典型污染物转归和效应
典型污染物在环境各圈层中的转归与效应
第六章典型污染物在环境各圈层中的转归与效应内容提要及重点要求:主要介绍了以重金属、持久性有机污染物(Persistent Organic Pollutants,POPs)为代表的持久性有毒污染物(Persistent Toxic Substances, PTS)等典型污染物在各圈层中的转归与效应。
要求了解这些典型污染物的来源、用途和基本性质.掌握它们在环境中的基本转化、归趋规律与效应。
地球环境是一个由大气、水体、土壤、岩石和生物等圈层组成的多介质体系,建立描述污染物在多介质环境中的迁移、转化和归趋规律,弄清化学污染物在这些介质中的浓度、持久性、反应活性以及分配的倾向,是研究污染物转归与效应的重要内容。
污染物在多介质环境中的过程研究主要包括以下几个方向:(1)水/气界面的物质传输:主要研究污染物从水中的挥发、大气复氧以及污染物在水体表面微层的富集行为。
(2)土壤/大气界面的物质传输:主要研究污染物从土壤的挥发和干、湿沉降污染物由大气向土壤的传输两部分。
(3)水/沉积物界面的物质传输:在多介质环境问题研究中,水/沉积物界面是比水/气界面更为复杂的界面,它是水体中水相与沉积物相之间的转换区,是底栖生物栖息的地带。
水/沉积物界面的物质传输,不仅涉及污染物的传输,而且还涉及水和沉积物本身的传输。
因此,污染物在该区域的积累和传输,在很大程度上影响着该污染物的物理、化学和生物行为。
概括说来,水/沉积物界面的化学物质传输是通过沉降、扩散、弥散、吸附、解吸、化学反应和底栖生物的作用等过程完成的。
第一节重金属元素重金属是具有潜在危害的重要污染物。
重金属污染的威胁在于它不能被微生物分解。
相反,生物体可以富集重金属,并且能将某些重金属转化为毒性更强的金属-有机化合物。
重金属元素在环境污染领域中其概念与范围并不是很严格。
一般是指对生物有显著毒性的元素,如汞、镉、铅、铬、锌、铜、钴、镍、锡、钡、锑等,从毒性这一角度通常把砷、铍、锂、硒、硼、铝等也包括在内。
典型污染物在环境各圈层中的转归与效应
典型污染物在环境各圈层中的转归与效应引言污染物是指那些不断通过人类活动排放到环境中的有害物质,包括大气、水体和土壤等环境。
典型的污染物主要包括大气中的二氧化硫、氮氧化物、水体中的重金属、有机物和土壤中的农药等物质。
这些污染物在环境中的转归和对环境的影响备受关注。
本文将重点讨论这些污染物在不同环境圈层中的转归和效应。
大气中的典型污染物二氧化硫二氧化硫主要来自燃煤、石油等燃烧过程,通过大气向土壤和水体传播。
在大气中,二氧化硫易与水蒸气和氧气反应形成硫酸等强酸性物质,导致酸雨的形成,对植物和建筑物造成损害。
此外,二氧化硫还参与臭氧和颗粒物的生成,对人类健康和环境造成危害。
氮氧化物氮氧化物主要来自汽车尾气和工业排放,对大气和水质均有影响。
氮氧化物在大气中与挥发性有机物反应形成臭氧,对人类健康影响较大。
此外,氮氧化物还是水体中富营养化的主要原因之一,引起水华的产生,破坏水生态系统平衡。
水体中的典型污染物重金属重金属是水体中的重要污染物之一,主要来源于工业废水排放和农业面源污染。
重金属如铅、镉等对水生生物和人类健康具有较大危害。
它们在水环境中具有很强的持久性和蓄积性,易被生物富集,加重水体污染。
有机物有机污染物包括各类化学品,如农药、兽药和工业化学品等。
这些有机物对水生生物和人类健康危害较大,有些有机物还对生态系统造成严重危害。
它们在水体中转移速度较慢,易富集在生物体内,引起食物链中毒现象。
土壤中的典型污染物农药农药是影响土壤质量的重要因素之一,主要来源于农田施用。
农药中的有机氯、有机磷等成分易残留在土壤中,并渗入地下水和河流中造成污染。
农药对土壤生物和植物生长产生危害,也对人类健康构成威胁。
总结与展望不同环境圈层中的典型污染物具有不同的转归和效应,但它们都对环境和人类健康造成危害。
因此,应该积极采取有效措施减少污染物排放,保护和改善环境质量。
以上是关于典型污染物在环境各圈层中的转归与效应的讨论,希望对读者有所启发。
最新典型污染物在环境各圈层中的转归与效应课件ppt
2.多氯联苯(PCBs)
(1)多氯联苯的结构与性质 • PCBs是一组由二个以上氯原子取代联苯分子中氢原
子而形成的氯代芳烃,共有209个异构体。
3
4
持久性有机污染物斯德哥尔摩公约 2004年11月11日起对我国生效
• POPs公约于2001年5月22日在瑞典斯德哥尔摩通 过,至今已有151个国家签署、83个国家批准。
• 通过这一过程实现了PCBs从大气向水体或土壤的转移。 • 气态和吸附态的PCBs都可以通过干、湿沉降过程或雨
水淋洗到达地球表面。
16
② PCBs在土壤中的迁移
❖土壤中PCBs的来源
– 主要来源于颗粒沉降; – 有少量来源于污泥作肥料,填埋场的渗漏以及在农药配
方中使用的PCBs等。 – 土壤中的PCBs含量一般比上面的空气中含量高出10
停产,到80年代初国内基本已停止生产PCBs,估计历年 累计产量近万吨。
10
(2) PCBs的来源与分布
②分布
❖PCBs在环境样品中广泛分布。 ❖PCBs由于挥发性低的,辛醇/水分配系数高, 在大
气和水中含量较低。
–大气中小于10ng/L, 水中小于2ng/L 。
❖PCBs易被颗粒物所吸附,在废水流入河口附近的沉 积物中,PCBs含量可高达2000-5000μg/kg。
• 其余的大部分则通过下列途径进入环境
– 随工业废水进入河流和沿岸水体; – 从密封系统渗漏或在垃圾场堆放; –在使用和处理(焚化含PCBs的物质)过程中,
通过挥发进入大气,然后经干、湿沉降转入湖 泊和海洋。
13
(3) PCBs在环境中的迁移与转化
①概况 ❖水体的PCBs极易被颗粒物所吸附,成为沉积物。 ❖近年来PCBs的使用量大大减少,但沉积物中的
典型污染物的转归与效应(ppt57张)
⒉多氯联苯(PCBS):
⑴ PCBS结构与性质:
3' 4' 5' 6' 联苯 2' 1' 1 6 5 2 3 4
Clm
Cln 多氯联苯 (1≤m+n≤10)
PCBS的全部异构体有210个。目前已鉴定出102个 。
PCBS纯化合物为晶体,混合物则为油状液体。粘
度随着Cl数增加而增大,溶解度随Cl数的增加而降低 。 PCBS耐酸、耐碱、耐腐蚀和抗氧化,对金属无腐 蚀、耐热和绝缘性能好,加热到1000-1400℃才完全分
②生物转化:
PCBS可通过代谢作用发生转化,转化速率随分子
中Cl的增多而降低。
★⑷多氯联苯的毒性与效应
PCBS可抑制水生植物的生长;大多数鱼种对PCBS
都很敏感。鸟类吸收PCBS后可引起肾、肝的扩大和损 坏,内部出血,脾脏衰弱等。 PCBS可诱导哺乳动物的肝脏腺瘤及癌症的发展。 PCBS进入人体后,可引起皮肤溃疡、囊肿及肝损伤、 白细胞增加等症。PCBS可通过母体转移给胎儿致畸。 PCBS目前唯一的处理方法是焚烧,焚烧多氯联苯
汞及其化合物挥发程度与化合物的形态及在水中的溶 2.0 氧化物 干空气中,RH≤1%
碘化物 干空气中 解度、表面吸附、大气的相对湿度等密切相关。 氟化物 氟化物 氯化甲基汞(液体) 醋酸苯基汞(固体) 醋酸苯基汞(固体) 硝酸苯基汞(固体) 硝酸苯基汞(固体) 半胱氨酸汞络合物 (固体) RH≤1% RH=70% 0.06%的 0.1mol/L 磷酸盐缓冲溶液, pH=5 在 RH≤1%的干空气中 在 RH=30%的干空气中 在 RH≤1%的干空气中 在 RH=30%的干空气中 湿空气中,RH 饱和 干空气中,RH≤1% 150 8 20 900 140 22 140 4 27 13 2
典型污染物在环境各圈层中的转归与效应概述
典型污染物在环境各圈层中的转归与效应概述一、引言污染物的释放已经成为当代社会面临的一个严峻问题。
各种污染物经过排放后会进入大气、水体和土壤等环境圈层,对生态系统及人类的健康造成危害。
本文将探讨典型污染物在环境中的传播、转移和效应,以及可能的应对措施。
二、大气环境中的污染物大气是典型污染物传播的重要介质之一,大气中的污染物主要包括二氧化碳、氮氧化物、臭氧和颗粒物等。
这些污染物通过空气传播,对空气质量和气候产生影响,加剧全球变暖等问题。
三、水体环境中的污染物水体是另一个容易受到污染物侵袭的环境圈层,水中的污染物包括重金属、有机污染物、化学物质等。
这些污染物会对水质产生影响,损害水生态系统,威胁人类饮用水安全。
四、土壤环境中的污染物土壤是污染物的另一主要殖身之所,土壤中的化学污染物如农药、重金属等会经过降解或迁移导致土壤退化,影响农作物生长,还可能转移至水体和植物中造成进一步危害。
五、污染物的生物富集效应部分污染物会在环境中富集,并通过食物链逐级向上转移,最终积累到高级食物链中,造成食物链中生物的富集,例如水中生物体内富集的汞会对食肉动物和人类造成毒害。
六、污染物对生态系统的影响污染物对生态系统的危害是综合而复杂的,除了直接影响生物生长繁衍外,还可能破坏物种的生态平衡,导致生物多样性降低,影响整个生态系统的健康。
七、应对污染物的措施为了减少污染物对环境的危害,采取有效的污染物控制和治理措施至关重要。
这包括加强污染源监管、推动清洁能源发展、实施循环经济等举措,共同维护地球生态系统的可持续发展。
八、结论污染物在环境各圈层中的传播和效应是一个复杂的系统工程,需要全社会共同努力,科学合理地管理和应对污染物,以保护人类和生态环境的健康。
NSAttributedString以上是典型污染物在环境各圈层中的转归与效应的概述,希望能为读者提供一些启发和思考。
典型污染物在环境各圈层中的转归与效应
第六章典型污染物在环境各圈层中的转归与效应一、名词解释表面活性剂二、填空1、PAH在紫外光照射下很容易光解和氧化。
也可以被微生物降解。
2、气相汞的最后归趋是进入土壤和海底沉积物。
3、无机砷可以抑制酶的活性,三价无机砷可以与蛋白质的巯基反应。
4、含氢卤代烃与OH-自由基的反应是它们在对流层中消除的主要途径。
5、表面活性剂的生物降机理主要是烷基链上的甲基氧化(ω氧化)、β氧化、芳香环的氧化降解和脱磺化。
6、水中PCBs浓度为10-100ug/L时,便会抑制水生植物的生长;浓度为0.1-1.0ug/L时,会引起光合作用减少。
7、PCBs在环境中的主要转化途径是光化学分解和生物转化。
三、多项选择1、下列PCBs中,最不易被生物降解的是 D 。
A、联苯B、四氯联苯C、三氯联苯D、六氯联苯2、表面活性剂含有很强的 B ,容易使不溶于水的物质分散于水体,而长期随水流迁移。
A、疏水基团B、亲水基团C、吸附作用D、渗透作用3、氟利昂主要来源于ABCD 。
A、制冷剂B、飞机推动剂C、塑料发泡剂D、火山爆发四、简答题1.砷在环境中存在的主要化学形态有哪些?其主要转化途径有哪些?2.为什么Hg2+能在人体内长期滞留?举例说明它们可形成哪些化合物?3.简述多氯联苯PCBs在环境中的主要分布、迁移与转化规律。
4.表面活性剂有哪些类型?对环境和人体健康的危害是什么?5.根据多环芳烃形成的基本原理,分析讨论多环芳烃产生与污染的来源有哪些?6.试述PCDD是一具有什么化学结构的化合物?并说明其主要污染来源。
第六章 典型污染物在环境各圈层中的转归与效应
砷在环境中转化模式
砷污染与健康—地方砷中毒
地方性砷中毒是由于原生地质 原因或其它非人为因素引起的 环境中砷含量较高,居民长期 摄入少量砷而引起的砷中毒。
1)饮水型砷中毒 2)燃煤型砷中毒
无机砷可抑制酶的活性,与蛋白质结合,抑制线粒体的呼 吸作用等,同时还引起染色体及器官的异常。
6.2有机污染物
砷在生物体中的分布
植物体中的砷主要来自土壤和水体。陆生植物的砷 含量多数少于1ppm(干重),而海洋植物和海藻则 要比陆生植物明显偏高。不同地域的植物砷含量可 以相差很大。但最近也有研究者发现某些特殊植物 中的砷含量可以高达数千ppm。 动物体中的砷含量与其生活环境紧密相关。 通常海洋动物体中的砷含量高于陆地或淡水动物体 的含量。 正常人体内砷的平均浓度为5ppb,但也有资料认为 是0.1ppb。
汞与人类健康
美国的研究指出,十二分之一或将近5百万名妇女体内 的汞含量高于安全标准,每年可能有高达30万名新生 儿因为汞污染其智力和神经系统受到影响,而在全球, 这一数据可能高达千百万。
水俣病事件
时间地点:1953年日本九 州水俣 原因:食用含有甲基汞的 鱼 汞污染和汞中毒是一个久 远而现实的问题。鉴于此, WHO及各国政府将其列 为首先考虑的环境污染物.
假单胞菌属能够降解甲基汞,也可以将Hg2 + 还原 为金属汞。
汞在环境中的循环
6.1.2 砷—砷在环境中的分布
砷的来源:
据估计每年由自然原因释放的砷约为8×106千克,而由人为 活动释放到环境中的砷则高达24×106千克
自然来源
岩石矿物
土壤的风化 人为来源
火山喷发
温泉
工业生产:冶炼、制药 化石燃料和薪材燃烧 农药使用
典型污染物在环境各圈层中的转归与效应精品PPT课件
❖土壤中PCBs的损失
– 生物降解和可逆吸附都不能造成PCBs的明显减少, – 挥发过程是引起PCBs损失的主要途径。
• PCBs的挥发速率随着温度的升高而升高,但随着土壤中粘土 含量和联苯氯化程度的增加而降低。
17
③PCBs在水体中的迁移
❖水体中PCBs的来源
– 主要通过大气沉降和随工业、城市废水向河、 湖、沿岸水体的排放等方式进入水体。
– Poster等人研究表明: 雨水中只有9% 的PCBs 处于真正溶解状态,80%是束缚在亚微粒上的 吸附态。
15
① PCBs在大气中的迁移
❖大气中PCBs的损失途径
– 直接光解和与OH、NO3 等自由基及O3 作用。
• 全世界每年约有0.6%的PCBs由于OH 基反应而消失。
– 雨水冲洗和干、湿沉降。
❖水体中PCBs的存在形态
– 除小部分溶解外,大部分附着在悬浮颗粒物上, 最终沉降到底泥。
– 底泥中的PCBs含量一般要较上面的水体高 1~2数量级。
• 它是继1987年《保护臭氧层的维也纳公约》和 1992年《气候变化框架公约》之后,第三个具有 强制性减排要求的国际公约。
• 2004年6月25日,十届全国人大常委会第十次会 议批准公约;
• 2004年8月13日,我国政府向联合国交存了批准、 接受、核准和加入书。
5
持久性有机污染物斯德哥尔摩公约 2004年11月11日起对我国生效
• 根据公约规定,缔约方须在公约对缔约方 生效当日起计的两年内制定国家实施方案 并尽快组织实施。
• 我国需要采取必要的法律和行政措施
– 禁止和消除有意生产的POPs的生产和使用, 并严格控制其出口;
– 促进包括最佳可行技术和最佳环境实践的应用; – 查明并以安全、有效和对环境无害化方式处置
第5章典型污染物转归与效应
汞及其化合物 → 空
气 → 颗粒物吸附 →
土⒋壤汞或在水环体境中的循环途径:
CH4
C2H6
Hg0
hv
(CH3)2Hg
hv hv
水中无机汞 → 甲 H基g0 化 →进入食物链
大气
鱼 CH3Hg+
贝壳类 水
CH3-S-Hg-CH3
Hg0
微代生谢物水HC中gH2汞23+Hg+→代微颗谢生物粒(物CHHg结23+)2H合微g 生→代物C谢H水微3-S生底-H物沉g代-C谢积H3 物
第一节 重金属元素
有毒重金属是指非人体必需又有害的重金属元素和化合物, 在人体中只有少量存在但对正常代谢作用产生灾难性的影响。
有毒重金属来自于矿物冶炼,材料加工和制成品应用等发 生源,通过各种渠道散入环境。
重金属毒物对人体的毒害程度与其种类、存在的化 学形态、进入人体的途径及受害人体的情况不同。一般 以单质形式存在,通过饮食进入人体呈低毒性,以阳离 子或有机态形式存在具有高毒性。
消除汞最活跃的人体部位是肾、肝、毛发等。
17
§2 砷
⒈来源与分布 ⑴天然源:
含砷矿物。地壳中砷含量为1.5-2mg/kg。土壤中 砷本底值0.2-40mg/kg。空气、 地面水砷含量很低。 ⑵人为源:
种中枢神经性疾患的公害病,称为水俣病。这是世界 历史上首次出现的重金属污染重大事件。
10
日本水俣病
11
日本水俣病
12
HH O
甲基钴氨素是金属甲基化甲基基团 FAD H2 的重F要AD生+物2来H 源。
HCgH2和+3CHHgC3HHg+3
Co 3+
辅酶甲基四氢叶酸
环境化学 第6章 典型污染物在环境各圈层中的转归与效应
第六章 典型污染物在环境各圈层中的转归与效应
本章主要内容:
1. 污染物在多介质多界面环境中的传输 2. 重金属元素 3. 有机污染物 4. 表面活性剂
第一节 污染物在多介质多界面环境中的传输
水-气界面的物质传输 土壤-大气界面的物质传输 水-沉积物界面的物质传输
根据对日本水俣病的研究,中毒者发病时发汞含量为200一1000μg/g, 最低值为50μg/g;血汞为0.2—2.0μg/m1;红细胞中为0.4μg/g。因此, 可以把发汞50μg/g、血汞0.2μg/m1、红细胞中汞0.4μg/g看成是对甲基 汞最敏感的人中毒的阈值。
有机汞化合物曾作为一种农药,特别是作为一 种杀真菌剂而获得广泛应用;这类化合物包括 芳基汞(如二硫代二甲氨基甲酸苯基汞
水俣病 1972年伊拉克,5000人死亡因甲基汞处理的麦种致死
1953年在日本熊本县水俣湾附近的渔村。发现一种中 枢神经性疾患的公害病,称为水俣病。经过十年研究 于1963年从水俣湾的鱼、贝中分离出CH3HgCl结晶。 并用纯CH3HgCl结晶喂猫进行试验,出现了与水俣 病完全一致的症状。1968年日本政府确认水俣病是由 水俣湾附近的化工厂在生产乙醛时排放的汞和甲基汞 废水造成的。这是世界历史上首次出现的重金属污染 重大事件。
1、环境中汞的来源、分布与迁移
来源与分布
汞在自然界的浓度不大,但分布很广。主要开采应用 后绝大部分以三废形式进入环境。
据统计.目前全世界每年开采应用的汞量约在 1×104t以上,其中绝大部分最终以三废的形式进入 环境。据计算,在氯碱工业中每生产1t氯,要流失 100-200g汞;生产1t乙醛,需用100-300g汞,以 损耗5%计,年产10×104t乙醛就有500-1500kg汞 排入环境。
典型污染物在环境各圈层中的转归与效应
C
OO As O O-
O
1-砷-3-磷酸甘油酯
因为它的性质与磷相似,所以砷会干扰某些有磷参 与的生化反应。
磷参与重要产能物质ATP的生物化学合成。
ATP生成的关键步骤是用3-磷酸甘油醛进行,1,3-二 磷酸甘油酯的酶的合成。
高浓度的砷化物会使蛋白质凝固,可能是因为砷与 蛋白质中的二硫键反应。 对砷常用的解毒剂是含有巯基基团并能与砷酸根结 合的化合物。如BAL(2,3-二巯基丙醇),可从蛋白质 中去除砷酸根,并恢复正常的酶功能。
二、砷
1、来源 ① 自然存在的矿物 ② 工业排放 ③ 农业使用砷酸铅、砷酸钙
2、环境中As的迁移转化 在一般的pH和Ea范围内,As主要以+3,+5存在。 水溶性部分:AsO43-、HAsO42-、H2AsO4-、AsO33-、 H2AsO3-只占5~10%。 因为: A. 水溶性As易与土壤中Fe3+、Al3+、Ca2+、Mg2+ 等离子生成难溶性砷化物(与PO43-相似)。 B. 土壤中As大部分与土壤胶体相结合,呈吸附 状态,且吸附牢固,呈现为AsO43-、AsO33-阴 离子。
(5)食品污染,食物链的生物富集、纸包装材料的迁移和意外事故引起食品污染。
国际对POPs的控制:禁止和限制生产、使用、进出口、人为源排放,管理好含有POPs废 弃物。
持久性有机污染物具有环境持久性、生物累积性、长距离迁移能力和高毒性,因此 能够对人类和野生动物产生大范围、长时间的危害,造成人体内分泌系统紊乱,破 坏生殖和免疫系统,并诱发癌症和神经系统疾病。为解决持久性污染物这一全球性 问题,2001年5月22日国际社会通过了斯德哥尔摩公约。
远距离迁移而不会全部被降解,但半挥发性又使得它们不会永久停留在大气层中
典型污染物在环境各圈层中的转归与效应.
19
空气
土壤
水 水生生物
动物 肉蛋奶等
人类
植物
PCBs在环境中的转移路线
20
④ PCBs在环境中的转化
PCBs在环境中的转化降解非常缓慢 光化学分解
Safe等人研究了PCBs在波长280-320nm的紫外光下的光化学分 解及其机理,认为由于紫外光的激发使碳氯键断裂,而产生芳 基自由基和氯自由基。
• 1968年日本米糠油事件
– 油生产过程中,作为传热介质的PCBs造成油污染 – 22人死亡,1800多人受害
• 对水生植物的效应
– PCBs 10-100μ g/L时,抑制水生植物的生长; – PCBs 0.1-1.0μ g/L时,引起光合作用减少。
• 对各种动物的效应
– 大多数鱼种对PCBs都很敏感。 – 鸟类吸收PCBs后可引起肾、肝的扩大和损坏,内部出血,脾脏衰弱 等。 – PCBs可使水中的家禽的蛋壳厚度变薄。 – PCBs对哺乳动物的肝脏可诱导腺瘤及癌症的发展。
第六章 典型污染物在环境各圈层中 的转归与效应
第一节 重金属元素
一、汞、砷 二、汞、砷
第二节 有机污染物
一、有机卤代物
1.有机卤代物 2.多氯联苯(PCBs) 3.多氯代二苯并二恶英/呋喃(PCDD/PCDF)
二、多环芳烃(PAHs) 三、表面活性剂
1
一、有机卤化物 2.多氯联苯(PCBs)
• PCBs曾被作为热交换剂、润滑剂、变压器和电容 器内的绝缘介质、增塑剂,以及阻燃剂等重要的 化工产品,广泛应用于电力工业、塑料加工业、 化工和印刷等领域。 • PCBs是目前国际上关注的12种持久性有机污染物 (POPs)之一。
典型污染物在环境各圈层中的转归与效应
典型污染物在环境各圈层中的转归与效应典型污染物包括空气污染物、水体污染物和土壤污染物,它们在环境各圈层中的转归与效应对于人类的生存和健康具有重要意义。
首先,空气污染物是指大气中存在的有害物质,例如二氧化硫、氮氧化物、臭氧、颗粒物等。
这些污染物通常在工业排放、汽车尾气和能源生产过程中释放出来。
一旦排放到大气中,空气污染物会通过大气循环和沉降作用进一步传播和沉积。
在大气中,污染物的浓度和分布可以受到气候、地形和风向等因素的影响。
空气污染物的转归与效应在大气层中主要表现为光化学反应和气溶胶形成。
光化学反应是指太阳辐射和污染物之间的相互作用,产生臭氧和二次有机气溶胶等有害物质。
臭氧对人体健康有害,可以引发呼吸系统疾病和心血管疾病。
气溶胶是指悬浮在大气中的微小颗粒物,它们对能见度、气候变化和空气质量有重要影响,同时也对人体呼吸系统产生不良影响。
水体污染物是指排放到水体中的有害物质,例如重金属、有机污染物和营养盐等。
这些污染物通常来自工业废水、生活污水和农业面源污染等。
一旦进入水体,水体污染物会通过水流和沉积作用进一步传播和沉积。
在水体中,污染物的浓度和分布可以受到水流速度、水体深度和环境温度等因素的影响。
水体污染物的转归与效应在水体圈层中主要表现为生物富营养化和生物毒性。
生物富营养化是指水体中的营养盐过剩,导致蓝藻和水华等有害生物过度繁殖。
这些有害生物会消耗水中的氧气,导致水体缺氧,对水生生物造成危害。
生物毒性是指水体中存在的有毒有害物质对水生生物和人体健康的危害。
这些有毒有害物质可能通过生物累积,进而影响整个食物链。
土壤污染物是指排放到土壤中的有害物质,例如重金属、农药和化学物质等。
这些污染物通常来自工业废弃物、农业施肥和城市垃圾等。
一旦进入土壤,土壤污染物会通过土壤颗粒的吸附和水分的迁移进一步传播和沉积。
在土壤中,污染物的传播和沉积受到土壤组分和pH值等因素的影响。
土壤污染物的转归与效应在土壤圈层中主要表现为土壤质量下降和农产品安全问题。
典型污染物的转归与效应
典型污染物的转归与效应污染物是指引起环境质量恶化或危害人类健康的物质。
随着工业化和城市化的快速发展,污染物排放成为了一个严重的问题。
在工业生产、交通运输、农业活动等过程中,大量的污染物被排放到大气、水体和土壤中,对环境和生态系统造成了巨大的危害。
本文将讨论一些典型的污染物,包括二氧化碳、氮氧化物、硫氧化物和重金属等,探讨它们的转归与对环境的影响。
二氧化碳二氧化碳是一种重要的温室气体,对大气层中的臭氧层具有很强的吸收和保留作用。
随着工业化进程不断加快,二氧化碳的排放量也在快速增加,导致大气中二氧化碳浓度持续升高,加剧了全球变暖和气候变化。
二氧化碳的排放主要来自于燃烧化石燃料和森林砍伐等人类活动。
为了减少二氧化碳的排放,各国采取了一系列减排措施,包括发展清洁能源、推广节能减排技术等。
氮氧化物氮氧化物是指氮气在高温燃烧条件下产生的氮氧化合物,主要包括一氧化氮和二氧化氮。
氮氧化物的主要排放源包括机动车尾气、工业生产和农业活动等。
氮氧化物会对大气层产生臭氧、酸雨和细颗粒物等污染,对人类健康和环境造成危害。
为了减少氮氧化物的排放,各国采取了加强环境监管、提高排放标准等措施,并推广清洁能源和节能减排技术。
硫氧化物硫氧化物是指硫化氢、二氧化硫和三氧化硫等硫的氧化产物。
硫氧化物的主要来源包括煤炭燃烧、工业生产和交通运输等。
硫氧化物排放会导致酸雨、大气污染和气溶胶等问题,对植物生长和人类健康造成危害。
为了减少硫氧化物的排放,各国采取了减少燃煤使用、推广低硫燃料和净化技术等措施。
重金属重金属是指相对密度较大的金属元素,包括铅、镍、镉等。
重金属的排放主要来自于工业废水、废弃物和环境污染等。
重金属会在生物体内积累,对生态系统和人类健康造成危害,引发各种慢性病和环境问题。
为了减少重金属的排放,各国采取了严格的环境监管、治理工程和资源回收等措施,保护环境和保障公共健康。
总的来说,典型污染物的排放已经成为世界各国共同关注的问题,要采取综合措施,加强国际合作,共同应对全球环境挑战。
典型污染物在环境各圈层中的转归与效应
二恶英类
(7)焚尸炉 (8)机动车辆,特别是使用含铅汽油的车辆 (9)动物遗骸的销毁 (10)纺织品和皮革染色(使用氯代醌)和修整(碱萃取) (11)处理报废车辆的破碎作业工厂 (12)铜制电缆线的低温燃烧 (13)废油提炼
持久性有机污染物的危害
POPs物质一旦通过各种途径进人生物体内 就会在生物体内的脂肪组织、胚胎和肝脏等器 官中积累下来, 到一定程度后就会对生物体造成 伤害。而且可以肯定的是:POPs物质对人体造 成损害,一般不是某一种或某一族的POPs单独 作用,而是某几族POPs相互协同的结果。
H3 AsO4 2e H3 AsO3 C H3 CH3 AsO(OH )2 2eCH3 As(OH )2 C H3
CH
3
2
AsO(OH
)
2eCH
3
2
As(OH
)
C H3 CH
3
3
AsO
2eCH
3
3
As
三价无机砷毒性高于五价砷 溶解砷比不溶性砷毒性高
持久性有机污染物的特性
持久性 生物蓄积性 半挥发性和长距离迁移性
高毒性
持久性
POPs 半衰期较长,同 时具有高脂溶性和低水 溶性,容易在生物体内 富集而难以排出体外。
生物蓄积性
POPs易溶于脂肪,可通过 食物链(网) 在生物体内蓄 积并逐级放大,对人体健
康造成严重危害。
生物蓄积性
不同的POPs在不同的生物体内蓄积程度存在 较大差异,影响POPs在生物体内蓄积因素主 要有: (1)化合物氯取代的位置和氯取代的多少。 (2)生物体在食物链中的营养级别越高,其 体内的生物蓄积量相应越大。 (3)生物体代谢特征的差异会导致POPs在不同 生物体内的滞留时间有较大的差异。
第六章 典型污染物在环境各圈层中的转归与效应
汞在环境中的循环
镉
1.痛痛病事件 2.镉的环境分布和污染来源 3.镉污染的特点 特4.点镉1的:毒在性环境中容易形成配合物或螯合物; 容易在体内的肾脏、肝脏等部位积聚,对人体的肾脏、肝脏、 特骨点骼2、:血价液态系总统是等保都持有在较+2大价的,损随害着作水用体,环还境能氧破化坏还人原体性的新 陈和代p谢H。的变化,受影响的只是与Cd2+相结合的基团。 特点3:水体底泥对镉有较强的吸附作用。
多环芳烃能以气态或者颗粒态存在于大气、水、植 物、土壤中。
大气中的PAHs一部分由于发生光解被降解或者形成 另一种形态的PAHs;一部分由大气条件和气象条件 的支配沉降到水体和土壤中;剩余的PAHs被植物和 动物所吸收。
多环芳烃(PAHs))在环境中的迁移与转化
尽管在任一介质中,多环 芳烃都会发生光解、生物 降解等反应,但由于其持 久性的特性,能长时间地 停留在环境中,并且在不 同介质间相互迁移转化。
ß氧化
降解R机CHR理2C(CHH2C2)H2C2CHH2芳C=CO香HO分使-HCO族-子末SHCS氧C中端ooAA化的第(辅 + 物酶2羧二HA的)酸个H氧R在碳2OCH化辅键2R(降CC酶断HH解2裂A2)C2的HC的H2OC作2O过HHC--S用C程CHo下2A-OC+被-SHC氧2oOA化,
汞在土壤中的迁移转化
甲基钴胺素有红色和黄色两种,可以相互转换,这两种甲基 钴胺素均能与Hg2+(如双醋酸汞)反应生成甲基汞:
以上反应无论在好氧条件还是在厌氧条件下,厌氧条件下转 化为二甲基汞,好氧条件下转化为一甲基汞。只要有甲基钴 胺素存在,在微生物作用下反应就能实现,故甲基钴胺素是 汞生物甲基化的必要条件,