材料力学公式汇总(3)
材料力学公式汇总
1材料力学公式汇总一、应力与强度条件 1、拉压 []max maxN A σσ=≤横截2、剪切 []maxQ A ττ=≤受剪挤压 P A σσ⎡⎤=≤⎣⎦挤压挤压挤压挤压投3、圆轴扭转[]max max maxT T P P M M I W ρττ⎛⎞⎛⎞==≤ 4、平面弯曲 ①[]max nmaxn M W σσ=≤②[]max max max nz z M y I σσ+++=≤[]max maxmax nz zM y I σσ−−−=≤③[]ττ≤⋅=bI S Q z *max z max max ⎜⎟⎜⎟⎝⎠⎝⎠5、斜弯曲[]nynz maxnz nymaxM M W W σσ=+≤;6、拉(压)弯组合[]maxmaxn nM N A W σσ=+≤;[]max max z nz M N y A I σσ+++=+≤;[]nz max max z M N y I Aσσ−−−=−≤. 注:“5,6”两式仅供参考.7、轴向拉压斜截面上应力:2cos ;sin 22αασσσατ==横横α8、圆轴弯扭组合: ①第三强度理论[]eq3nnσσ===≤②第四强度理论[]eq4nnσσ===≤9、圆轴拉(压)弯扭组合:①第三强度理论 []eq3σσ=≤ ②第四强度理论 []eq4σσ=≤ 二、变形及刚度条件1、拉压 ∑∫===ΔLEAxx ) N EAL N EANLL d (ii 2、扭转 ()()弧度; T T i i T p p pM x dx M L M LGI GI GI Φ==Σ=∫0180p T L GI θπΦ==⋅(m /D ) 3、弯曲(1)积分法:()'''()();()()()d ;()()d d .n n nEIy x M x EIy x EI x M x x C EIy x M x x x Cx D θ===+=+∫∫∫+边界条件:铰支:挠度为零;固支:挠度和转角都为零。
材料力学基本概念及计算公式
材料力学基本概念及计算公式材料力学是研究物质在外力作用下的力学性质和变形规律的学科,主要研究物质的力学性质,包括弹性、塑性、稳定性等。
下面将介绍材料力学的基本概念及计算公式。
1.弹性力学:(1) 弹性模量(Young’s modulus):材料承受应力时的应变程度。
计算公式:E = σ / ε,其中 E 为弹性模量,σ 为应力,ε 为应变。
(2) 剪切模量(Shear modulus):材料抵抗剪切变形的能力。
计算公式:G = τ/ γ,其中 G 为剪切模量,τ 为剪切应力,γ 为剪切应变。
(3) 泊松比(Poisson’s ratio):材料在受力作用下沿一方向延伸时,在垂直方向上收缩的比例。
计算公式:ν = -ε_y / ε_x,其中ν 为泊松比,ε_x 为纵向应变,ε_y 为横向应变。
2.稳定性分析:(1) 屈曲载荷(Buckling load):结构在受压作用下失去稳定性的临界载荷。
计算公式:F_cr = π²EI / L²,其中 F_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,L 为结构长度。
(2) 欧拉稳定性理论(Euler’s stability theory):用于分析长杆(例如柱子)的稳定性。
计算公式:P_cr = π²EI / (KL)²,其中P_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,K 为杆件端部支撑系数,L 为杆件长度。
3.塑性力学:(1) 屈服点(yield point):材料开始发生塑性变形的点,也是材料在加强阶段的上线。
计算公式:σ_y = F_y / A_0,其中σ_y 为屈服点应力,F_y 为屈服点力,A_0 为断面积。
(2) 韧性(toughness):材料吸收能量的能力,一般由应力-应变曲线上的面积表示。
计算公式:T = ∫σ dε,其中 T 为韧性,σ 为应力,ε 为应变。
4.疲劳力学:(1) 疲劳极限(fatigue limit):材料在循环应力作用下出现裂纹的最大应力。
材料力学公式完全版
材料力学公式完全版材料力学是研究材料在外力作用下的力学性质和变形行为的一门学科。
在材料力学中,有很多的公式被广泛应用于计算和分析材料的力学行为。
下面是一些常见的材料力学公式:1. 应力(Stress):应力是单位面积上的力,通常用σ 表示,计算公式为:σ = F / A,其中 F 是力的大小,A 是面积。
2. 应变(Strain):应变是物体在受力作用下发生变形的程度,通常用ε 表示,计算公式为:ε = ΔL / L,其中ΔL 是长度的变化量,L 是初始长度。
3. 弹性模量(Young's modulus):弹性模量是衡量材料抵抗变形的能力的物理量,通常用 E 表示,计算公式为:E = σ / ε。
4. 剪切应力(Shear stress):剪切应力是垂直方向上的切应力,通常用τ 表示,计算公式为:τ = F / A,其中 F 是切力的大小,A 是垂直于切力方向的面积。
5. 剪切应变(Shear strain):剪切应变是物体在受剪切力作用下的变形程度,通常用γ 表示,计算公式为:γ = tanθ,其中θ 是切变角度。
6. 泊松比(Poisson's ratio):泊松比是衡量材料横向收缩相对于纵向伸长的程度的物理量,通常用ν 表示,计算公式为:ν = -ε横 /ε纵。
7. 屈服强度(Yield strength):屈服强度是材料开始产生塑性变形的临界点,通常用σy 表示。
8. 极限强度(Ultimate strength):极限强度是材料在破坏前能承受的最大应力,通常用σu 表示。
9. 可延性(Elonagation):可延性是材料在断裂前的拉伸变形量,通常用δ 表示,计算公式为:δ = (L - L0) / L0。
10. 硬度(Hardness):硬度是材料抵抗划伤或压痕的能力,常用的硬度测量方法有布氏硬度、维氏硬度等。
11. 柯尔摩根关系(Hooke's law):柯尔摩根关系是描述弹性固体在小应变下的力学行为的线性关系,计算公式为:σ = Eε,其中 E 是杨氏模量,σ 是应力,ε 是应变。
材料力学公式超级大汇总
32.受扭圆轴表面某点的三个主应力 , ,
33.三向应力状态最大与最小正应力 ,
34.三向应力状态最大切应力
35.广义胡克定律
36.四种强度理论的相当应力
37.一种常见的应力状态的强度条件 ,
38.组合图形的形心坐标计算公式 ,
39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式
(回转半径)
(8.4)
压杆的临界应力
(8.5)
欧拉公式的适用范围
(8.6)
抛物线公式
当 时,
—压杆材料的屈服极限;
—常数,一般取
(8.7)
安全系数法校核压杆的稳定公式
(8.8)
折减系数法校核压杆的稳定性
—折减系数
,小于1Βιβλιοθήκη 10动荷载序号公式名称
公式
符号说明
(10.1)
动荷系数
P-荷载
N-内力
-应力
-位移
(4.24)
平面弯曲梁的曲
率
(4.25)
纯弯曲梁横截面
上任一点的正应
力
(4.26)
离中性轴最远的
截面边缘各点上
的最大正应力
(4.27)
抗弯截面模量
(截面对弯曲
的抵抗矩)
(4.28)
离中性轴最远的
截面边缘各点上
的最大正应力
(4.29)
横力弯曲梁横截
面上的剪应力
被切割面积对中性轴的
面积矩。
(4.30)
中性轴各点的剪
(6.13)
平面弯曲梁的剪应力强度条件
(6.14a)
(6.14b)
平面弯曲梁的主应力强度条件
材料力学公式大全
材料力学公式大全材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。
在工程实践中,材料力学公式是工程师们设计和分析结构、零部件等工程问题时必不可少的工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家的工程实践有所帮助。
1. 应力公式。
在材料力学中,应力是指单位面积上的力的大小,通常用σ表示,其公式为:\[ \sigma = \frac{F}{A} \]其中,F为受力,A为受力面积。
2. 应变公式。
应变是指材料在受力作用下产生的变形程度,通常用ε表示,其公式为:\[ \varepsilon = \frac{\Delta L}{L} \]其中,ΔL为长度变化量,L为原始长度。
3. 弹性模量公式。
弹性模量是材料抵抗形变的能力,通常用E表示,其公式为:\[ E = \frac{\sigma}{\varepsilon} \]4. 剪切应力公式。
在材料力学中,剪切应力是指垂直于受力方向的力,通常用τ表示,其公式为:\[ \tau = \frac{F}{A} \]其中,F为受力,A为受力面积。
5. 剪切应变公式。
剪切应变是指材料在受剪切力作用下产生的变形程度,通常用γ表示,其公式为:\[ \gamma = \frac{\Delta x}{h} \]其中,Δx为位移,h为原始长度。
6. 泊松比公式。
泊松比是材料在拉伸或压缩时,在垂直方向上的收缩或膨胀程度的比值,通常用ν表示,其公式为:\[ \nu = -\frac{\varepsilon_{y}}{\varepsilon_{x}} \]其中,εy为垂直方向的应变,εx为拉伸或压缩方向的应变。
7. 弯曲应力公式。
在材料力学中,弯曲应力是指材料在受弯曲力作用下的应力,其公式为:\[ \sigma = \frac{M \cdot c}{I} \]其中,M为弯矩,c为截面到中性轴的距离,I为惯性矩。
8. 弯曲应变公式。
弯曲应变是指材料在受弯曲力作用下产生的变形程度,其公式为:\[ \varepsilon = \frac{M \cdot c}{E \cdot I} \]其中,M为弯矩,c为截面到中性轴的距离,E为弹性模量,I为惯性矩。
材料力学常用公式
材料力学常用公式材料力学是研究材料在受力下的力学性质和变形行为的学科,它在工程领域中有着广泛的应用。
常用的材料力学公式包括应力、应变、热应变、应力-应变关系等。
下面是一些常用的材料力学公式的介绍:1. 应力(Stress)公式:应力定义为单位面积上的力,常用公式为:σ=F/A其中,σ为应力,F为受力,A为受力面积。
2. 应变(Strain)公式:应变定义为材料单位长度的变化,常用公式为:ε=ΔL/L其中,ε为应变,ΔL为长度变化,L为原始长度。
3. 霍克定律(Hooke's Law):霍克定律描述了弹性固体在小应变下应力和应变的线性关系,常用公式为:σ=Eε其中,σ为应力,ε为应变,E为材料的弹性模量。
4. 应力-应变关系(Stress-Strain Relationship):应力-应变关系用来描述材料在受力下的变形行为,通常用应力与应变的曲线来表示。
其中弹性阶段遵循霍克定律,塑性阶段存在应力和应变不再线性相关的情况。
5.等效应力(von Mises Stress):等效应力是衡量材料在多轴载荷作用下发生破坏的临界值,常用公式为:σ_eq = √(σ_x^2 + σ_y^2 + σ_z^2 - σ_xσ_y - σ_yσ_z -σ_zσ_x + 3τ^2)其中,σ_eq为等效应力,σ_x、σ_y、σ_z为主应力,τ为主应力间的剪应力。
6. 拉伸强度(Tensile Strength):拉伸强度是材料在拉伸状态下破坏前的最大抗拉应力,常用公式为:σ_u = P_max / A_0其中,σ_u为拉伸强度,P_max为最大拉伸力,A_0为原始横截面积。
7. 弯曲应力(Bending Stress):当材料受弯曲作用时,所产生的应力称为弯曲应力,常用公式为:σ_b=(M*y)/I其中,σ_b为弯曲应力,M为弯矩,y为材料中点位置,I为截面惯性矩。
8. 剪切应力(Shear Stress):剪切应力是材料在剪切载荷作用下的应力,常用公式为:τ=F/A其中,τ为剪切应力,F为剪切力,A为剪切面积。
材料力学公式大全
材料力学公式大全一、轴向拉伸与压缩。
1. 内力 - 轴力(N)- 截面法:N = ∑ F_外(外力沿杆件轴线方向的代数和)2. 应力 - 正应力(σ)- σ=(N)/(A),其中A为杆件的横截面面积。
3. 变形 - 轴向变形(Δ l)- 胡克定律:Δ l=(NL)/(EA),其中L为杆件的原长,E为材料的弹性模量。
4. 应变 - 线应变(varepsilon)- varepsilon=(Δ l)/(l)二、剪切。
1. 内力 - 剪力(V)- 截面法:V=∑ F_外(垂直于杆件轴线方向外力的代数和)2. 应力 - 切应力(τ)- τ=(V)/(A)(A为剪切面面积)3. 剪切胡克定律。
- τ = Gγ,其中G为材料的切变模量,γ为切应变。
三、扭转。
1. 内力 - 扭矩(T)- 截面法:T=∑ M_外(外力偶矩的代数和)2. 应力 - 切应力(τ)- 对于圆轴扭转:τ=(Tρ)/(I_p),在圆轴表面ρ = R时,τ_max=(TR)/(I_p),其中R为圆轴半径,I_p=(π D^4)/(32)(对于实心圆轴,D为直径),I_p=(π(D^4 - d^4))/(32)(对于空心圆轴,d为内径)。
3. 变形 - 扭转角(φ)- φ=(TL)/(GI_p)(单位为弧度)四、弯曲内力。
1. 剪力(V)和弯矩(M)- 截面法:V=∑ F_外(垂直于梁轴线方向外力的代数和),M=∑ M_外(外力对所求截面形心的力矩代数和)- 剪力图和弯矩图的绘制规则:- 无荷载段:V为常数,M为一次函数(斜直线)。
- 均布荷载段:V为一次函数(斜直线),M为二次函数(抛物线)。
- 集中力作用处:V图有突变(突变值等于集中力大小),M图有折角。
- 集中力偶作用处:V图无变化,M图有突变(突变值等于集中力偶大小)。
五、弯曲应力。
1. 正应力(σ)- 对于梁的纯弯曲:σ=(My)/(I_z),其中y为所求点到中性轴的距离,I_z为截面对中性轴z的惯性矩。
材料力学公式
材料力学公式材料力学公式是材料学研究领域中很重要的部分,运用合适的公式能够预测、描述和解释许多材料学现象。
材料力学公式是基于物理和数学原理建立的,有助于我们了解材料的性质和行为。
在这篇文章中,我们将介绍几个常见的材料力学公式,以及它们在材料学中的应用。
1. 晶体弹性常数公式晶体弹性常数通常是材料物理学的一个关键方面,它们描述了材料变形和应力之间的关系。
一些常见的晶体弹性常数公式包括:(1)杨氏模量(E)公式:E = σ/ε其中,E是杨氏模量,σ是单轴应力,ε是单轴应变。
(2)剪切模量(G)公式:G = τ/γ其中,G是剪切模量,τ是剪切应力,γ是剪切应变。
(3)泊松比(ν)公式:ν = -εx/εy其中,εx是沿着x轴的应变,εy是沿着y轴的应变。
这些公式能够帮助我们计算材料在特定应力下的变形和应变。
例如,杨氏模量是一个很重要的性质,因为我们可以通过它来计算材料的应力应变曲线。
对于一些高坚度的材料,剪切模量比杨氏模量更适合用于描述材料的特定弹性行为。
2. 应力公式应力公式是指计算在材料内部力的作用下材料产生的应力的公式。
例如,一些常见的应力公式包括:(1)等效应力(σeq)公式:σeq = ((σ1 - σ2)² + (σ2 - σ3)² + (σ3 - σ1)²)½其中,σ1、σ2和σ3分别是应力的主应力。
(2)应力分布公式:σ = F/A其中,σ是应力,F是力,A 是受力面积。
(3)柯西应力公式:σij = cijklεkl其中,σij 是第i个面上的第j个分量的应力,εkl 是第k个面上的第l个分量的应变,cijkl是材料的柯西弹性常数。
3. 强度和韧度公式强度和韧度公式涉及到材料的机械性能,是材料学中很重要的概念。
一些常见的强度和韧度公式包括:(1)屈服强度公式:σy = Fy/A其中,σy是材料的屈服强度,Fy是达到屈服点所需要的力,A是受力面积。
材料力学公式总结
材料力学公式总结材料力学是研究材料在外力作用下的力学性能和变形规律的学科,它在工程领域中具有重要的应用价值。
在材料力学的研究中,我们常常需要运用一些公式来描述材料的力学性能和变形规律。
下面,我将对材料力学中常用的一些公式进行总结和归纳,以便大家更好地掌握和运用这些公式。
1. 应力和应变的关系公式。
在材料力学中,应力和应变是两个基本的物理量。
它们之间的关系可以用应力-应变关系公式来描述。
一般而言,线弹性材料的应力和应变之间满足线性关系,即应力等于弹性模量乘以应变。
其数学表达式为:σ = Eε。
其中,σ表示应力,E表示弹性模量,ε表示应变。
2. 杨氏模量的计算公式。
杨氏模量是描述材料抗拉伸和压缩能力的重要参数,它可以用来表征材料的硬度和刚度。
对于各向同性材料,杨氏模量的计算公式为:E = (σ/ε)。
其中,E表示杨氏模量,σ表示拉伸或压缩的应力,ε表示相应的应变。
3. 泊松比的计算公式。
泊松比是描述材料在拉伸或压缩时横向收缩或膨胀的程度的物理量,它可以用来表征材料的变形性能。
泊松比的计算公式为:ν = -ε横/ε轴。
其中,ν表示泊松比,ε横表示横向应变,ε轴表示轴向应变。
4. 屈服强度的计算公式。
材料的屈服强度是描述材料开始发生塑性变形的应力值,它可以用来评估材料的抗拉伸能力。
一般而言,材料的屈服强度可以通过材料的拉伸试验来测定,其计算公式为:σy = Fy/A0。
其中,σy表示屈服强度,Fy表示屈服点的拉伸力,A0表示原始横截面积。
5. 断裂韧性的计算公式。
断裂韧性是描述材料抗断裂能力的物理量,它可以用来评估材料的抗破坏能力。
一般而言,材料的断裂韧性可以通过材料的冲击试验来测定,其计算公式为:Kc = Yσ√(πa)。
其中,Kc表示断裂韧性,Y表示材料的弹性模量,σ表示应力,a表示裂纹长度。
以上就是我对材料力学中常用的一些公式进行的总结和归纳。
希望这些公式能够对大家在材料力学的学习和工程实践中有所帮助。
材料力学公式大全pdf
材料力学公式大全pdf
材料力学公式大全pdf
本文主要介绍材料力学中的相关公式,方便学习和应用。
以下是材料力学公式大全pdf:
1. 应力公式:
应力(σ)=受力(F)/截面积(A)
2. 应变公式:
应变(ε)=变形(ΔL)/初始长度(L)
3. 餘弦定理:
c² = a² + b² - 2ab cosC
4. 正弦定理:
a / sinA =
b / sinB =
c / sinC
其中A,B,C为三角形的内角。
5. 费马原理:
任何在保持稳定的条件下遵循最短路线的点在路线最短。
6. 钢材强度公式:
σs = Fs / A
其中,σs表示钢材的强度,Fs表示钢材的极限拉力,A表示截面积。
7. 钢材弹性模量公式:
Es = σs / εs
其中,Es表示钢材的弹性模量,σs表示钢材的强度,εs表示钢材的应变。
8. 抗弯公式:
M = σ x I / y
其中,M表示悬臂梁的弯矩,σ表示应力,I表示截面惯性矩,y 为距截面中性轴的距离。
9. 泊松比公式:
ν = -ε₂ / ε₁
其中,ν为泊松比,ε₁为轴向应变,ε₂为横向应变。
10. 拉力公式:
F = A x ε x E
其中,F表示拉力,A表示截面积,ε表示应变,E为材料的弹性模量。
以上就是材料力学公式大全pdf。
希望能对大家学习和应用材料力学有所帮助。
材料力学的基本计算公式
材料力学的基本计算公式材料力学是研究材料在力的作用下的行为和性能的学科。
在材料力学中,有一些基本的计算公式,可以用于分析材料的力学性质。
下面是一些常用的材料力学的基本计算公式。
1.弹性应变材料在受力作用下会发生变形,这种变形可以用应变来描述。
弹性应变是材料在弹性阶段的变形量与初试长度之比。
可以通过以下公式计算弹性应变:ε=δL/L其中,ε为弹性应变,δL为变形量,L为初始长度。
2.弹性模量弹性模量衡量了材料在弹性阶段的刚度,可以用于描述材料的抗拉强度。
对于线性弹性材料,弹性模量可以通过以下公式计算:E=σ/ε其中,E为弹性模量,σ为应力,ε为弹性应变。
3.科尔莫戈洛夫方程科尔莫戈洛夫方程可以用于计算材料在复合应力状态下的应变。
对于一般的受应力状态(平面应力和轴对称应力),科尔莫戈洛夫方程可以表示为:σ=S*ε其中,σ为应力,S为应力-应变刚度矩阵,ε为应变。
4.拉伸和压缩应力拉伸和压缩应力计算公式分别如下:拉伸应力:σ=F/A压缩应力:σ=-F/A其中,σ为应力,F为作用力,A为受力面积。
5.剪切应力材料在受剪力作用下会发生剪切变形。
剪切应力可以通过以下公式计算:τ=F/A其中,τ为剪切应力,F为剪切力,A为受力面积。
6.杨氏模量杨氏模量衡量了材料的刚度,可以用于描述材料的弹性性能。
对于拉伸应力-应变状态,杨氏模量可以通过以下公式计算:E=σ/ε其中,E为杨氏模量,σ为拉伸应力,ε为拉伸应变。
7.泊松比泊松比衡量了材料在受力作用下沿垂直方向的变形。
可以通过以下公式计算:ν=-εv/εl其中,ν为泊松比,εv为垂直应变,εl为拉伸应变。
8.巴拉赫公式巴拉赫公式可以用于计算材料的抗拉强度,可以表示为:σy=K*σr^n其中,σy为抗拉强度,K和n为材料的参数,σr为引伸计测得的真实应力。
这些公式是材料力学的基本计算公式,可以用于分析材料的力学性质。
在实际应用中,还会根据具体情况考虑材料的非线性和多轴受力等因素,进行更为深入的分析和计算。
《材料力学》公式汇总
《材料力学》公式汇总材料力学是研究材料的力学性质和性能的一门学科。
它主要研究材料力学性质的宏观表现以及材料在外界作用下的应力和应变的关系。
以下是一些常见的材料力学公式的汇总。
1.应力和应变的关系应力是指单位面积上的力,可以通过以下公式来计算:σ=F/A其中,σ表示应力,F表示作用在材料上的力,A表示力作用的面积。
应变是指物体长度、体积或形状的变化与原始尺寸之比,可以通过以下公式来计算:ε=ΔL/L其中,ε表示应变,ΔL表示长度的变化量,L表示原始长度。
2.弹性模量弹性模量描述了固体材料在受力后恢复原始形态的能力。
可以通过以下公式计算:E=σ/ε其中,E表示弹性模量,σ表示应力,ε表示应变。
3.轴向应力轴向应力是指作用在物体纵向的应力,可以通过以下公式计算:σ₁=F/A₀其中,σ₁表示轴向应力,F表示作用在材料上的力,A₀表示初始横截面积。
4.泊松比泊松比描述了材料在一方向受拉伸时,在垂直方向上的收缩。
可以通过以下公式计算:v=-ε₂/ε₁其中,v表示泊松比,ε₁表示纵向应变,ε₂表示横向应变。
5.剪切模量剪切模量描述了固体材料抵抗剪切变形的能力。
可以通过以下公式计算:G=τ/γ其中,G表示剪切模量,τ表示剪切应力,γ表示剪切应变。
6. Hooke定律Hooke定律描述了线性弹性材料在小应力下的应力-应变关系:σ=Eε其中,σ表示应力,E表示弹性模量,ε表示应变。
7.横向应力横向应力是指作用在物体横向的应力,可以通过以下公式计算:σ₂=vσ₁其中,σ₂表示横向应力,v表示泊松比,σ₁表示轴向应力。
8.斯特莱克斯公式斯特莱克斯公式描述了固体材料的切变模量和弹性模量的关系:G=E/2(1+v)其中,G表示剪切模量,E表示弹性模量,v表示泊松比。
9.薄壁压力容器的应力对于薄壁压力容器,其轴向应力和周向应力可以通过以下公式计算:σ₈=Pd/2tσ₆=Pd/4t其中,σ₈表示轴向应力,σ₆表示周向应力,P表示内压力,d表示容器的直径,t表示容器的壁厚。
材料力学基本公式
材料力学基本公式材料力学是研究物质在外力作用下的力学性能和变形规律的学科,是工程学科中的基础学科之一、在材料力学中,有许多基本公式被广泛应用于解决各种工程问题。
以下是材料力学中的一些基本公式。
1.杨氏模量公式:杨氏模量是材料刚度的度量,表示单位应变下单位应力的比例关系。
杨氏模量(E)的计算公式为:E = stress/strain其中stress为应力,strain为应变。
2.材料的胡克定律:胡克定律描述了物质在小应变条件下的弹性变形。
根据胡克定律,应力与应变之间的关系可以表示为:stress = E * strain其中E为杨氏模量。
3.线性弹性模量公式:线性弹性模量也是材料的刚度度量指标,用于描述材料在线弹性阶段的变形特性。
计算线性弹性模量(E)的公式为:E = (stress2 - stress1) / (strain2 - strain1)其中stress1和strain1为初始应力和应变,stress2和strain2为最终应力和应变。
4.泊松比公式:泊松比是一个描述材料在拉伸或压缩过程中沿着一维方向收缩或膨胀的程度的无量纲物理常数。
泊松比(v)的计算公式为:v = - (lateral strain) / (axial strain)其中lateral strain为横向应变,axial strain为轴向应变。
5.拉伸和压缩弹性模量公式:拉伸弹性模量(E)和压缩弹性模量(Ec)是描述材料在拉伸和压缩条件下的弹性变形能力的指标。
计算拉伸弹性模量的公式为:E = (stress2 - stress1) / (strain2 - strain1)计算压缩弹性模量的公式为:Ec = (stress2 - stress1) / (strain2 - strain1)其中stress1和strain1为初始应力和应变,stress2和strain2为最终应力和应变。
6.剪切模量公式:剪切模量用于描述材料在剪切应力作用下的抗剪切能力,是衡量材料的剪切刚度的指标。
材料力学公式总结
材料力学公式总结材料力学是研究材料在外力作用下的力学性质和行为的学科。
它的研究对象包括材料的强度、刚度、塑性变形、断裂等方面的性质。
材料力学公式是用来描述和计算材料力学性质的数学表达式。
下面是材料力学公式的总结。
1. 杨氏模量(Young's modulus):杨氏模量是衡量材料刚度的指标,表示材料在拉伸或压缩过程中的应力和应变之比。
杨氏模量的计算公式为:E=σ/ε其中,E为杨氏模量,σ为应力,ε为应变。
2. 泊松比(Poisson's ratio):泊松比是描述材料压缩应变时的纵向收缩和横向膨胀之间的比例关系。
泊松比的计算公式为:ν=-ε横向/ε纵向其中,ν为泊松比,ε横向为横向应变,ε纵向为纵向应变。
3. 斯特劳斯公式(Stress-Strain Curve):斯特劳斯公式描述了材料的应力和应变之间的关系。
在弹性阶段,应力和应变线性相关,即:σ=E*ε其中,σ为应力,E为杨氏模量,ε为应变。
4. 屈服强度(Yield Strength):屈服强度是材料在超过弹性极限后开始发生塑性变形的应力。
屈服强度一般用屈服点上的应力值表示。
5. 弹性极限(Elastic Limit):弹性极限是指材料在不发生塑性变形的最大应力值。
超过弹性极限后,材料将开始发生塑性变形。
6. 拉伸强度(Tensile Strength):拉伸强度是材料在拉伸过程中最大的抗拉应力,表示材料抵抗破坏的能力。
7. 断裂强度(Fracture Strength):断裂强度是材料发生破裂时所承受的应力。
它是材料在强度和脆性方面的一个重要指标。
8. 斯特劳斯硬化指数(Strain Hardening Exponent):斯特劳斯硬化指数描述了材料在塑性变形时硬度增加的速率。
该指数可以通过材料力学实验和测试获得。
9. 塑性应变(Plastic Strain):塑性应变是材料在超过弹性极限后发生塑性变形的应变量。
10. 线膨胀系数(Linear Expansion Coefficient):线膨胀系数描述了材料在温度变化下长度变化的比例关系。
材料力学常用公式
- 1 - 材料力学常用公式1、胡克定律:EA l F l N ⋅=∆或εσ⋅=E 2、杆件轴向拉、压强度条件:[]σσ≤=⋅AFN nax max 3、剪切强度条件:[]ττ≤=AF S;挤压强度条件:[]bc bc bc bc F A σσ=≤4、外力偶矩计算公式:min/||||9550||r kWm N n P M =⋅5、圆轴扭转切应力:pI T ρτρ⋅=;扭转强度条件:[]max max t T W ττ=≤6、圆轴扭转变形:p I G lT ⋅⋅=ϕ;扭转刚度条件:[]θπθ≤⋅=0max max 180p GI T7、极惯性矩:Dd,)1(32;32444=-==ααππD I D I p p 空心实心; 扭转截面系数:)1(16;16433αππ-==D W D W p p 空心实心8、梁弯曲正应力:z I yM ⋅=σ;弯曲正应力强度条件:[]σσ≤=zW M max max 9、惯性矩:1212;)1(64;6433444hb I bh I D I D I y z z z ==-==或矩形空心圆实心圆αππ 10、弯曲截面系数:66)1(32;3222433hb W bh W ;D W D W y z z z ==-==或矩形空心圆实心圆αππ11、拉压-弯曲组合变形强度条件:[]][,max max ,max max ,c zN c t z N t W M A F W M A F σσσσ≤-=≤+=12、圆轴弯扭组合变形强度条件:[][]σσσσ≤+=≤+=zr z r W T M W T M 22422375.0或13、压杆临界应力公式:欧拉公式()2222;cr cr EI EF L ππσλμ==;直线公式λσb a cr -= 14、柔度i l μλ=;惯性半径:AI i = 15、压杆的稳定条件:[]cr cr st st A Fn n F F σ==≥ 16、平面应力状态下斜截面应力的一般公式 cos 2sin 222sin 2cos 22x y x yαxy x y xy σσσσσσσαατατατα+-⎧=+-⎪⎪⎨-⎪=+⎪⎩- 2 -17、最大最小正应力:18、主平面方位计算公式:19、面内最大切应力: 20、20、三向应力状态最大切应力:21、胡克定律:21四大强度理论:max 13()2τσσ=-max min 2x y σσσσ+⎫=±⎬⎭132σσσ⎫=±⎬⎭()11231E εσμσσ=-+⎡⎤⎣⎦()22311E εσμσσ=-+⎡⎤⎣⎦()33121Eεσμσσ=-+⎡⎤⎣⎦,11[]r σσσ=≤,313[]r σσσσ=-≤,2123()[]r σσμσσσ=-+≤,4[]r σσ=≤。
材料力学公式完全版
材料力学公式完全版材料力学是研究材料内部力学性能的一门学科。
它是工程学中的一个重要分支,广泛应用于机械、土木、航空航天等领域。
在材料力学中,有一些重要的公式和方程式,下面是材料力学公式的完全版,共包含了应力、应变、变形、强度和刚度等方面的内容。
1.应力方面应力(σ):表示单位面积上的内力。
常用的单位是Pa(帕斯卡)。
σ=F/A其中,F为受力,A为受力面积。
2.应变方面线性弹性应变(ε):表示材料由于受力而发生的形变。
ε=ΔL/L其中,ΔL为长度变化,L为初始长度。
3.变形方面胀缩变形(ΔL):表示材料由于受热导致的体积变化。
ΔL=α×L×ΔT其中,α为热膨胀系数,ΔT为温度变化。
4.应力-应变关系钢材的Hooke定律:描述材料的线性弹性行为。
σ=E×ε其中,E为弹性模量。
5.弯曲方面梁的弯曲应变(ε):表示材料在弯曲时发生的形变。
ε=M/(E×I)其中,M为弯矩,E为弹性模量,I为截面转动惯量。
6.胀缩方面热膨胀(ΔL):表示材料在受热时的线膨胀。
ΔL=α×L×ΔT其中,α为热膨胀系数,L为初始长度,ΔT为温度变化。
7.强度方面拉伸强度(σt):表示材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
8.刚度方面弹性模量(E):表示材料在受力后发生弹性变形的能力。
E=σ/ε其中,σ为应力,ε为应变。
9.复合材料方面拉伸强度(σt):表示复合材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
10.断裂方面断裂强度(σf):表示材料在断裂前能承受的最大应力。
σf=F/A其中,F为断裂力,A为受力面积。
11.龙骨方面龙骨截面面积(A):表示材料的截面面积。
A=b×h其中,b为龙骨宽度,h为龙骨高度。
12.塑性方面屈服强度(σy):表示材料开始产生塑性变形的最大应力。
σy=F/A其中,F为受力,A为受力面积。
材料力学公式大全
材料力学公式大全1. 应力(stress)公式:应力是单位面积上的力,常用符号表示为σ。
在一维情况下,应力公式可以表示为:σ=F/A其中,σ是应力,F是作用力,A是力作用的面积。
2. 应变(strain)公式:应变是用于描述物体形变的量,常用符号表示为ε。
在一维情况下,应变公式可以表示为:ε=ΔL/L0其中,ε是应变,ΔL是变形长度,L0是原始长度。
3. 弹性模量(elastic modulus)公式:弹性模量是衡量材料对外力作用下变形能力的指标,常用符号表示为E。
在一维情况下,弹性模量公式可以表示为:E=σ/ε其中,E是弹性模量,σ是应力,ε是应变。
4. 屈服强度(yield strength)公式:屈服强度是材料在变形过程中开始发生塑性变形的临界应力,常用符号表示为σy。
屈服强度公式可以表示为:σy=Fy/A其中,σy是屈服强度,Fy是屈服点的作用力,A是力作用的面积。
5. 拉伸强度(tensile strength)公式:拉伸强度是材料在拉伸过程中最大的抗拉应力,常用符号表示为σts。
拉伸强度公式可以表示为:σts = Fmax / A其中,σts是拉伸强度,Fmax是最大作用力,A是力作用的面积。
6. 断裂强度(fracture strength)公式:断裂强度是材料在破坏前的最大抗拉应力,常用符号表示为σf。
断裂强度公式可以表示为:σf=Ff/A其中,σf是断裂强度,Ff是破坏点的作用力,A是力作用的面积。
以上是一些常用的材料力学公式,这些公式在材料力学的研究和实际应用中有着重要的作用。
通过对这些公式的使用和理解,我们可以更好地了解材料在受力下的性能和行为,对于材料的设计和实际应用有着重要的指导意义。
材料力学基本公式
材料力学基本公式(1)外力偶矩计算公式(P功率,n转速)(2)弯矩、剪力和荷载集度之间的关系式(3)轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力,横截面面积A,拉应力为正)(4)轴向拉压杆斜截面上的正应力与切应力计算公式(夹角α从x轴正方向逆时针转至外法线的方位角为正)(5)纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)(6)纵向线应变和横向线应变,(7)泊松比(8)胡克定律(9)受多个力作用的杆件纵向变形计算公式(10)承受轴向分布力或变截面的杆件,纵向变形计算公式(11)轴向拉压杆的强度计算公式(12)延伸率(13)截面收缩率(14)剪切胡克定律(切变模量G,切应变g )(15)拉压弹性模量E、泊松比和切变模量G之间关系式(16)圆截面对圆心的极惯性矩()(17)圆轴扭转时横截面上任一点切应力计算公式(扭矩,所求点到圆心距离)(18)圆截面周边各点处最大切应力计算公式(19)扭转截面系数,(a)实心圆(b)空心圆(20)圆轴扭转角与扭矩、杆长l、扭转刚度的关系式(21)等直圆轴强度条件(22)扭转圆轴的刚度条件:或(23)平面应力状态下斜截面应力的一般公式(24)平面应力状态的三个主应力(25)主平面方位的计算公式(26)平面内剪应力最大值和最小值(27)三向应力状态最大与最小正应力,(28)三向应力状态最大切应力(29)广义胡克定律(30)四种强度理论的相当应力(31)一种常见的应力状态的强度条件,(32)组合图形的形心坐标计算公式, ,(33)平面图形对x轴,y轴,z轴的静矩, ,(34)任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式(35)截面图形对z轴和y轴的惯性半径,(36)矩形、圆形、空心圆形对中性轴的惯性矩, ,(37)平行移轴公式(形心轴zc与平行轴z1的距离为a,图形面积为A)(38)纯弯曲梁的正应力计算公式(39)矩形、圆形、空心圆形的弯曲截面系数,,(40)几种常见截面的最大弯曲切应力计算公式(为横截面上的剪力;b为截面宽度;为整个横截面对中性轴的惯性矩;为截面上距中性轴为y的横线以外部分截面对中性轴的静矩)(41)矩形截面梁最大弯曲切应力发生在中性轴处(42)弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,(43)梁的转角方程(M(x)为弯矩方程)(44)梁的挠曲线方程(45)斜弯曲:在任意界面上任一点(y,z)处的正应力(,分别为主惯性平面y,z 内的弯矩)(46)偏心拉伸(压缩)(47)弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式(M为弯矩,M x为扭矩)(48)圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为(49)弯拉扭或弯压扭组合作用时强度计算公式(50)剪切实用计算的强度条件(51)挤压实用计算的强度条件(52)等截面细长压杆在四种杆端约束情况下的临界力计算公式(欧拉公式)(53)压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.5(54)压杆的长细比或柔度计算公式,(55)细长压杆临界应力的欧拉公式(56)欧拉公式的适用范围(57)直线公式(58)直线公式最小柔度值(59)直线公式适用范围,的压杆称为短粗杆或小柔度杆,短粗杆的临界应力(60)超过比例极限时压杆的临界力(61)压杆稳定性计算的安全系数法。
《材料力学》公式汇总
(9.3)
虚功原理:
变形体平衡的充要条件是:
(9.4)
虚功方程:
变形体平衡的充要条件是:
(9.5)
(9.7)
桁架的莫尔定理:
(9.8)
变形能:
(内力功)
(9.9)
变形能:
(外力功)
(9.10)
外力功表示的变形能:
(9.11)
内力功表示的变形能:
(9.12)
卡氏第二定理:
当 时,材料发生脆性断裂破坏。
(6.2)
第二强度理论:最大伸长线应变理论。
当 时,材料发生脆性断裂破坏。
(6.3)
第三强度理论:最大剪应力理论。
当 时,材料发生剪切破坏。
(6.4)
第四强度理论:八面体面剪切理论。
当 时,材料发生剪切破坏。
(6.5)
第一强度理论的相当应力
(6.6)
第二强度理论的相当应力
截面上的剪应力
(5.3)
主平面方位角
( )
(5.4)
大主应力的计算公式
(5.5)
主应力的计算公式
(5.6)
单元体中的最大剪应力
(5.7)
主单元体的八面体面上的剪应力
(5.8)
面上的线应变
(5.9)
面与 + 面之间的角应变
(5.10)
主应变方向公式
(5.11)
大主应变
(5.12)
小主应变
(5.13)
的替代公式
安全系数法校核压杆的稳定公式
(8.8)
折减系数法校核压杆的稳定性
—折减系数
,小于1
10动荷载
序号
公式名称
公式
符号说明
材料力学的基本计算定律公式
材料力学的基本计算定律公式材料力学是研究材料在外力作用下的力学性质和变形规律的科学,其中包含了许多基本的计算定律和公式。
以下是材料力学中一些重要的计算定律和公式。
1. 胡克定律(Hooke's Law):胡克定律是描述弹性固体在小变形范围内的应力-应变关系的一种基本定律。
根据胡克定律,弹性固体在弹性变形时应变与应力是线性相关的。
数学表达式为:σ=Eε其中,σ是材料的应力,E是材料的弹性模量,ε是材料的应变。
2.应力-应变关系:除了胡克定律之外,还有一些其他的应力-应变关系,如材料的压缩应力-应变关系、材料的剪切应力-应变关系等。
这些关系可以用不同的数学公式表示,例如材料的体积弹性模量、剪切弹性模量、泊松比等参数。
3.应力:应力是指单位面积内的力,通常用σ表示。
常见的应力有拉应力、压应力和剪应力等。
数学表达式为:σ=F/A其中,F是作用在材料上的力,A是力作用的面积。
4.应变:应变是材料单位长度变化的量,可表示为物体的变形程度。
应变分为线性应变和非线性应变两种情况。
线性应变通常用ε表示。
数学表达式为:ε=δL/L其中,δL是材料长度的变化量,L是材料的初始长度。
5.材料的延性和脆性:材料的延性和脆性是表示材料的破坏形式的两个概念。
延性材料在受力作用下会发生一定程度的塑性变形,能够吸收较大的能量,如钢材。
脆性材料在受力作用下会发生突然的断裂,能量吸收能力较差,如陶瓷材料。
6.餘弦定律:余弦定律是描述力的分解情况的定律之一,适用于平面力系统。
根据余弦定律,力的合力可以通过分解成两个分力在水平和垂直方向上来计算。
数学表达式为:F² = F₁² + F₂² - 2F₁F₂cosθ其中,F₁和F₂是力的分力,θ是两个力之间的夹角。
7.力的平衡:力的平衡是指在静止状态下,物体上的合力和合力矩均为零的状态。
根据力的平衡,我们可以得到一些重要的公式,如受力条件和杆件的力平衡等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆轴扭转时的应力变形几何关系一圆轴扭转的平面假设
G G
dx
dA
d
dx
G「A
max
—R亠;圆轴扭转的强度条件:
1P
Wt
max
匸
E,这就是胡克定律。E
O物理关系——胡克定律
2dA圆轴扭转时的应力:
,可以进行强度校核、截面设计和确
定许可载荷。
圆轴扭转时的变形:
i
等直杆:
TI
GI
圆轴扭转时的刚度条件
dx
GI
max
Tmax
GI
弯曲内力与分布载荷q之间的微分关系
dQ(x)
q(x);dM
x
dx
Qx
dQ x
ITqx
Q、M图与外力间的关系 梁在某一段内无载荷作用,剪力图为一水平直线, 梁在某一段内作用均匀载荷,剪力图为一斜直线,
在梁的某一截面。dM xQ x 0,剪力等于零,弯矩有一最大值或最小值。
杆件变形的基本形式(1)拉伸或压缩;(2)剪切;(3)扭转;
静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷 变化的载荷为动载荷。
(4)弯曲;(5)组合变形。 动载荷:载荷和速度随时间急剧
失效原因:脆性材料在其强度极限b破坏,塑性材料在其屈服极限
s时失效。二者统称为极限应
力理想情形。塑性材料、脆性材料的许用应力分别为:
n3
nb,强度条件:
max
Nmax
Amax
,等截面杆
轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:
|
,沿轴线方向的应变和横截面上
的应力分别为:
N-O横向应变为:
A A
b b
bi
b
——,横向应变与轴向应变的
b
关系为:
胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即
1皿
EA
静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部 未知力。
dx
由集中力作用截面的左侧和右侧,剪力
a)
b)
C)
d)
个转折点。
梁的正应力和剪应力强度条件
max
弯矩图为一斜直线。 弯矩图为一抛物线。
Q有一突然变化,弯矩图的斜率也发生突然变化形成一
Mmax
W
max
材料力学重点及其公式
(1)强度要求;(2)刚度要求;(3)稳定性要求。
(1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 表面力、体积力;静载荷、动载荷。
材料力学的任务
变形固体的基本假设
外力分类:
内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引 起的附加相互作用力
截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保 留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。
平衡条件,列平衡方程,求解截面上和内力。
p|im上 兰 正应力、切应力。
lim0A dA
(变、切
应变。