新课标立体几何常考平行证明题汇总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标立体几何常考平行证明题汇总
立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法:
(1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质。(4)利用对应线段成比例。(5)利用面面平行,等等。
3、如图,在体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。
证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE ,1A C 在平面BDE 外
∴1//A C 平面BDE 。 考点:线面平行的判定
5、已知体1111ABCD A B C D -,O 是底ABCD 对角线的交点.
求证:(1) C 1O ∥面11AB D ;(2)1
AC ⊥面11AB D . 证明:(1)连结11A C ,设
11111
A C
B D O ⋂=,连结1AO
∵ 1111ABCD A B C D -是体 11A ACC ∴是平行四边形
∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO =
11AOC O ∴是平行四边形
111,C O AO AO ∴⊂
∥面11AB D ,1C O ⊄面11AB D ∴C 1O ∥面11AB D
(2)1CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 又
1111
A C
B D ⊥∵, 1111B D A
C C ∴⊥面 1
11AC B D ⊥即 同理可证
11
A C AD ⊥, 又
1111
D B AD D ⋂=
∴1A C ⊥面11AB D
考点:线面平行的判定(利用平行四边形),线面垂直的判定
A
E
D 1
C
B 1
D
C
B
A
D 1O
D
B A
C 1
B 1
A 1
C
7、体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 证明:(1)由B 1B ∥DD 1,得四边形BB 1D 1D 是平行四边形,∴B 1D 1∥BD , 又BD ⊄平面B 1D 1C ,B 1D 1⊂平面B 1D 1C , ∴BD ∥平面B 1D 1C . 同理A 1D ∥平面B 1D 1C .
而A 1D ∩BD =D ,∴平面A 1BD ∥平面B 1CD .
(2)由BD ∥B 1D 1,得BD ∥平面EB 1D 1.取BB 1中点G ,∴AE ∥B 1G .
从而得B 1E ∥AG ,同理GF ∥AD .∴AG ∥DF .∴B 1E ∥DF .∴DF ∥平面EB 1D 1.∴平面
EB 1D 1∥平面FBD .
考点:线面平行的判定(利用平行四边形)
10、如图,在体1111ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、11C D 的中点.求证:平面1D EF ∥平面BDG .
证明:∵E 、F 分别是AB 、AD 的中点,∴EF ∥BD 又EF ⊄平面BDG ,BD ⊂平面BDG ∴EF ∥平面BDG ∵1D G
EB ∴四边形1D GBE 为平行四边形,1D E ∥GB
又1D E ⊄平面BDG ,GB ⊂平面BDG ∴1D E ∥平面BDG
1EF D E E
⋂=,∴平面1D EF ∥平面BDG
考点:线面平行的判定(利用三角形中位线)
11、如图,在体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE . 证明:(1)设AC BD O ⋂=,
∵E 、O 分别是1AA 、AC 的中点,∴1A C ∥EO
又1
AC ⊄平面BDE ,EO ⊂平面BDE ,∴1A C ∥平面BDE (2)∵1AA ⊥平面ABCD ,BD ⊂平面ABCD ,1AA BD ⊥
A A
B 1
C 1 C
D 1
D
G E
F
D A 1
A F 又BD AC ⊥,1AC AA A
⋂=,∴BD ⊥平面1A AC ,BD ⊂平面BDE ,∴平面BDE ⊥
平面1A AC
考点:线面平行的判定(利用三角形中位线),面面垂直的判定
(1) 通过“平移”再利用平行四边形的性质
1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;
分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形
2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.
(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;
分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形
3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:
(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM.
分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA
(第1题图)