方差D(ξ)反映了ξ取值的波动水平,而随机变量的期望E(ξ)反映了ξ取值的平均水平.④正确.由方差的意义可知.【答案】④2.已知随机变量ξ,D(ξ)=19,则ξ的标准差为________.【解析】ξ的标准差错误!=错误!=错误!.【答案】错误!3.已知随机变量ξ的分布列如下表:ξ-101P错误!错误!错误!则ξ的均值为________【解析】均值E(ξ)=x1p1+x2p2+x3p3=(-1)×错误!+0×错误!+1×错误!=-错误!;方差D(ξ)=(x1-E(ξ))2·p1+(x2-E(ξ))2·p2+(x3-E(ξ))2·p3=错误!。
【B版】人教课标版高中数学选修2-3《离散型随机变量的方差》导学案
2.3.2离散型随机变量的方差【学习要求】1.理解取有限个值的离散型随机变量的方差及标准差的概念。
2.能计算简单离散型随机变量的方差,并能解决一些实际问题。
3.掌握方差的性质,以及两点分布、二项分布的方差的求法,会利用公式求它们的方差。
【学法指导】1.通过实例理解离散型随机变量的方差的意义,通过例题体会方差在解决实际问题中的应用。
2.要善于将实际问题转化为数学问题来解决,通过模仿建立起数学建模的思维常识。
【知识要点】1.离散型随机变量的方差、标准差设离散型随机变量X的分布列为则(x i-E(X))2描述了x i(i=1,2,…,n)相对于均值E(X)的偏离程度,而D(X)=为这些偏离程度的加权平均,刻画了随机变量X与其均值E(X)的平均偏离程度。
我们称D(X)为随机变量X的,并称其算术平方根随机变量X的。
2.离散型随机变量方差的性质(1)设a,b为常数,则D(aX+b)=,(2)D(c)=0(其中c为常数)。
3.服从两点分布与二项分布的随机变量的方差(1)若X服从两点分布,则D(X)=(其中p为成功概率);(2)若X~B(n,p),则D(X)=。
【问题探究】探究点一方差、标准差的概念及性质问题1某省运会即将举行,在最后一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下:甲运动员:7,8,6,8,6,5,8,10,7,5;乙运动员:9,5,7,8,7,6,8,6,7,7。
观察上述数据,两个人射击的平均成绩是一样的。
那么,是否两个人就没有水平差距呢?如果你是教练,选哪位选手去参加正式比赛?问题2类比样本方差、标准差的概念,能否得出离散型随机变量的方差、标准差?问题3随机变量的方差与样本的方差有何不同?问题4方差、标准差的单位与随机变量的单位有什么关系?问题5我们知道若一组数据x i(i=1,2,…,n)的方差为s2,那么另一组数据ax i+b(a、b是常数且i=1,2,…,n)的方差为a2s2。
2.3离散型随机变量的均值与方差学案
2.3离散型随机变量的均值与⽅差学案2.3.1离散型随机变量的均值【学习⽬标】1、了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望.2、了解离散型随机变量的⽅差、标准差的意义,会根据离散型随机变量的分布列求出⽅差或标准差。
【学习重点】1、离散型随机变量的均值(期望)2【学习难点】1、根据离散型随机变量的分布列求出均值(期望)、⽅差2、⽐较两个随机变量的期望与⽅差的⼤⼩,从⽽解决实际问题【学习过程】⼀、复习回顾1.随机变量:2.离散型随机变量:3.连续型随机变量:对于随机变量可能取的值,可以取某⼀区间内的⼀切值,这样的变量就做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系:◆离散型随机变量与连续型随机变量都是⽤变量表⽰随机试验的结果;但是离散型随机变量的结果可以按⼀定次序⼀⼀列出,⽽连续◆若ξ是随机变量,baba,,+=ξη是常数,则η也是随机变量并且不改变其属性(离散型、连续型)5.分布列:6.分布列的两个性质:7.离散型随机变量的⼆项分布:⼆、合作探究问题情境:某商场要将单价分别为18元/kg,24元/kg,36元/kg的3种糖果按3:2:1的⽐例混合销售,如何对混合糖果定价才合理?计算加权平均价格:【思考】如果混合糖果中每⼀颗糖果的质量都相等,其中权数的实际含义怎样解释?根据古典概型,在混合糖果中,任取⼀颗糖果,这颗糖果为第⼀颗糖果的概率为,为第⼆颗糖果的概率为,为第三颗糖果的概率为,即取出的这颗糖果的价格为18元/kg,24元/kg,36元/kg的概率分别为,,和。
⽤X表⽰这颗糖果的价格,则它是⼀个离散型随机变量,其分布列为因此权数恰好是随机变量X的。
于是,每千克混合糖果的合理价格可以表⽰为:。
三、知识梳理⼀般地,若离散型随机变量X的概率分布为则称 EX = 为X 的均值或数学期望,简称期望.~均值或数学期望是离散型随机变量的⼀个特征数,它反映了离散型随机变量取值的平均⽔平【探究】设Y =aX +b ,其中a ,b 为常数,则Y 也是随机变量.(1)Y 的分布列是什么?(2)EY=?=EY = = 数学期望的性质: 四、达标训练1.已知随机变量X 的分布列是则=EX2.抛掷⼀枚硬币,规定正⾯向上得1分,反⾯向上得-1分,则得分X 的均值为3.篮球运动员在⽐赛中,每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球⼀次得分X 的均值(期望)。
学案12:2.3.2 离散型随机变量的方差
2.3.2 离散型随机变量的方差课堂导学三点剖析一、随机变量的方差与标准差的求法例1 设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX .温馨提示解本题时,要防止机械地套用均值与方差的计算公式,即EX =(-1)×21+0×(1-2q )+1×q 2=q 2-21; DX =[-1-(q 2-21)]2×21+(q 2-21)2×(1-2q )+[1-(q 2-21)]2×q 2.这是由于忽略了随机变量分布列的性质所出现的误解,求离散型随机变量的均值与方差,应明确随机变量的分布列,若分布列中的概率值是待定常数时,应先求出待定常数后,再求其均值与方差.二、两点分布、二项分布的方差例2 设一次试验的成功率为p ,进行100次独立重复试验,求当p 为何值时,成功次数的标准差的值最大?并求其最大值. 温馨提示要求成功次数标准差的最大值,就需先建立标准差关于变量p的函数关系式,另外要注意利用分布列的性质求出定义域0≤p≤1.三、方差的应用例3 海关大楼顶端镶有A、B两面大钟,它们的日走时误差分别为X1、X2(单位:s),其分布列如下:根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量.温馨提示随机变量X的方差的意义在于描述随机变量稳定与波动或集中与分散的状况.标准差σX=DX则体现随机变量取值与其均值的偏差,在实际问题中,若有两个随机变量X1、X2,且EX1=EX2或EX1与EX2比较接近时,我们常用DX1与DX2来比较这两个随机变量,方差值大的,则表明X较为离散,反之则表明X较为集中.同样,标准差的值较大,则标明X与其均值的偏差较大,反之,则表明X与其均值的偏差较小.各个击破类题演练1 若随机事件A在一次试验中发生的概率为2a.随机变量ξ表示在一次试验中发生的次数.求方差Dξ的最值.变式提升1 某射击手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ的分布列,并求出ξ的期望Eξ与方差Dξ(保留两位小数).类题演练2 若随机变量A 在一次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数. (1)求方差Dξ的最大值; (2)求ξξE D 12-的最大值.变式提升2 证明:事件在一次实验中发生的次数的方差不超过14.类题演练3 甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ与η,且ξ、η的分布列为:计算ξ、η的期望与方差,并以此分析甲、乙的技术优劣.变式提升3 现要从甲、乙两个技工中选派一个参加技术比赛,已知他们在同样的条件下每天的产量相等,而出次品的个数的分布列如下:甲乙根据以上条件,选派谁去合适?参考答案课堂导学例1 解:由于离散型随机变量的分布列满足(1)p i ≥0,i =1,2,3,...; (2)p 1+p 2+...+p n + (1)故221(12)1,20121,1.q q q q ⎧+-+=⎪⎪≤-≤⎨⎪≤⎪⎩解得q =1-22. 故X 的分布列为∴EX =(-1)×2+0×(2-1)+1×(22-) =-2321++(-2)=1-2; DX =[-1-(1-2)]2×21+(1-2)2×(2-1)+[1-(1-2)]2×(223-)=(2-2)2×21+(2-1)3+2(223-)=2-1.例2 解:设成功次数为随机变量X ,由题意可知X —B (100,p ), 那么σX =)1(100p p DX -=,因为DX =100p (1-p )=100p -100p 2(0≤p ≤1). 把上式看作一个以p 为自变量的一元二次函数,易知当p =21时,DX 有最大值25.所以DX 的最大值为5,即当p =21时,成功次数的标准差的最大值为5. 例3 解:∵EX 1=0,EX 2=0, ∴EX 1=EX 2,∵DX 1=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5, DX 2=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-1)2×0.1=1.2, ∴DX 1<DX 2,由上可知,A 面大钟的质量较好. 各个击破类题演练1 解:由题意得ξ的分布列为∴Eξ=0×(1-2a )+1×2a =2a ∴Dξ=(0-2a )2(1-2a )+(1-2a )22a =(1-2a )2a (2a +1-2a ) =2a (1-2a )=-4[a -41]2+41, 由分布列的性质得0≤1-2a ≤1, 且0≤2a ≤1,∴0≤a ≤21, ∴当a =41时,Dξ最大值为41; 当a =0或21时Dξ的最小值为0.变式提升1 解:该组练习耗用的子弹数ξ为随机变量,ξ可以取值为1,2,3,4,5. ξ≈1表示一发即中,故概率为P (ξ=1)=0.8, ξ=2,表示第一发未中,第二发命中, 故P (ξ=2)=(1-0.8)×0.8=0.16; ξ=3,表示第一、二发未中,第三发命中, 故P (ξ=3)=(1-0.8)2×0.8=0.032;ξ=4,表示第一、二、三发未中,第四发命中, 故P (ξ=4)=(1-0.8)3×0.8=0.006 4;ξ=5,表示第一、二、三、四发未中,第五发命中, 故P (ξ=5)=(1-0.8)4=0.001 6,因此,它的分布列为Eξ=1×0.8+2×0.16+3×0.032+4×0.006 4+5×0.001 6=1.25.Dξ=(1-1.25)2×0.8+(2-1.25)2×0.16+(3-1.25)2×0.032+(4-1.25)2×0.006 4+(5-1.25)2×0.001 6=0.31. 类题演练2 解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而Eξ=0×(1-p )+1×p =p ,Dξ=(0-p )2×(1-p )+(1-p )2×p =p -p 2. (1)Dξ=p -p 2=-(p -21)2+41, ∵0<p <1,∴当p =21时,Dξ取得最大值为41. (2)ξξE D 12-=)12(21)(22p p p p p +-=--, ∵0<p <1,∴2p +p1≥22. 当且仅当2p =p 1,即p =22时,ξξE D 12-取得最大值2-22.变式提升2 证明:设事件在一次试验中发生的次数为ξ,ξ的可能取值为0或1,又设事件在一次试验中发生的概率为p ,则p (ξ=0)=1-p ,P (ξ=1)=p ,Eξ=0×(1-p )+1×p =p ,Dξ=(1-p )·(0-p )2+p (1-p )2= p (1-p )≤(21p p -+)2=41. 所以事件在一次试验中发生的次数的方差不超过41.类题演练3 解:依题意,有Eξ=10×0.5+9×0.2+8×0.1+7×0.1+6×0.05+5×0.05+0×0=8.85(环). E η=10×0.1+9×0.1+8×0.1+7×0.1+6×0.2+5×0.2+0×0.2=5.6(环).Dξ=(10-8.85)2×0.5+(9-8.85)2×0.2+(8-8.85)2×0.1×…+(5-8.85)2×0.05+(0-8.85)2×0=2.227 5. Dη=(10-5.6)2×0.1+(9-5.6)2×0.1+(8-5.6)2×0.1+…+(5-5.6)2×0.2+(0-5.6)2×0.2=10.24. 所以Eξ<Eη,说明甲的平均水平比乙高,又因为Dξ<Dη,说明甲射中的环数比较集中,比较稳定,而乙射中的环数分散较大,技术波动较大,不稳定,所以甲比乙的技术好. 变式提升3 解:Eξ1=0×0.1+1×0.5+2×0.4=1.3,Eξ2=0×0.3+1×0.3+2×0.2+3×0.2=1.3.由于Eξ1=Eξ2,所以甲技工与乙技工出现次品数的平均水平基本一致,因而还需考查稳定性.Dξ1=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41;Dξ2=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.因此Dξ1<Dξ2,所以技工乙波动较大,稳定性较差.综上所述,应选派技工甲去参加比赛.。
方差导学案
2.3.2离散型随机变量的方差一、学习目标1了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差.2.了解方差公式“D (a ξ+b )=a 2D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差学习重难点:离散型随机变量的方差、标准差;比较两个随机变量的期望与方差的大小,从而解决实际问题二、学习过程合作探究一:方差的概念对于离散型随机变量ξ,如果它所有可能取的值,是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, _________________称为随机变量ξ的方差,简称为方差,式中的ξE 是随机变量ξ的期望.标准差: _________________做随机变量ξ的标准差,记作_________________注:方差与标准差都是反映_________________它们的值越小,则_________________小。
合作探究二:求方差的步骤合作探究三:方差的作用是什么?合作探究四:.随机变量的方差与样本的方差有何联系与区别?即学即练:8 9 10 P0.20.60.2如果你是教练,你会派谁参加比赛呢?8 9 10 P0.40.20.421,ξξ 例1.已知甲、乙两名射手在同一条件下射击,所得环数 的分布列如下:1ξ2ξ例2、已知随机变量X 的分布列为X 1 0 Pp1-p求D (X )熟记结论:.方差的性质(1)ξξD a b a D 2)(=+; (2)若ξ~B (n ,p ),则=ξD ___________________ (3)若ξ服从两点分布,则=ξD _______________________即学即练:1、已知X ~B(n,p),EX =8,DX =1.6,则n 与p 的值分别是( )A.100,0.08B.20,0.4C.10,0.2D.10,0.82、如果X ~B(100,0.2),那么D(4X+3)=____________ 三、练习例1.已知甲、乙两名射手在同一条件下射击,所得环数 的分布列如下:8 9 10 P0.20.60.2问题1:如果其他对手的射击成绩都在8环左右, 应派哪一名选手参赛? 问题2:如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛?8 9 10 P0.40.20.421,ξξ1ξ2ξ课后练习与提高 1.甲、乙两个运动员射击命中环数X 、Y 的分布列如下:环数k 8 9 10 P(X=k) 0.3 0.2 0.5 P(Y=k)0.20.40.4其中射击比较稳定的运动员是( )A .甲 B.乙 C.一样 D.无法比较2.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ和η,已知ξ和 η的分布列如下:(注得分越大,水平越高)试分析甲、乙技术状况。
《2.3.2 离散型随机变量的方差》导学案(新部编)2
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《2.3.2 离散型随机变量的方差》导学案2【课标要求】1.理解取有限个值的离散型随机变量的方差及标准差的概念和计算. 2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法,会利用公式求它们的方差.【核心扫描】1.离散型随机变量的方差与标准差的概念和计算.(难点) 2.离散型随机变量的均值意义与方差意义的区别与联系.(易混点) 3.两点分布、二项分布的方差的求法.自学导引1.离散型随机变量的方差、标准差 (1)定义:设离散型随机变量X 的分布列为Xx1x2…xi…xnPp 1p 2…p i…pn则(x i -E (X ))2描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=i =1n(x i-E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D X 为随机变量X 的标准差.(2)意义:随机变量的方差和均值都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小.(3)离散型随机变量方差的性质设a ,b 为常数,则D (aX +b )=a 2D (X ). 试一试:已知ξ的分布列为:ξ 1 2 3 4 P14131614则D (ξ)的值为提示 ∵E (ξ)=1×14+2×13+3×16+4×14=2912;∴D (ξ)=14(1-2912)2+13(2-2912)2+16(3-2912)2+14(4-2912)2=179144.2.服从两点分布与二项分布的随机变量的方差试一试:已知随机变量X ~B (3,p ),D (X )=3,你能求出p 的值吗?提示 由已知得,3p (1-p )=23,解得p =13或23.名师点睛1.理解、记忆方差的定义式设x 1、x 2、…、x n 为n 个样本数据,x =x 1+…+x n n ,,则该样本数据的方差S 2=Σni =1 (x i-x )2·1n ,由于x 相当于离散型随机变量中的E (X ),而1n相当于每个数据出现的频率(概率)p i ,故离散型随机变量X 的方差可定义为:DX =Σni =1(x i -E (X ))2·p i (i =1,2,…,n ). 2.数学期望与方差的关系(1)数学期望和方差是描述随机变量的两个重要特征.数学期望是算术平均值概念的推广,是概率意义下的平均值,而方差表现了随机变量所取的值相对于数学期望的集中与离散的程度.(2)E (X )是一个实数,即X 作为随机变量是可变的,而E (X )是不变的,它描述X 的取值的平均水平,D (X )表示随机变量X 对E (X )的平均偏离程度,D (X )越大表明平均偏离程度越大,说明X 的取值越分散,反之,D (X )越小,X 的取值越集中.(3)D (X )与E (X )一样也是一个实数,由X 的分布列唯一确定(当然方差是建立在数学期望这一概念上的).3.方差的性质当a ,b 均为常数时,随机变量函数η=aξ+b 的方差D (η)=D (aξ+b )=a 2D (ξ).特别地:(1)当a =0时,D (b )=0,即常数的方差等于0;(2)当a =1时,D (ξ+b )=D (ξ),即随机变量与常数之和的方差等于这个随机变量的方差本身;(3)当b =0时,D (aξ)=a 2D (ξ),即随机变量与常数之积的方差,等于这个常数的平方与这个随机变量方差的乘积.题型一 求离散型随机变量的方差【例1】 甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第一次由甲投篮;已知每次投篮甲、乙命中的概率分别为13,34.(1)求第三次由乙投篮的概率;(2)在前3次投篮中,乙投篮的次数为ξ,求ξ的分布列、期望及标准差. [思路探索] 先求出ξ的分布列,再利用期望、标准差公式求解期望、标准差. 解 (1)P =13×23+23×34=1318.(2)P (ξ=0)=13×13=19;P (ξ=1)=13×23+23×14=718. P (ξ=2)=23×34=12.故ξ的分布列为ξ 0 1 2 P1971812E (ξ)=0×19+1×718+2×2=18,D (ξ)=⎝⎛⎭⎪⎫0-25182×19+⎝⎛⎭⎪⎫1-25182×718+⎝⎛⎭⎪⎫2-25182×12=149324,∴D ξ=14918. [规律方法] 1.求离散型随机变量X 的方差的基本步骤: 理解X 的意义,写出X 可能取的全部值↓写出X 取每个值的概率↓ 写出X 的分布列↓由均值的定义求出E X↓利用公式D X =∑i =1nx i -E X2p i 求值2.对于变量间存在关系的方差,在求解过程中应注意方差性质的应用,如D (aξ+b )=a 2D (ξ),这样处理既避免了求随机变量η=aξ+b 的分布列,又避免了繁杂的计算,简化了计算过程.【变式1】 已知X 的分布列为X -1 0 1 P121316求:(1)E (X ),D (X );(2)设Y =2X +3,求E (Y ),D (Y ).解 (1)E (X )=-1×12+0×13+1×16=-13,D (X )=⎝⎛⎭⎪⎫-1+132×12+⎝⎛⎭⎪⎫0+132×13+⎝⎛⎭⎪⎫1+132×16=59.(2)E (Y )=2E (X )+3=73,D (Y )=4D (X )=209.题型二 两点分布与二项分布的方差【例2】 为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳.各株沙柳的成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)为3,标准差Dξ为62. (1)求n 和p 的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种.求需要补种沙柳的概率. [思路探索] 判断某一离散型随机变量是否服从二项分布,是利用公式E (ξ)=np ,D (ξ)=np (1-p )的先决条件.解 由题意知,ξ服从二项分布B (n ,p ),P (ξ=k )=C k n p k (1-p )n -k ,k =0,1,…,n . (1)由E (ξ)=np =3,D (ξ)=np (1-p )=32,得1-p =12,从而n =6,p =12.ξ的分布列为ξ 0 1 2 3 4 5 6 P164664156420641564664164(2)记“需要补种沙柳”为事件A ,则P (A )=P (ξ≤3),得P (A )=1+6+15+2064=2132,或P (A )=1-P (ξ>3)=1-15+6+164=2132.所以需要补种沙柳的概率为2132.[规律方法] 记准方差的性质:D (aξ+b )=a 2D (ξ).若ξ服从两点分布,则D (ξ)=p (1-p ).若ξ~B (n ,p ),则D (ξ)=np (1-p ).【变式2】 设一次试验的成功率为p ,进行100次独立重复试验,求当p 为何值时,成功次数的标准差的值最大?并求其最大值.解 设成功次数为随机变量X , 由题意可知X ~B (100,p ),则DX =100p 1-p .因为D (X )=100p (1-p )=100p -100p 2, 把上式看作一个以p 为自变量的二次函数, 易知当p =12时,D (X )有最大值为25.所以D X的最大值为5.即当p =12时,成功次数的标准差的值最大,最大值为5.题型三 均值与方差的综合应用【例3】 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.(1)求ξ的分布列、期望和方差;(2)若η=aξ+b ,E (η)=1,D (η)=11,试求a ,b 的值.审题指导 (1)根据题意,由古典概型概率公式求出分布列,再利用均值,方差公式求解. (2)运用E (η)=aE (ξ)+b ,D (η)=a 2D (ξ)求a ,b . [规范解答] (1)ξ的分布列为:ξ 0 1 2 3 4 P1212011032015则E (ξ)=0×12+1×20+2×10+3×20+4×5=1.5.D (ξ)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(8分)(2)由D (η)=a 2D (ξ),得a 2×2.75=11,得a =±2. 又E (η)=aE (ξ)+b ,所以当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4.所以⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =-2,b =4即为所求.(12分)【题后反思】 解均值与方差的综合问题时的注意事项(1)离散型随机变量的分布列、均值和方差是三个紧密联系的有机统一体,一般在试题中综合在一起考查,其解题的关键是求出分布列;(2)在求分布列时,要注意利用等可能事件、互斥事件、相互独立事件的概率公式计算概率,并注意结合分布列的性质,简化概率计算;(3)在计算均值与方差时要注意运用均值和方差的性质以避免一些复杂的计算.若随机变量X 服从两点分布、二项分布可直接利用对应公式求解.【变式3】 从4名男生和2名女生中任选3人参加演讲比赛,设随机变量X 表示所选3人中女生的人数.(1)求X 的分布列; (2)求X 的均值与方差;(3)求“所选3人中女生人数X ≤1”的概率. 解 (1)X 可能的取值为0,1,2. P (X =k )=C k2·C 3-k4C 36,k =0,1,2. X 的分布列(2)由(1),X E (X )=0×15+1×35+2×15=1.D (X )=(0-1)2×15+(1-1)2×35+(1-2)2×15=25.(3)由(1),“所选3人中女生人数X ≤1”的概率为P (X ≤1)=P (X =0)+P (X =1)=45.误区警示 忽略对方差的比较致误【示例】 某农科院对两个优良品种甲、乙在相同的条件下进行对比实验,100公顷的产量列表如下:甲:乙:[错解] 设甲品种每公顷产量为X , 则X 的概率分布为:由上表可得E (X )甲9.72. 同理可以计算出E (X )乙=9.2×0.35+9.5×0.2+10×0.35+11×0.1=9.72.由E (X )甲=E (X )乙,可知甲、乙两个品种的质量相同.对于如何评价两个品种的质量的标准只是停在用均值来比较的层面上,误以为均值相同即质量相同,忽视了还可以利用方差对产量的稳定性进行考察.[正解] 由错解知:E(X)甲=E(X)乙=9.72,D(X)甲=(9.4-9.72)2×0.11+(9.5-9.72)2×0.32+(9.8-9.72)2×0.42+(10.2-9.72)2×0.15=0.064.D(X)乙=(9.2-9.72)2×0.35+(9.5-9.72)2×0.2+(10-9.72)2×0.35+(11-9.72)2×0.1=0.295 6,D(X)甲<D(X)乙.所以甲品种质量更好一点.对于两个对象的优劣的比较,首先要比较它们的均值,当均值一致时,还必须利用方差,对其稳定性进行分析比较.。
2.3.2离散型随机变量的方差(导学案)
§2.3.2 离散型随机变量的方差 (导学案)编写人:张涛 校队:高二数学备课组 班级 姓名 学习目标:1. 了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。
2. 了解方差公式“D (a ξ+b )=a 2D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。
课前准备:复习1:若随机变量 Y ~)8.0,5(B ,则=DY ;又若42+=Y X ,则=2DX . 复习2:已知随机变量ξ的分布列为 :且1.1=ξE ,则=ξD .复习3:已知一组样本数据:1,2,3,4,5,6,那么改组数据的方差2S =____________________________________________.新课导学:探究1:随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差。
探究2:对于离散型随机变量X ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么离散型随机变量X 方差该如何表示呢?思考:甲、乙两工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所列:A .甲的产品质量比乙的产品质量好一些B .乙的产品质量比甲的产品质量好一些C .两人的产品质量一样好D .无法判断谁的质量好一些典型例题例1有甲、乙两个单位都愿意用你,而你能获得如下信息:根据工资待遇的差异情况,你愿意选择哪家单位?思考:如果认为自已的能力很强,应选择 单位; 如果认为自已的能力不强,应该选择 单位.例2.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.4用击中环数的期望与方差比较两名射手的射击水平变式1:如果这次甲射击的环数与奖金挂钩,奖金变量η与射击环数ξ的关系如下:η=2ξ+1 则问:甲选手的奖金变量η的均值为多少?方差D η又是多少?思考:能不能根据E ξ直接求E η?那么又怎样根据D ξ求解D η?已知两个离散型随机变量X 、Y ,+Y aX b =则:DY = .解法2:因为η=2ξ+1,所以D η= .变式2:如果我们只关心他是否打中10环,因此设5次射击打中10环的次数为变量X ,则如何求X 的方差?思考:运算量这么大,有没有其它的解法呢?对于一般的二项分布X ~B(n , p ),EX =np ,______________.DX =练习:(1)若随机变量 Y ~)8.0,5(B ,则=DY ;又若42+=Y X ,则=2DX(2)已知()~,,8, 1.6B n p E D ξξξ==,则,n p 的值分别是( ) 自我检测1.随机变量X 满足1)(==c X P ,其中c 为常数,则DX 等于( ). A .0 B .)1(c c - C .c D .12.)(ξξD D -的值为 ( ) .A .无法求B .0C . ξD D . ξD 2 3.已知随机变量ξ的分布为31)(==k P ξ3,2,1=k ,则)53(+ξD 的值为( ). A .6 B .9 C . 3 D .44.设一次试验成功的概率为p ,进行了100次独立重复试验,当=p 时,成功次数的标准差最大,且最大值是 .5.若事件在一次试验中发生次数的方差等于25.0,则该事件在一次试验中发生的概率为 .6.运动员投篮时命中率6.0=P(1)求一次投篮时命中次数ξ的期望与方差; (2)求重复5次投篮时,命中次数η的期望与方差.7.有一批零件共10个合格品,2个不合格品,安装机器时从这批零件中任选一个,取到合格品才能安装;若取出的是不合格品,则不再放回 (1)求最多取2次零件就能安装的概率;(2)求在取得合格品前已经取出的次品数ξ的分布列,并求出ξ的期望ξE 和方差ξD .8.设是一个离散型随机变量,其分布列如下表,试求ξξD E ,.。
人教A版高中数学选修离散型随机变量的方差教案
2.3.2离散型随机变量的方差教学目标:知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。
过程与方法:了解方差公式“D (aξ+b )=a 2Dξ”,以及“若ξ~Β(n ,p ),则Dξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:离散型随机变量的方差、标准差教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 教具准备:多媒体、实物投影仪 。
教学设想:了解方差公式“D (aξ+b )=a 2Dξ”,以及“若ξ~Β(n ,p ),则Dξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。
授课类型:新授课 课时安排:2课时教 具:多媒体、实物投影仪 内容分析:数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差.回顾一组数据的方差的概念:设在一组数据1x ,2x ,…,n x 中,各数据与它们的平均值x 得差的平方分别是21)(x x -,22)(x x -,…,2)(x x n -,那么[12nS =21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差 教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出5.6. 分布列的两个性质: ⑴i ≥0,=1,2,...; ⑵1+2+ (1)7.二项分布:ξ~B (n ,p ),并记kn k k n q p C -=b (k ;n ,p ).8.几何分布: g (k ,p )= 1k q p -,其中k =0,1,2,…, p q -=1.9.数学期望:则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望.10. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平11 平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …n p n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值12. 期望的一个性质: b aE b a E +=+ξξ)( 13.若ξ:B (n,p ),则E ξ=np 二、讲解新课:1. 方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么,ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+n n p E x ⋅-2)(ξ+…称为随机变量ξ的均方差,简称为方差,式中的ξE 是随机变量ξ的期望.2. 标准差:ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.3.方差的性质:(1)ξξD a b a D 2)(=+;(2)22)(ξξξE E D -=; (3)若ξ~B (n ,p ),则=ξD np (1-p )4.其它:⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛 三、讲解范例:例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差.从而111111123456 3.5666666EX =⨯+⨯+⨯+⨯+⨯+⨯=;2222221111(1 3.5)(2 3.5)(3 3.5)(4 3.5)666611(5 3.5)(6 3.5) 2.9266DX =-⨯+-⨯+-⨯+-⨯+-⨯+-⨯≈1.71X σ=≈.例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息:根据工资待遇的差异情况,你愿意选择哪家单位?解:根据月工资的分布列,利用计算器可算得EX 1 = 1200×0.4 + 1 400×0.3 + 1600×0.2 + 1800×0.1 = 1400 ,DX 1 = (1200-1400) 2 ×0. 4 + (1400-1400 ) 2×0.3 + (1600 -1400 )2×0.2+(1800-1400) 2×0. 1 = 40 000 ;EX 2=1 000×0.4 +1 400×0.3 + 1 800×0.2 + 2200×0.1 = 1400 ,DX 2 = (1000-1400)2×0. 4+(1 400-1400)×0.3 + (1800-1400)2×0.2 + (2200-1400 )2×0.l = 160000 .因为EX 1 =EX 2, DX 1<DX 2,所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位.例3.设随机变量ξ的分布列为求D ξ解:(略)12n E ξ+=, 2n -1D 12ξ=例4.已知离散型随机变量1ξ的概率分布为离散型随机变量2ξ的概率分布为求这两个随机变量期望、均方差与标准差解:47177127111=⨯+⋅⋅⋅+⨯+⨯=ξE ; 471)47(71)42(71)41(2221=⨯-+⋅⋅⋅+⨯-+⨯-=ξD ;211==ξσξD4713.4718.3717.32=⨯+⋅⋅⋅+⨯+⨯=ξE ;2ξD =0.04, 2.022==ξσξD .点评:本题中的1ξ和2ξ都以相等的概率取各个不同的值,但1ξ的取值较为分散,2ξ的取值较为集中.421==ξξE E ,41=ξD ,04.02=ξD ,方差比较清楚地指出了2ξ比1ξ取值更集中.1σξ=2,2σξ=0.02,可以看出这两个随机变量取值与其期望值的偏差例5.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平解:180.290.6100.29E ξ=⨯+⨯+⨯=221(89)0.2(99)0.6D ξ=-⨯+-⨯+(10-9)4.02.02=⨯;同理有8.0,922==ξξD E由上可知,21ξξE E =,12D D ξξ<所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数多些.点评:本题中,1ξ和2ξ所有可能取的值是一致的,只是概率的分布情况不同.21ξξE E ==9,这时就通过1ξD =0.4和2ξD =0.8来比较1ξ和2ξ的离散程度,即两名射手成绩的稳定情况例6.A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:A 机床B 机床问哪一台机床加工质量较好解: E ξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,E ξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44.它们的期望相同,再比较它们的方差D ξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2×0.06+(3-0.44)2×0.04=0.6064,D ξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2×0.04+(3-0.44)2×0.10=0.9264. ∴D ξ1< D ξ2 故A 机床加工较稳定、质量较好. 四、课堂练习:1 .已知()~,,8, 1.6B n p E D ξξξ==,则,n p 的值分别是( )A .1000.08和;B .200.4和;C .100.2和;D .100.8和 答案:1.D2. 一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件.解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3当ξ=0时,即第一次取得正品,试验停止,则 P (ξ=0)=43129= 当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则 P (ξ=1)=449119123=⨯ 当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则 P (ξ=2)=2209109112123=⨯⨯ 当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则P (ξ=3)=220199101112123=⨯⨯⨯ 所以,E ξ=10322013220924491430=⨯+⨯+⨯+⨯3. 有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求E ξ,D ξ分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξ:B (200,1%),从而可用公式:E ξ=np ,D ξ=npq(这里q=1-p)直接进行计算解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξ:B (200,1%)因为E ξ=np ,D ξ=npq ,这里n=200,p=1%,q=99%,所以,E ξ=200×1%=2,Dξ=200×1%×99%=1.984. 设事件A 发生的概率为p ,证明事件A 在一次试验中发生次数ξ的方差不超过1/4 分析:这是一道纯数学问题.要求学生熟悉随机变量的期望与方差的计算方法,关键还是掌握随机变量的分布列.求出方差D ξ=P(1-P)后,我们知道D ξ是关于P(P ≥0)的二次函数,这里可用配方法,也可用重要不等式证明结论证明:因为ξ所有可能取的值为0,1且P (ξ=0)=1-p,P(ξ=1)=p, 所以,E ξ=0×(1-p)+1×p=p则 D ξ=(0-p )2×(1-p)+(1-p) 2×p=p(1-p) 412)p 1(p 2=⎪⎭⎫ ⎝⎛-+≤5. 有A 、B 两种钢筋,从中取等量样品检查它们的抗拉强度,指标如下:其中ξA 、ξB 分别表示A 、B 两种钢筋的抗拉强度.在使用时要求钢筋的抗拉强度不低于120,试比较A 、B 两种钢筋哪一种质量较好分析: 两个随机变量ξA 和ξB &都以相同的概率0.1,0.2,0.4,0.1,0.2取5个不同的数值.ξA 取较为集中的数值110,120,125,130,135;ξB 取较为分散的数值100,115,125,130,145.直观上看,猜想A 种钢筋质量较好.但猜想不一定正确,需要通过计算来证明我们猜想的正确性解:先比较ξA 与ξB 的期望值,因为E ξA =110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125, E ξB =100×0.1+115×0.2+125×0.4十130×0.1+145×0.2=125.所以,它们的期望相同.再比较它们的方差.因为D ξA =(110-125)2×0.1+(120-125) 2 ×0.2+(130-125) 2×0.1+(135-125) 2×0.2=50,D ξB =(100-125)2×0.1+(110-125) 2 ×0.2+(130-125) 2×0.1+(145-125) 2×0.2=165.所以,D ξA < D ξB .因此,A 种钢筋质量较好6. 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一张彩票的合理价格是多少元?分析:这是同学们身边常遇到的现实问题,比如福利彩票、足球彩票、奥运彩票等等.一般来说,出台各种彩票,政府要从中收取一部分资金用于公共福利事业,同时也要考虑工作人员的工资等问题.本题的“不考虑获利”的意思是指:所收资金全部用于奖品方面的费用解:设一张彩票中奖额为随机变量ξ,显然ξ所有可能取的值为0,5,25,100依题2.02000100500255054000E =⨯+⨯+⨯+⨯=ξ答:一张彩票的合理价格是0.2元.五、小结 :⑴求离散型随机变量ξ的方差、标准差的步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出E ξ;④根据方差、标准差的定义求出ξD 、σξ.若ξ~B (n ,p ),则不必写出分布列,直接用公式计算即可.⑵对于两个随机变量1ξ和2ξ,在1ξE 和2ξE 相等或很接近时,比较1ξD 和2ξD ,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要六、课后作业: P69练习1,2,3 P69 A 组4 B 组1,21.设ξ~B(n 、p)且E ξ=12 D ξ=4,求n 、p解:由二次分布的期望与方差性质可知E ξ=np D ξ= np (1-p )∴⎩⎨⎧=-=4)1(12p np np ∴⎪⎩⎪⎨⎧==3218p n2.已知随机变量ξ服从二项分布即ξ~B(6、31)求b (2;6,31) 解:p(ξ=2)=c 62(31)2(32)43.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ和η,已知ξ和 η的分布列如下:(注得分越大,水平越高)试分析甲、乙技术状况解:由0.1+0.6+a+1⇒a=0.3 0.3+0.3+b=1⇒a=0.4 ∴E ξ=2.3 , E η=2.0 D ξ=0.81 , D η=0.6 七、板书设计(略) 八、教学反思:⑴求离散型随机变量ξ的方差、标准差的步骤: ①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取各个值的概率,写出分布列; ③根据分布列,由期望的定义求出E ξ;④根据方差、标准差的定义求出ξD 、σξ.若ξ~B (n ,p ),则不必写出分布列,直接用公式计算即可.⑵对于两个随机变量1ξ和2ξ,在1ξE 和2ξE 相等或很接近时,比较1ξD 和2ξD ,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要。
高中数学2_3_2离散型随机变量的方差学案新人教B版选修2-3
2.3.2 离散型随机变量的方差1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.(重点)3.掌握方差的性质以及二点分布、二项分布的方差的求法,会利用公式求它们的方差.(难点)[基础·初探]教材整理1 离散型随机变量的方差的概念阅读教材P62例1以上部分,完成下列问题.离散型随机变量的方差与标准差名称定义意义方差一般地,设一个离散型随机变量X所有可能取的值为x1,x2,…,x n,这些值对应的概率是p1,p2,…,p n,则D(X)=(x1-E(X))2p1+(x2-E(X))2p2+…+(x n-E(X))2p n,叫做这个离散型随机变量X的方差.离散型随机变量的方差和标准差反映了离散型随机变量取值相对于期望的平均波动大小(或说离散程度).标准差D(X)的算术平方根D X叫做离散型随机变量X的标准差.①离散型随机变量X的期望E(X)反映了X取值的概率的平均值;②离散型随机变量X的方差D(X)反映了X取值的平均水平;③离散型随机变量X的期望E(X)反映了X取值的波动水平;④离散型随机变量X的方差D(X)反映了X取值的波动水平.【解析】①错误.因为离散型随机变量X的期望E(X)反映了X取值的平均水平.②错误.因为离散型随机变量X的方差D(X)反映了随机变量偏离于期望的平均程度.③错误.因为离散型随机变量的方差D(X)反映了X取值的波动水平,而随机变量的期望E(X)反映了X取值的平均水平.④正确.由方差的意义可知.【答案】④2.已知随机变量X,D(X)=19,则ξ的标准差为________.【解析】X的标准差D X=19=13.【答案】1 3教材整理2 二点分布、二项分布的方差 阅读教材P 63例2以下部分,完成下列问题. 服从二点分布与二项分布的随机变量的方差 (1)若X 服从二点分布,则D (X )=p (1-p ); (2)若X ~B (n ,p ),则D (X )=np (1-p ).若随机变量X 服从二点分布,且成功概率P =0.5,则D (X )=________,E (X )=________.【导学号:】【解析】 E (X )=0.5,D (X )=0.5(1-0.5)=0.25. 【答案】 0.25 0.5[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]离散型随机变量的方差的性质及应用设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽到一个,并且取出后不再放回,若以X 和Y 分别表示取出次品和正品的个数.(1)求X 的分布列、期望及方差; (2)求Y 的分布列、期望及方差.【精彩点拨】 (1)可先求出X 分布列,然后利用期望和方差公式求解;(2)可由Y 分布列及其期望、方差、公式求解,也可由期望、方差性质求解.【自主解答】 (1)X 的可能取值为0,1,2.若X =0,表示没有取出次品,其概率为P (X =0)=C 310C 312=611,同理,有P (X =1)=C 12C 210C 312=922, P (X =2)=C 22C 110C 312=122.∴X 的分布列为X 0 1 2∴E (X )=0×611+1×922+2×22=2,D (X )=⎝⎛⎭⎪⎫0-122×611+⎝⎛⎭⎪⎫1-122×922+⎝⎛⎭⎪⎫2-122×122=322+988+988=1544. (2)Y 的可能取值为1,2,3,显然X +Y =3. 法一:P (Y =1)=P (X =2)=122, P (Y =2)=P (X =1)=922, P (Y =3)=P (X =0)=611,∴Y 的分布列为E (Y )=1×122+2×922+3×11=2,D (Y )=⎝⎛⎭⎪⎫1-522×122+⎝⎛⎭⎪⎫2-522×922+⎝⎛⎭⎪⎫3-522×611=1544.法二:E (Y )=E (3-X )=3-E (X )=52,D (Y )=D (3-X )=(-1)2D (X )=1544.1.由本例可知,利用公式D (aX +b )=a 2D (X )及E (aX +b )=aE (X )+b 来求E (Y )及D (Y ),既避免了求随机变量Y =aX +b 的分布列,又避免了涉及大数的计算,从而简化了计算过程.2.若X ~B (n ,p ),则D (X )=np (1-p ),若X 服从二点分布,则D (X )=p (1-p ),其中p 为成功概率,应用上述性质可大大简化解题过程.[再练一题]1.为防止风沙危害,某地政府决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,已知各株沙柳成活与否是相互独立的,成活率为p ,设X 为成活沙柳的株数,已知E (X )=3,D (X )=32,求n ,p 的值.【解】 由题意知,X 服从二项分布B (n ,p ), 由E (X )=np =3,D (X )=np (1-p )=32,得1-p =12,∴p =12,n =6.求离散型随机变量的方差、标准差编号为1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的人数是ξ,求E (ξ)和D (ξ).【精彩点拨】 首先确定ξ的取值,然后求出ξ的分布列,进而求出E (ξ)和D (ξ)的值.【自主解答】 ξ的所有可能取值为0,1,3,ξ=0表示三位同学全坐错了,有2种情况,即编号为1,2,3的座位上分别坐了编号为2,3,1或3,1,2的学生,则P (ξ=0)=2A 33=13;ξ=1表示三位同学只有1位同学坐对了.则P (ξ=1)=C 13A 33=12;ξ=3表示三位学生全坐对了,即对号入座,则P (ξ=3)=1A 33=16.所以,ξ的分布列为ξ 013PE (ξ)=0×13+1×12+3×16=1;D (ξ)=13×(0-1)2+12×(1-1)2+16×(3-1)2=1.求离散型随机变量的方差的类型及解决方法1.已知分布列型(非二点分布或二项分布):直接利用定义求解,具体如下, (1)求均值;(2)求方差.2.已知分布列是二点分布或二项分布型:直接套用公式求解,具体如下, (1)若X 服从二点分布,则D (X )=p (1-p ). (2)若X ~B (n ,p ),则D (X )=np (1-p ).3.未知分布列型:求解时可先借助已知条件及概率知识求得分布列,然后转化成(1)中的情况.4.对于已知D (X )求D (aX +b )型,利用方差的性质求解,即利用D (aX +b )=a 2D (X )求解. [再练一题]2.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片数字之和为ξ,求E (ξ)和D (ξ).【解】 这3张卡片上的数字之和为ξ,这一变量的可能取值为6,9,12.ξ=6表示取出的3张卡片上均标有2,则P (ξ=6)=C 38C 310=715.ξ=9表示取出的3张卡片上两张标有2,一张标有5,则P (ξ=9)=C 28C 12C 310=715.ξ=12表示取出的3张卡片上一张标有2,两张标有5,则P (ξ=12)=C 18C 22C 310=115.∴ξ的分布列为ξ 6912P∴E (ξ)=6×715+9×715+12×15=7.8.D (ξ)=(6-7.8)2×715+(9-7.8)2×715+(12-7.8)2×115=3.36.[探究共研型]期望、方差的综合应用探究1 A ,B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表:A 机床次品数X 10 1 2 3 P0.70.20.060.04次品数X 20 1 2 3 P0.80.060.040.10试求E (X 1),E (X 2【提示】 E (X 1)=0×0.7+1×0.2+2×0.06+3×0.04=0.44.E (X 2)=0×0.8+1×0.06+2×0.04+3×0.10=0.44.探究2 在探究1中,由E (X 1)和E (X 2)的值能比较两台机床的产品质量吗?为什么? 【提示】 不能.因为E (X 1)=E (X 2).探究3 在探究1中,试想利用什么指标可以比较A 、B 两台机床加工质量? 【提示】 利用样本的方差.方差越小,加工的质量越稳定.甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ,η,已知甲、乙两名射手在每次射击中射中的环数大于6环,且甲射中10,9,8,7环的概率分别为0.5,3a,a,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.(1)求ξ,η的分布列;(2)求ξ,η的数学期望与方差,并以此比较甲、乙的射击技术.【精彩点拨】(1)由分布列的性质先求出a和乙射中7环的概率,再列出ξ,η的分布列.(2)要比较甲、乙两射手的射击水平,需先比较两射手击中环数的数学期望,然后再看其方差值.【自主解答】(1)由题意得:0.5+3a+a+0.1=1,解得a=0.1.因为乙射中10,9,8环的概率分别为0.3,0.3,0.2.所以乙射中7环的概率为1-(0.3+0.3+0.2)=0.2.所以ξ,η的分布列分别为(2)由(1)得:E(ξ)=10×0.5+9×0.3+8×0.1+7×0.1=9.2;E(η)=10×0.3+9×0.3+8×0.2+7×0.2=8.7;D(ξ)=(10-9.2)2×0.5+(9-9.2)2×0.3+(8-9.2)2×0.1+(7-9.2)2×0.1=0.96;D(η)=(10-8.7)2×0.3+(9-8.7)2×0.3+(8-8.7)2×0.2+(7-8.7)2×0.2=1.21.由于E(ξ)>E(η),D(ξ)<D(η),说明甲射击的环数的均值比乙高,且成绩比较稳定,所以甲比乙的射击技术好.利用均值和方差的意义分析解决实际问题的步骤1.比较均值.离散型随机变量的均值反映了离散型随机变量取值的平均水平,因此,在实际决策问题中,需先计算均值,看一下谁的平均水平高.2.在均值相等的情况下计算方差.方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.通过计算方差,分析一下谁的水平发挥相对稳定.3.下结论.依据方差的几何意义做出结论.[再练一题]3.甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:甲保护区:乙保护区:【解】 甲保护区的违规次数X 的数学期望和方差分别为:E (X )=0×0.3+1×0.3+2×0.2+3×0.2=1.3;D (X )=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.乙保护区的违规次数Y 的数学期望和方差分别为:E (Y )=0×0.1+1×0.5+2×0.4=1.3;D (Y )=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.因为E (X )=E (Y ),D (X )>D (Y ),所以两个保护区内每季度发生的平均违规次数是相同的,但乙保护区内的违规事件次数更集中和稳定,而甲保护区的违规事件次数相对分散,故乙保护区的管理水平较高.[构建·体系]1.设一随机试验的结果只有A 和A,且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生,0,A 不发生,则ξ的方差D (ξ)等于( )A.mB.2m (1-m )C.m (m -1)D.m (1-m )【解析】 随机变量ξ的分布列为:∴E (ξ)=0×(1-m )+1×m ∴D (ξ)=(0-m )2×(1-m )+(1-m )2×m =m (1-m ). 【答案】 D 2.已知X 的分布列为则D (X )等于( ) A.0.7 C.-0.3D.0【解析】 E (X )=-1×0.5+0×0.3+1×0.2=-0.3,D (X )=0.5×(-1+0.3)2+0.3×(0+0.3)2+0.2×(1+0.3)2=0.61.【答案】 B3.有两台自动包装机甲与乙,包装质量分别为随机变量X 1,X 2,已知E (X 1)=E (X 2),D (X 1)>D (X 2),则自动包装机________的质量较好.【导学号:】【解析】 因为E (X 1)=E (X 2),D (X 1)>D (X 2),故乙包装机的质量稳定. 【答案】 乙4.一批产品中,次品率为13,现连续抽取4次,其次品数记为X ,则D (X )的值为________.【解析】 由题意知X ~B ⎝ ⎛⎭⎪⎫4,13,所以D (X )=4×13×⎝ ⎛⎭⎪⎫1-13=89. 【答案】 895.已知离散型随机变量X 的分布列如下表:若E (X )=0,D (X )=1【解】 由题意, 解得a =512,b =c =14.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)学业分层测评 (建议用时:45分钟)[学业达标]一、选择题1.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本方差分别为D (X甲)=11,D (X 乙)=3.4.由此可以估计( ) A.甲种水稻比乙种水稻分蘖整齐 B.乙种水稻比甲种水稻分蘖整齐 C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐不能比较 【解析】 ∵D (X 甲)>D (X 乙), ∴乙种水稻比甲种水稻整齐. 【答案】 B2.设二项分布B (n ,p )的随机变量X 的均值与方差分别是2.4和1.44,则二项分布的参数n ,p 的值为( )A.n =4,p =0.6B.n =6,p =0.4C.n =8,p =0.3D.n =24,p =0.1【解析】 由题意得,np =2.4,np (1-p )=1.44, ∴1-p =0.6,∴p =0.4,n =6. 【答案】 B3.已知随机变量X 的分布列为P (X =k )=13,k =3,6,9.则D (X )等于( )【导学号:】A.6B.9C.3D.4【解析】 E (X )=3×13+6×13+9×13=6.D (X )=(3-6)2×13+(6-6)2×13+(9-6)2×13=6.【答案】 A4.同时抛掷两枚均匀的硬币10次,设两枚硬币同时出现反面的次数为ξ,则D (ξ)=( )A.158B.154C.52D.5【解析】 两枚硬币同时出现反面的概率为12×12=14,故ξ~B ⎝ ⎛⎭⎪⎫10,14, 因此D (ξ)=10×14×⎝ ⎛⎭⎪⎫1-14=158.故选A.【答案】 A 5.已知X 的分布列为则①E (X )=-13,②D (X )=2327,③P (X =0)=13,其中正确的个数为( )A.0B.1C.2D.3【解析】 E (X )=(-1)×12+0×13+1×16=-13,故①正确;D (X )=⎝⎛⎭⎪⎫-1+132×12+⎝⎛⎭⎪⎫0+132×13+⎝⎛⎭⎪⎫1+132×16=59,故②不正确;③P (X =0)=13显然正确.【答案】 C 二、填空题6.(2014·浙江高考)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.【解析】 设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎪⎨⎪⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.【答案】 257.(2016·扬州高二检测)设一次试验成功的概率为p ,进行100次独立重复试验,当p =________时,成功次数的标准差的值最大,其最大值为________.【解析】 由独立重复试验的方差公式可以得到D (ξ)=np (1-p )≤n ⎝⎛⎭⎪⎫p +1-p 22=n 4,等号在p =1-p =12时成立,所以D (ξ)max=100×12×12=25,D ξmax=25=5.【答案】 1258.一次数学测验由25道选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确的,每个答案选择正确得4分,不作出选择或选错不得分,满分100分,某学生选对任一题的概率为0.6,则此学生在这一次测验中的成绩的均值与方差分别为________.【解析】 设该学生在这次数学测验中选对答案的题目的个数为X ,所得的分数(成绩)为Y ,则Y =4X .由题知X ~B (25,0.6),所以E (X )=25×0.6=15,D (X )=25×0.6×0.4=6,E (Y )=E (4X )=4E (X )=60,D (Y )=D (4X )=42× D (X )=16×6=96,所以该学生在这次测验中的成绩的均值与方差分别是60与96. 【答案】 60,96 三、解答题9.海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1,X 2(单位:s),其分布列如下:【解】 ∵E (X 1)=0,E (X 2)=0,∴E (X 1)=E (X 2).∵D (X 1)=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5;D (X 2)=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-0)2×0.1=1.2.∴D (X 1)<D (X 2).由上可知,A 面大钟的质量较好.10.袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,X 表示所取球的标号.(1)求X 的分布列、期望和方差;(2)若Y =aX +b ,E (Y )=1,D (Y )=11,试求a ,b 的值. 【解】 (1)X 的分布列为:∴E (X )=0×12+1×120+2×10+3×20+4×5=1.5.D (X )=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (Y )=a 2D (X ),得a 2×2.75=11,得a =±2.又∵E (Y )=aE (X )+b ,所以当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4.∴⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =-2,b =4即为所求.[能力提升]1.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,又已知E (X )=43,D (X )=29,则x 1+x 2的值为( ) A.53 B.73 C.3D.113【解析】 ∵E (X )=23x 1+13x 2=43.∴x 2=4-2x 1,D (X )=⎝ ⎛⎭⎪⎫43-x 12×23+⎝ ⎛⎭⎪⎫43-x 22×13=29.∵x 1<x 2,∴⎩⎪⎨⎪⎧x 1=1,x 2=2,∴x 1+x 2=3.【答案】 C2.设随机变量ξ的分布列为P (ξ=k )=C k n ⎝ ⎛⎭⎪⎫23k·⎝ ⎛⎭⎪⎫13n -k ,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( )A.8B.12C.29D.16【解析】 由题意可知ξ~B ⎝ ⎛⎭⎪⎫n ,23, ∴23n =E (ξ)=24,∴n =36. 又D (ξ)=n ×23×⎝ ⎛⎭⎪⎫1-23=29×36=8.【答案】 A3.变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)的值是________.【解析】 由a ,b ,c 成等差数列可知2b =a +c , 又a +b +c =3b =1,∴b =13,a +c =23.又E (ξ)=-a +c =13,∴a =16,c =12,故分布列为∴D (ξ)=⎝ ⎛⎭⎪⎫-1-132×16+⎝ ⎛⎭⎪⎫0-32×3+⎝ ⎛⎭⎪⎫1-32×2=9. 【答案】 594.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图233所示.图233将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E (X )及方差D (X ).【解】 (1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个.”因此P (A 1)=(0.006+0.004+0.002)×50=0.6, P (A 2)=0.003×50=0.15, P (B )=0.6×0.6×0.15×2=0.108.(2)X 可能取的值为0,1,2,3,相应的概率为P (X =0)=C 03(1-0.6)3=0.064, P (X =1)=C 13·0.6(1-0.6)2=0.288, P (X =2)=C 23·0.62(1-0.6)=0.432, P (X =3)=C 33·0.63=0.216,则X 的分布列为因为X~B(3,0.6)方差D(X)=3×0.6×(1-0.6)=0.72.。
高中数学第二章2.3.2离散型随机变量的方差问题导学案
2.3.2 离散型随机变量的方差问题导学一、离散型随机变量的方差与性质活动与探究1袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.(1)求ξ的分布列、均值和方差;(2)若η=aξ+b,E(η)=1,D(η)=11,试求a,b的值.迁移与应用1.已知X的分布列为则D(X)等于( )A.0.7 B.0.61 C.-0.3 D.02.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设这3张卡片上的数字之和为ξ.(1)求E(ξ)和D(ξ);(2)若X=3ξ-2,求E(X),D(X).(1)求离散型随机变量的均值或方差的关键是列分布列,而列分布列的关键是要清楚随机试验中每一个可能出现的结果,同时还要正确求出每一个结果出现的概率.(2)利用离散型随机变量X的方差的性质:当a,b为常数时,随机变量Y=aX+b,则D(Y)=D(aX+b)=a2D(X),可以简化解答过程,提高解题效率.二、离散型随机变量的方差的应用活动与探究22013年4月1日至7日是江西省“爱鸟周”,主题是“秀美江西,让鸟儿自由飞翔”.为更好地保护鄱阳湖候鸟资源,需评测保护区的管理水平.现甲、乙两个野生动物保护区有相同的自然环境,且候鸟的种类和数量也大致相等,两迁移与应用1.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计( )A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较2.甲、乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为X,Y,X和Y离散型随机变量的期望反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先运算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定.当然不同的情形要求不同,应视情况而定.三、两点分布和二项分布的方差 活动与探究3某人投弹击中目标的概率为p =0.8.(1)求投弹一次,命中次数X 的均值和方差;(2)求重复10次投弹时,击中次数Y 的均值和方差. 迁移与应用1.设X,其中p ∈(0,1),则( )A .E (X )=p ,D (X )=p 3B .E (X )=p ,D (X )=p 2C .E (X )=q ,D (X )=q2D .E (X )=1-p ,D (X )=p -p 22.一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率是13.(1)求这位司机遇到红灯数ξ的期望与方差;(2)若遇上红灯,则需等待30秒,求司机总共等待时间η的期望与方差.正确认识二项分布及其在解题中的应用(1)在解决有关均值和方差问题时,同学们要认真审题,如果题目中离散型随机变量符合二项分布,就应直接利用二项分布求期望和方差,以简化问题的解答过程.(2)对于二项分布公式E (X )=np 和D (X )=np (1-p )要熟练掌握. 答案:课前·预习导学 【预习导引】1.(1)(x i -E (X ))21ni =∑(x i -E (X ))2p i(2)均值 越小 (3)a 2D (X )预习交流1 (1)提示:随机变量的方差即为总体方差,它是一个常数,不随抽样样本的变化而客观存在;样本方差则是随机变量,它是随样本的不同而变化的,对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体方差.(2)提示:E (X )=2.7,D (X )=1.41.(3)提示:D (η)=22×0.5=2. 2.(1)p (1-p ) (2)np (1-p )预习交流2 提示:D (ξ)=9×13×⎝ ⎛⎭⎪⎫1-13=2.课堂·合作探究 【问题导学】活动与探究1 思路分析:(1)列出ξ的分布列,根据均值与方差的计算公式求解;(2)根据E (η)=aE (ξ)+b ,D (η)=a 2D (ξ),列出关于a ,b 的方程组,求解即可.解:(1)由题意得,ξ的所有可能取值为0,1,2,3,4,P (ξ=0)=1020=12,P (ξ=1)=120,P (ξ=2)=220=110,P (ξ=3)=320,P (ξ=4)=420=15.故ξ的分布列为所以E (ξ)=0×12+1×20+2×10+3×20+4×5=1.5,D (ξ)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (a ξ+b )=a 2D (ξ)=11,E (a ξ+b )=aE (ξ)+b =1,及E (ξ)=1.5,D (ξ)=2.75,得2.75a 2=11,1.5a +b =1,解得a =2,b =-2或a =-2,b =4.迁移与应用 1.B 解析:E (X )=-1×0.5+0×0.3+1×0.2=-0.3, D (X )=0.5×(-1+0.3)2+0.3×(0+0.3)2+0.2×(1+0.3)2=0.61.2.解:(1)3张卡片上的数字之和ξ的可能取值为6,9,12.ξ=6表示取出的3张卡片上都标有2,则P (ξ=6)=38310C C =715.ξ=9表示取出的3张卡片上2张标有2,1张标有5,则P (ξ=9)=2182310C C C =715.ξ=12表示取出的3张卡片上2张标有5,1张标有2,则P (ξ=12)=1282310C C C =115.∴ξ的分布列为∴E (ξ)=6×715+9×715+12×15=7.8.D (ξ)=(6-7.8)2×715+(9-7.8)2×715+(12-7.8)2×115=3.36.(2)∵X =3ξ-2,∴E (X )=3E (ξ)-2=3×7.8-2=21.4.D (X )=9D (ξ)=3.36×9=30.24.活动与探究2 思路分析:要比较两个保护区的管理水平,要先比较两个保护区的违规事件的平均次数,然后比较其稳定性,即方差.解:甲保护区内的违规次数Y 的数学期望和方差为: E (X )=0×0.3+1×0.3+2×0.2+3×0.2=1.3,D (X )=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21. 乙保护区内的违规次数Y 的数学期望和方差为:E (Y )=0×0.1+1×0.5+2×0.4=1.3,D (Y )=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.因为E (X )=E (Y ),D (X )>D (Y ),所以两个保护区内每个季度发生的违规事件的平均次数相同,但甲保护区内的违规事件次数相对分散和波动,乙保护区内的违规事件次数更加集中和稳定.相对而言,乙保护区的管理较好一些.迁移与应用 1.B 解析:∵D (X 甲)>D (X 乙),∴乙种水稻比甲种水稻分蘖整齐.2.解:工人甲生产出次品数X 的期望和方差分别为:E (X )=0×610+1×110+2×310=0.7,D (X )=(0-0.7)2×610+(1-0.7)2×110+(2-0.7)2×310=0.81.工人乙生产出次品数Y 的期望和方差分别为:E (Y )=0×510+1×310+2×210=0.7,D (Y )=(0-0.7)2×510+(1-0.7)2×310+(2-0.7)2×210=0.61.由E (X )=E (Y )知,两人出次品的平均数相同,技术水平相当,但D (X )>D (Y ),可见乙的技术比较稳定.活动与探究3 思路分析:投弹一次的命中次数X 服从两点分布,而重复10次投弹可以认为是10次独立重复试验,击中次数Y 服从二项分布.解:(1)X 的分布列为E (X )=0×0.2+1×0.8=0.8D (X )=(0-0.8)2×0.2+(1-0.8)2×0.8=0.16.(2)由题意知,命中次数Y 服从二项分布,即Y ~B (10,0.8), ∴E (Y )=np =10×0.8=8, D (Y )=10×0.8×0.2=1.6.迁移与应用 1.D 解析:X 服从两点分布,则E (X )=q =1-p , D (X )=p (1-p )=p -p 2.2.解:(1)易知司机遇上红灯次数ξ服从二项分布,且ξ~B ⎝ ⎛⎭⎪⎫6,13, ∴E (ξ)=6×13=2,D (ξ)=6×13×⎝⎛⎭⎪⎫1-13=43.(2)由已知η=30ξ,∴E (η)=30E (ξ)=60,D (η)=900D (ξ)=1 200. 当堂检测1.已知X 的分布列为则D (X )的值为( )A .2912 B .121144 C .179144 D .1712答案:C 解析:E (X )=1×14+2×13+3×16+4×14=2912, ∴D (X )=22222912912912911791234124123126124144⎛⎫⎛⎫⎛⎫⎛⎫-⨯+-⨯+-⨯+-⨯=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 2.如果X 是离散型随机变量,E (X )=6,D (X )=0.5,X 1=2X -5,那么E (X 1)和D (X 1)分别是( )A .E (X 1)=12,D (X 1)=1B.E(X1)=7,D(X1)=1C.E(X1)=12,D(X1)=2D.E(X1)=7,D(X1)=2答案:D 解析:E(X1)=2E(X)-5=12-5=7,D(X1)=4D(X)=4×0.5=2.3.已知离散型随机变量ξ则其方差D(ξ)=______.答案:2.44 解析:∵0.5+m+0.2=1,∴m=0.3.∴E(ξ)=1×0.5+3×0.3+5×0.2=2.4.D(ξ)=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44.4.设随机变量ξ服从二项分布,即ξ~B(n,p),且E(ξ)=3,p=17,则n=______,D(ξ)=______.答案:21 187解析:由已知(),()(1),E npD np pξξ=⎧⎨=-⎩即13,76(),49nD nξ⎧=⎪⎪⎨⎪=⎪⎩∴n=21,12618 ()497Dξ==.5.若随机变量ξ满足P(ξ=c)=1,其中c为常数,则D(ξ)=__________.答案:0 解析:E(ξ)=1×c=c,D(ξ)=(c-c)2×1=0.。
[推荐学习]高中数学 2.3.2 离散型随机变量的方差教案 理 新人教B版选修2-3
[k12]最新K122.3.2 离散型随机变量的方差【教学目标】①理解取有限值的离散型随机变量的方差、标准差的概念和意义,会求离散型随机变量的方差、标准差;②会用离散型随机变量的方差、标准差解决一些实际问题.【教学重点】 应用离散型随机变量的方差、标准差解决实际问题 【教学难点】 对离散型随机变量的方差、标准差的理解 一、 课前预习 1.离散型随机变量的方差:设一个离散型随机变量X 所有可能取的值是1x ,2x ,⋅⋅⋅,n x ,这些值对应的概率是1p ,2p ,⋅⋅⋅,n p ,则_________________________________)(=X D 叫做这个离散型随机变量X 的方差.离散型随机变量的方差反映了:______________________________________________________ 2.离散型随机变量的标准差:_____________________________离散型随机变量的标准差反映了_______________________________________________________. 3.若随机变量X 服从参数为p 的二点分布,则___________)(=X D4.若随机变量X 服从参数为n ,p 的二项分布,___________)(=X D二、 课上学习[k12]最新K12例1、甲、乙两名射手在同一条件下进行射击,分布如下:射手甲: 射手乙:谁的射击水平比较稳定?例2、若X 的分布列为 另一随机变量32-=X Y ,求).(),(Y D X D三、 课后练习1.如果随机变量X服从二项分布),2.0,100(~B X 那么.______)34(_____,)(=+=X D X D2.甲、乙两个野生的动物保护区有相同的自然环境,且野生动物种类和数量也大致相同.两个保护区每个季度发现违反保护条例的时间事件次数的分布列分别为: 甲保护区: 乙保护区:试评定这两个保护区的管理水平.。
高中数学 2.3.2 离散型随机变量的方差教案 理 新人教B版选修2 3 教案
2.3.2 离散型随机变量的方差【教学目标】①理解取有限值的离散型随机变量的方差、标准差的概念和意义,会求离散型随机变量的方差、标准差;②会用离散型随机变量的方差、标准差解决一些实际问题.【教学重点】 应用离散型随机变量的方差、标准差解决实际问题【教学难点】 对离散型随机变量的方差、标准差的理解一、 课前预习1.离散型随机变量的方差:设一个离散型随机变量X 所有可能取的值是1x ,2x ,⋅⋅⋅,n x ,这些值对应的概率是1p ,2p ,⋅⋅⋅,n p ,则_________________________________)(=X D 叫做这个离散型随机变量X 的方差. 离散型随机变量的方差反映了:______________________________________________________2.离散型随机变量的标准差:_____________________________离散型随机变量的标准差反映了_______________________________________________________.3.若随机变量X 服从参数为p 的二点分布,则___________)(=X D4.若随机变量X 服从参数为n ,p 的二项分布,___________)(=X D 二、 课上学习例1、甲、乙两名射手在同一条件下进行射击,分布如下:射手甲: 射手乙:谁的射击水平比较稳定?例2、若X 的分布列为另一随机变量32-=X Y,求).(),(Y D X D 三、 课后练习1.如果随机变量X 服从二项分布),2.0,100(~B X 那么.______)34(_____,)(=+=X D X D2.甲、乙两个野生的动物保护区有相同的自然环境,且野生动物种类和数量也大致相同.两个保护区每个季度发现违反保护条例的时间事件次数的分布列分别为:甲保护区: 乙保护区:试评定这两个保护区的管理水平.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修2-3 2.3-02
《2.3.2离散型随机变量的方差》导学案
编撰 崔先湖 姓名 班级 组名 .
【学习目标】:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。
【学习重点】离散型随机变量的方差、标准差
【学习难点】比较两个随机变量的期望与方差的大小,从而解决实际问题
【学法指导】自主学习与合作探究相结合
【导学过程】 一 教材导读
1. 方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么,
ξD = + +…+ +…
称为随机变量ξ的均方差,简称为方差,式中的ξE 是随机变量ξ的期望.
2. 标准差: 叫做随机变量ξ的标准差,记作 .
3.方差的性质:(1) ;(2) ; (3)若ξ~B (n ,p ),则ξD
4.其它:
⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;
⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;
⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛
二、题型导航
题型一、方差及标准差的计算
【例1】 例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差.
解题步骤
变式 1有一批零件共10个合格品,2个不合格品,安装机器时从这批零件中任选一个,取到合格品才能安装;若取出的是不合格品,则不再放回 (1)求最多取2次零件就能安装的概率;
(2)求在取得合格品前已经取出的次品数ξ的分布列,并求出ξ的期望ξE 和方差ξD .
题型二 、二项分布的方差
【例2】(1)一盒中有9个正品和3个次品,每次取一测试,有放回在取出一个正品前已取出的废品数为ξ,求期望、方差。
(2)已知()~,,8, 1.6B n p E D ξξξ==,则,n p 的值分别是( )
变式2运动员投篮时命中率6.0=P
(1)求一次投篮时命中次数ξ的期望与方差; (2)求重复5次投篮时,命中次数η的期望与方差.
解题总结
题型三方差实际应用
【例3】.有甲乙两个单位都愿意聘用你,而你能获得如下信息:
根据工资待遇的差异情况,你愿意选择哪家单位?
变式3甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.4用击中环数的期望与方差比较两名射手的射击水平
解题总结题型四方差性质的应用
例4:)
(ξ
ξD
D-的值为( ) .
A.无法求B.0C.ξ
D D.ξ
D
2
变式4 已知随机变量ξ的分布为
3
1
)
(=
=k
Pξ3,2,1
=
k,则)5
3(+
ξ
D 的值为().
A.6 B.9 C. 3 D.4
解题总结
三、基础达标
随机变量X的分布列如下,回答1—3题
1、)1
(=
x
P
的值为()
A 0.8
B 0.7
C 0.5
D 0.6
2、)
(x
E的值为()
A 0.3
B -0.3
C 0.61
D 0.72
3、)
(x
D的值为()
A 0.3
B -0.3
C 0.61
D 0.72
、
(3)已知某运动员投篮命中率为p=0.6,求解4-6题
4、该运动员进行一次投篮,命中次数为ξ,则)
(ξ
E=()
A 0.6
B 0.4
C 0.24
D 0.36
5、该运动员重复投篮5次,命中次数为η,则)
(η
D=()
A 3
B 56.0
C 1.2
D )5,4,3,2,1,0
(
4.0
6.05
5
=
-k
C k
k
k
6、若一次投篮投中得2分,投不中不得分,该运动员重复投篮5次,所得分数X的方差为() A 1.2
B 2.4
C 3.6
D 4.8
7、若随机变量X服从两点分布,且成功的概率p=0.5,则E(X)和D(X)分别为( )
A.0.5和0.25
B.0.5和0.75
C.1和0.25
D.1和0.75
8 阅读下列材料:
为了在甲、乙两名学生中选拔一人参加数学竞赛,在相同条件下,对他们进行了10次测验,成绩如下:(单
位:分)
回答下列问题:
(1)甲学生成绩的众数是_______(分),乙学生成绩的中位数是_______(分).
(•2)•若甲学生成绩的平均数是x 甲,•乙学生成绩的平均数是x 乙,•则x 甲与x 乙的大小关系是:________. (3)经计算知:S 2甲=13.2,S 2乙=26.36,这表明____________(用简明的文字语言表述) (4)若测验分数在85分(含85分)以上为优秀,则甲的优秀率为________;•乙的优秀率为________. 9、甲、乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92。
(1)求该题被乙独立解出的概率。
(2)求解出该题的人数ξ的数学期望和方差。
四.当堂检测
随机变量X 的分布列如下,回答4—6题
1、)41(<≤X P 的值为( )
A 0.6
B 0.7
C 0.8
D 0.9 2、X 的期望值与方差值分别为( )
A 2;1.29
B 2.1;1.29
C 2;1.9
D 2.1;1.9 3、设52+=X Y ,则)(Y
E 、)(Y D 的值分别为( )
A 4.2;1.29
B 9.2;5.16
C 4.2;15.32
D 9.2;10.32 4、已知X ~B(n,p),EX =8,DX =1.6,则n 与p 的值分别是( )
A.100,0.08
B.20,0.4
C.10,0.2
D.10,0.8 5、如果X ~B(100,0.2),那么D(4X+3)=____________
6、口袋中有大小均匀10个球,其中有7个红球3个白球,任取3个球,其中含有红球个数为X ,则=)(X E 。
7 为选派一名学生参加全市实践活动技能竞赛,A ,B 两位同学在校实习基地现场进行加工直径为20mm 的零件的测试,他俩加工的10•个零件的相关数据依次如下图表所示(单位:mm ). 根据测试得到的有关数据,试解答下列问题:
(1)考虑平均数与完全符合要求的个数,你认为________的成绩好些. (2)计算出S 2B 的大小,考虑平均数与方差,说明谁的成绩好些.
(3)考虑图中折线走势及竞赛中加工零件个数远远超过10个的实际情况,你认为派谁去参赛较合适?说明你的理由.
【课后反思】
本节我所学到核心知识有 ,
基本题型有 ;
我还存在的疑惑是 。
【一节励志】。