2020年春人教版初一数学期中考试试题

合集下载

2020人教版七年级下册数学《期中考试卷》含答案

2020人教版七年级下册数学《期中考试卷》含答案

2020⼈教版七年级下册数学《期中考试卷》含答案七年级下学期期中测试数学试卷⼈教版⼀.选择题(共10⼩题)1.点P (2,-3)() A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限2. 4的算术平⽅根是()B. 2C. ±2D. 3.下列各数中,是⽆理数的是()A. B. C. 3.14 D. 227 4.有下列命题:①对顶⾓相等;②若a ∥b ,b ∥c ,则a ∥c ;③在同⼀平⾯内,若a ⊥b ,b ⊥c ,则a ∥c ;④ac =bc ,则a =b .其中正确的有()A. 1个B. 2个C. 3个D. 4个 5.如图是⼀块电脑主板的⽰意图,每⼀转⾓处都是直⾓,数据如图所⽰(单位:mm ),则该主板的周长是()A. 88mmB. 96mmC. 80mmD. 84mm 6.如图,12∠∠=,且3108∠=?,则4∠的度数为()A. 72?B. 62?C. 82?D. 80?7.(b ﹣3)2=0,则(a +b )2019等于()A. 1B. ﹣1C. ﹣2019D. 20198.下列说法错误的是()A. 2±B. 64的算术平⽅根是4C. 0=D. 0≥,则x =19.点P (3﹣2m ,m )不可能在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限10.如图,把⼀张长⽅形纸⽚ABCD 沿EF 折叠后,点C 、D 分别落在C ′、D ′位置上,EC ′交AD 于点G ,已知∠EFG =56°,则∠BEG 等于()A. 112°B. 88°C. 68°D. 56°⼆.填空题(共6⼩题)11.若⼀个正数平⽅根是3a +2和2a ﹣1,则a 为_____.12.若点P (3a ﹣2,2a +7)在第⼆、四象限的⾓平分线上,则点P 的坐标是_____. 13.互为相反数,则b a =_____. 14.如图楼梯截⾯,其中AC =3m ,BC =4m ,AB =5m ,要在其表⾯铺地毯,地毯长⾄少需_____⽶.15.如图,直线l 1∥l 2,若∠1=130°,∠2=60°,则∠3=__________. 的的是16.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.三.解答题(共8⼩题)(1(2;(3)|﹣|+1|+|1﹣|.18.求下列各式中的x .(1)4(3x +1)2﹣1=0;(2)(x +2)3+1=0.19.如图所⽰,直线AB ,CD 相交于点O ,P 是CD 上⼀点.(1)过点P 画AB 垂线段PE .(2)过点P 画CD 的垂线,与AB 相交于F 点.(3)说明线段PE ,PO ,FO 三者的⼤⼩关系,其依据是什么?20.△ABC 在平⾯直⾓坐标系中的位置如图所⽰.(1)分别写出下列三点坐标:A,B,C;(2)将△ABC平移⾄△OB′C′位置,使点A与原点O重合,画出平移后的△OB′C′,写出B′、C′的坐标;(3)求△OB′C′的⾯积.21.已知,点P(2m﹣6,m+2).(1)若点P在y轴上,P点的坐标为;(2)若点P和点Q都在过A(2,3)点且与x轴平⾏的直线上,PQ=3,求Q点的坐标.22.已知,如图AB∥CD,∠B=80°,∠BCE=20°,∠CEF=80°,请判断AB与EF的位置关系,并说明理由.解:理由如下:∴∠B=∠BCD.∵∠B=80°,∴∠BCD=80°.∵∠BCE=20°,∴∠ECD=100°,⼜∵∠CEF=80°∴+=180°,∴EF∥⼜∵AB∥CD,∴AB∥EF.23.已知a、b满⾜b24.已知点A(1,a),将线段OA平移⾄线段BC,B(b,0),a是m+6n=3,n,且m<n,正数b满⾜(b+1)2=16.(1)直接写出A、B两点坐标为:A,B;(2)如图1,连接AB、OC,求四边形AOCB的⾯积;(3)如图2,若∠AOB=a,点P为y轴正半轴上⼀动点,试探究∠CPO与∠BCP之间的数量关系.答案与解析⼀.选择题(共10⼩题)1.点P(2,-3)在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点P(2,-3)在第四象限.故选D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第⼀象限(+,+);第⼆象限(-,+);第三象限(-,-);第四象限(+,-).2. 4的算术平⽅根是()B. 2C. ±2D.【答案】B【解析】试题分析:根据算术平⽅根的定义可得4的算术平⽅根是2,故答案选B.考点:算术平⽅根的定义.3.下列各数中,是⽆理数的是()A. B. C. 3.14 D. 22 7【答案】B【解析】【分析】根据⽆理数是⽆限不循环⼩数,逐⼀验证即可.【详解】A=2,是整数,属于有理数,故选项不符合题意;B.C.3.14属于有理数,故选项不符合题意;D.227是分数,属于有理数,故选项不符合题意.故选:B.【点睛】本题考查了⽆理数的定义,注意有理数的化简变形,理解⽆理数的定义是解题的关键.4.有下列命题:①对顶⾓相等;②若a∥b,b∥c,则a∥c;③在同⼀平⾯内,若a⊥b,b⊥c,则a∥c;④ac=bc,则a=b.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C根据对顶⾓定义,平⾏的“传递性”以及平⾏判定的条件,等式的性质进⾏逐⼀验证判断即可.【详解】①对顶⾓相等,是正确的;②若a∥b,b∥c,则a∥c,是正确的;③在同⼀平⾯内,若a⊥b,b⊥c,则a∥c,是正确的;④当a=1,b=2,c=0时,ac=bc,但a≠b,∴ac=bc,则a=b,是错误的;故选:C.【点睛】本题考查了平⾏线的概念和性质,等式的性质,熟练掌握相关概念内容是解题的关键.5.如图是⼀块电脑主板的⽰意图,每⼀转⾓处都是直⾓,数据如图所⽰(单位:mm),则该主板的周长是()A. 88mmB. 96mmC. 80mmD. 84mm 【答案】B【解析】【分析】根据题意,电脑主板是⼀个多边形,由周长的定义可知,周长是求围成图形⼀周的长度之和,计算周长只需要把横着的和竖着的所有线段加起来即可.【详解】由图形可得出:该主板的周长是:24+24+16+16+4×4=96(mm ),故该主板的周长是96mm ,故选:B .【点睛】本题考查了不规则多边形周长的求解⽅法,理解周长的定义是求解的关键. 6.如图,12∠∠=,且3108∠=?,则4∠的度数为()A. 72?B. 62?C. 82?D. 80?【答案】A【解析】【分析】求出a ,b ,得出,4=,5,根据,3的度数求出,5的度数,即可得出答案.【详解】解:∴∠4=∠5,∵∠3=108°,∴∠5=180°-108°=72°,∴∠4=72°,故选A .【点睛】本题考查了平⾏线的性质和判定的应⽤,能灵活运⽤性质和判定进⾏推理是解此题的关键.7.(b﹣3)2=0,则(a+b)2019等于()A. 1B. ﹣1C. ﹣2019D. 2019【答案】B【解析】【分析】根据⾮负数的性质,⾮负数的和为0,即每个数都为0,可求得a、b的值,代⼊所求式⼦即可.【详解】根据题意得,a+4=0,b﹣3=0,解得a=﹣4,b=3,∴(a+b)2019=(﹣4+3)2019=﹣1,故选:B.【点睛】本题考查了⾮负数的性质,以及-1的奇次⽅是-1,理解⾮负数的性质是解题关键.8.下列说法错误的是()A. 2± B. 64的算术平⽅根是4≥,则x=1 =0【答案】B【解析】【分析】根据平⽅根、算术平⽅根、⽴⽅根的概念对选项逐⼀判定即可.B.64的算术平⽅根是8,错误;C=,正确;D0≥,则x=1,正确;故选:B.【点睛】本题考查了平⽅根、算数平⽅根,⽴⽅根的概念,理解概念内容是解题的关键.9.点P(3﹣2m,m)不可能在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据象限内的点坐标的特征,分点P的横坐标是正数和负数两种情况讨论求解即可.【详解】当m>1.5时,点在第⼆象限;当m=1.5时,点在y轴上;当0<m<1.5时,点在第⼀象限;当m=0时,点x轴上;当m<0时,点在第四象限;故选:C.【点睛】本题考查了点坐标在象限内时的取值范围,注意分类讨论思想的应⽤.10.如图,把⼀张长⽅形纸⽚ABCD沿EF折叠后,点C、D分别落在C′、D′的位置上,EC′交AD于点G,已知∠EFG=56°,则∠BEG等于()A. 112°B. 88°C. 68°D. 56°【答案】C【解析】【分析】根据平⾏线和折叠的性质可知,∠GEF=∠CEF=∠EFG=56°,由平⾓的定义计算即可.【详解】∵AD∥BC,∠EFG=56°,∴∠EFG=∠FEC=56°,由折叠的性质可知,∠FEC=∠FEG,∴∠GEC=∠FEC+∠FEG=112°,∴∠BEG=180°-∠GEC=68°,故选:C.【点睛】本题考查了平⾏线和折叠结合的性质,平⾓的定义,熟练掌握平⾏和折叠的关系是解题的关键,也是中考常考的重难点.⼆.填空题(共6⼩题)11.若⼀个正数的平⽅根是3a+2和2a﹣1,则a为_____.【答案】15 -.【解析】【分析】根据⼀个正数的平⽅根有两个,且互为相反数可得3a+2+2a﹣1=0,解出a即可.【详解】由题意得,3a+2+2a﹣1=0,解得:a=15 -.故答案为:15 -.【点睛】本题考查了正数的平⽅根的定义,互为相反数的两个数和为0的性质,理解平⽅根的定义是解题的关键.12.若点P(3a﹣2,2a+7)在第⼆、四象限的⾓平分线上,则点P的坐标是_____.【答案】(﹣5,5).【解析】【分析】根据第⼆、四象限的⾓平分线上的点,横纵坐标互为相反数,由此可列出关于a的⽅程,解出a的值即可求得点P的坐标.【详解】∵点P(3a﹣2,2a+7)在第⼆、四象限的⾓平分线上,∴3a﹣2+2a+7=0,解得:a=﹣1,∴P(﹣5,5).故答案为:(﹣5,5).【点睛】本题考查了点坐标在象限⾓平分上的性质和列⼀次⽅程求解的问题,熟记点坐标在象限⾓平分线上的性质是解题的关键.13.互相反数,则ba=_____.【答案】32.【解析】【分析】根据⽴⽅根的概念,结合相反数的定义,可知两个被开⽅数也互为相反数,由两数和为0可列出关于a、b的关系式,化简整理即可.∴(3a﹣1)+(1﹣2b)=0,∴3a=2b,∴ba=32.故答案为:32.【点睛】本题考查了⽴⽅根的概念,相反数的定义,由关系式求两数的⽐值,理解⽴⽅根和相反数的概念是解题的关键.14.如图是楼梯截⾯,其中AC=3m,BC=4m,AB=5m,要在其表⾯铺地毯,地毯长⾄少需_____⽶.【答案】7.【解析】【分析】根据图形可知,由三⾓形三边长可知,满⾜勾股数,△ABC是直⾓三⾓形,需要铺的地毯的长度即为AC+BC的长度,数值代⼊计算即可.【详解】根据题意结合图形可知,△ABC三边长满⾜勾股数,是直⾓三⾓形,所以要铺的地毯的长度即为AC+BC,∴4+3=7(⽶).答:地毯长⾄少需7⽶.故答案为:7.【点睛】本题考查了勾股数判定直⾓三⾓形,图形的折叠和展开图与⽔平距离和竖直距离之间的关系,理解⽴体图展开成平⾯图形的关系是解题的关键.15.如图,直线l1∥l2,若∠1=130°,∠2=60°,则∠3=__________.【答案】70°【解析】试题分析:,直线l1,l2,,,4=,1=130°,,,5=,4﹣,2=70°,,,5=,3=70°.,故答案为70°.考点:平⾏线的性质.16.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.【答案】(15,5)【解析】由图形可知:点的个数依次是1,2,3,4,5,…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14⾏点的⾛向为向上,∴纵坐标为从第92个点向上数8个点,即为8,∴第100个点的坐标为(14,8).故答案为(14,8).点睛:本题考查了学⽣的观察图形的能⼒和理解能⼒,解此题的关键是根据图形得出规律,题⽬⽐较典型,但是是⼀道⽐较容易出错的题⽬.三.解答题(共8⼩题)17.计算:(1(2;(3)|﹣|+1|+|1﹣|.【答案】(1)5;(2)﹣1;(3【解析】【分析】(1)根据开平⽅的运算进⾏计算即可得;(2)根据开平⽅和开⽴⽅的运算进⾏化简,然后进⾏加减计算即可;(3)根据绝对值概念可知,正数的绝对值是它本⾝,负数的绝对值是它的相反数,0的绝对值是0,进⾏化简计算即可.【详解】(1=3+2=5,故答案为:5.(2=4﹣3﹣12﹣32=﹣1,故答案为:-1.(3)|﹣|+1|+|1﹣|﹣﹣1,.【点睛】本题考查了实数的混合运算法则,开平⽅,开⽴⽅的化简求值,去绝对值符号的化简,注意化简时符号的问题.18.求下列各式中的x.(1)4(3x+1)2﹣1=0;(2)(x+2)3+1=0.【答案】(1)1x=﹣16或2x=﹣12;(2)x=﹣3.【解析】【分析】(1)根据题意,把-1移项,然后直接开⽅即可求得;(2)由题⽬可知,把+1移项,根据⽴⽅根的定义,直接开⽴⽅计算可得.【详解】(1)4(3x+1)2﹣1=0,4(3x+1)2=1,(3x+1)2=14,3x+1=±12,∴1x=﹣16或2x=﹣12故答案为:1x=﹣16或2x=﹣12;(2)(x+2)3+1=0,(x+2)3=﹣1,x+2=﹣1,∴x=﹣3,故答案为:-3.【点睛】本题考查了利⽤直接开平⽅和开⽴⽅的⽅法求⽅程的解,注意开平⽅有两个根,且互为相反数.19.如图所⽰,直线AB,CD相交于点O,P是CD上⼀点.(1)过点P画AB的垂线段PE.(2)过点P画CD的垂线,与AB相交于F点.(3)说明线段PE,PO,FO三者的⼤⼩关系,其依据是什么?【答案】(1)见解析;(2)见解析;(3)PE<PO<FO,其依据是“垂线段最短”【解析】【分析】前两问尺规作图见详解,第(3)问中利⽤垂线段最短即可解题.【详解】(1)(2)如图所⽰.(3)在直⾓△FPO中,PO<FO,在直⾓△PEO中,PE<PO,∴PE<PO<FO,其依据是“垂线段最短”.【点睛】本题考查了尺规作图和垂线段的性质,属于简单题,熟悉尺规作图的⽅法和步骤,垂线段的性质是解题关键.20.△ABC在平⾯直⾓坐标系中的位置如图所⽰.(1)分别写出下列三点坐标:A,B,C;(2)将△ABC平移⾄△OB′C′位置,使点A与原点O重合,画出平移后的△OB′C′,写出B′、C′的坐标;(3)求△OB′C′的⾯积.【答案】(1)(1,3)、(2,0)、(4,1);(2)如图所⽰,△OB′C′即为所求,见解析;B′(1,﹣3)、C′(3,﹣2).(3)△OB′C′的⾯积为72.【解析】【分析】(1)根据点在平⾯直⾓坐标系的位置,可分别写出点所对应的坐标即可;(2)根据平移前后点A与对应点O坐标的位置,可以得出图形△ABC向左平移1个单位、向下平移3个单位,由此可得出平移后点B′、C′的坐标;(3)利⽤割补法,把△OB′C′补成⼀个正⽅形,减去三个直⾓三⾓形的⾯积计算即可.【详解】(1)由图形知A(1,3),B(2,0),C(4,1);故答案为:(1,3)、(2,0)、(4,1);(2)由A(1,3)及其对应点O(0,0)知,需将△ABC向左平移1个单位、向下平移3个单位,如图所⽰,△OB′C′即为所求,其中B′(1,﹣3)、C′(3,﹣2),故答案为:B′(1,﹣3)、C′(3,﹣2);(3)△OB ′C ′的⾯积为3×3﹣12×1×3﹣12×3×2﹣12×1×2=72,故答案为:72.【点睛】本题考查了平⾯直⾓坐标系内,点坐标的表⽰,平移图形的变化关系,割补法求⼀般三⾓形的⾯积,熟记平⾯直⾓坐标系的点坐标的表⽰是解题的关键.21.已知,点P (2m ﹣6,m +2).(1)若点P 在y 轴上,P 点的坐标为;(2)若点P 和点Q 都在过A (2,3)点且与x 轴平⾏直线上,PQ =3,求Q 点的坐标.【答案】(1)P (0,5);(2)Q 点坐标为(-1,3)或(-7,3)【解析】【分析】(1)根据y 轴上点的横坐标为0,得2m -6=0,求m 值即可得P 点坐标;(2)根据题意可得直线PQ 经过A 点且平⾏于x 轴,可得P 、Q 的纵坐标均为3,由此得m+2=3,确定m 值后根据PQ=3,可得Q 点的横坐标.【详解】解:(1)∵点P 在y 轴上∴2m -6=0∴m=3∴m+2=3+2=5∴P (0,5)(2)根据题意可得PQ ∥x 轴,且过A (2,3)点,∴m+2=3∴m=1的∴2m-6=-4∴P(-4,3)∵PQ=3∴Q点横坐标-4+3=-1,或-4-3=-7∴Q点坐标为(-1,3)或(-7,3)【点睛】本题考查y轴上和平⾏于x轴上点坐标的特征,根据此特征确定点的横坐标或纵坐标是解答此题的关键.22.已知,如图AB∥CD,∠B=80°,∠BCE=20°,∠CEF=80°,请判断AB与EF的位置关系,并说明理由.解:理由如下:∵AB∥CD∴∠B=∠BCD.∵∠B=80°,∴∠BCD=80°.∵∠BCE=20°,∴∠ECD=100°,⼜∵∠CEF=80°∴+=180°,∴EF∥⼜∵AB∥CD,∴AB∥EF.【答案】AB∥EF,理由见解析;填空答案:AB∥EF,两直线平⾏,内错⾓相等;等量代换,∠E,∠DCE,CD,同旁内⾓互补,两直线平⾏;平⾏于同⼀直线的两条直线互相平⾏.【解析】【分析】根据平⾏线性质,可得∠BCD=80°,进⽽可得到∠E+∠ECD=180°,可证明EF∥CD,由。

2020学年七年级下学期期中考试数学试题(含答案)

2020学年七年级下学期期中考试数学试题(含答案)

2020年春学期初一期中考试数学试卷 2020.5注意事项:1. 考试时间为100分钟,试卷满分为110分.2. 所有答案必须填涂到答卷纸上相应位置,答案写在试卷其他部分无效.一、选择题(本大题共10小题,每小题3分,共30分.)1.把图形(1)进行平移,能得到的图形是 ( ▲ )2.下列等式从左到右的变形,属于因式分解的是 ( ▲ )A .2(1)(1)1x x x +-=-B .224(4)(4)x y x y x y -=+-C .221(1)1x x x x -+=-+D .22816(4)x x x -+=- 3.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是( ▲ )A .2B .9C .10D . 114.下列计算正确的是 ( ▲ )A . 1266a a a =+B .22414mm =- C .877222=+ D .93339)3(y x xy = 5.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( ▲ )A.110°B.125°C.135°D.140°6.若()()A b a b a +-=+223535,则A 等于 ( ▲ ) A .ab 12 B .ab 15 C .ab 30 D .ab 607.下列说法中,正确的个数有( ▲ )①同位角相等; ②三角形的高相交于三角形的内部;③三角形的一个外角大于任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加180°;⑤两个角的两边分别平行,则这两个角相等。

第9题A.0个B.1个C.2个D.3个8.已知0222)21(,)21(,2,)2.0(-=-=-=-=--d c b a ,则比较a 、b 、c 、d 的大小结果是 ( ▲ )A. c d a b <<<B.c d b a <<<C. d c a b <<<D.c a d b <<<9.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM 平分∠AOD ,ON 平分∠COB,则∠M0N 的度数为( ▲ )A.60°B.45°C. 65.5°D.52.5°10.如图,若平行四边形AFPE 、BGPF 、EPHD 的面积分别为15、6、25,则阴影部分的面积是( ▲ )A.20B. 15.5C.23D.25二、填空题(本大题共8小题,每小题2分,共16分.)11.2019年末,新型冠状病毒引发的肺炎在我国爆发,被命名为2019-nCoV 的新型冠状病毒直径最小约0.00000006厘米,用科学计数法表示为 ▲ 厘米.12.若92-2++x m x )(是一个完全平方式,则m = ▲ .13. 若3424==y x ,,则=-y x 24 ▲ .14.计算)8)(4(22+++-mx x n x x 的结果不含3x 的项,那么m= ▲ .15.将长方形ABCD 折叠,折痕为EF ,BC 的对应边为''C B 与CD 交于点M ,若∠MD B '=50°,则∠BEF 的度数为 ▲ °.16.计算:()()870.1258⨯-= ▲ . 17.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = ▲ ° .18.无锡市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转;B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°.B 灯先转第17题 第18题第15题第10题动2秒,A 灯才开始转动.当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是 ▲ 秒.三、解答题(本大题共8小题,共64分.)19.计算:(每小题3分,共12分.)(1)()02200614.3211π--⎪⎭⎫ ⎝⎛-+-- (2)23)3)(()2(x x x ---(3))2)(3()7(+--+x x x x (4))21)(12()12(2a a a +-+-+20.因式分解:(每小题3分,共9分.)(1)b a b a ab 322375303+- (2))(16)(2x y y x a -+- (3)()222224y x y x -+ 21.(6分)先化简,再求值:)3)(3()23)(12(62-++-+-x x x x x ,其中21=x22.( 8分)如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC 的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△'''C B A ,点C 的对应点是直线上的格点'C .(1)画出△'''C B A .(2)若连接'AA 、'BB ,则这两条线段之间的关系是 .(3)试在直线l 上画出所有符合题意的格点P ,使得由点'A 、'B 、'C 、P 四点围成的四边形的面积为9.23.(6分)如图,AD ⊥BC ,垂足为D ,点E 、F 分别在线段AB 、BC 上,∠1=∠2,∠C+∠ADE =90°.(1)求证:DE ∥AC ;(2)判断EF 与BC 的位置关系,并证明你的猜想.24.(6分)如图,AD 平分BAC ∠,EAD EDA =∠∠.(1)EAC ∠与B ∠相等吗?为什么?(2)若50B =︒∠,:13CAD E =∠∠:,求E ∠的度数.25. (8分)完全平方公式:(a ±b )2=a 2±2ab+b 2适当的变形,可以解决很多的数学问题. 例如:若a+b =3,ab =1,求a 2 +b 2 的值.解:因为a+b =3,ab =1所以(a+b )2=9,2ab =2所以a 2+b 2+2ab =9,2ab =2得a 2+b 2=7根据上面的解题思路与方法,解决下列问题:(1)若(7﹣x )(x ﹣4)=1,求(7﹣x )2+(x ﹣4)2的值;(2)如图,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设AB =5,两正方形的面积和S 1+S 2=17,求图中阴影部分面积.26.(9分)在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交射线BC 于点F .(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)EC B A D图② 图① 备用图(1)如图①,当AE ⊥BC 时,求证:DE ∥AC .(2)若︒=∠-∠10B C ,∠BAD =x ° .①如图②,当DE ⊥BC 时,求x 的值;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.2020年春学期初一期中考试数学参考答案和评分标准2020.5一、选择题(每题3分,共30分)1. C 2 .D 3 . B 4 . C 5 . B 6. D 7. B 8. A 9. D 10. B二、填空题(每空2分,共16分)11. 8106-⨯ ; 12. 84或- ; 13.92 ; 14. 4 ;15. 70 ; 16 . 81- ; 17. 66 ; 18. 2171或 三、解答题(共64分)19. 计算(每题3分,共12分)(1)(1)()02200614.3211π--⎪⎭⎫ ⎝⎛-+--;=-1+4-1------------------------2分(化错1个扣一分)= 2 ----------------------3分(2)23)3)(()2(x x x ---.= 3398x x +- ------------2分(每个化简1分)= 3x --------------------3分(3) )2)(3()7(+--+x x x x= )6(722---+x x x x ------------2分 = 68+x --------------------3分(4) )21)(12()12(2a a a +-+-+ =)14(14422--++a a a ------------2分 =24+a ------------3分20.把下列各式分解因式:(每题3分,共9分)(1) b a b a ab 322375303+-=)2510(322a ab b ab +-------------1分 =2)5(3a b ab -------------3分(2) )(16)(2x y y x a -+-=)16)((2--a y x -----------------------------------1分 =)4)(4)((-+-a a y x -------------------------------3分(3) ()222224y x y x -+ = )2)(2(2222xy y x xy y x -+++--------1分 = 22)()(y x y x -+ ------------3分21.(6分)解:原式= 9)26(6222-+---x x x x ------------------2分 = 72-+x x --------------------4分当21=x ,原式=7-2141+=416- -----------------------6分22. (8分)(1)画图--------------2分 (2)平行且相等--------------4分(3)8分23. (6分)(1)证明:∵AD ⊥BC∴∠1+∠C=90°………………1′∵∠C+∠ADE =90°∴∠1=∠ADE ………………2′∴DE ∥AC ………………3’(2) EF ⊥BC ………………4′∵∠1=∠2,∠1=∠ADE∴∠2=∠ADE∴EF ∥AD ………………5′∴∠EFD =∠ADC=90°∴EF ⊥BC ………………6′(其他方法酌情给分)24. (6分)解:(1)∠E AC =∠B ………………1′理由:∵AD 平分∠BAC∴∠1=∠2………………2′∵∠ADE=∠B+∠1,∠EAD=∠2+∠EAC ,且∠EAD=∠EDA∴∠B=∠EAC ………………3’(2)∵:13CAD E =∠∠:∴设∠CAD (即∠2)=x °,则∠E=x 3°∵∠B=50°∴∠EAD=∠EDA=(50+x )° (4)∴180325050=+++x x∴16=x ………………5′∴∠E=48° ………………6′(其他方法酌情给分)25. (8分)解:(1)设4,7-=-=x b x a则由题意可得:1,3==+ab b a∴7291232)(2222=-=⨯-=-+=+ab b a b a 即7)4()7(22=-+-x x ………………4′ (2)………………8′26. (9分)(1)∵AE ⊥BC∴∠EAC+∠C=90°∵∠BAC=90°∴∠B+∠C=90°∴∠B=∠EAC∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E∴∠EAC=∠E∴DE ∥AC ………………3′(2)①∵∠B+∠C=90°,︒=∠-∠10B C∴∠B=40°,∠C=50°∵DE ⊥BC∴∠EDF=90°∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E=40°,∠BAD=∠EAD=x °∴∠DFE=5O °∵∠DFE=BAF B ∠+∠∴50402=+x 5=x ………………3′②由题意可得,∠ADC=x +40, ∠ABD=x -140 ,∠EDF=x x x 2100)40(140-=+--∠DFE=x 240+(ⅰ)若∠EDF=∠DFE x x 2402-100+= 15=x (ⅱ)若∠EDF=∠E 402-100=x 30=x(ⅲ)若∠DFE =∠E 40240=+x 0=x (舍去)综上可得3015或=x . ………………3′。

人教版七年级数学期中考试试卷以及答案

人教版七年级数学期中考试试卷以及答案

期中综合检测试卷(第一章~第二章 满分:120分)一、选择题(每小题3分,共30分) 1.-8的绝对值是( A ) A .8 B .18C .-8D .-182.下列运算结果为正数的是( A ) A .(-3)2 B .-3÷2 C .0×(-2020)D .2-3 3.已知下列各式:abc,2πR ,x +3y,0,x -y2m ,其中单项式有( B )A .2个B .3个C .4个D .5个4.下列计算正确的是( D ) A .3a +2a =5a 2 B .3a -a =3 C .2a 3+3a 2=5a 5D .-a 2b +2a 2b =a 2b 5.我们的祖国地域辽阔,其中领水面积约为370 000 km 2.把370 000这个数用科学记数法表示为( B )A .37×104B .3.7×105C .0.37×106D .3.7×1066.有理数a ,b 在数轴上的对应点如图所示,则下列结论正确的是( A )A .|b |>-aB .|a |>-bC .b >aD .|a |>|b |7.下列说法中,正确的有( B )①任何数的倒数都小于1;②a 的倒数是1a ;③同号的两个数,原数大的倒数反而小;④互为倒数的两数符号相同.A .1个B .2个C .3个D .4个 8.下列各式不正确的是( A ) A .-x 2=(-x )2B .(-a )2=a 2C .(a -b )2=(b -a )2D .(a -b )3=-(b -a )39.计算6m 2-5m +3与5m 2+2m -1的差,结果正确的是( D ) A .m 2-3m +4 B .m 2-3m +2 C .m 2-7m +2D .m 2-7m +410.甲、乙、丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,应到的超市是( B )A .甲B .乙C .丙D .乙或丙二、填空题(每小题3分,共18分)11.如果向东走6 m 记作+6 m ,那么向西走2 m 记作__-2 m__. 12.若3a n +1b 2与12a 3b m +3的和仍是单项式,则m +n =__1__.13.单项式-35x 2yz 3的系数是__-35__,次数是__6__.14.一种零件的直径尺寸在图纸上是30+0.03-0.02(单位:mm),它表示这种零件的标准尺寸是30 mm ,合格产品的尺寸范围是__29.98~30.03__mm.15.若||a -11+(b +12)2=0,则(a +b )2020=__1__.16.如图是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为__1__.三、解答题(共72分) 17.(12分)计算下列各题: (1)-14-(-6)+2-3×⎝⎛⎭⎫-13; 解:原式=-1+6+2+1=8. (2)⎝⎛⎭⎫29-14+118÷⎝⎛⎭⎫-136;解:原式=⎝⎛⎭⎫29-14+118×(-36)=29×(-36)-14×(-36)+118×(-36)=-1. (3)3(x 2-5xy )-4(x 2+2xy -y 2)-5(y 2-3xy );解:原式=3x 2-15xy -4x 2-8xy +4y 2-5y 2+15xy =-x 2-8xy -y 2. (4)(x -x 2+1)-2(x 2-1+3x ).解:原式=x -x 2+1-2x 2+2-6x =-3x 2-5x +3.18.(6分)下面的运算是否正确,如果正确,说明每一步的依据;如果不正确,说明从哪一步开始出现了错误,错误的原因,并写出正确的解答过程.计算:-18+23+56-14.解:原式=⎝⎛⎭⎫-18+14+⎝⎛⎭⎫56-23(第①步) =18+16(第②步) =724.(第③步) 解:从第①步开始出现了错误:加数交换位置时应和前面的符号一起交换.正确的解答如下:原式=⎝⎛⎭⎫-18-14+⎝⎛⎭⎫23+56=-38+96=98. 19.(6分)先化简,再求值:3x 3-(4x 2+5x )-3(x 3-2x 2-2x ),其中x =-2.解:原式=3x 3-4x 2-5x -3x 3+6x 2+6x =2x 2+x .当x =-2时,原式=2×(-2)2-2=6. 20.(6分)随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家买了一辆小轿车,国庆节期间,他连续记录了7天中每天行驶的路程(如下表),以50 km 为标准,多于50 km 的记为“+”,不足50 km 的记为“-”,刚好50 km 的记为“0”.(2)若每行驶100 km 需用汽油6升,汽油价5.2元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?解:(1)这七天中平均每天行驶50+(-8-11-14+0-16+41+8)÷7=50(千米). (2)平均每天所需汽油费用为50×6÷100×5.2=15.6(元),即估计小明家一个月的汽油费用是15.6×30=468(元).21.(6分)现定义一种新运算“⊕”:对于任意有理数x ,y ,都有x ⊕y =3x +2y ,例如:5⊕1=3×5+2×1=17.(1)求(-4)⊕(-3)的值; (2)化简:a ⊕(3-2a ).解:(1)(-4)⊕(-3)=3×(-4)+2×(-3)=-12-6=-18.(2)a ⊕(3-2a )=3×a +2×(3-2a )=3a +6-4a =-a +6.22.(6分)已知A =5x 2-mx +n ,B =3y 2-2x -1(A ,B 为关于x ,y 的多项式).如果A -B 的结果中不含一次项和常数项,求:(1)m ,n 的值; (2)m 2+n 2-2mn 的值.解:(1)因为A =5x 2-mx +n ,B =3y 2-2x -1,所以A -B =5x 2-mx +n -3y 2+2x +1=5x 2-3y 2+(2-m )x +n +1.由结果中不含一次项和常数项,得2-m =0,n +1=0,解得m =2,n =-1. (2)当m =2,n =-1时,原式=22+(-1)2-2×2×(-1)=4+1+4=9.23.(8分)有3个有理数x ,y ,z ,若x =2(-1)n -1,且x 与y 互为相反数,y 是z 的倒数.(1)当n 为奇数时,你能求出x ,y ,z 这三个数吗?当n 为偶数时,你能求出x ,y ,z 这三个数吗?若能,请计算并写出结果;若不能,请说明理由;(2)根据(1)的结果计算xy -y n -(y -z )2020的值.解:(1)当n 为奇数时,x =-1.因为x 与y 互为相反数,所以y =-x =1.因为y 是z 的倒数,所以z =1.所以x =-1,y =1,z =1;当n 为偶数时,因为分母不能为零,所以不能求出x ,y ,z 的值.(2)当x =-1,y =1,z =1时,原式=(-1)×1-1n -02020=-2.24.(10分)如图,一个用铝合金材料加工的长方形窗框,它的宽和高分别为a 厘米、b 厘米,解答下列问题(结果可用含a ,b 的代数式表示).(1)长方形窗框的面积是__ab __平分厘米;(2)铝合金窗分为上、下两栏,四周框架和中间隔栏的材料均为宽度为6厘米的铝合金材料,上栏和下栏的框内高度(不含铝合金部分)的比为1∶2(接口用料忽略不计).①求制作一个该种窗框所需铝合金材料的总长度; ②求该种(2)窗框的透光部分的面积.解:(2)①由题意,得上栏内高度为b -183厘米,下栏内高度为2(b -18)3厘米,所以所需铝合金材料的总长度为3a +b -183×2+2(b -18)3×3=⎝⎛⎭⎫3a +83b -48厘米. ②透光部分的面积为ab -6⎝⎛⎭⎫3a +83b -48=(ab -18a -16b +288)平方厘米. 25.(12分)一张桌子可坐4人,按照如图所示的方式将桌子拼在一起.(1)2张桌子拼在一起可坐几人?3张桌子拼在一起可坐几人?n 张桌子拼在一起可坐几人?(2)一家酒楼有60张这样的正方形桌子,按上图的方式每4张桌子拼成一张大桌子,则60张桌子可拼成15张大桌子,共可坐多少人?(3)若这家酒楼的60张这样的正方形桌子,每4张拼成一张大的正方形桌子,则共可坐多少人?(4)(2)、(3)中,哪种拼桌子的方式坐的人更多?解:(1)2张桌子拼在一起可坐4+2=6(人);3张桌子拼在一起可坐4+2+2=8(人);n 张桌子拼在一起可坐4+2(n -1)=(2n +2)人. (2)按图中方式拼一张大桌子可坐4+2×(4-1)=10(人),则15张大桌子共可坐15×10=150(人). (3)若每4张桌子拼成一张大正方形桌子,则一张大的正方形桌子可坐8人,15张大正方形桌子共可坐15×8=120(人). (4)由(2)、(3)可知,按(2)中拼桌子的方式坐的人更多.。

【精品】2020年春7年级下期中试卷数学(人教版)1(6)

【精品】2020年春7年级下期中试卷数学(人教版)1(6)

( 2)化简: a
2a
b1
1 b
a1
3
( 3)若 c (a 2
1)
0 ,且 c
b
c1 0 ,求
c1
abc 的值.
c1 c1 a b c
5
参考答案 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B A C D D B B D A B B A
二、填空题
13. 3.142
2020 年春 7 年级下期中试卷数学
全卷满分: 120 分 考试时间: 120 分钟
一、选择题(本大题共 12 小 题,每小题 3 分,共 36 分)
1.向东行驶 3km ,记作 3km ,向西行驶 2km 记作( ).
A. 2km
B. 2km
C. 3km
D. 3km
2. 1 的相反数是( 5
A. 1 5
C. 2 , 3 3
D. 2 , 3 3
5.下列各式的计算结果正确的是(
).
A. 2x 3 y 5xy
B. 5x 3x 2x2
C. 7 y 2 5y2 2
D. 9a2b 4a 2b 5a2b
6.代数式 y2 2 y 7 的值是 6,则 4 y 2 8 y 5 的值是(
).
A. 9
B. 9 C. 18

3
16. A 、 B 两点在数轴上,且点 A 对应的数为 2 ,若 AB 3,则点 B 对应的数
为.
三、解答题 (本大题共 8 小题,共 72 分)
17. ( 14 分) 计算:
( 1) 12 ( 18) ( 7)
(2) 3
11
21
4
2

人教2020年春季七年级期中考试数学试题卷

人教2020年春季七年级期中考试数学试题卷

2020 年春天七年级期中考试数学试卷(满分: 120 分,考试时长: 120 分钟)一.选择题(每题3 分,共 30 分)1.同桌读了: “子非鱼焉知鱼之乐乎?”后,欣喜若狂地利用电脑画出了几幅鱼的图案,请问:由图中所 示的图案经过平移后获得的图案是()A. B . C .D .2.以下所示的四个图形中,∠1 和∠2 是同位角的是()A .②③B .①②③C .①②④D .①④第 4 题3、若 a5,b 2 16 ,且点 M ( a ,b )在第二象限,则点 M 的坐标是()A 、( 5,4)B 、(- 5,4)C 、(- 5,- 4)D 、( 5,- 4)4.如图,点E 在 的延伸线上,则以下条件中,不可以判断∥ 的是( )BCAB CDA .∠ +∠= 180° B .∠ =∠DCEC .∠ 1=∠ 2. D.∠ 3=∠ 4D DABB5.以下说法:①假如一个实数的立方根等于它自己,这个数只有0 或 1;② a 2 的算术平方根是a ; ③ -8的立方根是 2 ; ④ 16 的算术平方根是 4;此中,不正确的有()A .1个 B.2个 C .3个 D .4个mn)6.若( m ﹣2018 ) x | | ﹣2017 +( n +4) y | | ﹣3= 2018 是对于 x ,y 的二元一次方程,则( A . m =± 2018,n =± 4B . m =﹣ 2018, n =± 4C . m =± 2018,n =﹣ 4D . m =﹣ 2018, n = 4 7.已知点 A 的坐标为( a +1, 3﹣ a ),以下说法正确的选项是( )A .若点 A 在 y 轴上,则 a = 3B.若点 A 在一三象限角均分线上,则 a = 1C .若点 A 到 x 轴的距离是 3,则 a =± 6D .若点 A 在第四象限,则 a 的值能够为﹣ 28.如图,数轴上有 A , B , C ,D 四点,则所表示的数与 5﹣最靠近的是()A.点 AB.点 BC .点 CD .点 D9.方程 3x2 y 8 的正整数解有()A 、1组B 、2组C 、3组D 、4组10.如图,直线 AB , CD 订交于点 O ,∠ AOE = 90°,∠ DOF = 90°, OB 均分∠ DOG ,给出以下结论:①当∠ AOF = 60°时,∠ DOE = 60°; ② OD 为∠ EOG 的均分线;③与∠BOD 相等的角有三个;④∠ COG =∠ AOB ﹣ 2∠ EOF .此中正确的结论有( )个。

【精编】人教版2020学年七年级(下)期中数学试卷【解析版】.doc

【精编】人教版2020学年七年级(下)期中数学试卷【解析版】.doc

七年级(下)期中数学试卷一、选择题(每小题2分,共20分,每小题只有一个正确答案).±4.(2分)如图直线a∥b,∠1=52°,则∠2的度数是()5.(2分)下列各数中,3.14159265,,﹣8,,0.6,0,,,无理数的个数有(),共有6.(2分)如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()AOC=∠EOC=8.(2分)(2012•梧州)如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()10.(2分)观察下列计算过程:…,由此猜想二、填空题(每小题3分,共24分)11.(3分)比较大小:4>(填“>”、“<”或“=”)=4,比较和,,,,题目12.(3分)如图,体育课上老师要测量学生的跳远成绩,其测量时主要依据是垂线段最短.13.(3分)命题“同位角相等,两直线平行”中,条件是同位角相等,结论是两直线平行14.(3分)如图要证明AD∥BC,只需要知道∠B=∠EAD.15.(3分)如图,∠1+∠2=180°,∠3=108°,则∠4=72度.16.(3分)已知三角形ABC的三个顶点坐标为A(﹣2,3),B(﹣4,﹣1),C(2,0).在三角形ABC中有一点P(x,y)经过平移后对应点P1为(x+3,y+5),将三角形ABC作同样的平移得到三角形A1B1C1,则A1的坐标为(1,8).17.(3分)如图,AB,CD相交于点O,OE⊥AB,垂足为O,∠COE=44°,则∠AOD=134°.18.(3分)在平面直角坐标系中,点A1(1,2),A2(2,5)A3(3,10),A4(4,17),…,用你发现的规律确定点A9的坐标为(9,82).三、解答题(共56分)19.(8分)计算:(1)(2).;20.(6分)作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.21.(8分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.22.(6分)多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?23.(8分)完成下面证明:(1)如图1,已知直线b∥c,a⊥c,求证:a⊥b证明:∵a⊥c (已知)∴∠1=∠2(垂直定义)∵b∥c (已知)∴∠1=∠2 (两直线平行,同位角相等)∴∠2=∠1=90°(等量代换)∴a⊥b (垂直的定义)(2)如图2:AB∥CD,∠B+∠D=180°,求证:CB∥DE证明:∵AB∥CD (已知)∴∠B=∠C(两直线平行,内错角相等)∵∠B+∠D=180°(已知)∴∠C+∠D=180°(等量代换)∴CB∥DE (同旁内角互补,两直线平行)24.(8分)如图,将三角形ABC向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:A1(4,7),B1(1,2),C1(6,4);(2)画出平移后三角形A1B1C1;(3)求三角形ABC的面积.﹣.25.(12分)(1)如图1,a∥b,则∠1+∠2=180°(2)如图2,AB∥CD,则∠1+∠2+∠3=360°,并说明理由(3)如图3,a∥b,则∠1+∠2+∠3+∠4=540°(4)如图4,a∥b,根据以上结论,试探究∠1+∠2+∠3+∠4+…+∠n=(n﹣2)•180°(直接写出你的结论,无需说明理由)。

人教版七年级数学上学期期中试题(2020年)

人教版七年级数学上学期期中试题(2020年)
(1) 2(2a 3b) 3(2b 3a)
(2) 3( ab 2a) (3a b) 3ab
第 3页 共 9页
2020年最新 (3) 2( x2 xy) 3(2x2 3xy) 2[ x 2 (2x2 xy y 2 )]
23.(本题有 2 个小题,第 1 题 4 分,第 2 题 8 分,共 12 分) (1)小明是个小马虎,他在计算多项式 M减去多项式 ab-2 bc+3ac 时,把减号误看成加号, 结果得到答案 -2 ab+bc+8ac,请你帮小马虎小明求出正确答案 .
A. 4x-9x+6x=- x
) B
) B

1
x
y
2
的次数
2
2
5 xy 2
5
D.的系数是-2来自211 . a- a=0
22
C. x 3 — x 2 =x
D
. xy— 2xy=3xy
10.已知 a,b 互为相反数,且 a b 6 ,则 b 1 的值为(

第 1页 共 9页
2020年最新
A. 2
B. 2 或 3
景区门票收入为 369.7 万元 , 将这一数据用科学记数法表示为
元.
15.已知点 A 和点 B 在同一数轴上, 点 A 表示数- 2,点 B 和点 A 相距 5 个单位长度, 则
点 B 表示的数是 _________ .
16.计算 6a 2 5a 3 与 5a 2 2a 1 的差,结果是 _______________.
的树比第二队种的树的一半少 6 棵,三队共种树
棵.
三、解答题(共 60 分)
21.计算(每小题 4 分,共 12 分)
3 57

2020年春七年级数学人教版期中试卷Aj及答案

2020年春七年级数学人教版期中试卷Aj及答案

2020年春七年级数学人教版期中试卷A评卷人 得 分一.选择题(共10小题,满分30分,每小题3分) 序号 1 2 3 4 5 6 7 8 9 10 答案A 16的平方根是±2 B. 36的平方根是6 C. 8的立方根是-2 D. 4的算术平方根是-22 如图,将△ABC 沿着水平向右的方向平移,得到△EAF ,若AB=5,BC=3,AC=4,则平移的距离为( )A. 3B. 4C. 5D. 103.一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间 B 5与6 之间 C .4与5之间 D .3与4之间4、实数a,b 在数轴上的位置如图所示,则下列结论正确的是( )A. 0a b +>B. 0a b ->C. 0>ab D .0>ba0 1 b5、 若a 为实数,则下列式子中一定是负数的是( )A .2a -B .2)1(+-aC .2a -D .)1(+--a6.如图,在正方形网格中,A 点坐标为(﹣1,0),B 点坐标为(0,﹣2),则C 点坐标为( )A .(1,1)B .(﹣1,﹣1)C .(﹣1,1)D .(1,﹣1)7如图,) 如图,已知a ∥b ,小华把三角板的直角顶点放在直线b 上.若∠1=40°,则∠2的度数为( )A. 100°B. 110°C. 120°D. 130°8.如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A表示的数是()A。

1.5B、 1.4C、D、9如图,将两块直角三角尺的直角顶点O叠放在一起,若∠AOD=130°,则∠BOC的度数为()A. 40°B. 50°C.45°D. 60°10.如图,在平面直角坐标系中,点A1.A2.A3.A4.A5.A6的坐标依次为A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…按此规律排列,则点A2019的坐标是()A. (1009,1)B. (1009,0)C. (1010,1) D. (1010.0)第Ⅱ卷(非选择题)评卷人得分二.填空题(共5小题)11.若点M(a﹣3,a+4)在x轴上,则点M的坐标是.12.已知线段MN平行于x轴,且MN的长度为5,若M(2,-2),那么点N的坐标是__________.13如图,已知AD平分∠CAE,CF∥AD,∠2=80°,∠1的度数__________度.14.在高3米,水平距离为4米的楼梯表面铺地毯,地毯的长度至少需要________米.15.36的平方根是________,81的算术平方根是________,364=________.评卷人得分解答题(共8小题,满分75分)16(8分)已知x-2的平方根是±2,2x+y+7的立方根是3,求(2x-y)的平方根.17(9分)如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容。

2020年人教版七年级数学上册期中考试试题及答案

2020年人教版七年级数学上册期中考试试题及答案

精选完整教案文档,希望能帮助到大家,祝心想事成,万事如意!完整教案@_@2020年人教版七年级数学上册期中考试试题及答案一、选择题(每小题3分,共33分)1、在-212 、+710 、-3、2、0、4、5、-1中,负数有 ( )A 、 1个B 、2个C 、3个D 、4个2、下列说法不正确的是 ( ) A 、到原点距离相等且在原点两旁的两个点所表示的数一定互为相反数 B 、所有的有理数都有相反数 C 、正数和负数互为相反数D 、在一个有理数前添加“-”号就得到它的相反数3、| -2 | 的相反数是 ( ) A 、-12B 、-2C 、12D 、24、如果ab<0且a>b ,那么一定有 ( ) A 、a>0,b>0B 、a>0,b<0C 、a<0,b>0D 、a<0,b<05、如果a 2=(-3)2,那么a 等于 ( ) A 、3B 、-3C 、9D 、±36、23表示 ( ) A 、2×2×2B 、2×3C 、3×3D 、2+2+27、近似数4.50所表示的真值a 的取值范围是 ( ) A 、4.495≤a <4.505 B 、4040≤a <4.60C 、4.495≤a ≤4.505D 、4.500≤a <4.50568、如果 | a + 2 | + ( b-1)2= 0,那么(a + b )2009的值是 ( )A 、- 2009B 、2009C 、- 1D 、19、下列说法正确的是 ( ) A 、- 2不是单项式 B 、- a 表示负数C 、3ab5的系数是3D 、x + ax+ 1 不是多项式10、已知一个数的平方等于它的绝对值,这样的数共有 ( ) A 、1个B 、2个C 、3个D 、4个11、下面用数学语言叙述代数式1a -b ,其中表达不正确的是 ( )A 、比a 的倒数小b 的数B 、1除以a 的商与b 的相反数的差C 、1除以a 的商与b 的相反数的和D 、b 与a 的倒数的差的相反数二、填空题(每小题3分,共30分) 12、若x<0,则x| x |= 。

2020学年新版人教版七年级下学期数学期中考试试题

2020学年新版人教版七年级下学期数学期中考试试题

数学试卷(新人教版)满分:150分 考试时间:120分钟内容:相交线与平行线、实数、平面直角坐标系、二元一次方程(组) 一、选择题:(共12小题,每小题2分,共24分) 1、4的算术平方根值等于( )A .2B .-2C .±2D .22、一个自然数a 的算术平方根为x ,则a+1的立方根是( ) A .31x + B .23(1)x + C .321a + D .321x +3、如图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D. ο180=∠+∠ACD D4、如图,AD ∥BC ,∠B=30°,DB 平分∠ADE ,则∠DEC 的度数为( )A .30°B .60°C .90°D .120°5、A (―4,―5),B (―6,―5),则AB 等于( ) A 、4 B 、2 C 、5 D 、36、由点A (―5,3)到点B (3,―5)可以看作( )平移得到的。

A 、先向右平移8个单位,再向上平移8个单位B 、先向左EDC BA 4321第3题图第4题图第7题图平移8个单位,再向下平移8个单位C、先向右平移8个单位,再向下平移8个单位D、先向左平移2个单位,再向上平移2个单位7、如图,已知AB∥CD,直线MN分别交AB、CD于点M、N,NG平分∠=°,则2∠的度数为()∠,若170MNDA、10°B、15°C、20°D、35°8、一辆车在笔直的公路上行驶,两次拐弯后,仍在平行原来的方向上前进,那么两次拐弯是()A、第一次右拐50°,第二次左拐130°B、第一次左拐50°,第二次右拐50°C、第一次左拐50°,第二次左拐130°D、第一次右拐50°,第二次右拐50°9、下列命题中,真命题的个数有()①同一平面内,两条直线一定互相平行;②有一条公共边的角叫邻补角;③内错角相等。

2020年春七年级数学人教版期中试卷B及答案

2020年春七年级数学人教版期中试卷B及答案

2021年春七年级数学人教版期中试卷B第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)序号 1 2 3 4 5 6 7 8 9 10 答案1..如图1,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角2如图,将△ABC平移得到△A'B'C',则图中平行线共有( )A. 3对B. 4对C. 5对D. 6对3.下列语句:①两条不相交的直线叫做平行线;②过直线外一点有且只有一条直线与已知直线垂直;③若AB=BC,则点B是AC的中点;④若两角的两边互相平行,则这两个角一定相等;其中说法正确的个数是()A. 1B. 2C. 3D. 44.下列计算或说法:①±3都是27的立方根;②=a ;③ 的立方根是2;④=±4,其中正确的个数是( )A. 1个B. 2个C. 3个 D. 4个5.下列结论正确的是( ) A.6)6(2-=-- B.9)3(2=- C.16)16(2±=-D.251625162=⎪⎪⎭⎫⎝⎛-- 6.下列命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;④如果一个数的立方根等于它本身,那么它一定是1或0. 其中正确有( )个.A. 1B. 2C. 3D. 47、如图,AF ∥CD ,BC 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD.下列结论:①BC 平分∠ABE ;②AC ∥BE ;③∠BCD+∠D=90°;④∠DBF=2∠ABC .其中正确的个数为( )A. 1个B. 2个C. 3个D. 4个8.线段CD 是由线段AB 平移得到的.点A (﹣1,4)的对应点为C (4,7),则点B (﹣4,﹣1)的对应点D 的坐标为( ) A .(2,9) B .(5,3)C .(1,2)D .(﹣9,﹣4)9.已知+=0,则 的平方根是( )A. ±21 B. 21C. 21D. ± 4110.已知P(0,a)在y 轴的负半轴上,则Q(21,1a a ---+)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题)评卷人 得 分二.填空题(共5小题)11.已知点P 在x 轴上,且到y 轴的距离为3,则点P 坐标为 .12当剪子口∠AOB 增大15°时,∠COD 增大 度,其根据是.13.如图,把半径为 0.5的圆放到数轴上,圆上一点 A 与数轴上表示 1的点重合,圆沿着数轴正方向滚动一周,此时点 A 表示的数是________.(结果保留π)14. m 是 的算术平方根,n 的算术平方根是5,则2m -3n =________. .15. 已知:若≈1.910, ≈6.042,则 ≈________.评卷人 得 分三.解答题(共8小题,满分75分)16.(8分)已知2a+1的平方根是±3,3a+2b ﹣4的立方根是﹣2,求4a ﹣5b+8的立方根.17.(9分).求下列x 的值(1)(3x+2)2=16 (2)2x 3﹣6= 43. (3)(2x ﹣1)3=﹣27.18.(9分)在平面直角坐标系中,O 为坐标原点,A (﹣2,3),B (2,2).(1)画出三角形OAB ;(2)求三角形OAB 的面积;(3)若三角形OAB 中任意一点P (x 1 , y 1)经平移后对应点为P 1(x 1+4,y 1﹣3),请画出三角形OAB 平移后得到的三角形O 1A 1B 1 , 并写出点O 1 , A 1 ,的坐标.19.(9分)如图,已知四边形ABCD ,AB ∥CD ,点E 是BC 延长线上一点,连接AC 、AE ,AE 交CD 于点F ,∠1=∠2,∠3=∠4. 证明:(1)∠BAE=∠DAC;(2)∠3=∠BAE;(3)AD∥BE.20(9分).如图,△ABC中,∠ABC、∠ACB的平分线相交于O,MN过点O 且与BC平行.△ABC的周长为20,△AMN的周长为12,求BC的长.21(10分).如图,BE平分∠ABC,∠ABC=2∠E,∠ADE+∠BCF=180°.(1)请说明AB∥EF的理由;(2)若AF平分∠BAD,判断AF与BE的位置关系,并说明理由.22.(10分)已知AB∥CD,在AB,CD内有一条折线EGF.(1)如图①,过点G作GH∥AB,求证:∠BEG+∠DFG=∠EGF;(2)如图②,已知∠BEG的平分线与∠DFG的平分线相交于点Q,请探究∠EGF与∠EQF的数量关系,并说明理由.23.(11分)如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°(1)请判断AB与CD的位置关系并说明理由;(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并说明理由;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.2020年春七年级数学人教版期中试卷B答案与解析一、选择题(每题3分,共30分)序号 1 2 3 4 5 6 7 8 9 10 答案 B D A B A A C C A B 2.解:∵△ABC平移得到△EFG,A的对应点为E,B的对应点为F,C的对应点为G,∴AB∥EF,BC∥FG,AC∥EG,AE∥CG,AE∥BF,BF∥CG,共6对.故答案为:D.3.根据在同一平面内,不相交的两条直线叫平行线可得①说法错误;根据在平面内,过一点有且只有一条直线与已知直线垂直可得②正确;当AB=BC=AC时,点B是AC的中点,因此③错误;若两角的两边互相平行,则这两个角相等或互补,因此④错误.因此正确的说法有1个.故选:A.4.解:﹣3是27的立方根,所以①错误;由于=a,所以②正确;=8,8的立方根为2,所以③正确;= =4,所以④错误.故选B.6.解:①负数没有立方根,错误;②一个实数的立方根不是正数就是负数或0,故原命题错误;③一个正数或负数的立方根与这个数的符号一致,正确;④如果一个数的立方根等于它本身,那么它一定是±1或0,故原命题错误;其中正确的是③,有1个;故答案为:A7.解:①∵BC⊥BD,∴∠DBE+∠CBE=90°,∠ABC+∠DBF=90°,又∵BD平分∠EBF,∴∠DBE=∠DBF,∴∠ABC=∠CBE,即BC平分∠ABE,正确;②由AB∥CE ,BC 平分∠ABE、∠ACE易证∠ACB=∠CBE,∴AC∥BE正确;③∵BC⊥AD,∴∠BCD+∠D=90°正确;④无法证明∠DBF=60°,故错误.故选C.9.根据题意得,b-4=0,a-1=0,解得a=1,b=4,所以,的平方根是,故答案为:A.二.填空题(每题3分,共15分)11 (3,0)或(-3,0)12 15°,对顶角相等13 π+114.6915.604.2解析:13.解:因为2π×0.5+1=π+1,所以点A表示的数是π+1.14.解:∵=9,∴的算术平方根是,∴m=3.∵n的算术平方根是5,∴n=52=25,∴2m-3n=2×3-3×25=-69.15.解:若≈1.910,≈6.042,则≈604.2,故答案为:604.2.根据题意被开方数的小数点移动两位,平方根移动一位,求出365000的平方根.三.解答题(共8小题,共75分)16(8分).解:∵2a+1的平方根是±3,3a+2b ﹣4的立方根是﹣2, ∴2a+1=9,3a+2b ﹣4=﹣8, 解得a=4,b=﹣8, ∴4a ﹣5b+8=4×4﹣5×(﹣8)+8=64, ∴4a ﹣5b+8的立方根是4.17(9分).解:(1)解:(3x+2)2=16,3x+2=±4,x= 32或x=-2;(2)解:2x 3-6=43 2x 3=43+62x 3=427x 3=827x=23(3)解:(2x ﹣1)3=﹣27,2x ﹣1=﹣3, ∴x=﹣1.18.(9分) 解:如图所示:△OAB 即为所求(2)解:S△OAB=12﹣×1×4﹣×2×3﹣×2×2=5(3)解:如图所示:△O1A1B1,即为所求,O1(4,﹣3),A1(2,0),B1(6,﹣1)19.(9分)(1)证明:∵∠1=∠2,∴∠1+∠CAE=∠2+∠CAE,即∠BAE=∠DAC(2)证明:∵AB∥CD,∴∠4=∠BAE,∵∠3=∠4,∴∠3=∠BAE(3)证明:∵∠3=∠BAE,∠BAE=∠DAC,∴∠3=∠DAC,∴AD∥BE.20.(9分)解:∵MN过点O且与BC平行∴∠AMN=∠ABC,∠ANM=∠ACB又∵OB、OC分别是∠ABC、∠ACB的平分线,并交于点O ∴∠AMN=2∠MBO,∠ANM=2∠NCO又∵∠AMN=∠MBO+∠MOB,∠ANM=∠NCO+∠NOC∴∠MBO=∠MOB,∠NCO=∠NOC即△OMB与△ONC是等腰三角形∴MB=MO,NC=NO∵△AMN的周长为12,即AM+MO+AN+NO=12即AM+MB+AN+NC=12即AB+AC=12又∵△ABC的周长为20∴AB+AC+BC=20∴BC=20-12=8即BC=821(10分)(1)证明:∵BE平分∠ABC,∴∠ABE= ∠ABC.又∵∠ABC=2∠E,即∠E= ∠ABC,∴∠E=∠ABE.∴AB∥EF(2)解:结论:AF⊥BE.理由:∵∠ADE+∠ADF=180°,∠ADE+∠BCF=180°,∴∠ADF=∠BCF,∴AD∥BC;∴∠DAB+∠CBA=180°,∵∠OAB= DAB ,∠OBA= ∠CBA ,∴∠OAB+∠OBA=90°,∴∠AOB=90°,∴AF ⊥BE22.(10分)(1)解:∵GH ∥AB ,AB ∥CD ,∴GH ∥CD ,∴∠EGH =∠BEG ,∠DFG =∠FGH ,∵∠EGF =∠EGH+∠FGH ,∴∠BEG+∠DFG =∠EGF(2)解:由(1)知,∠EGF =∠BEG+∠DFG ,∠EQF =∠BEQ+∠DFQ ,∵EQ ,FQ 分别平分∠BEG ,∠DFG ,∴∠DFQ = DFG ,∠BEQ = BEG ,∴∠EQF = (∠BEG+∠DFG )= EGF23.(11分)解:(1)∵CE 平分∠ACD ,AE 平分∠BAC ,∴∠BAC=2∠EAC ,∠ACD=2∠ACE ,∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180°,∴AB ∥CD ;(2)∠BAE+21∠MCD=90°; 过E 作EF ∥AB ,∵AB ∥CD ,∴EF ∥AB ∥CD ,∴∠BAE=∠AEF ,∠FEC=∠DCE ,∵∠E=90°,∴∠BAE+∠ECD=90°,∵∠MCE=∠ECD ,∴∠BAE+21∠MCD=90°; (3)∵AB ∥CD ,∴∠BAC+∠ACD=180°,∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC.。

2020人教版七年级下册数学《期中考试试题》附答案

2020人教版七年级下册数学《期中考试试题》附答案

人教版七年级下学期期中测试数 学 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. -2的相反数是( )A. -2B. 2C. ±2D. 122.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )A. 0.76×104B. 7.6×103C. 7.6×104D. 76×102 3.将如图所示直角梯形绕直线l 旋转一周,得到的立体图形是( )A.B. C.D.4.在227,π,这些实数中,无理数有( )个 A. 1 B. 2 C. 3 D. 4 5.已知关于x 的一元一次方程2(x ﹣1)+3a =3的解为4,则a 的值是( ) A. ﹣1 B. 1 C. ﹣2 D. ﹣36.如图所示,直线a∥b ,点B 在直线b 上,且AB∥BC ,∥1=55°,则∥2的度数为( )A. 55°B. 45°C. 35°D. 25° 7.半面直角坐标系中,点A (-2,1)到y 轴的距离为( )A. -2B. 1C. 2D. 8.下列计算正确的是( )A.B. C. ∥2 D. ∥±29.把不等式x+2>4的解集表示在数轴上,正确的是 ( )A. B. C. D.10.下列命题中是假命题的是( )A. 若a >b ,则a+3>b+3B. 若a >b ,则-a <-bC. 若a >b ,则a 2>b 2D. 若a >b ,则33a b > 11.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x 两、y 两,则可列方程组为( )A. 5210258x y x y +=⎧⎨+=⎩B. 5210258x y x y -=⎧⎨-=⎩C. 5210258x y x y +=⎧⎨-=⎩D.5282510x y x y +=⎧⎨+=⎩ 12.已知方程ax+by=10的两个解是10x y =-⎧⎨=⎩,15x y =⎧⎨=⎩,求a+b 的值( ) A. 6 B. -6 C. 1 D. -1二、填空题13.比较实数的大小:3.14.在平面直角坐标系中,已知,点A(m-2,3+m)x轴上,则m=______.15.如图:已知:a∥b,∥1=80°,则∥2=______.16.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,则线段AD的长为______cm.17.不等式8x2>1的解集是______.18.如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点(0,0),3的对应点是(1,1),16的对应点是(-1,2),那么,2019的对应点的坐标是______.三、解答题19.求值:(-1)2018-|1|20.如图,在平面直角坐标系中,∥ABC的三个顶点的坐标分别为:A(-1,2),B(-2,-1),C(2,0).(1)作图:将∥ABC先向右平移4个单位,再向上平移3个单位,则得到∥A1B1C1,作出∥A1B1C1;(不要求写作法)(2)写出下列点的坐标:A1______;B1______;C1______.(3)求∥ABC面积.21.已知关于x,y方程组4x y53x y9-=⎧⎨+=⎩和13418ax byx by+=-⎧⎨+=⎩有相同的解.(1)求出它们相同的解;(2)求(2a+3b)2019的值.22.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?23.如图,在∥ABC中,CD∥AB,垂足为D,点E在BC上,EF∥AB,垂足为F.(1)CD 与EF 平行吗?为什么?(2)如果∥1=∥2,CD 平分∥ACB ,且∥3=120°,求∥ACB 与∥1的度数.24.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7所有“好解”;(2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值.25.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ∥OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ∥(),0C b 20b -=∥()1则C 点的坐标为______∥A 点的坐标为______∥()2已知坐标轴上有两动点P ∥Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ S S =V V ?若存在,请求出t 的值;若不存在,请说明理由. ()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.的26.已知a+1是4的算术平方根,b-1是27的立方根,化简求值:2(2a-b2)-(4a-a2).答案与解析一、选择题1. -2的相反数是()A. -2B. 2C. ±2D. 1 2【答案】B【解析】【分析】直接利用相反数的定义进而分析得出答案.【详解】解:-2的相反数是:2.故选:B.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A. 0.76×104B. 7.6×103C. 7.6×104D. 76×102【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:7600=7.6×103,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A. B. C. D.【答案】A【解析】【分析】根据直角梯形上下底不同得到旋转一周后上下底面圆的大小也不同,进而得到旋转一周后得到的几何体的形状.【详解】题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.故选:A .【点睛】本题主要考查学生是否具有基本的识图能力,以及对点、线、面、体之间关系的理解.4.在227,π,这些实数中,无理数有( )个 A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据无限不循环小数是无理数的定义进行判断选择即可.2=-,所以在227,π,这些实数中,无理数有,π共两个,故答案选B.【点睛】本题考查的是无理数的概念,能够准确区别无限不循环小数是解题的关键. 5.已知关于x 一元一次方程2(x ﹣1)+3a =3的解为4,则a 的值是( )A. ﹣1B. 1C. ﹣2D. ﹣3【答案】A【解析】【分析】把x=1代入方程,即可得到一个关于a 的方程,即可求解.【详解】把x =4代入方程得()24133,a -+=解得: 1.a =-故选∥A.【点睛】考查方程解的概念,使方程左右两边相等的未知数的值就是方程的解. 6.如图所示,直线a∥b ,点B 在直线b 上,且AB∥BC ,∥1=55°,则∥2的度数为()A. 55°B. 45°C. 35°D. 25°【答案】C【解析】【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【详解】解:∵∥1=55°,∥ABC=90°,∴∥3=90°-55°=35°.∵a ∥b ,∴∥2=∥3=35°. 的故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.7.半面直角坐标系中,点A(-2,1)到y轴的距离为()A. -2B. 1C. 2【答案】C【解析】【分析】根据点到y轴的距离等于横坐标的绝对值解答.【详解】解:∵点A(-2,1),∴点A(-2,1)到y轴的距离=|-2|=2,故选:C.【点睛】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的绝对值是解题的关键.8.下列计算正确的是()∥2∥±2【答案】A【解析】【分析】根据算数平方根的定义可判断:若一个正数的平方等于a,则这个正数就是a的算数平方根【详解】A=2故B是错误C=4故C、D都是错误所以本题答案应为:A【点睛】算术平方根的定义是本题的考点,注意区别算数平方根和平方根.9.把不等式x+2>4的解集表示在数轴上,正确的是( )A. B.C.D.【答案】B【解析】 试题分析:移项得,x >4-2,合并同类项得,x >2,把解集画在数轴上,故选B .考点: 在数轴上表示不等式的解集.10.下列命题中是假命题的是( )A. 若a >b ,则a+3>b+3B. 若a >b ,则-a <-bC. 若a >b ,则a 2>b 2D. 若a >b ,则33a b > 【答案】C【解析】【分析】利用不等式的性质分别判断后即可确定正确的选项.【详解】解:A.若a >b ,则a+3>b+3,正确,是真命题;B.若a >b ,则-a <-b ,正确,是真命题;C.若a >b ,则a 2>b 2不一定成立,错误,是假命题;D.若a >b ,则33a b >,正确,是真命题; 故选:C.【点睛】本题考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大. 11.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x 两、y 两,则可列方程组为( )A. 5210258x y x y +=⎧⎨+=⎩B. 5210258x y x y -=⎧⎨-=⎩C. 5210258x y x y +=⎧⎨-=⎩D.5282510x y x y +=⎧⎨+=⎩ 【答案】A【解析】 【分析】每头牛、每只羊分别值金x 两、y 两,根据“5头牛,2只羊,值金10两;2头牛,5只羊,值金8两”列出方程组即可得答案.【详解】由题意可得,5210258x y x y +=⎧⎨+=⎩∥ 故选A∥【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找准等量关系列出相应的方程组.12.已知方程ax+by=10的两个解是10x y =-⎧⎨=⎩,15x y =⎧⎨=⎩,求a+b 的值( ) A. 6B. -6C. 1D. -1【答案】B【解析】【分析】把方程的两个解代入,则可得到一个关于a 和b 的二元一次方程组,解答即可. 【详解】解:把两个解10x y =-⎧⎨=⎩,15x y =⎧⎨=⎩分别代入方程ax+by=10中, 得:10510a a b -=⎧⎨+=⎩, 解得:104a b =-⎧⎨=⎩, ∴a+b=-10+4=-6,故选:B.【点睛】本题考查了二元一次方程的解,解题关键把方程的两个解代入原方程,得到关于a和b的二元一次方程组,再求解.二、填空题13.比较实数的大小:.【答案】>【解析】【分析】此题涉及的知识点是二次根式的性质,根据二次根式的性质,将3化成根号的形式即可比较出两实数的大小.【详解】将39>5,所以3【点睛】此题重点考察学生对二次根式的理解,熟练掌握二次根式的性质是本题解题的关键.14.在平面直角坐标系中,已知,点A(m-2,3+m)x轴上,则m=______.【答案】-3【解析】【分析】根据x轴上点的纵坐标为0列式计算即可得解.【详解】解:∵点A(m-2,3+m)在x轴上,∴3+m=0,解得:m=-3.故答案为:-3.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.15.如图:已知:a∥b,∥1=80°,则∥2=______.【答案】100°【解析】【分析】利用两直线平行,同位角相等和邻补角的定义求∠2的度数.【详解】解:∵a∥b,∴∥3=∥1=80°.∥∥2=180°-∥3=100°.故答案为:100°.【点睛】本题比较简单,考查的是平行线的性质和邻补角的定义.16.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,则线段AD的长为______cm.【答案】7.5【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=10cm,继而即可求出答案.【详解】解:∵C点为线段AB的中点,D点为BC的中点,AB=10cm,∴AC=CB=12AB=5cm,CD=12BC=2.5cm,∴AD=AC+CD=5+2.5=7.5cm.故答案为:7.5.【点睛】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.17.不等式8x2->1的解集是______.【答案】x<6【解析】【分析】先去分母,去括号,然后移项,合并同类项,系数化成1即可.【详解】解:8x1 2->,82x ->,28x->-,x->-,6x<,6x<.故答案为:6【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.18.如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点(0,0),3的对应点是(1,1),16的对应点是(-1,2),那么,2019的对应点的坐标是______.【答案】(16,-22)【解析】【分析】观察图的结构,发现所有奇数的平方数都在第四象限的角平分线上.依此先确定2025的坐标为(22,-22),再根据图的结构求得2019的坐标.【详解】解:观察图的结构,发现所有奇数的平方数都在第四象限的角平分线上.452=2025,由2n+1=45得n=22,∴2025的坐标为(22,-22),由9的对应点是(1,1),在同一直线上且在第四象限,9的前面有0个点,25的对应点是(2,2),在同一直线上且在第四象限,10的前面有1个点,∴2019在同一直线上且在第四象限,2019的前面有21个点,2019=2025-6,22-6=16,∴2019坐标是(16,-22).故答案为:(16,-22).【点睛】本题考查了点的坐标,找到所有奇数的平方数所在位置是解题的关键.三、解答题19.求值:(-1)2018-|1|【答案】2【解析】【分析】直接利用绝对值的性质以及二次根式的性质分别化简得出答案.【详解】解:原式=1--1)-2+2=1+1-2+2=2【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20.如图,在平面直角坐标系中,∥ABC的三个顶点的坐标分别为:A(-1,2),B(-2,-1),C(2,0).(1)作图:将∥ABC先向右平移4个单位,再向上平移3个单位,则得到∥A1B1C1,作出∥A1B1C1;(不要求写作法)(2)写出下列点的坐标:A1______;B1______;C1______.(3)求∥ABC的面积.【答案】(1)详见解析;(2)(3,5),(2,2),(6,3);(3)5.5【解析】【分析】(1)、(2)利用点平移的坐标变换规律,然后写出A1、B1、C1的坐标,然后描点、连线即可;(3)用一个矩形的面积分别减去三个直角三角形的面积可计算出△ABC的面积.【详解】解:(1)如图,∥A1B1C1为所作.(2)写出下列点的坐标:A1坐标为(3,5);B1坐标为(2,2);C1坐标为(6,3).故答案为:(3,5),(2,2),(6,3);(3)∥ABC 的面积=4×3-12×1×3-12×4×1-12×3×2=5.5. 【点睛】本题考查了作图-平移变换:确定平移后图形基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.已知关于x ,y 的方程组4x y 53x y 9-=⎧⎨+=⎩和13418ax by x by +=-⎧⎨+=⎩有相同的解. (1)求出它们相同的解;(2)求(2a+3b )2019的值.【答案】(1)x 2y 3=⎧⎨=⎩;(2)-1 【解析】【分析】(1)求出第一个方程组的解即可;(2)求出a 、b 的值,再代入求出即可.【详解】解:(1)∵解方程组4x y 5{3x y 9-=+=得:x 2{y 3==, ∴它们的相同的解是x 2{y 3==; (2)把x 2{y 3==代入方程组ax by 1{3a 4by 18+=-+=, 得:2a 3b 1{612b 18+=-+=, 解得:a 2{b 1=-=, ∴(2a+3b )2019=[2×(-2)+3×1]2019=-1.【点睛】本题考查了二元一次方程组的解,解二元一次方程组和求代数式的值等知识点,能求出两方程组的相同的解是解此题的关键.22.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如的的(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【答案】(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱(2)该商场共获得利润6600元【解析】【详解】(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得:500{243313800 x yx y+=+=,解得:300 {200 xy==,答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱;(2)300×(36−24)+200×(48−33)=3600+3000=6600(元),答:该商场共获得利润6600元.23.如图,在∥ABC中,CD∥AB,垂足为D,点E在BC上,EF∥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∥1=∥2,CD平分∥ACB,且∥3=120°,求∥ACB与∥1的度数.【答案】(1)详见解析;(2)∥ACB=120°,∥1=60°【解析】(1)根据垂直于同一直线的两直线平行判定;(2)根据平行线的性质和已知求出∠1=∠2=∠DCB,推出DG∥BC,根据平行线的性质得出∠ACB的度数即可;再由∠ACB的度数和已知得∠DCG的度数,利用三角形的外角的性质即可求出∠1的度数.【详解】解:(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴CD∥EF;(2)∵CD∥EF,∴∥2=∥DCB,∵∥1=∥2,∴∥1=∥DCB,∴DG∥BC,∴∥ACB=∥3,∵∥3=120°,∴∥ACB=120°.∵CD平分∥ACB,∴∥DCG=12∥ACB=60°,∵∥3=∥1+∥DCG,∴∥1=120°-60°=60°.∴∥ACB=120°,∥1=60°.【点睛】本题考查了对平行线的性质和判定的应用,三角形的内角和定理以及三角形外角的性质,角平分线的定义.熟练掌握平行线的判定与性质是解决本题的关键.24.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18 xy=⎧⎨=⎩就是方程3x+y=11的一组“好解”;123xyz=⎧⎪=⎨⎪=⎩是方程组3206x y zx y z++=⎧⎨++=⎩的一组“好解”.(1)请直接写出方程x+2y=7的所有“好解”;(2)关于x,y,k的方程组1551070x y kx y k++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x,y为方程33x+23y=2019的“好解”,且x+y=m,求所有m的值.【答案】(1)x1y3=⎧⎨=⎩,x3y2=⎧⎨=⎩,x5y1=⎧⎨=⎩;(2)x3y7=⎧⎨=⎩;(3)63,73,83【解析】【分析】(1)根据“好解”的定义,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解;(2)解方程组求得554{5594kxky+=-=,,根据“好解”的定义得5519k-<<,在范围内列举正整数代入求解;(3)根据题意,联立方程组,求出方程组的解,根据“好解”的定义得到k的取值范围,在范围内列举正整数代入求解.【详解】解:(1)由x+2y=7,得y=7x2-(x.y为正整数).∵x0 {7x2->>,即0<x<7,∴当x=1时,y=3;当x=3时,y=2;当x=5时,y=1;∴方程x+2y=7的“好解”有x1{y3==,x3{y2==,x5{y1==;(2)由x y k15{x5y10k70++=++=,解得554{5594kxky+=-=,∵55k 04{559k 04+->>,即-1<k <559, ∴当k=3时,x=5,y=7,∴方程组x y k 15{x 5y 10k 70++=++=有“好解“, ∴“好解”为x 3{y 7==;(3)由33x 23y 2019{x y m +=+=,解得201923m x 10{33m 2019y 10-=-=, ∵201923m 010{33m 2019010-->>,即201933<m <201923, ∴当m=63时,x=57,y=6;m=73时,x=38,y=39;m=83时,x=11,y=72;∴所有m 的值为63,73,83.【点睛】本题考查了三元一次方程组的应用,解题关键是要理解方程(组)的“好解”条件,根据条件求解.25.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ∥OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ∥(),0C b20b -=∥()1则C 点的坐标为______∥A 点的坐标为______∥()2已知坐标轴上有两动点P ∥Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ S S =V V ?若存在,请求出t 的值;若不存在,请说明理由.()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.【答案】(1)()2,0;()0,4 ;(2)1;(3)2.【解析】分析:(1)根据绝对值和算术平方根的非负性,求得a ,b 的值即可;(2)先得出CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可;(3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACE OEC ∠∠∠+进行计算即可.详解:(1+|b ﹣2|=0,∴a ﹣2b =0,b ﹣2=0,解得:a =4,b =2,∴A (0,4),C (2,0);(2)由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒,∴0<t ≤2时,点Q 在线段AO 上,即 CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,∴1111222212222DOP D DOQ D S OP y t t S OQ x t t =⋅=-⨯=-=⋅=⨯⨯=V V (),. ∵S △ODP =S △ODQ ,∴2﹣t =t ,∴t =1;(3)OHC ACE OEC∠∠∠+的值不变,其值为2. ∵∠2+∠3=90°.又∵∠1=∠2,∠3=∠FCO ,∴∠GOC +∠ACO =180°,∴OG ∥AC ,∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,∴124421421414OHC ACE OEC ∠∠∠∠∠∠∠∠∠∠∠∠∠+++++===++().点睛:本题主要考查了坐标与图形性质,解决问题的关键值作辅助线构造平行线.解题时注意:任意一个数的绝对值都是非负数,算术平方根具有非负性,非负数之和等于0时,各项都等于0.26.已知a+1是4的算术平方根,b -1是27的立方根,化简求值:2(2a -b 2)-(4a -a 2).【答案】-31【解析】【分析】先根据算术平方根和立方根的定义得出a 、b 的值,再去括号、合并同类项化简原式,继而代入计算可得.【详解】解:∵a+1是4的算术平方根,b -1是27的立方根,∴a+1=2,b -1=3,解得a=1,b=4,原式=4a -2b 2-4a+a 2=a 2-2b 2,当a=1,b=4时,原式=1-2×16=1-32=-31.【点睛】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则是解题的关键.。

2020人教版数学七年级下册《期中考试卷》及答案解析

2020人教版数学七年级下册《期中考试卷》及答案解析

人教版七年级下学期期中测试数学试卷学校________班级________姓名________成绩________一、选择题(每小题3分,共30分)1.81的算术平方根是()A.9B.-9C.±9D.不存在2.在图中,∠1和∠2是对顶角的是()A. B. C. D.3.下列语句是命题的有()①两点之间线段最短;②不平行两条直线有一个交点;③x与y的和等于0吗?④对顶角不相等;⑤互补的两个角不相等;⑥作线段AB.A.1B.2的C.3D.44.下列运动属于平移的是()A.冷水加热过程中小气泡上升成为大气泡B.急刹车时汽车在地面上的滑动C.投篮时的篮球运动D.随风飘动的树叶在空中的运动5.如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度6.如图,∠3的同位角是()A.∠17.估算B.∠2C.∠BD.∠C31-2的值()A.在1和2之间C.在3和4之间B.在2和3之间D.在4和5之间8.如图,已知AB∥CD,则∠1、∠2和∠3之间的关系为()A.∠2+∠1﹣∠3=180°C.∠3+∠2+∠1=360°B.∠3+∠1=∠2D.∠3+∠2﹣2∠1=180°9.把一张对边互相平行的纸条,折成如图所示,EF是折痕,若∠EFB=32︒,则下列结论正确的有是()(1)∠C'EF=32︒;(2)∠AEC=148︒;(3)∠BGE=64︒;(4)∠BFD=116︒.A.1个B.2个C.3个D.4个10.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A B C D,第2次平移长方形A B C D沿A B的方向向右平1111111111移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形A n-1B n-1C n-1D n-1沿A Bn-1n-1的方向向右平移5个单位长度,得到长方形AnBnCnDn(n>2),若ABn的长度的为2026,则n的值为()A.407B.406C.405D.404二、填空题(每小题3分,共15分)11.将命题“同角余角相等”,改写成“如果…,那么…”的形式_____.12.估计5-12与0.5的大小关系是:_____(填“>”、“<”或“=”).13.如图,在△Rt ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED面积等于_______.的14.∠A的两边与∠B的两边分别平行,∠A=50°,则∠B的度数为____________.15.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.有下列结论:①∠BOE =12(180-a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的结论是________(填序号).三、解答题(共8题,共75分)16.计算:(1)|-2|+3-8-(-1)2019;(2)6⨯19-327+(2)2.17.解方程:(1)(x-2)2=9(2)x3-3=3818.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上,将△ABC 向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2△)求A′B′C′面积.的19.如图,AB与CD相交于O,OE平分∠AOC,OF⊥AB于O,OG⊥OE于O,若∠BOD=40°,求∠AOE和∠FOG的度数.20.若a2=25,|b|=5,求a+b的值.21.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB度数.22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;G ,(2)若使长方形的长宽之比为 3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.23.(1)问题发现:如图 1,已知点 F , 分别在直线 AB ,CD 上,且 AB ∥CD ,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为 ;(2)拓展探究:∠GEF ,∠BFE ,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=.证明:过点 E 作 EH ∥AB ,∴∠FEH=∠BFE (),∵AB ∥CD ,EH ∥AB ,(辅助线的作法)∴EH ∥CD (),∴∠HEG=180°-∠CGE ()∴∠FEG=∠HFG+∠FEH=.(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P ,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.答案与解析一、选择题(每小题3分,共30分)1.81的算术平方根是()A.9B.-9C.±9D.不存在【答案】A【解析】【分析】根据算术平方根的定义求解即可.【详解】∵92=81,∴81的算术平方根是9,故选A.【点睛】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.在图中,∠1和∠2是对顶角的是()A. B. C. D.【答案】B【解析】∵成对顶角的两个角有公共端点,其中一个角的两边是另一个角两边的反向延长线,而A、B中的∠1和∠2没有公共端点,D中的∠1和∠2虽然有公共端点,但两边不是互为延长线,故不是对顶角,只有B中的∠1和∠2符合对顶角的特征,故选B.3.下列语句是命题的有()①两点之间线段最短;②不平行的两条直线有一个交点;③x与y的和等于0吗?④对顶角不相等;⑤互补的两个角不相等;⑥作线段AB.A.1【答案】D【解析】B.2C.3D.4【分析】根据命题的概念判断即可.【详解】①两点之间线段最短是命题;②不平行的两条直线有一个交点是命题;③x与y的和等于0吗?不是命题;④对顶角不相等是命题;⑤互补的两个角不相等是命题;⑥作线段AB不是命题.故选:D.【点睛】本题考查了命题与定理.能够判断真假的陈述句叫做命题.4.下列运动属于平移的是()A.冷水加热过程中小气泡上升成为大气泡B.急刹车时汽车在地面上的滑动C.投篮时的篮球运动D.随风飘动的树叶在空中的运动【答案】B【解析】【分析】根据平移的定义:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.对选项进行一一判断,即可得出答案.【详解】解:A、冷水加热过程中小气泡上升成为大气泡,有大小变化,不符合平移定义,故错误;B、急刹车时汽车在地面上的滑动是平移,故正确;C、投篮时的篮球不沿直线运动,故错误;D、随风飘动的树叶在空中不沿直线运动,故错误.故选B.【点睛】本题考查了平移的定义.注意平移是图形整体沿某一直线方向移动是解题的关键.5.如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度【答案】B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB的长度,故选B.6.如图,∠3的同位角是()A.∠1B.∠2C.∠BD.∠C 【答案】D【解析】【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.【详解】解:观察图形可知:∠3的同位角是∠C.故选D.【点睛】本题主要考查同位角的概念,同位角的边构成“F“形.解题时需要分清截线与被截直线.7.估算312的值()A.在1和2之间C.在3和4之间【答案】CB.在2和3之间D.在4和5之间【解析】【分析】首先利用平方根的定义估算31前后的两个完全平方数25和36,从而判断31的范围,再估算31-2的范围即可.【详解】解:∵5<31<6∴3<31-2<4故选C.【点睛】此题主要考查了利用平方根的定义来估算无理数的大小,解题关键是估算31的整数部分和小数部分.8.如图,已知AB∥CD,则∠1、∠2和∠3之间的关系为()A.∠2+∠1﹣∠3=180°C.∠3+∠2+∠1=360°B.∠3+∠1=∠2D.∠3+∠2﹣2∠1=180°【答案】A【解析】【分析】,过E作EF∥AB∥CD,由平行线的质可得∠1+∠CEF=180°,∠FEA=∠3,由∠2=∠AEF+∠FEC即可得∠1、∠2、∠3之间的关系.【详解】如图过点E作EF∥AB,∴∠FEA=∠3(两直线平行,内错角相等),∵AB∥CD(已知),∴EF∥CD,∴∠1+∠CEF=180°(两直线平行,同旁内角互补),∵∠2=∠AEF+∠FEC,∴∠1+∠2-∠3=180°.故选A.【点睛】本题考查了平行线的性质,解决本题的关键是要正确作出辅助线和熟练掌握平行线的性质.9.把一张对边互相平行的纸条,折成如图所示,EF是折痕,若∠EFB=32︒,则下列结论正确的有是()(1)∠C'EF=32︒;(2)∠AEC=148︒;(3)∠BGE=64︒;(4)∠BFD=116︒.A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用平行线的性质,折叠的性质依次判断.【详解】∵A C'∥B D¢,∴∠C'EF=∠EFB=32︒,故(1)正确;由翻折得到∠GEF=∠C'EF=32︒,∴∠GE C'=64°,∴∠AEC=180°-∠GE C'=116°,故(2)错误;∵A C'∥B D¢,∴∠BGE=∠GE C'=64°,故(3)正确;∵EC∥FD∴∠BFD=∠BGC=180°-∠BGE=116°,故(4)正确,..正确的有3个,故选:C.【点睛】此题考查平行线的性质,翻折的性质,熟记性质定理并熟练运用是解题的关键10.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A B C D,第2次平移长方形A B C D沿A B的方向向右平1111111111移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形A n-1B n-1C n-1D n-1沿A Bn-1n-1的方向向右平移5个单位长度,得到长方形AnBnCnDn(n>2),若ABn的长度为2026,则n的值为()A407 B.406 C.405 D.404【答案】D【解析】【分析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1−A1A2=6−5=1,进而求出AB1和AB2的长,然后根据所求得出数字变化规律,进而得出AB n=(n+1)×5+1求出n即可.【详解】∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A B C D,1111第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1−A1A2=6−5=1,∴AB1=AA1+A1A2+A2B1=5+5+1=11,∴AB2的长为:5+5+6=16;∵AB1=2×5+1=11,AB2=3×5+1=16,∴ABn=(n+1)×5+1=2026,解得:n=404.故选:D.【点睛】此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A 1A 2=5 是解题关键. 二、填空题(每小题 3 分,共 15 分) 11.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____. 【答案】如果两个角是同一个角的余角,那么这两个角相等 【解析】 【分析】 根据“如果”后面接的部分是题设,“那么”后面解的部分是结论,即可解决问题. 【详解】命题“同角的余角相等”,可以改写成:如果两个角是同一个角的余角,那么这两 个角相等. 故答案为:如果两个角是同一个角的余角,那么这两个角相等. 【点睛】本题考查命题与定理,解题的关键是掌握“如果”后面接的部分是题设,“那么” 后面解的部分是结论. 12.估计 5 - 1 2与 0.5 的大小关系是:_____(填“>”、“<”或“=”). 【答案】>【解析】分析】根据题意由 5 −1>1,即可判断大小关系.【 【详解】∵ 5 >2,∴ 5 −1>1,∴ 5 - 1 2 1 > ,2故答案为:>.【点睛】此题考查实数比较大小,关键要懂得进行估算.13.如图,在 △Rt ABC 中,∠C=90°,AC=4,将△ABC 沿 CB 向右平移得到△DEF,若平移距离为2,则四边形 ABED 的面积等于_______.【答案】8【解析】试题解析:∵将△ABC沿CB向右平移得到△DEF,平移距离为2,∴AD∥BE,AD=BE=2,∴四边形ABED是平行四边形,∴四边形ABED的面积=BE×AC=2×4=8.故答案为8.点睛:平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.∠A的两边与∠B的两边分别平行,∠A=50°,则∠B的度数为____________.【答案】50°或130°【解析】【分析】根据角的两边分别平行得出∠A+∠B=180°或∠A=∠B,代入求出即可.【详解】∵∠A的两边与∠B的两边分别平行,∠A=50°,∴∠A+∠B=180°或∠A=∠B,∴∠B=130°或50°,故答案为50°或130°.【点睛】本题考查了平行线的性质的应用,注意:如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补.注意:运用了分类思想.15.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.有下列结论:①∠BOE=12(180-a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的结论是________(填序号).∴∠BOE=1【答案】①②③【解析】【分析】根据垂直定义、角平分线的性质、直角三角形的性质求出∠POE、∠BOF、∠BOD、∠BOE、∠DOF等角的度数,即可对①②③④进行判断.【详解】①∵AB∥CD,∴∠BOD=∠ABO=a°,∴∠COB=180°﹣a°=(180﹣a)°,又∵OE平分∠BOC,1∠COB=(180﹣a)°.故①正确;22②∵OF⊥OE,∴∠EOF=90°,∴∠BOF=90°﹣11(180﹣a)°=22a°,∴∠BOF=12∠BOD,∴OF平分∠BOD所以②正确;③∵OP⊥CD,∴∠COP=90°,∴∠POE=90°﹣∠EOC=12 a°,∴∠POE=∠BOF;所以③正确;∴∠POB=90°﹣a°,而∠DOF=12a°,所以④错误.故答案为①②③.【点睛】本题考查了平行线的性质:两直线平行,内错角相等;解答此题要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答.( 三、解答题(共 8 题,共 75 分)16.计算:(1) | -2 | + 3 -8 - (-1)2019 ;(2) 6 ⨯1 9- 3 27 + ( 2) 2 . 【答案】 1)1(2)1【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据实数的性质进行化简即可求解.【详解】(1) | -2 | + 3 -8 - (-1)2019=2-2+1=1.(2) 6 ⨯1 9 - 3 27 + ( 2) 2= 4 - 3 + 2=2-3+2=1.【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.17.解方程:(1)(x -2)2=9 (2)x 3-3= 3 8 【答案】(1)x=5 或-1; (2)x= 3 2【解析】【分析】(1)利用平方根的意义可得结果;(2)利用立方根的意义可得结果.【详解】(1)x ﹣2 = ± 9 ,x ﹣2=±3,x =2±3,x =5 或﹣1;(4)x3=2788,x=3,x=.(2732【点睛】本题考查了平方根和立方根的意义,熟练掌握平方根和立方根的意义是解答本题的关键.18.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上,将△ABC 向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2△)求A′B′C′的面积.【答案】1)见解析,(2)8【解析】【分析】(1)根据平移变换的定义作出变换后的对应点,再顺次连接即可得;(2)利用三角形的面积公式计算可得.【详解】解:(1)如图所示,△A′B′C′即为所求.(2△)A′B′C′的面积为12×4×4=8.【点睛】本题主要考查作图﹣平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.19.如图,AB与CD相交于O,OE平分∠AOC,OF⊥AB于O,OG⊥OE于O,若∠BOD=40°,求∠AOE和∠FOG的度数.【答案】∠AOE=20°,∠FOG=20°【解析】试题分析:根据对顶角相等得到∠AOC=∠BOD=40°,然后再根据角平分线的定义即可求得∠AOE的度数,再根据同角的余角相等即可求得∠FOG的度数.试题解析:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=40°,∵OE平分∠AOC,∴∠AOE=12∠AOC=20°,∵OF⊥AB,OG⊥OE,∴∠AOF=∠EOG=90°,即∠AOG与∠FOG互余,∠AOG与∠AOE互余,∴∠FOG=∠AOE=20°.【点睛】本题考查了对顶角的性质、角平分线的定义、余角的性质等,在解题时根据对顶角的性质和角平分线,余角的性质进行解答是关键.20.若a2=25,|b|=5,求a+b的值.【答案】﹣10或0或10.【解析】【分析】依据有理数乘方和绝对值的性质求得a、b的值,然后代入求解即可.【详解】解:∵a2=25,|b|=5,∴a=±5b=±5,当a=5时,b=5,∴a+b=10;当a=5时,b=﹣5.∴a+b=0;当a=﹣5时,b=5,∴a+b=0;当a=﹣5时,b=﹣5.∴a+b=﹣10;∴a+b的值是﹣10或0或10.【点睛】本题主要考查的是有理数乘方、绝对值的性质、有理数的加法法则及分类讨论的数学思想,熟练掌握相关性质是解题的关键.21.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.【答案】(1)平行;(2)115°.【解析】【分析】(1)先根据垂直定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF∥CD;(2)由EF∥CD,根据平行线的性质得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根据内错角相等,两直线平行得到DG∥BC,所以∠ACB=∠3=115°.【详解】解:(1)CD与EF平行.理由如下:Q CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°∴EF∥CD(2)如图:Q EF∥CD,∴∠2=∠BCD又Q∠1=∠2,∴∠1=∠BCD∴DG∥BC,∴∠ACB=∠3=115°.【点睛】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.【答案】(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁2G出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x2=300∴x2=50又∵x>0∴x=52∴长方形纸片的长为152又∵(152)=450>202即:152>20∴小丽不能用这块纸片裁出符合要求的纸片23.(1)问题发现:如图1,已知点F,分别在直线AB,CD上,且AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF的度数为;(2)拓展探究:∠GEF,∠BFE,∠CGE之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=.证明:过点E作EH∥AB,∴∠FEH=∠BFE(),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(),,(∴∠HEG=180°-∠CGE()∴∠FEG=∠HFG+∠FEH=.(3)深入探究:如图2,∠BFE的平分线FQ所在直线与∠CGE的平分线相交于点P,试探究∠GPQ与∠GEF之间的数量关系,请直接写出你的结论.【答案】1)90°(2)∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE(3)∠GPQ+12∠GEF=90°【解析】【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40︒,∠HEG=50︒,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=11∠BFE,∠CGP=∠CGE,由三角形221的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结2合②的结论可得结果.【详解】(1)如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;(2)∠GEF=∠BFE+180°−∠CGE,∴∠BFQ=1证明:过点E作EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补)∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)∠GPQ+12∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,1∠BFE,∠CGP=∠CGE,22在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+11111∠GEF=∠CGE−∠BFE+∠GEF=×180°=90°.222221即∠GPQ+∠GEF=90°.2【点睛】本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论.。

人教版2020年春季七年级期中数学试题期中

人教版2020年春季七年级期中数学试题期中

、选择题:(310=30分)下列各数:,,,B.2个B.7是 D.是的平方根,即∣A.40°B.50°C.60°D.70°10、如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C ﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是() A.(1,-1) B.(-1,1) C.(-1,-2) D.(1,-2)9题图10题图一、填空题:(3×9=27分)1、的算术平方根是 64的平方根的立方根是。

2、若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.3、如图,BE平分∠ABC,DE∥BC,如果∠2=22°,那么∠ADE= .3题图 5题图 8题图4、在平面直角坐标系中,把点A(2,1)先向左平移4个单位长度,再向下平移2个单位长度后的坐标为__________.5、如图,台阶的宽度为1.5米,其高度AB=4米,水平距离BC=5米,要在台阶上铺满地毯,则地毯的面积为.6、在平面直角坐标系中,点A的坐标为(-1,3),线段AB∥x轴,且AB=4,则点B的坐标为.7、若,则 .8、如图,在直角坐标系中,A(1,3),B(2,0),第一次将△AOB变换成△OA1B1,A1(2,3),B1(4,0);第二次将△OA1B1变换成△OA2B2,A2(4,3),B2(8,0),第三次将△OA2B2变换成△OA3B3,则B2016的横坐标为.三、计算题:(3×4=12分)(1)(2)(3x-1)2=225 (3)64(x-2)2-9=0四、解答题:(10分+11分+10分+10分+10分=51分)1、.如图,已知AD⊥BC,EF⊥BC,∠1=∠2.求证:DG∥BA.证明:∵AD⊥BC,EF⊥BC (已知)∴∠EFB=∠ADB=90°( )∴EF∥AD( )∴∠1=∠BAD( )又∵∠1=∠2(已知)∴(等量代换)∴DG∥BA.( )2、如图,已知A(-2,3)、B(4,3)、C(-1,-3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.3、已知的平方根是,的立方根是,求的平方根.4、.如图,已知AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.5、.如图,在平面直角坐标系中,已知点A(0,2),B(4,0),C(4,3)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-20209学年度初一第二学期数学期中试卷
一、选择题(本题共20分,每小题2分)
1.若a b >,则下列不等式变形正确的是() A .55a b +<+ B .
33
a b
< C .44a b ->- D .3232a b ->- 2.不等式3>x 的解集在数轴上表示为()
A 、
B 、
C 、
D 、
3 3.计算x
5
·x 5的值为()
A .x 5
B .x 10
C .x 25
D .2x 5
4.下列运算中正确的是( )
A .5
5
5
2a a a += B .326a a a = C .x x x 63·2= D .347
()a a =
5.已知21
x y =⎧⎨=-⎩是关于x ,y 的二元一次方程27x my +=的解,则m 的值为()
A .3
B .3-
C .92
D .11-
6.二元一次方程39x y +=的非负整数解有()
A. 无数个
B. 2个
C. 3个
D. 4个
7.计算2015
2013
4
25
.0⨯
A .1
B .8
C .16
D .2
8.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是( )
A. 14016615x y x y +=⎧⎨+=⎩B.14061615x y x y +=⎧⎨+=⎩
C.15166140x y x y +=⎧⎨+=⎩ D.15
616140
x y x y +=⎧⎨+=⎩
9.若关于x 的不等式组无解,则a 的取值范围是()
A a ≥-3
B a ≤-3
C a <-3
D a >-3
10.关于x ,y 的二元一次方程组3+1,33
x y a x y =+⎧⎨+=⎩的解满足x y <, 则a 的取值范围是()
A a >-3
B a <-3
C a >2
D a <2
二、填空题(本题共20分,每小题2分)
1.已知x 的一半与5的差小于3,用不等式表示为.
2.已知12=+y x ,用含x 的代数式表示y ,y = .
3.已知方程3x m+1+y 2-n =8是二元一次方程,则m=,n= .
4.不等式4+3x ≦10的正整数解是.
5.已知︱4x+y+7︳+(x-y+3)2
=0,则x =,y =
6.计算:32)(23)x x --=(-.
7.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______ 个儿童,_______个橘子. 8.若==a
32
,32则a
;若3m a =,2n a =,则23m n a +=.
9.如图,宽为50 cm 的矩形图案由10个全等的小长方形
拼成,其中一个小长方形的面积为
10.定义新运算:2
2*=-a b a ab ,运用新运算计算:
43*=,=-*)(y x x .


4
32100
1
2
3
4
4
3
2
1
1234
三、计算(本题共12分,每小题4分)
1、
2、(-2x 2
)﹒(-y)+3xy(1-2x) 3 、)5)(1()4)(32(+-+-+x x x x
四、解答题(本题共10分,每小题5分)
1、解不等式:463+-x x
≤4-x 并在数轴上表示解集.
2.解不等式组⎪⎩⎪⎨⎧≤+--->-0
)2(3)3(21
32x x x
x
五、解下列方程组:(本题共10分,每小题5分)
1. 解方程组320,1.x y x y -=⎧⎨-=⎩
2.解方程组()23452610
x y x y y -=⎧⎪⎨+=+⎪⎩
六、解答题(本题10分,每题5分)
1、若0352=-+y x ,求y x 324⋅的值.(5分)
2、先化简,再求值:(6分)
)52)(13()1(2)1(---++-x x x x x x ,其中2=x 。

七、列方程组应用题(1题5分,2题6分)
1、用一些长短相同的小木棍按图所式,连续摆正方形或六边形要求每两个相邻的图形只有一条公共边。

已知摆放的正方形比六边形多4个,并且一共用了110个小木棍,问连续摆放了正方形和六边形各多少个?
2.某商场准备进一批两种不同型号的衣服,已知购进A 种型号衣服9件,B 种型号衣服10件,则共需1810元;若购进A 种型号衣服12件,B 种型号衣服8件,共需1880元;已知销售一件A 型号衣服可获利18元,销售一件B 型号衣服可获利30元,要使在这次销售中获利不少于699元,且
A 型号衣服不多于28件.
①求A 、B 型号衣服进价各是多少元?
②若已知购进A 型号衣服是B 型号衣服的2倍还多4件,则商店在这次进货中可有几种方案?并简述购货方案.
八、阅读理解(本题共7分)
1.图①是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它
平均分成形状和大小都一样的四块小长方形,然后按图②那样拼成一个正方形.
(1)观察图②,请用两种不同的方法表示图②中阴影部分的面积: 方法1:; 方法2:; (2)直接写出三个代数式2
)(n m +,2
)(n m -,mn 之间的等量关系:


图① 图②
53322
2()(2)4x x x x ⋅-+-

2018-2019学年度初一第二学期数学期中考试
答题纸
一、 选择题(本题共20分,每小题2分)
二、填空题(本题共20分,每小题2分)
1.2、 y = .
3. m=,n= . 4.不等式4+3x ≦10的正整数解是. 5.x =,y = 6.计算:32)(23)x x --=(-. 7. 共有_______ 个儿童,_______个橘子. 8.若==a
32
,32则a
;若3m a =,2n a =,则23m n a +=.
9、一个小长方形的面积为
10.43*=,=-*)(y x x .
三、计算(本题共12分,每小题4分) 1、2、(-2x 2
)﹒(-y)+3xy(1-2x)
3、)5)(1()4)(32(+-+-+x x x x
四、解答题(本题共10分,每小题5分) 1、解不等式:463
+-x x
≤4-x 并在数轴上表示解集.
2、解不等式组⎪⎩⎪⎨⎧≤+--->-0
)2(3)3(21
32x x x
x
五、解下列方程组:(本题共10分,每小题5分)
1. 解方程组320,1.x y x y -=⎧⎨-=⎩
2.解方程组()234
52610
x y x y y -=⎧⎪⎨+=+⎪⎩
班级:_________________ 姓名:_______________ 考场号座位号
53322
2()(2)4x x x x ⋅-+-⋅
六、解答题(本题10分,每题5分)
1、若0352=-+y x ,求y x 324⋅的值.(5分)
2、先化简,再求值:(6分)
)52)(13()1(2)1(---++-x x x x x x ,其中2=x 。

七、列方程组应用题(1题5分,2题6分) 1、
① 2、①求A 、B 型号衣服进价各是多少元? ② ③ ④
⑤ ⑥ ⑦
②若已知购进A 型号衣服是B 型号衣服的
2倍还多4件,则商店在这次进货中可有几种方并简述购货方案.
八、阅读理解(本题共7分)
(1)观察图②,请用两种不同的方法表示图②中阴影部分的面积:
方法1:;
方法2:; (2)直接写出三个代数式2
)(n m +,2
)(n m -,mn 之间的等量关系:
班级:_________________ 姓名:_______________ 考场号座位号。

相关文档
最新文档