小学四年级奥数 简单抽屉原理与最不利原则(一)
抽屉原理与最不利原则学生版
抽屉原理与最不利原则学生版一、抽屉原理:抽屉原理也称为鸽巢原理,是一种用来证明或解决一些问题的方法。
它的基本思想是:如果n+1个物体分到n个盒子中,那么至少有一个盒子中会有两个或更多的物体。
在学生生活中,我们可以用抽屉原理来解决一些有关分类和分组的问题。
比如说,假设我们有7个苹果,要把它们放进5个相同大小的篮子中。
根据抽屉原理,至少有一个篮子中会有两个或更多的苹果。
因为如果每个篮子中最多只能放一个苹果,那么最多只能放进5个苹果,无法满足7个苹果的要求。
除了物体的数目和盒子的数量,抽屉原理还可以用来解决其他类型的问题。
比如说,如果我们有8个球,每个球只能涂成红色或蓝色,并且要求有至少3个球的颜色相同。
根据抽屉原理,我们可以将这8个球分成两组,至少有一组有3个球的颜色相同。
总之,抽屉原理告诉我们,在一些情况下,我们可以利用物体和盒子的数量来判断是否存在其中一种情况或解决一些问题。
二、最不利原则:最不利原则也称为最坏情况原则,是一种在决策或解决问题时常常采用的方法。
它的基本思想是:在做出决策或解决问题时,我们应该假设最坏的情况会发生,然后选择对这种情况最有利的方法或策略。
在学生生活中,最不利原则可以帮助我们制定合理的学习计划。
比如说,假设我们要在一周内准备3门考试,每门考试的内容都很多。
根据最不利原则,我们应该预估最坏的情况是每门考试内容都很难,然后制定学习计划,确保在考试前充分复习每门课程。
除了学习计划,最不利原则还可以应用在其他方面的决策中。
比如说,我们要出去玩,但是天气预报说可能会下雨。
根据最不利原则,我们应该假设最坏的情况是会下雨,然后带上雨伞或选择室内活动,以免被雨水淋湿。
总之,最不利原则教会我们在面对各种决策或问题时,要充分考虑最坏的情况,并选择最有利的方法来解决问题或应对情况。
抽屉原理与最不利原则(4年级培优)学生版
原理1 把多于n 个的物体放到n 个抽屉中,则至少有一个抽屉中有2个或2个以上的物体。
原理2 把多于mn (m 乘以n )个的物体放到n 个抽屉中,则至少有一个抽屉中有1+m 个或多于1+m 个的物体。
✧ 构造“抽屉”、找出“物体”及物体的放法是应用抽屉原理解决问题的关键。
常见的构造抽屉的方法有:数的分组法;剩余类法;图形分割法;染色法。
✧ 当问题中出现“保证”二字,就要求我们必须利用“最不利”原则情况分析问题。
最不利原则就是从“极端倒霉”的情况考虑问题,将所有不利的情况都考虑进来。
我们可以用如下方法,解决简单抽屉原理的问题:将n 个物品放到m 个抽屉中,如果a m n =÷,那么一定有一个抽屉中至少有a 个物品;如果b a m n =÷(0>b ),那么一定有一个抽屉中至少有1+a 个物品。
四年(1)班一共有42名学生,那么一定有至少几名学生的属相相同?盒子中装有红、白、黑三种颜色的小球各20个,这些小球摸起来手感都一样。
14个小朋友闭着眼睛玩摸球游戏,每个小朋友一次只能摸出一个小球。
那么一次至少有几个小朋友摸出的小球颜色相同?有3个不同的自然数,至少有两个数的和是偶数,为什么?4个连续自然数分别被3除后,必有两个余数相同,为什么?布袋中有60块大小、形状都相同的木块,每15块涂上相同的颜色,一次至少取出多少块才能保证其中至少有3块颜色相同?一副扑克牌一共有54张,至少从中取出多少张才能保证:(1)至少有4张牌的花色相同;(2)4种花色的牌都有;(3)至少有4张牌是黑桃。
2012名冬令营营员去游览长城、颐和园、天坛,规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全相同?某班组织全班45人进行体育比赛,项目有A、B、C三种,规定每人至少参加一项,最多参加三项,至少有几人参加的项目是相同的?从1、2、3、…,2011这些自然数中,最多可以取出多少个数,使得其中每两个数的差不等于4?从1至2011这2011个自然数中最多能取出多少个数,使得其中任意的两个数都不连续且差不等于4?某班有16名学生,每个月教师把学生分成两个小组。
小学奥数专题—抽屉原理(一)
⼩学奥数专题—抽屉原理(⼀)⼩学奥数专题—抽屉原理(⼀)[专题介绍] 把4只苹果放到3个抽屉⾥去,共有4种放法(请⼩朋友们⾃⼰列举),不论如何放,必有⼀个抽屉⾥⾄少放进两个苹果。
同样,把5只苹果放到4个抽屉⾥去,必有⼀个抽屉⾥⾄少放进两个苹果。
……更进⼀步,我们能够得出这样的结论:把n+1只苹果放到n个抽屉⾥去,那么必定有⼀个抽屉⾥⾄少放进两个苹果。
这个结论,通常被称为抽屉原理。
利⽤抽屉原理,可以说明(证明)许多有趣的现象或结论。
不过,抽屉原理不是拿来就能⽤的,关键是要应⽤所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。
[经典例题]【例1】⼀个⼩组共有13名同学,其中⾄少有2名同学同⼀个⽉过⽣⽇。
为什么?【分析与解答】每年⾥共有12个⽉,任何⼀个⼈的⽣⽇,⼀定在其中的某⼀个⽉。
如果把这12个⽉看成12个“抽屉”,把13名同学的⽣⽇看成13只“苹果”,把13只苹果放进12个抽屉⾥,⼀定有⼀个抽屉⾥⾄少放2个苹果,也就是说,⾄少有2名同学在同⼀个⽉过⽣⽇。
【例 2】任意4个⾃然数,其中⾄少有两个数的差是3的倍数。
这是为什么?【分析与解答】⾸先我们要弄清这样⼀条规律:如果两个⾃然数除以3的余数相同,那么这两个⾃然数的差是3的倍数。
⽽任何⼀个⾃然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把⾃然数分成3类,这3种类型就是我们要制造的3个“抽屉”。
我们把4个数看作“苹果”,根据抽屉原理,必定有⼀个抽屉⾥⾄少有2个数。
换句话说,4个⾃然数分成3类,⾄少有两个是同⼀类。
既然是同⼀类,那么这两个数被3除的余数就⼀定相同。
所以,任意4个⾃然数,⾄少有2个⾃然数的差是3的倍数。
想⼀想,例2中4改为7,3改为6,结论成⽴吗?【例3】有规格尺⼨相同的5种颜⾊的袜⼦各15只混装在箱内,试问不论如何取,从箱中⾄少取出多少只就能保证有3双袜⼦(袜⼦⽆左、右之分)?【分析与解答】试想⼀下,从箱中取出6只、9只袜⼦,能配成3双袜⼦吗?回答是否定的。
1 抽屉原理(组合初步)四年级
抽屉原理理解抽屉原理的基本含义,并能利用抽屉原理对一些简单问题进行说明,在考虑某些问题时,需要利用最不利原则进行分析.典型问题兴趣篇1. 学校周末要组织四个班的同学去春游,有三个地点可供选择:石景山游乐园、植物园和动物园,如果一个班只能去一个地点,试说明:一定有两个班要去同一个地点.答案:一定有两个班去同一个地点。
解析:4÷3=1 (1)4个苹果放入3个抽屉里,至少有两个苹果在同一个抽屉里。
2. 小悦,冬冬和阿奇到费步步家玩,费叔叔拿出许多巧克力来招待他们,他们一数,共有19块巧克力,如果把这些巧克力分给他们三人,试说明:一定有人至少拿到7块巧克力,但不一定有人拿到8块.答案:19÷3=6 (1)解析:19个苹果放入三个抽屉里,至少7个苹果放入同一个抽屉里,所以每人至少拿7个苹果。
3. 任意40个人中,至少有几个人属于同一生肖?答案:40÷12=3 (4)解析:40个苹果放入12个抽屉里,至少有4个苹果放入同一个抽屉里。
4. 有红、黄、蓝、绿四种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多,一次至少要取几颗珠子,才能保证其中一定有两颗颜色相同?答案:5个解析:最不利原则,至少拿5个才能保证其中一定有2颗颜色相同。
5. 某校的小学生中,年龄最小的6岁,最大的13岁,从这个学校中至少选几个学生,就能保证其中一定有三个学生的年龄相同?答案:17个解析:最不利原则,13-6+1=8(人)8×2+1=17(个)6. 有红、黄、蓝、绿四种颜色的铅笔各10支,拿的时候不许看铅笔的颜色,那么一次至少要拿多少支,才能保证其中一定有4支是同一种颜色的铅笔?答案:13支解析:最不利原则,3×4+1=13(支)7. 口袋里装有红、黄、蓝、绿这4种颜色的球,且每种颜色的球都有4个,小华闭着眼睛从口袋里往外摸球,那么他至少要摸出多少个球,才能保证摸出的球中每种颜色的球都有?答案:13个解析:最不利原则,3×4+1=13(个)8. 一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张,那么:(1)至少从中摸出多少张牌,才能保证在摸出的牌中有黑桃?(2)至少从中摸出多少张牌,才能保证至少有3张牌是红桃?(3)至少从中摸出多少张牌,才能保证有5张牌是同一花色的?(1)答案:42张。
四年级奥数抽屉原理
抽屉原理知识框架一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.例题精讲一、直接利用公式进行解题【例 1】 数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【考点】抽屉原理 【难度】1星 【题型】解答【解析】 略.【答案】属相共12个,把12个属相作为12个“抽屉”,13个同学按照自己的属相选择相应的“抽屉”,根据抽屉原理,一定有一个“抽屉”中有两个或两个以上同学,也就是说至少有两个同学属相一样【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】一年最多有366天,把366天看作366个“抽屉”,将367名学生看作367个“苹果”.这样,把367个苹果放进366个抽屉里,至少有一个抽屉里不止放一个苹果.这就说明,至少有2名同学的生日相同【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】一年最多有366天,可看做366个抽屉,730个学生看做730个苹果.因为7303661364÷=,所以,至少有1+1=2(个)学生的生日是同一天【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】五种颜色最多只能涂5个不同颜色的面,因为正方体有6个面,还有一个面要选择这五种颜色中的任意一种来涂,不管这个面涂成哪种颜色,都会和前面有一个面颜色相同,这样就有两个面会被涂上相同的颜色.也可以把五种颜色作为5个“抽屉”,六个面作为六个物品,当把六个面随意放入五个抽屉时,根据抽屉原理,一定有一个抽屉中有两个或两个以上的面,也就是至少会有两个面涂色相同【例 3】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【考点】抽屉原理【难度】3星【题型】解答【解析】略.【答案】假设共有n个小朋友到公园游玩,我们把他们看作n个“苹果”,再把每个小朋友遇到的熟人数目看作“抽屉”,那么,n个小朋友每人遇到的熟人数目共有以下n种可能:0,1,2,……,1n-.其中0的意思是指这位小朋友没有遇到熟人;而每位小朋友最多遇见1n-个熟人,所以共有n个“抽屉”.下面分两种情况来讨论:⑴如果在这n个小朋友中,有一些小朋友没有遇到任何熟人,这时其他小朋友最多只能遇上2n-个熟人,这样熟人数目只有1n-种n-种可能:0,1,2,……,2n-.这样,“苹果”数(n个小朋友)超过“抽屉”数(1熟人数目),根据抽屉原理,至少有两个小朋友,他们遇到的熟人数目相等.⑵如果在这n个小朋友中,每位小朋友都至少遇到一个熟人,这样熟人数目只有1n-种可能:1,2,3,……,n-种熟人数目),根据抽屉原理,至少有两个小朋1n-.这时,“苹果”数(n个小朋友)仍然超过“抽屉”数(1友,他们遇到的熟人数目相等.总之,不管这n个小朋友各遇到多少熟人(包括没遇到熟人),必有两个小朋友遇到的熟人数目相等【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.【考点】抽屉原理【难度】3星【题型】解答【解析】略.【答案】数学小组共有20名同学,因此每个同学最多有19个朋友;又由于他们都有朋友,所以每个同学至少有1个朋友.因此,这20名同学中,每个同学的朋友数只有19种可能:1,2,3,……,19.把这20名同学看作20个“苹果”,又把同学的朋友数目看作19个“抽屉”,根据抽屉原理,至少有2名同学,他们的朋友人数一样多【例 4】证明:任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数.【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】两位数除以11的余数有11种:0,1,2,3,4,5,6,7,8,9,10,按余数情况把所有两位数分成11种.12个不同的两位数放入11个抽屉,必定有至少2个数在同一个抽屉里,这2个数除以11的余数相同,两者的差一定能整除11.两个不同的两位数,差能被11整除,这个差也一定是两位数(如11,22……),并且个位与十位相同.所以,任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数【巩固】从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.【考点】抽屉原理【难度】3星【题型】解答【解析】略.【答案】我们用题目中的15个偶数制造8个抽屉,(2),(4,30),(6,28),…,(16,18),凡是抽屉中的有两个数,都具有一个共同的特点:这两个数的和是34.现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34【例 5】把125本书分给五⑵班的学生,如果其中至少有一个人分到至少4本书,那么,这个班最多有多少人?【考点】抽屉原理【难度】2星【题型】解答【解析】 本题需要求抽屉的数量,需要反用抽屉原理和最“坏”情况的结合,最坏的情况是只有1个人分到4本书,而其他同学都只分到3本书,则()12543401-÷=,因此这个班最多有:40141+=(人)(处理余数很关键,如果有42人则不能保证至少有一个人分到4本书).【答案】41【巩固】 某次选拔考试,共有1123名同学参加,小明说:“至少有10名同学来自同一个学校.”如果他的说法是正确的,那么最多有多少个学校参加了这次入学考试?【考点】抽屉原理 【难度】2星 【题型】解答【解析】 本题需要求抽屉的数量,反用抽屉原理和最“坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,则()11231091236-÷=,因此最多有:1231124+=个学校(处理余数很关键,如果有125个学校则不能保证至少有10名同学来自同一个学校)【答案】124【例 6】 班上有50名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?【考点】抽屉原理 【难度】2星 【题型】解答【解析】 把50名小朋友当作50个“抽屉”,书作为物品.把书放在50个抽屉中,要想保证至少有一个抽屉中有两本书,根据抽屉原理,书的数目必须大于50,而大于50的最小整数是50151+=,所以至少要拿51本书.【答案】51本书【巩固】 三年级二班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书?【考点】抽屉原理 【难度】2星 【题型】解答【解析】 把43名同学看作43个抽屉,根据抽屉原理,要使至少有一个抽屉里有两个苹果,那么就要使苹果的个数大于抽屉的数量.因此,“图书角”至少要准备44本课外书.【答案】44本课外书二、构造抽屉【例 7】 在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】从三种颜色的球中挑选两个球,可能情况只有下面6种:红、红;黄、黄;蓝、蓝;红、黄;红、蓝;黄、蓝,我们把6种搭配方式当作6个“抽屉”,把7个小朋友当作7个“苹果”,根据抽屉原理,至少有两个“苹果”要放进一个“抽屉”中,也就是说,至少有两个人挑选的颜色完全一样【巩固】在一只口袋中有红色与黄色球各4只,现有4个小朋友,每人从口袋中任意取出2个小球,请你证明:必有两个小朋友,他们取出的两个球的颜色完全一样.【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】小朋友从口袋中取出的两个球的颜色的组成只有以下3种可能:红红、黄黄、红黄,把这3种情况看作3个“抽屉”,把4位小朋友看作4只“苹果”,根据抽屉原理,必有两个小朋友取出的两个球的颜色完全一样【例 8】幼儿园买来许多牛、马、羊、狗塑料玩具,每个小朋友任意选择两件,但不能是同样的,问:至少有多少个小朋友去拿,才能保证有两人所拿玩具相同?【考点】抽屉原理【难度】2星【题型】解答【解析】从四种玩具中挑选不同的两件,所有的搭配有以下6组:牛、马;牛、羊;牛、狗;马、羊;马、狗;羊、狗.把每一组搭配看作一个“抽屉”,共6个抽屉.根据抽屉原理,至少要有7个小朋友去拿,才能保证有两人所拿玩具相同.【答案】7个【巩固】体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?【考点】抽屉原理【难度】2星【题型】解答【解析】以拿球配组的方式为抽屉,每人拿一个或两个球,所以抽屉有:足、排、篮、足足、排排、篮篮、足排、足篮、排篮共9种情况,即有9个抽屉,则:66973÷=,718+=,即至少有8名同学所拿球的种类是一样的.【答案】8名三、最不利原则【例 9】黑、白、黄三种颜色的筷子各有很多根,在黑暗处至少拿出几根筷子就能保证有一双是相同颜色的筷子?【考点】抽屉原理【难度】3星【题型】解答【解析】问题问的是要有一双相同颜色的筷子.把黑、白、黄三种颜色的筷子当作3个抽屉,根据抽屉原理,至少有4根筷子,才能使其中一个抽屉里至少有两根筷子.所以,至少拿4根筷子,才能保证有一双是相同颜色的筷子.最“倒霉”原则:它们每样各取一根,都凑不成双.教师可以拿其他东西做类似练习.【答案】至少拿4根筷子【巩固】一个口袋中装有500粒珠子,共有5种颜色,每种颜色各100粒。
小学奥数--抽屉原理
⼩学奥数--抽屉原理⼩学奥数--抽屉原理抽屉原理(⼀)解题要点:要从最不利情况考虑,准确地建⽴抽屉和确定元素的总个数(如果将5个苹果放到3个抽屉中去,那么不管怎么放,⾄少有⼀个抽屉中放的苹果不少于2个。
道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相⽭盾,因此⾄少有⼀个抽屉中放的苹果不少于2个。
同样,有5只鸽⼦飞进4个鸽笼⾥,那么⼀定有⼀个鸽笼⾄少飞进了2只鸽⼦。
以上两个简单的例⼦所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。
抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么⾄少有⼀个抽屉中的物品不少于2件。
说明这个原理是不难的。
假定这n个抽屉中,每⼀个抽屉内的物品都不到2件,那么每⼀个抽屉中的物品或者是⼀件,或者没有。
这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相⽭盾,所以前⾯假定“这n 个抽屉中,每⼀个抽屉内的物品都不到2件”不能成⽴,从⽽抽屉原理1成⽴。
从最不利原则也可以说明抽屉原理1。
为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放⼊1件物品,共放⼊n 件物品,此时再放⼊1件物品,⽆论放⼊哪个抽屉,都⾄少有1个抽屉不少于2件物品。
这就说明了抽屉原理1。
例1 某幼⼉园有367名1996年出⽣的⼩朋友,是否有⽣⽇相同的⼩朋友,分析与解:1996年是闰年,这年应有366天。
把366天看作366个抽屉,将367名⼩朋友看作367个物品。
这样,把367个物品放进366个抽屉⾥,⾄少有⼀个抽屉⾥不⽌放⼀个物品。
因此⾄少有2名⼩朋友的⽣⽇相同。
例2在任意的四个⾃然数中,是否其中必有两个数,它们的差能被3整除, 分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。
我们将余数的这三种情形看成是三个“抽屉”。
⼀个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”⾥。
抽屉原理
金实教育2012—2013 学年度下学期四年级抽屉原理一、最不利原则点子最背的情况就是最少的情况(保证完成任务)例1、盒子里有5个蓝球,3个红球,7个黄球,①至少取几个,才能保证三种颜色的球都有?②至少取几个,才能保证有2个球的颜色相同?③至少取几个,才能保证有3个球的颜色相同?④至少取几个,才能保证一定有红色?练习:1、口袋中有红、黑、白、黄球各10个,它们的外型与重量都一样,至少要摸出几个球,才能保证有6个颜色相同的球?2、有6种颜色的小球各若干个,从中至少取多少个才能保证有5个球的颜色相同?3、布袋里有10块红木块、10块白木块、10块蓝木块,他们的形状、大小都一样。
当你被蒙上眼睛去容器中取出木块时,位确保取出的木块中至少有四块颜色相同,应该至少取出多少块?例2、黑、白、黄筷子各6根,①至少取几个,才能保证取出两双颜色不同的筷子?②至少取几个,才能保证取出两双颜色相同的筷子?③至少取几个,才能保证取出两双筷子(2根颜色相同位一双)?练习:1、有尺寸、规格相同的6种颜色的袜子各20只,混装在箱内,从箱内至少取出多少只袜子才能保证有3双袜子?2、黑色、白色、黄色的筷子各有8根,混杂着放在一起。
黑暗中想从这些筷子中取出颜色不同的两双筷子,至少要取多少根才能保证达到要求?3、口袋中放有红、黄、白、黑四种颜色的袜子各10只,只许用手摸,不许用眼看,至少要从口袋中摸出多少只袜子才能保证配成5双?(一双是指同颜色的袜子两只)例3、一副没有王的扑克牌,至少拿几张,保证有3张同花?例4、一副扑克牌有54张,至少取几张,保证有2张点数相同?练习:1、一副扑克牌,至少取几张,才能保证有5张同花?2、一副扑克牌,至少取几张,才能保证有3张点数相同?3、一副扑克牌(大王、小王除外)有四种花色,每种花色有13张,从中任意抽牌,最少要抽几张,才能保证有四张牌是同一张花色的?例5、在1、2、3、4、5、……48、49、50这50个数中至少取多少个,才能保证一定有5的倍数?练习:1、在1、2、3、4、5、……48、49、100这100个数中至少取多少个,才能保证一定有8的倍数?二、原理(重点是找抽屉)把m个物体放到n个抽屉里,至少有k个物体同屉(m≥n),则:K=例1、某校六年级有367人,请问至少有几人是同一天生日?练习:1、42只鸽子飞进5个笼子里,可以保证至少有一个笼子中可以有几只鸽子?2、某校有30名学生是2月份出生的,至少有几个同学的生日相同?3、15个小朋友中,至少有几个是在同一个月中出生的?例2、某运输公司有35辆载客汽车,最少的有16个座位,最多的有32个座位,至少有几辆车的座位数相同?例3、某校有500名同学,参加a、b、c三个小组,每人至少参加一个小组,至少有多少个人参加的组相同?练习:1、某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种,那么其中至少有多少名学生订的报刊种类完全相同?2、体育室里有许多足球、排球和篮球,四年级(1)班50名同学来拿球,规定每人至少拿1个球,至多拿2个球。
四年级奥数之简单抽屉原理与最不利原则(一)
把3个苹果放进
屉里定会怎样呢?
屉里一定会怎样呢?
结论:一定有一个抽屉里至少有2个苹果.
实例:现在将个苹果放入到9个抽屉中
结论:一定有一个抽屉里面至少有2个苹果.
年出生的学生,那么必定至少有几个同学的生日是
清晨,一只母鸡先向着太阳飞奔了一会儿. 然后回到草堆旁
一只母鸡先向着太阳飞奔了一会儿
右跑了一会儿,然后向左边的同伴跑去,它与左边的同伴在草堆里转了半圈
个蛋请问蛋是朝着什么方向落下的?
后,忽然下了一个蛋. 请问:蛋是朝着什么方向落下的?
抽屉原理Ⅱ:
把m个苹果放入
1.如果m÷n没有余数,那么就一定有抽屉至少放了“
如果有余数,那
2.如果m÷n有余数,那么就一定有抽屉至少放了“
苹果.
抽屉原理Ⅱ:
原(实例
1.如果把8个苹果放到
2.如果把9个苹果放到
如果把
3.如果把10个苹果放到
果.
个抽屉中,一定有一个抽屉里面至少有
,尽量平均分,结果是必有
.抽屉原理本质:“至少”,尽量平均分,结果是必有一个抽屉里的苹果不
某件事情的可能性
__________________________________________________________________.
_________________________________________________________________.。
抽屉原理与最不利原则
第十五讲抽屉原理与最不利原则
一、抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。
原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
原理2: 把多于m×n+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。
原理3: 把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
注意以下几点:
1、抽屉原理讨论的是苹果的数目与抽屉数目之间的关系,要求苹果数大于抽屉数;
2、抽屉原理用来解决存在性的问题,“必有一个”就是必然存在的意思;存在就行,不关心满足要求的抽屉到底是哪个、有多少个;常见的提示语“保证至少有一个”
3、解决问题的关键在于分辨苹果与抽屉,经常需要构造抽屉。
二、最不利原则
最不利原则,即从最坏的情况出发分析问题,如果在最坏的情况下都能满足题目要求,那么所有情况都能保证满足题目要求。
抽屉原理与最不利原则(4年级培优)教师版
原理1 把多于n 个的物体放到n 个抽屉中,则至少有一个抽屉中有2个或2个以上的物体。
原理2 把多于mn (m 乘以n )个的物体放到n 个抽屉中,则至少有一个抽屉中有1+m 个或多于1+m 个的物体。
✧ 构造“抽屉”、找出“物体”及物体的放法是应用抽屉原理解决问题的关键。
常见的构造抽屉的方法有:数的分组法;剩余类法;图形分割法;染色法。
✧ 当问题中出现“保证”二字,就要求我们必须利用“最不利”原则情况分析问题。
最不利原则就是从“极端倒霉”的情况考虑问题,将所有不利的情况都考虑进来。
我们可以用如下方法,解决简单抽屉原理的问题:将n 个物品放到m 个抽屉中,如果a m n =÷,那么一定有一个抽屉中至少有a 个物品;如果b a m n ΛΛ=÷(0>b ),那么一定有一个抽屉中至少有1+a 个物品。
四年(1)班一共有42名学生,那么一定有至少几名学生的属相相同?(五年级培优底稿)解:中国属相有12个,即有12个“抽屉”,42名学生为“物体”。
631242ΛΛ=÷,则至少有413=+(名)。
难度系数:A盒子中装有红、白、黑三种颜色的小球各20个,这些小球摸起来手感都一样。
14个小朋友闭着眼睛玩摸球游戏,每个小朋友一次只能摸出一个小球。
那么一次至少有几个小朋友摸出的小球颜色相同?(五年级培优底稿)解:4314=÷……2,则至少有514=+(个)。
难度系数:A有3个不同的自然数,至少有两个数的和是偶数,为什么?(思维潜能P83)解析:自然数只有奇数和偶数两种情况,所以3个不同的自然数必定有两个同样是奇数或同样是偶数。
因为“奇数+奇数=偶数”,“偶数+偶数=偶数”,所以至少有两个数的和是偶数。
答案:因为:奇数+奇数=偶数,偶数+偶数=偶数。
3个不同自然数中至少有两个同是奇数或同是偶数。
所以至少有两个数的和是偶数。
难度系数:A4个连续自然数分别被3除后,必有两个余数相同,为什么?(思维潜能P83)解析:一个自然数除以3,余数只有三种情况0、1、2。
小学奥数抽屉原理与最不利原则专题练习
抽屉原理与最不利原则专题练习(1)
(1),有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
(2),六(2)班有学生46人,每人用数字1,2,3任意写一个没有重复数字的三位数,那么至少有几人人写的数是相同的。
(3),一个绘画班,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。
(4),给正方体的六个面图上不同的三种颜色,不论怎么涂,至少有几个面的颜色相同。
(5),某班学生去买数学书、语文书、美术书。
买书的情况是:有买一本的,有买两本的,也有买三本的。
至少要去几位学生才能保证一定有两位学生买到的书相同。
(6),一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?
(7),口袋里有三种颜色的筷子各10根:
(1)至少取几根才能保证三种颜色的筷子都取到?
(2)至少取几根才能保证有两双颜色相同的筷子?
(3)至少取几根才能保证有两双颜色不同的筷子?。
小学四年级奥数竞赛班作业第21讲:简单抽屉原理与最不利原则(一)
方、黑桃、黑梅.每种牌都有1 点,2 点,…,13 点牌各一张).洗好后背面向上放好,
⑴一次至少抽取
张牌,才能保证其中必定有 2 张牌的点数和颜色都相同.(2)
如果要求一次抽出的牌中必定有 3 张牌的点数是相邻的(不计颜色),那么至少要取
张牌。
四.杯赛演练:
15. (第八届《小数报》数学竞赛决赛)将全体自然数按照它们个位数字可分为 10 类:个 位数字是 1 的为第 1 类,个位数字是 2 的为第 2 类,…,个位数字是 9 的为第 9 类,个 位数字是 0 的为第 10 类.(1)任意取出 6 个互不同类的自然数,其中一定有 2 个数的 和是 10 的倍数吗?(2)任意取出 7 个互不同类的自然数,其中一定有 2 个数的和是 10 的倍数吗?如果一定,请煎药说明理由;如果不一定,请举出一个反例.
4. 把 50 名小朋友当作 50 个“抽屉”,书作为物品.把书放在 50 个抽屉中,要想保证至少 有一个抽屉中有两本书,根据抽屉原理,书的数目必须大于 50 ,而大于 50 的最小整数 是 50 1 51,所以至少要拿 51本书.
5. 问题问的是要有一双相同颜色的筷子.把黑、白、黄三种颜色的筷子当作 3 个抽屉,根 据抽屉原理,至少有 4 根筷子,才能使其中一个抽屉里至少有两根筷子.所以,至少拿 4 根筷子,才能保证有一双是相同颜色的筷子.最“倒霉”原则:它们每样各取一根, 都凑不成双.
高思导引--四年级第八讲-抽屉原理一教师版
第8讲抽屉原理一内容概述理解抽屉原理的基本含义,并能利用抽屉原理对一些简单问题进行说明,在考虑某些问题时,需要利用最不利原则进行分析.典型问题兴趣篇1. 学校周末要组织四个班的同学去春游,有三个地点可供选择:石景山游乐园、植物园和动物园,如果一个班只能去一个地点,试说明:一定有两个班要去同一个地点.答案:一定有两个班去同一个地点。
解析:4÷3=1 (1)4个苹果放入3个抽屉里,至少有两个苹果在同一个抽屉里。
2. 小悦,冬冬和阿奇到费步步家玩,费叔叔拿出许多巧克力来招待他们,他们一数,共有19块巧克力,如果把这些巧克力分给他们三人,试说明:一定有人至少拿到7块巧克力,但不一定有人拿到8块.答案:19÷3=6 (1)解析:19个苹果放入三个抽屉里,至少7个苹果放入同一个抽屉里,所以每人至少拿7个苹果。
3. 任意40个人中,至少有几个人属于同一生肖?答案:40÷12=3 (4)解析:40个苹果放入12个抽屉里,至少有4个苹果放入同一个抽屉里。
4. 有红、黄、蓝、绿四种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多,一次至少要取几颗珠子,才能保证其中一定有两颗颜色相同?答案:5个解析:最不利原则,至少拿5个才能保证其中一定有2颗颜色相同。
5. 某校的小学生中,年龄最小的6岁,最大的13岁,从这个学校中至少选几个学生,就能保证其中一定有三个学生的年龄相同?答案:17个解析:最不利原则,13-6+1=8(人)8×2+1=17(个)6. 有红、黄、蓝、绿四种颜色的铅笔各10支,拿的时候不许看铅笔的颜色,那么一次至少要拿多少支,才能保证其中一定有4支是同一种颜色的铅笔?答案:13支解析:最不利原则,3×4+1=13(支)7. 口袋里装有红、黄、蓝、绿这4种颜色的球,且每种颜色的球都有4个,小华闭着眼睛从口袋里往外摸球,那么他至少要摸出多少个球,才能保证摸出的球中每种颜色的球都有?答案:13个解析:最不利原则,3×4+1=13(个)8. 一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张,那么:(1)至少从中摸出多少张牌,才能保证在摸出的牌中有黑桃?(2)至少从中摸出多少张牌,才能保证至少有3张牌是红桃?(3)至少从中摸出多少张牌,才能保证有5张牌是同一花色的?(1)答案:42张。
小学四年级奥数抽屉原理【三篇】
【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是为⼤家整理的《⼩学四年级奥数抽屉原理【三篇】》供您查阅。
【第⼀篇:构造抽屉】构造抽屉最关键的在于找到题⽬中的苹果和抽屉,并确定它们的数量。
对于四年级孩⼦,我们只要求能解决⼀些简单的问题。
例:幼⼉园新购了熊猫、⼤象、长颈⿅3种玩具分给7个⼩朋友,每种玩具都有很多,每个⼩朋友可以选择两个玩具,可以相同也可以不同。
请证明肯定有两个⼩朋友选的玩具是相同的。
分析: 三种玩具选两个,因为可以相同,所以共有六种不同的选择⽅式:[(熊,熊)(象,象)(⿅,⿅)(熊,象)(熊,⿅)(象,⿅)]; 7个⼩朋友可看作7个苹果,6种选择⽅式看作6个抽屉, 7÷6=1(⼈)……1(⼈) 所以肯定⾄少有两个⼩朋友选的玩具是相同的!【第⼆篇:取筷⼦】例:有1根红筷⼦,5根绿筷⼦,7根黄筷⼦,8根蓝筷⼦;问: (1)⾄少取⼏根筷⼦才能保证取到颜⾊相同的⼀双筷⼦? (2)⾄少取⼏根筷⼦才能保证取到颜⾊相同的两双筷⼦? (3)⾄少取⼏根筷⼦才能保证取到颜⾊不同的两双筷⼦? 分析: (1)要取到颜⾊相同的⼀双筷⼦,即是要取到两根颜⾊相同的筷⼦,从最倒霉的⾓度去思考,需要每种颜⾊各取⼀根,再任取1根即可。
1+1+1+1+1=5(根) (2)要取颜⾊相同的两双筷⼦,即是要取颜⾊相同的4根筷⼦,从最倒霉的⾓度去思考,需要每种颜⾊各取3根,再任取1根,⽽红⾊只有1根,取完即可。
1+3+3+3+1=11(根) (3)要取颜⾊不同的两双筷⼦,即是要取颜⾊不同的筷⼦各两根,则先把数量最多的颜⾊先取完,其他颜⾊各取⼀根,再任取⼀根即可。
8+1+1+1+1=12(根) 这类问题中要注意:筷⼦,袜⼦这些东西都是成双成对的,⼀双由两只组成。
【第三篇:最不利原则】这⾥要注意理解两个词的含义, 保证:确定,肯定,万⽆⼀失! 最不利:最倒霉,最繁琐,最糟糕! 最不利原则要求我们从最极端的⾓度去考虑事件。
第1讲抽屉原理和最不利原理
第1讲抽屉原理和最不利原理生活中常见这样的例子:把5只苹果放入4个果盘,那么一定有某个果盘中至少放有2只苹果,13名同学中至少有2人出生于同一个月……像这样,如果把n+k(k≥1)件物品放入n个抽屉,那么至少有一个抽屉中有2件或2件以上的物品,这就是抽屉原理1;进一步,如果把m×n+k(k≥1)件物品放入n个抽屉,那么至少有一个抽屉中有m+1件物品,这就是抽屉原理2。
实际上,这里的抽屉就是指这些物品可以分成几类,运用抽屉原理解决问题的关键就在于正确分类。
最不利原则主要说明的是一种从极端情况(最坏情况)入手,分析问题的一种思考方法。
例1今年燕山小学招收的一年级新生有230名,年龄在6岁至7岁之间,能否保证有20名或20名以上的小朋友在同一个月出生?为什么?试一试1在一条长100米的小路一旁植树101棵,证明:不管怎样种,总有两棵树的距离不超过1米。
例2有19个同学参加了三个课外活动小组,它们分别是数学组、美术组、电脑组,每人可参加一个组、两个组或三个组活动。
问:这些同学中至少有几个同学参加了相同的组?有22个同学参加了三个课外活动课程,它们分别是足球课、网球课、排球课,每人可参加一个课程、两个课程或三个课程活动。
问:这些同学中至少有几个同学参加了相同的课程?例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?试一试3把98本书分给五(3)班学生,如果其中至少有1人分到至少3本书,那么,这个班最多有多少人?例4一副扑克牌,共54张,问至少从中摸出多少张牌才能保证:(1)至少有5张牌的花色相同;(2)四种花色的牌都有;(3)至少有3张牌是红桃。
一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?课内练习1.某班有学生54人,他们的年龄都相同,那么,至少有多少人在同一周出生?至少有多少人在同一月出生?2.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?3.11名学生到老师家借书,老师家书房中有A,B,C,D四类书,每名学生最多可借两本不同类的书,最少借一本。
小学奥数之抽屉原理和极端思想梳理分享
小学奥数之抽屉原理与与极端思想抽屉原理:把多于N个的苹果随意地放入N个抽屉中,那么至少有一个抽屉里有两个或者两个以上的苹果。
把多于(MN+1)个苹果随意地放入N个抽屉中,那么至少有一个抽屉里有(M+1)个苹果。
抽屉原理中平均思想的介入:要至少,那么就应该是把物体进来平均的放入每个抽屉,这样才能至少。
当遇到抽屉个数可能更少,可能更多时,为了满足“至少”,那么应该选择抽屉数更多的来考虑。
抽屉原理之最不利原则:极端倒霉的原则,从最坏的情况讨论。
哪种情况最坏就从哪种情况开始考虑。
常举的一个例子,N年前交通不发达,每天下午某森林公园只有三趟车回另外一个城市,车票5元,10元,15元三种。
如果规定每个人一定可以遇到一辆车,如果身上的钱不够坐车,那么就不能上车,而且那个时候,森林公园有好多的野兽,很危险。
问,小明至少准备多少元回家坐车的钱,才能保证小明坐车回家?分析:至少.......保证.......,即就是考虑最坏的情况。
当小明狠倒霉,只遇到了最贵的车票的车子,那么如果钱不够不能上车,所以应该准备15元的回家的车票钱。
就可以保证回家了,所以至少需要15元才能保证。
“至少........保证........”其实说的就是:在可以保证的情况下,钱数最少的情况。
比如小明可以准备的钱大于等于15元即可,但是15元是至少的。
武汉童老师把抽屉问题中可能的题型按照问题分为了三类:①求至少几个苹果在同一个抽屉?②求物体的最小值?③求抽屉的最大值?(1)当M个物体随意的放入N个抽屉中(其中M≥N,且都是自然数,其中N不为0),至少有多少个物体在同一个抽屉中?M÷N=K........X--------即:物体数÷抽屉数=商........余数。
①当没有余数,即X为0时,那么至少有“商”(即K)个物体在同一个抽屉中。
②当有余数时,即X不为0,且无论X为何值时,那么至少有“商+1”即(K+1)个物体在同一个抽屉中。
四年级奥数:抽屉原理
四年级奥数:抽屉原理(一)如果将5个苹果放到3个抽屉中去,那么不管怎么放,至少有一个抽屉中放的苹果不少于2个.道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相矛盾,因此至少有一个抽屉中放的苹果不少于2个.同样,有5只鸽子飞进4个鸽笼里,那么一定有一个鸽笼至少飞进了2只鸽子.以上两个简单的例子所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”. 抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件.说明这个原理是不难的.假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有.这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相矛盾,所以前面假定“这n个抽屉中,每一个抽屉内的物品都不到2件”不能成立,从而抽屉原理1成立.从最不利原则也可以说明抽屉原理1.为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放入1件物品,共放入n件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有1个抽屉不少于2件物品.这就说明了抽屉原理1.例1某幼儿园有367名1996年出生的小朋友,是否有生日相同的小朋友?分析与解:1996年是闰年,这年应有366天.把366天看作366个抽屉,将367名小朋友看作367个物品.这样,把367个物品放进366个抽屉里,至少有一个抽屉里不止放一个物品.因此至少有2名小朋友的生日相同.例2在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形.我们将余数的这三种情形看成是三个“抽屉”.一个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”里.将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以3的余数相同.这两个数的差必能被3整除.例3在任意的五个自然数中,是否其中必有三个数的和是3的倍数?分析与解:根据例2的讨论,任何整数除以3的余数只能是0,1,2.现在,对于任意的五个自然数,根据抽屉原理,至少有一个抽屉里有两个或两个以上的数,于是可分下面两种情形来加以讨论.第一种情形.有三个数在同一个抽屉里,即这三个数除以3后具有相同的余数.因为这三个数的余数之和是其中一个余数的3倍,故能被3整除,所以这三个数之和能被3整除.第二种情形.至多有两个数在同一个抽屉里,那么每个抽屉里都有数,在每个抽屉里各取一个数,这三个数被3除的余数分别为0,1,2.因此这三个数之和能被3整除.综上所述,在任意的五个自然数中,其中必有三个数的和是3的倍数.例4在长度是10厘米的线段上任意取11个点,是否至少有两个点,它们之间的距离不大于1厘米?分析与解:把长度10厘米的线段10等分,那么每段线段的长度是1厘米(见下图).将每段线段看成是一个“抽屉”,一共有10个抽屉.现在将这11个点放到这10个抽屉中去.根据抽屉原理,至少有一个抽屉里有两个或两个以上的点(包括这些线段的端点).由于这两个点在同一个抽屉里,它们之间的距离当然不会大于1厘米.所以,在长度是10厘米的线段上任意取11个点,至少存在两个点,它们之间的距离不大于1厘米.例5有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?分析与解:由于题目只要求判断两堆水果的个数关系,因此可以从水果个数的奇、偶性上来考虑抽屉的设计.对于每堆水果中的苹果、桔子的个数分别都有奇数与偶数两种可能,所以每堆水果中苹果、桔子个数的搭配就有4种情形:(奇,奇),(奇,偶),(偶,奇),(偶,偶),其中括号中的第一个字表示苹果数的奇偶性,第二个字表示桔子数的奇偶性.将这4种情形看成4个抽屉,现有5堆水果,根据抽屉原理可知,这5堆水果里至少有2堆属于上述4种情形的同一种情形.由于奇数加奇数为偶数,偶数加偶数仍为偶数,所以在同一个抽屉中的两堆水果,其苹果的总数与桔子的总数都是偶数.例6用红、蓝两种颜色将一个2×5方格图中的小方格随意涂色(见右图),每个小方格涂一种颜色.是否存在两列,它们的小方格中涂的颜色完全相同?分析与解:用红、蓝两种颜色给每列中两个小方格随意涂色,只有下面四种情形:将上面的四种情形看成四个“抽屉”.根据抽屉原理,将五列放入四个抽屉,至少有一个抽屉中有不少于两列,这两列的小方格中涂的颜色完全相同.在上面的几个例子中,例1用一年的366天作为366个抽屉;例2与例3用整数被3除的余数的三种情形0,1,2作为3个抽屉;例4将一条线段的10等份作为10个抽屉;例5把每堆水果中,苹果数与桔子数的奇偶搭配情形作为4个抽屉;例6将每列中两个小方格涂色的4种情形作为4个抽屉.由此可见,利用抽屉原理解题的关键,在于恰当地构造抽屉.练习291.某班32名小朋友是在5月份出生的,能否找到两个生日是在同一天的小朋友?2.班上有50名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?3.在任意三个自然数中,是否其中必有两个数,它们的和为偶数?4.幼儿园买来不少玩具小汽车、小火车、小飞机,每个小朋友任意选择两件,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?5.学校举行开学典礼,要沿操场的400米跑道插40面彩旗.能否找到一种插法,使得任何两面彩旗之间的距离都大于10米?6.用红、蓝、黄三种颜色将一个2×7方格图中的小方格涂色(见下图),每个小方格涂一种颜色,每一列的两小格涂的颜色不相同.是否存在两列,它们的小方格中涂的颜色完全相同?7.一只纸板箱里装有许多型号相同但颜色不同的袜子,颜色有红、黄、黑、白四种.不允许用眼睛看,那么至少要取出多少只袜子,才能保证有5双同色的袜子?第30讲抽屉原理(二)这一讲我们讲抽屉原理的另一种情况.先看一个例子:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子.道理很简单.如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子.剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子.这个例子所体现的数学思想,就是下面的抽屉原理2.抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1.说明这一原理是不难的.假定这n个抽屉中,每一个抽屉内的物品都不到(m +1)件,即每个抽屉里的物品都不多于m件,这样,n个抽屉中可放物品的总数就不会超过m×n件.这与多于m×n件物品的假设相矛盾.这说明一开始的假定不能成立.所以至少有一个抽屉中物品的件数不少于m+1.从最不利原则也可以说明抽屉原理 2.为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n个抽屉中每个都放入m件物品,共放入(m×n)件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m+1)件物品.这就说明了抽屉原理2.不难看出,当m=1时,抽屉原理2就转化为抽屉原理1.即抽屉原理2是抽屉原理1的推广.例1某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?分析与解:将40名小朋友看成40个抽屉.今有玩具122件,122=3×40+2.应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具.也就是说,至少会有一个小朋友得到4件或4件以上的玩具.例2一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块.问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉.要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品.所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块.例3六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种.问:至少有多少名学生订阅的杂志种类相同?分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况.订一种杂志有:订甲、订乙、订丙3种情况;订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;订三种杂志有:订甲乙丙1种情况.总共有3+3+1=7(种)订阅方法.我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品.因为100=14×7+2.根据抽屉原理2,至少有14+1=15(人)所订阅的报刊种类是相同的.例4篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?分析与解:首先应弄清不同的水果搭配有多少种.两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子.所以不同的水果搭配共有4+6=10(种).将这10种搭配作为10个“抽屉”.81÷10=8……1(个).根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果相同.例5学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加).问:至少有多少名学生,才能保证有不少于5名同学参加学习班的情况完全相同?分析与解:首先要弄清参加学习班有多少种不同情况.不参加学习班有1种情况,只参加一个学习班有3种情况,参加两个学习班有语文和数学、语文和美术、数学和美术3种情况.共有1+3+3=7(种)情况.将这7种情况作为7个“抽屉”,根据抽屉原理2,要保证不少于5名同学参加学习班的情况相同,要有学生7×(5-1)+1=29(名).练习301.礼堂里有253人开会,这253人中至少有多少人的属相相同?2.一兴趣小组有10名学生,他们都订阅甲、乙两种杂志中的一种或两种.问:至少有多少名学生订阅的杂志种类相同?3.把130件玩具分给幼儿园小朋友,如果不管怎样分,都至少有一位小朋友分得4件或4件以上的玩具,那么这个幼儿园最多有多少个小朋友?4.体育组有足球、篮球和排球,上体育课前,老师让一班的41名同学往操场拿球,每人最多拿两个.问:至少有几名同学拿球的情况完全一样?5.口袋里放有足够多的红、白两种颜色的球,有若干人轮流从袋中取球,每人取三个球.要保证有4人取出的球的颜色完全相同,至少应有多少人取球?6.10个足球队之间共赛了11场,赛得最多的球队至少赛了几场?答案练习291.能.2.51本.3.能. 提示:将奇数、偶数作为两个抽屉.4.7人.5.不能. 提示:40面彩旗将跑道分为40段,若每段都大于10米,40段将大于400米.6.存在. 提示:每列的涂法有6种.7.13只.提示:把红、黄、黑、白四种颜色作为4个抽屉.根据抽屉原理,最少要取出5只袜子才能保证有一双袜子是同色的.这样,把这双同色袜子拿走后,还剩下3只袜子,再取出2只袜子与剩下的这3只袜子,共有5只袜子,根据抽屉原理知,必有1双同色的袜子.依此类推,得到5双同色袜子要取袜子3+2×5=13(只).练习301.22人.2.4人.3.43人. 提示:130÷(4-1)=43……1.4.5名. 提示:一个球不拿、拿一个球、拿两个球共有10种不同情况.5.13人.提示:三个球中根据红球的个数可分为4种不同情况.6.3场. 提示:11场球有22队次参赛.。
抽屉原理和最不利原则
抽屉原理抽屉原理抽屉王:苹果个数最多的抽屉抽屉原理问题:找到抽屉王最少能有多少个.抽屉王最少:总数要平均分,余数也要平均分.抽屉原理:把m个苹果放入n个抽屉(m>n),假设m÷n=a…b结果有两种可能:(1)如果b=0,那么就一定有抽屉至少放了a个苹果;(2)如果b≠0,那么就一定有抽屉至少放了a+1个苹果。
例1.把9个苹果放入3个抽屉,抽屉王至少有几个苹果?例2.把10个苹果放入3个抽屉,抽屉王至少有几个苹果?例3.把11个苹果放入3个抽屉,抽屉王至少有几个苹果?例4.把100个苹果放入3个抽屉,抽屉王至少有几个苹果?例5.把96个苹果放入8个抽屉,那么一定有抽屉至少放了____个苹果.例6.把98只鸡放在8个笼子里,那么一定有笼子至少放了____只鸡.例7.把1000个苹果放入6个抽屉,那么一定有抽屉至少放了____个苹果.例8.把至少____只鸡放在8个笼子里,那么一定有笼子至少放了3只鸡.最不利原则最不利原则:最倒霉原则.最不利原则问题:要保证一件事在最倒霉的情况下也能做到.最不利原则的题目要先找出最不利的情况:最不利情况+1=成功.题目中有两个要求的问题,保证每个问题都是最倒霉情况(例14,例15).例9.一个鱼缸里有4个品种的鱼,每种鱼都有很多条.至少要捞出多少条鱼,才能保证其中有5条相同品种的鱼?例10.一个布袋里有7种不同颜色的彩球,每种颜色的彩球都有很多,那么至少要拿出多少个彩球,才能保证其中有6个相同颜色的彩球?例11.一个布袋里有大小相同颜色不同的一些木球,其中红色的有10个,黄色的有8个,蓝色的有3个,绿色的有1个.现在闭着眼睛从中摸球,请问:至少要取出多少个球,才能保证取出的球至少有三种颜色?例12.一个布袋里有大小相同颜色不同的一些木球,其中红色的有10个,黄色的有8个,蓝色的有3个,绿色的有1个.现在闭着眼睛从中摸球,请问:至少要取出多少个球,才能保证其中必有红球和黄球?例13.将1只白袜子、2只黑袜子、3只红袜子、8只黄袜子和9只绿袜子放入一个布袋里.请问:一次至少要摸出多少只袜子才能保证一定有颜色相同的两双袜子?例14.将1只白袜子、2只黑袜子、3只红袜子、8只黄袜子和9只绿袜子放入一个布袋里.请问:一次至少要摸出多少只袜子才能保证一定有颜色不同的两双袜子?(两只袜子颜色相同即为一双)例15.一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张.现在要从中随意取出一些牌,如果要保证在取出来的牌中至少包含三种花色,并且这三种花色的牌至少都有3张,那么最少要取出多少张牌?思考题1.口袋里放有3种不同颜色的球共20个,其中红球7个,黄球5个,绿球8个.如果闭上眼睛从袋中取球,最多可以取出________个球,仍能够保证余下的球中至少还有4个同色球,以及至少还有3个另一种颜色的同色球.2.圆桌周围恰好有90把椅子,现已有一些人在桌边就坐,当再有一人入座时,就必须和已就坐的某个人相邻,则已就坐的最少有________人.3.25个人围坐在一个正方形桌子旁边(每个角上都可以坐一个人)开会,那么人数最少的那条边上最多能坐________人.。
四年级秋季班第五讲 简单抽屉原理、最不利原则
第五讲简单抽屉原理、最不利原则知识框架一、对抽屉原理两个版本的认识抽屉原理1:将n+1个物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
原理要点:(1)物品数比抽屉数多1。
只有物品数比抽屉数多时抽屉原理才会成立。
(2)物品是“任意放”到抽屉中。
(3)其中“物品不少于2件”的抽屉是一定存在的,但是不确定是哪一个。
(4)原理的结论是:“至少有一个抽屉中的物品数不少于2件”,也可以这么说,“至少有2件物品在同一个抽屉中”。
原理讲解:只要有一个抽屉中的物品数不少于2件,抽屉原理1 就是成立的。
当我们可以往抽屉中任意放物品时,最不利的情形就是“平均分”,这样所有抽屉中的物品数都不会太多。
n+1个物品平均地放入n个抽屉,每个抽屉放一个,由于物品数比抽屉数多,就会余出一个物品。
最后,余出的这个物品放入某个抽屉,这个抽屉中就有了2个物品。
此外,其它情形,只要有一个抽屉是空的,那么就一定会有另外的抽屉中有2个或2个以上的物品。
例子:4只鸽子飞回三个鸟笼,有几种方法?每种方法中,都会有一个鸟笼中的鸽子数不少于2。
在有些地方抽屉原理又叫做“鸽笼原理”。
原理要点:(1)物品数比抽屉数多,抽屉原理1的情形包含于这个原理中;(2)解决的是抽屉的存在性;(3)在解题时,遇到“有一个抽屉中的物品数不少于A件”,其中A>2时,应使用抽屉原理2。
(4)原理的结论也可以理解为:“总有不少于m÷n件(或[m÷n]+1件)物品在同一个抽屉中。
”相同的即为“抽屉”。
原理讲解:最不利的情形就是“平均分”,这样每个抽屉中的物品数都不太多都是[m÷n]个。
若m÷n有余数,那么多出来的余数个物品也按照最不利的情形来分配,这样就能保证抽屉中的物品尽量地少。
也就是说这余数个物品也平均地往抽屉中放,这样有的抽屉会再放入一个物品,而有的就分不到,那么至少会有一个抽屉中的物品数不少于[m ÷n]+1个。
小学四年级奥数 简单抽屉原理与最不利原则(一)
简单抽屉原理与最不利原则(上)
(★★★) (★★★)
四年级一班学雷锋小组有13 人。
教数学的张老师说:“你们这个小组请说明:从大街上随便找来13 个人,其中至少有两人星座相同。
至少有2 个人在同一月过生日。
”你知道张老师为什么这样说吗?
18 个小朋友中,_____小朋友在同一个月出生。
请说明:在任意25 个人中,必有3 个人的属相相同。
①恰好有2 个②至少有2 个
③必有7 个④最多有7 个
(★★★★) (★★★★)
用红、蓝两种颜色将一个2×5方格图中的小方格随意涂色(见下图),17 名同学参加一次考试,考试题是3 道判断题(答案只有对错之分),每个小方格涂一种颜色。
试说明必存在两列,它们的小方格中涂的颜每名同学都在答题纸上依次写上了3 道题目的答案。
试说明至少有3 色是完全相同的?名同学的答案是一样的。
在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他九个小朋在长度是10 厘米的线段上任意取11 个点,试说明至少有两个点,它友一起做游戏,每人可以从口袋中随意取出2 个球,那么不管怎样挑们之间的距离不大于1 厘米。
选,总有两个小朋友取出的两个球的颜色是完全一样的。
你能说明这
是为什么吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(
四年级一班学雷锋小组有
()
★★★
请说明:从大街上随便找来13个人,其中至少有两人星座相同。
18个小朋友中,_____小朋友在同一个月出生。
①恰好有2个 ②至少有2个 ③必有7个 ④最多有7个
请说明:在任意25个人中,必有3个人的属相相同。
()★★★★
用红、蓝两种颜色将一个2×5方格图中的小方格随意涂色(见下图),每个小方格涂一种颜色。
试说明必存在两列,它们的小方格中涂的颜色是完全相同的?
()★★★★
17名同学参加一次考试,考试题是3道判断题(答案只有对错之分),每名同学都在答题纸上依次写上了3道题目的答案。
试说明至少有3名同学的答案是一样的。
在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他九个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色是完全一样的。
你能说明这是为什么吗?
在长度是10厘米的线段上任意取11个点,试说明至少有两个点,它们之间的距离不大于1厘米。