公开课-电磁场中的单杆模型
电磁感应中单杆模型的特点与规律
电磁感应中单杆模型的特点与规律
(1)动力学观点:
单杆受到水平方向只受向左的安培力,与速度方向相反,因此安培力对杆的运动起到阻碍作用,因此叫阻尼式单杆。
算一下安培力表达式:
安==F安=BIL=BERL=BBLvRL=B2L2vR
则杆的加速度表达式为:
安a=F安m=B2L2vmR 且方向和速度方向相反
由于加速度方向与速度方向相反,所以杆的速度减小,速度减小那么加速度就减小,直到杆停下来。
因此杆做加速度减小减速运动。
(2)能量观点:
杆的动能全部转化为热能,即 Q=12mv02
(3) 动量观点:
根据动量定理,安培力的冲量等于杆动量的变化量。
即:
BI¯LΔt=0−mv0
其中 I¯Δt=q
因此,可以联立以上两个方程可以求出电荷量。
2020高三物理模型组合讲解——电磁场中的单杆模型
2020高三物理模型组合讲解——电磁场中的单杆模型秋飏[模型概述]在电磁场中,〝导体棒〞要紧是以〝棒生电〞或〝电动棒〞的内容显现,从组合情形看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有〝平面导轨〞、〝斜面导轨〞〝竖直导轨〞等。
[模型讲解]一、单杆在磁场中匀速运动例1. 如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分不为0~10V 和0~3A ,电表均为理想电表。
导体棒ab 与导轨电阻均不计,且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。
图1〔1〕当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳固速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,那么现在ab 棒的速度v 1是多少?〔2〕当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳固时,两表中恰有一表满偏,而另一表能安全使用,那么现在作用于ab 棒的水平向右的拉力F 2是多大?解析:〔1〕假设电流表指针满偏,即I =3A ,那么现在电压表的示数为U =IR 并=15V ,电压表示数超过了量程,不能正常使用,不合题意。
因此,应该是电压表正好达到满偏。
当电压表满偏时,即U 1=10V ,现在电流表示数为I U R A 112==并设a 、b 棒稳固时的速度为v 1,产生的感应电动势为E 1,那么E 1=BLv 1,且E 1=I 1(R 1+R 并)=20Va 、b 棒受到的安培力为F 1=BIL =40N解得v m s 11=/〔2〕利用假设法能够判定,现在电流表恰好满偏,即I 2=3A ,现在电压表的示数为U I R 22=并=6V 能够安全使用,符合题意。
由F =BIL 可知,稳固时棒受到的拉力与棒中的电流成正比,因此F I I F N N 2211324060===×。
二、单杠在磁场中匀变速运动例2. 如图2甲所示,一个足够长的〝U 〞形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0.50m 。
完整版电磁感应定律单杆导轨模型含思路分析
单杆+导轨”模型1.单杆水平式(导轨光滑)注:加速度a的推导,a=F合/m (牛顿第二定律),F合=F-F安,F安=BIL ,匸E/R 整合一下即可得到答案。
v变大之后,根据上面得到的a的表达式,就能推出a变小这里要注意,虽然加速度变小,但是只要和v同向,就是加速运动,是a减小的加速运动(也就是速度增加的越来越慢,比如1s末速度是1, 2s末是5, 3s末是6, 4s末是6.1,每秒钟速度的增加量都是在变小的)2.单杆倾斜式(导轨光滑)BLv T【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L二1.0 m,导轨上放有垂直导轨的金属杆P,金属杆质量为m= 0.1 kg,空间存在磁感应强度B= 0.5 T、竖直向下的匀强磁场。
连接在导轨左端的电阻R= 3.0約金属杆的电阻r 二1.0約其余部分电阻不计。
某时刻给金属杆一个水平向右的恒力F, 金属杆P由静止开始运动,图乙是金属杆P运动过程的v—t图象,导轨与金属杆间的动摩擦因数尸0.5。
在金属杆P运动的过程中,第一个2 s内通过金属杆P的电荷量与第二个2 s内通过P的电荷量之比为3 : 5。
g取10 m/s2。
求:(1)水平恒力F的大小;⑵前4 s内电阻R上产生的热量。
【答案】(1)0.75 N (2)1.8 J【解析】(1)由图乙可知金属杆P先做加速度减小的加速运动,2 s后做匀速直线运动当t= 2 s时,v= 4 m/s,此时感应电动势E= BLv感应电流1=吕R+ rB2I2v安培力F = BIL =R+ r根据牛顿运动定律有F —F '―卩m= 0解得 F = 0.75 N o过金JI杆p的电荷量厂"二磊^甘十);△型BLx所以尸驚qa为尸的位移)设第一个2 s內金属杆P的位移为Xi ;第二个肚内P的位移为助则二号g,又由于如:血=3 : 5麻立解得«=8mj IL=<8m前4 s内由能量守恒定律得其中 Q r : Q R = r : R = 1 : 3解得 Q R = 1.8 J o注:第二问的思路分析,要求 R 上产生的热量,就是焦耳热,首先想到的是公式Q=l2Rt ,但是在这里,前2s 的运动过程中,I 是变化的,而且也没办法求出I 的有效值来(电荷量对应的是电流的平均值,求焦耳热要用有效值,两者不一样), 所以这个思路行不通。
第87讲 电磁感应中的单杆模型(解析版)
第87讲电磁感应中的单杆模型1.(2022•上海)宽L=0.75m的导轨固定,导轨间存在着垂直于纸面且磁感应强度B=0.4T的匀强磁场。
虚线框Ⅰ、Ⅱ中有定值电阻R0和最大阻值为20Ω的滑动变阻器R。
一根与导轨等宽的金属杆以恒定速率向右运动,图甲和图乙分别为变阻器全部接入和一半接入时沿abcda方向电势变化的图像。
求:(1)匀强磁场的方向;(2)分析并说明定值电阻R0在Ⅰ还是Ⅱ中,并且R0大小为多少:(3)金属杆运动时的速率;(4)滑动变阻器阻值为多少时变阻器的功率最大?并求出该最大功率P m。
【解答】解:(1)a点电势比d点电势高,说明导体棒上端为电源正极,导体棒切割磁感线产生感应电流向上,根据右手定则判断得出匀强磁场的方向垂直纸面向里(2)滑动变阻器从全部接入到一半接入电路,回路里电流变大,定值电阻R0上电压变大,图甲的U cd小于图乙的U cd,可以推理得定值电阻在Ⅰ内,滑动变阻器在Ⅱ根据欧姆定律得:甲图中回路电流I甲=1.2R=1.220A=0.06A,乙图中回路电流I乙=1.0R2=1.010A=0.1A甲图中定值电阻R0上电压φ0﹣1.2=0.06R乙图中定值电阻R0上电压φ0﹣1.0=0.1R联立解得:R=5Ω,φ0=1.5V(3)金属杆产生的感应电动势E=BLv,E=φ0联立解得v=φ0BL= 1.50.4×0.75m/s=5m/s(4)根据甲乙两图可知导体棒电阻不计,由闭合电路欧姆定律得I=E R0+R滑动变阻器上的功率p=I2R=E2R(R0+R)2= 2.2525R+R+10,当R=5Ω时,滑动变阻器有最大功率P m=0.1125W答:(1)匀强磁场的方向垂直纸面向里(2)定值电阻R0在Ⅰ中,定值电阻R0=5Ω(3)金属杆运动时的速率为5m/s(4)滑动变阻器阻值为5Ω时变阻器的功率最大,最大功率为0.1125W一.知识回顾1.力学对象和电学对象的相互关系2.能量转化及焦耳热的求法(1)能量转化其他形式的能量――→克服安培力做功电能――→电流做功焦耳热或其他形式的能量(2)求解焦耳热Q的三种方法(纯电阻电路)3.单杆模型质量为m、电阻不计的单杆ab 以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为l 轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为l轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为l,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为l,拉力F恒定导体杆做加速度越来越小的减速运动,最终杆静止当E感=E时,v最大,且v m=EBl,最后以v m匀速运动当a=0时,v最大,v m=FRB2l2,杆开始匀速运动Δt时间内流入电容器的电荷量Δq=CΔU=CBlΔv电流I=ΔqΔt=CBlΔvΔt=CBla安培力F安=IlB=CB2l2aF-F安=ma,a=Fm+B2l2C,所以杆以恒定的加速度匀加速运动电能转化为动能外力做功转化为外力做功转化为二.例题精析题型一:单杆+电阻模型之动态分析(多选)例1.如图所示,MN和PQ是两根互相平行、竖直放置的足够长的光滑金属导轨,电阻不计,匀强磁场垂直导轨平面向里。
电磁感应中的“杆+导轨”模型
电磁感应中的“杆+导轨”模型电磁感应中的“杆+导轨”模型一、单棒模型阻尼式:在单棒模型中,导体棒相当于电源,根据洛伦兹力的公式,可以得到安培力的特点为阻力,并随速度减小而减小,加速度随速度减小而减小,最终状态为静止。
根据能量关系、动量关系和瞬时加速度,可以得到公式B2l2v R rF和q mv/Bl,其中q表示流过导体棒的电荷量。
需要注意的是,当有摩擦或者磁场方向不沿竖直方向时,模型的变化会受到影响。
举例来说,如果在电阻不计的光滑平行金属导轨固定在水平面上,间距为L、导轨左端连接一阻值为R的电阻,整个导轨平面处于竖直向下的磁感应强度大小为B的匀强磁场中,一质量为m的导体棒垂直于导轨放置,a、b之间的导体棒阻值为2R,零时刻沿导轨方向给导体棒一个初速度v,一段时间后导体棒静止,则零时刻导体棒的加速度为0,零时刻导体棒ab两端的电压为BLv,全过程中流过电阻R的电荷量为mv/Bl,全过程中导体棒上产生的焦耳热为0.二、发电式在发电式中,导体棒同样相当于电源,当速度为v时,电动势E=Blv。
根据安培力的特点,可以得到公式22Blv/l=Blv/(R+r)。
加速度随速度增大而减小,最终特征为匀速运动。
在稳定后的能量转化规律中,F-BIl-μmg=m*a,根据公式可以得到a=-(F-μmg)/m、v=0时,有最大加速度,a=0时,有最大速度。
需要注意的是,当电路中产生的焦耳热为mgh时,电阻R中产生的焦耳热也为mgh。
1.如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。
整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。
重力加速度为g,导轨电阻不计,杆与导轨接触良好。
求:1)杆cd下滑的最大加速度和最大速度;2)上述过程中,杆上产生的热量。
完整版电磁感应中的单双杆模型
电磁感应中的单双杆问题-、单杆问题(一) 与动力学相结合的问题1、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN,电阻为R,左端连接-电动势为E,内阻为r的电源,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度?2、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN ,电阻为R,左端连接一电阻为R,MN在恒力F的作用下从静止开始运动,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度?3、金属导轨左端接电容器,电容为 整个装置处于垂直纸面磁感应强度为 速度v ,试求金属棒的最大速度?C ,轨道上静止一长度为 L 的金属棒cd , B 的匀强磁场当中,现在给金属棒一初_P< X X ~p< X X1 (k 乂(二)与能量相结合的题型 1、倾斜轨道与水平面夹角为,整个装置处于与轨道相垂直的匀强磁场当中,导轨顶端连有一电阻R ,金属杆的电阻也为 R 其他电阻可忽略,让金属杆由静止释放,经过一段时 求: 间后达到最大速度V m ,且在此过程中电阻上生成的热量为 (1 )金属杆达到最大速度时安培力的大小(2)磁感应强度B 为多少(3 )求从静止开始到达到最大速度杆下落的高度2. ( 20 分)如图所示,竖直平面内有一半径为r 、内阻为R i 、粗细均匀的光滑半圆形金属环,在 M 、N 处与相距为2r 、电阻不计的平行光滑 金属轨道ME 、NF 相接,EF 之间接有电阻 R 2,已知R i = 12R , R 2MNATCDB[xR■ ■ ■ ■ *=4R 。
在MN 上方及CD 下方有水平方向的匀强磁场 I 和II ,磁感应强度大小均为 B 。
现有质量为m 、电阻不计的导体棒 ab ,从半圆环的最高点 A 处由静止下落,在下落过程中导体 棒始终保持水平,与半圆形金属环及轨道接触良好,两平行轨道中够长。
已知导体棒 ab 下落r/2时的速度大小为 W ,下落到MN 处的速度大小为 V 2。
电磁场中的单杆模型
电磁场中的单杆模型在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。
一、单杆在磁场中匀速运动例1、如图1所示,,电压表与电流表的量程分别为0~10V和0~3A,电表均为理想电表。
导体棒ab与导轨电阻均不计,且导轨光滑,导轨平面水平,ab棒处于匀强磁场中。
图1(1)当变阻器R接入电路的阻值调到30,且用=40N的水平拉力向右拉ab棒并使之达到稳定速度时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab棒的速度是多少?(2)当变阻器R接入电路的阻值调到,且仍使ab棒的速度达到稳定时,两表中恰有一表满偏,而另一表能安全使用,则此时作用于ab棒的水平向右的拉力F2是多大?解析:(1)假设电流表指针满偏,即I=3A,那么此时电压表的示数为U==15V,电压表示数超过了量程,不能正常使用,不合题意。
因此,应该是电压表正好达到满偏。
当电压表满偏时,即U1=10V,此时电流表示数为设a、b棒稳定时的速度为,产生的感应电动势为E1,则E1=BLv1,且E1=I1(R1+R并)=20Va、b棒受到的安培力为F1=BIL=40N解得(2)利用假设法可以判断,此时电流表恰好满偏,即I2=3A,此时电压表的示数为=6V可以安全使用,符合题意。
由F=BIL可知,稳定时棒受到的拉力与棒中的电流成正比,所以。
二、单杠在磁场中匀变速运动例2、如图2甲所示,一个足够长的“U”形金属导轨NMPQ固定在水平面内,MN、PQ两导轨间的宽为L=0.50m。
一根质量为m=0.50kg的均匀金属导体棒ab静止在导轨上且接触良好,abMP恰好围成一个正方形。
该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中。
ab棒的电阻为R=0.10Ω,其他各部分电阻均不计。
开始时,磁感应强度。
图2(1)若保持磁感应强度的大小不变,从t=0时刻开始,给ab棒施加一个水平向右的拉力,使它做匀加速直线运动。
模型组合讲解——电磁场中的单杆模型
模型组合讲解--- 电磁场中的单杆模型秋飏[模型概述]在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨” “竖直导轨”等。
[模型讲解]一、单杆在磁场中匀速运动例1. (2005年河南省实验中学预测题)如图1所示,R 5 , R2,电压表与电流表的量程分别为0〜10V和0〜3A,电表均为理想电表。
导体棒ab与导轨电阻均不计,且导轨光滑,导轨平面水平,ab棒处于匀强磁场中。
(1 )当变阻器R接入电路的阻值调到30 ,且用片=40N的水平拉力向右拉ab棒并使之达到稳定速度v1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab棒的速度v1是多少?(2)当变阻器R接入电路的阻值调到3 ,且仍使ab棒的速度达到稳定时,两表中恰有一表满偏,而另一表能安全使用,则此时作用于ab棒的水平向右的拉力F2是多大?解析:(1)假设电流表指针满偏,即 1 = 3A,那么此时电压表的示数为U= IR并=15V , 电压表示数超过了量程,不能正常使用,不合题意。
因此,应该是电压表正好达到满偏。
当电压表满偏时,即U1= 10V,此时电流表示数为设a、b棒稳定时的速度为v1,产生的感应电动势为E1,则E1= BLv1,且E1= |1(R1 + R并)=20Va、b棒受到的安培力为F1= BIL = 40N解得v11m/ s(2)利用假设法可以判断,此时电流表恰好满偏,即U2I 2只并=6V可以安全使用,符合题意。
12= 3A,此时电压表的示数为图由F= BIL可知,稳定时棒受到的拉力与棒中的电流成正比,所以12 3F2 -F l X 40N 60N。
I i 2二、单杠在磁场中匀变速运动例2. (2005年南京市金陵中学质量检测)如图2甲所示,一个足够长的“轨NMPQ固定在水平面内,MN、PQ两导轨间的宽为的均匀金属导体棒ab静止在导轨上且接触良好,abMP处在磁感应强度大小可以调节的竖直向上的匀强磁场中。
公开课-电磁感应中的单杆问题
变1.两根光滑的足够长的直金属导轨MN、 平行置于竖直面内,导轨 间距为L,导轨上端接有阻值为R的电阻,如图1所示。质量为m、 长度为L、阻值为r的金属棒ab垂直于导轨放置,且与导轨保持良好 接触,其他电阻不计。导轨处于磁感应强度为B、方向水平向里的匀 强磁场中,ab由静止释放,在重力作用下运动,若ab从释放至其运 动达到最大速度时下落的高度为h求: ①ab运动的最大速度? ②ab从释放至其运动达到最大速度此过程中金属棒产生的焦耳热为 多少? BhL q= ③ab从释放至其运动达到最大速度的过程中,流过 ab杆的电荷量? R+r ④ab从释放至其运动达到最大速度所经历的时间?
1、过程分析
开始时 a F ,杆 ab 速度 v 感应电动势 E BLv I 安培力 F安 BIL
m FR B 2 L2
由 F F安 ma 知 a ,当 a 0 时, v 最大, vm
2、能量转化 F做的功中的一部分转化为杆的动能, 一部分产热。
CBLmv0 Qc CBLv m B 2 L2C
mv0 1 1 2 1 1 2 2 2 Ec mv0 mv mv0 m( ) 2 2 2 2 m B2 L2C
B0 Lx cosq q= R+r
V= mg ( R + r ) sinq
2 2 B0 L cos2 q
例2、如图所示,长平行导轨PQ、MN光滑,相距 m,处在同一水 平面中,磁感应强度B=0.8T的匀强磁场竖直向下穿过导轨面.横 跨在导轨上的直导线ab的质量m =0.1kg、电阻R =0.8Ω,导轨电阻 不计.导轨间通过开关S将电动势E =1.5V、内电阻r =0.2Ω的电池接 在M、P两端,试求: ①在开关S刚闭合的初始时刻,导线ab的加速度多大?随后ab的加 速度、速度如何变化? ②在闭合开关S后,怎样才能使ab以恒定的速度υ =7.5m/s沿导轨 向右运动?试描述这时电路中的能量转化情况(通过具体的数据 计算说明).
模型组合讲解——电磁场中的单杆模型
电磁场中的单杆模型[模型概述]在电磁场中,“导体棒"主要是以“棒生电"或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。
[模型讲解]一、单杆在磁场中匀速运动例1。
如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分别为0~10V 和0~3A ,电表均为理想电表。
导体棒ab 与导轨电阻均不计,且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。
图1(1)当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳定速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab 棒的速度v 1是多少?(2)当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳定时,两表中恰有一表满偏,而另一表能安全使用,则此时作用于ab 棒的水平向右的拉力F 2是多大? 解析:(1)假设电流表指针满偏,即I =3A ,那么此时电压表的示数为U =IR 并=15V,电压表示数超过了量程,不能正常使用,不合题意.因此,应该是电压表正好达到满偏。
当电压表满偏时,即U 1=10V ,此时电流表示数为I U R A 112==并设a 、b 棒稳定时的速度为v 1,产生的感应电动势为E 1,则E 1=BLv 1,且E 1=I 1(R 1+R 并)=20Va 、b 棒受到的安培力为F 1=BIL =40N解得v m s 11=/(2)利用假设法可以判断,此时电流表恰好满偏,即I 2=3A ,此时电压表的示数为U I R 22=并=6V 可以安全使用,符合题意。
由F =BIL 可知,稳定时棒受到的拉力与棒中的电流成正比,所以F I I F N N 2211324060===×. 二、单杠在磁场中匀变速运动例2.如图2甲所示,一个足够长的“U ”形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0。
电磁感应中的单杆模型
一、 单杆模型【破解策略】 单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考:(1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。
(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用t NE ∆∆=φ或BLv E =求感应动电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→画等效电路图。
(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。
00≠v 00=v示意图单杆ab 以一定初速度0v 在光滑水平轨道上滑动,质量为m ,电阻不计,杆长为L轨道水平、光滑,单杆ab 质量为m ,电阻不计,杆长为L轨道水平光滑,杆ab 质量为m ,电阻不计,杆长为L ,拉力F 恒定力 学 观 点导体杆以速度v 切割磁感线产生感应电动势BLv E =,电流R BLvR E I ==,安培力RvL B BIL F 22==,做减速运动:↓↓⇒a v ,当0=v 时,0=F ,0=a ,杆保持静止S 闭合,ab 杆受安培力R BLE F =,此时mR BLE a =,杆ab 速度↑⇒v 感应电动势↓⇒↑⇒I BLv 安培力↓⇒=BIL F 加速度↓a ,当E E =感时,v 最大,且2222L B BLIR L B FR v m ==BL E=开始时m F a =,杆ab 速度↑⇒v 感应电动势↑⇒↑⇒=I BLv E 安培力↑=BIL F 安由a F F m =-安知↓a ,当0=a 时,v 最大,22L B FR v m =图 像 观 点能 量 观 点动能全部转化为内能: 2021mv Q = 电能转化为动能 221m mv W 电 F 做的功中的一部分转化为杆的动能,一部分产热:221m F mv Q W += 1.如图12—2一l2所示,abcd 是一个固定的U 形金属框架,ab 和cd 边都很长,bc 长为l ,框架的电阻不计,ef 是放置在框架上与bc 平行的导体杆,它可在框架上自由滑动(摩擦可忽略),它的电阻为R ,现沿垂直于框架平面的方向加一恒定的匀强磁场,磁感应强度为B ,方向垂直于纸面向里,已知当以恒力F 向右拉导体杆ef 时,导体杆最后匀速滑动,求匀速滑动时的速度.2.两根光滑的足够长的直金属导轨MN 、''N M 平行置于竖直面内,导轨间距为L ,导轨上端接有阻值为R的电阻,如图1所示。
(完整版)单杆模型(一)
模型组合讲解——电磁场中的单杆模型(一)[水平轨道之恒力模型]1、如图,固定在同一水平面内的两根长直金属导轨的间距为L,其右端接有阻值为R的电阻,整个装置处在竖直向上、磁感应强度大小为B的匀强磁场中,一质量为m (质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ。
现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动,当杆运动的距离为d时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。
设杆接入电路的电阻为r,导轨电阻不计,重力加速度为g。
求此过程中:(1)杆的速度的最大值;(2)通过电阻R上的电量;(3)电阻R上的发热量2、如图所示,足够长金属导轨MN和PQ与R相连,平行地放在水平桌面上。
质量为m的金属杆ab可以无摩擦地沿导轨运动。
导轨与ab杆的电阻不计,导轨宽度为L,磁感应强度为B的匀强磁场垂直穿过整个导轨平面。
现给金属杆ab一个瞬时冲量I0,使ab杆向右滑行。
(1)回路最大电流是多少?(2)当滑行过程中电阻上产生的热量为Q时,杆ab的加速度多大?(3)杆ab从开始运动到停下共滑行了多少距离?3、如图所示,长度为L=0.2m、电阻r=0.3Ω、质量m=0.1kg的金属棒CD,垂直跨搁在位于水平面上的两条平行光滑的金属导轨上,导轨间距离也为L,棒与导轨间接触良好,导轨电阻不计. 导轨左端接有R=0.5Ω的电阻,垂直导轨平面的匀强磁场向下穿过导轨平面,磁感应强度B=4T. 现以水平向右的恒定外力F使金属棒右移,当金属棒以v=2m/s的速度在导轨平面上匀速滑动时,求:(1)电路中理想电流表和理想电压表的示数;(2)拉动金属棒的外力F的大小;(3)若此时撤去外力F,金属棒将逐渐慢下来,最终停止在导轨上.求撤去外力到金属棒停止运动的过程中,在电阻R上产生的电热.4如图所示,光滑的U型金属导轨PQMN水平地固定在竖直向上的匀强磁场中.磁感应强度为B,导轨的宽度为L,其长度足够长,QM之间接有一个阻值为R的电阻,其余部分电阻不计。
电磁感应中的“杆—轨道”模型
速度 图像
F 做的功一部分转 F 做的功一部分转
动 能 全 部 转 化 电源输出的电能
能量 为内能
化为杆的动能,一 化为动能,一部分 转化为杆的动能
分析 Q=12mv20
W 电=12mv2m
部分产生焦耳热 WF=Q+12mv2m
转化为电场能 WF=12mv2+EC
例 1 (多选)如图 1 所示,两平行光滑长直金属导轨水平放置,间距为 L,两导轨间 存在磁感应强度大小为 B、方向竖直向下的匀强磁场。一质量为 m、电阻为 R、 长度恰好等于导轨间宽度的导体棒 ab 垂直于导轨放置。闭合开关 S,导体棒 ab 由静止开始运动,经过一段时间后达到最大速度。已知电源电动势为 E、内阻为
01 02 03 04 05 06
教师备选用题
而做加速运动,由于两者的速度差逐渐减小,可知 感应电流逐渐减小,安培力逐渐减小,可知 cd 向右 做加速度减小的加速运动,故 B 正确;ab 从释放到 刚进入磁场过程,由动能定理得 mgR=21mv20,对 ab 和 cd 系统,合外力为零,则由动量守恒定律有 mv0 =m·2vcd+2m·vcd,解得 vcd=14v0=41 2gR,对 cd 由动量定理有 B-IL·Δt=2m·vcd, 其中 q=-I·Δt,解得 q=m2B2LgR,故 C 正确;从 ab 由静止释放,至 cd 刚离开磁 场过程,由能量守恒定律得 mgR=21m2vcd2+12×2mv2cd+Q,又 Qcd=32Q,解得 Qcd=152mgR,故 D 错误。
析 v↓⇒F↓⇒a↓,当 v=0 速度 a↓,当 E 感= -F 安=ma 知 a↓, 安培力 F 安=ILB=CB2L2a
时,F=0,a=0,杆保 持静止
E 时,v 最大,且 vm =BEL
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应中的单杆问题
授课教师:孟庆阳
一、教学目标:
1、知识与技能:
掌握电磁感应中单杆问题的求解方法。
2、过程与方法:
能够运用理论知识从力电角度、电学角度和力能角度处理电磁感应中的单杆问题。
3、情感、态度与价值观
提高学生处理综合问题的能力,找出共性与个性的辩证唯物主义思想。
二、教学重点、难点:电磁感应中单杆问题的求解方法及相关的能量转化。
三、知识准备:
1、感应电流的产生条件
2、感应电流的方向判断
3、感应电动势的大小计算
四、模型概述:
电磁感应中的“杆-轨”运动模型,是导体切割磁感线运动过程中动力学与电磁学知识的综合应用,此类问题是高考命题的重点,主要类型有:“单杆”模型,“单杆+电源”模型、“单杆+电容”模型。
五、基本思路:
单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考:
1、力电角度;
2、电学角度;
3、力能角度。
六、专项练习:
例1、如图所示,一对平行光滑轨道放置在水平面上,两轨道相距L,两轨道之间用电阻R 连接,有一质量为m、电阻为r的导体棒静止地放在轨道上与两轨道垂直,轨道的电阻忽略不计,整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直轨道平面向上。
现用水平
恒力F沿轨道方向拉导体棒,使导体棒从静止开始运动。
①分析导体棒的运动情况并求出导体棒的最大速度;
②画出等效电路图;若此时E
感
=10V,R=3Ω,r=2Ω,那么导体棒两端电压为?
③分析此过程中所涉及的能量转化。
P
变1、两根光滑的足够长的直金属导轨MN 、''N M 平行置于竖直面内,导轨间距为L ,导轨上端接有阻值为R的电阻,如图1所示。
质量为m 、长度为L 、阻值为r 的金属棒ab 垂直于导轨放置,且与导轨保持良好接触,其他电阻不计。
导轨处于磁感应强度为B 、方向水平向里的匀强磁场中,ab 由静止释放,在重力作用下运动,若ab 从释放至其运动达到最大速度时下落的高度为h 求:
①ab 运动的最大速度?
②ab 从释放至其运动达到最大速度此过程中金属棒产生的焦耳热为多少?
③ab 从释放至其运动达到最大速度的过程中,流过ab 杆的电荷量?
④ab 从释放至其运动达到最大速度所经历的时间?
变式2、如图ab 、cd 为间距L 的光滑倾斜金属导轨,与水平面的夹角为θ,导轨电阻不计,ac 间接有阻值为R 的电阻,空间存在磁感应强度为B 0、方向竖直向上的匀强磁场,将一根阻值为
r 、长度为L 的金属棒从轨道顶端由静止释放,金属棒沿导轨向下运动的过程中始终与导轨接触良好。
已知当金属棒向下滑行距离x 到达MN 处时已经达到稳定的速度,重力加速度为g 。
求: ①金属棒下滑到MN 的过程中通过电阻R 的电荷量;
②金属棒的稳定速度的大小。
例2、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试求:
①在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? ②在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).。