(完整word版)高一数学常考立体几何证明题及答案
高一数学立体几何大题(含答案)
4.in/w).6=4r3.
例 3:如图,PD ⏊ 平面 ABCD,AD ⏊ CD,AB ⎳ CD,PQ ⎳ CD,AD
= CD = DP = 2PQ = 2AB = 2, 点 M 为 BQ 的中点 .
为 的 P Q C -
M-
大小
0 .
Sepm E 却 二
忙=
以 <m (
,
蕊 令 1
二
5 = -
3
※ 琴 㱺 sina.me
㱺 Somc 二 士 心 的 ✗
=r
.
二号 器 Q到 平面 阰 的 距离 为 : d = 2 5
.io
shnoifst.no
,
㱺 VQ-pmc-f-Somc.dk/nEfsio=fs'm0.
PCHEF 进而 1211 平面 ,
在 阳 仲 , PA-E.AE/,PC=0=)PA4AcEpc2=sAc-1A.
所以 又由 题 干 知 : A 4 P B ,
A
C
1
-
平面阳
13
.
13) 易知 SEFG 二 ftp.c , 所以 /7AB=fSopAB-AC.=f-li2nE.iS'm45J-l
1 求二面角 Q - PM - C 的正弦值;
2 若 N 为线段 CQ 上的点,且直线 DN 与平面 PMQ 所成的角为
π 6
,
求线段
QN
的长
.
子 (2) 由 山 知 二面⻆ QPMC 的 大小 为 ,
劝 的平面 PMQ所 成的 ⻆ 为 至
所以 叽 与平面PMC 所 成的 ⻆
高一立体几何试题及答案详解.doc
1若 , , ,则 ;②若 , ,则 ;
③若 , ,则 或 ;④若 , , ,则
其中正确命题的个数为A.0B.1C.2D.3( )
8.定点P不在△ABC所在平面内,过P作平面α,使△ABC的三个顶点到α的距离相等,这样的平面共有( )(A)1个(B)2个(C)3个(D)4个
由余弦定理得cosθ= =0,θ=900,
18.讲解:(1)在平面AD1内,作PP1∥AD与DD1交于点P1,在平面AC内,作
QQ1∥BC交CD于点Q1,连结P1Q1.
∵ ,∴PP1 QQ1.
由四边形PQQ1P1为平行四边形,知PQ∥P1Q1
而P1Q1 平面CDD1C1,所以PQ∥平面CDD1C1
(2) AD⊥平面D1DCC1,∴AD⊥P1Q1,
(2)解:如图,由(Ⅰ)知面AGC⊥面BGC,且交于GC,在平ቤተ መጻሕፍቲ ባይዱBGC内作BH⊥GC,垂足为H,则BH⊥平面AGC,∴∠BGH是GB与平面AGC所成的角
∴在Rt△CBG中 又BG= ,
∴
21.(1)画出示意图如右,其中,SA=
(2)∵SC⊥平面AEFG,A又AE 平面AEFG,∴AE⊥SC,∵SA⊥平面BD,又BC 平面BD,∴SA⊥BC.又AB⊥BC,SA∩AB=A,∴BC⊥平面SBA,∴BC┻AE
15 16,AC=9.18
17.17,(1)连CE、DE,在等边△ABC中,EC=DE= a,
∴EF是等腰△ECD底边上的高,EF⊥CD,
EF= = a
(2)方法一:
取BC中点G,连AG、DG,易知BC⊥AG、BC⊥DG,
∴BC⊥面AGD,则BC⊥AD,∴BC,AD所成角为900,
高一数学立体几何解答题20道-含答案
3.如图,直三棱柱 ABC - A1B1C1 中, E 为 BC 中点. (1)证明: A1B / / 平面 AEC1 ; (2)若此三棱柱的体积为 1, AB CC1 1 , A1B BC ,求直线 B1E 与平面 AEC1 所成角 的正弦值.
试卷第 3页,共 20页
高一立体几何解答题 20 道
1.如图所示,在四棱锥 P ABCD 中,BC//平面 PAD, BC 1 AD ,E 是 PD 的中点. 2
(1)求证:CE//平面 PAB; (2)若 M 是线段 CE 上一动点,则线段 AD 上是否存在点 N ,使 MN//平面 PAB?说明理 由.
试卷第 1页,共 20页
试卷第 5页,共 20页
6.如图, O1,O 分别是圆台上、下底的圆心, AB 为圆 O 的直径,以 OB 为直径在底面 内作圆 E,C 为圆 O 的直径 AB 所对弧的中点,连接 BC 交圆 E 于点 D, AA1, BB1, CC1 为 圆台的母线, AB 2A1B1 8 . (1)证明: C1D //平面 OBB1O1; (2)若 OO1 6 ,求 C 到平面 AC1D 的距离.
CD
上,求四棱台的
体积.
试卷第 11页,共 20页
12.如图,在直三棱柱 ABC - A1B1C1 中, AB BC , AB BC 4 , AA1 6 , M 为 B1C1 的中点. (1)证明: AC1// 平面 A1BM (2)过 A, M , C 三点的一个平面,截三棱柱 ABC - A1B1C1 得到一个截面,画出截面图,说 明理由并求截面面积.
4.如图,在四棱锥 P ABCD 中,△ABD 为等边三角形,△BCD 为等腰三角形, BCD 120 , E 为 PA 的中点. (1)求证: DE / / 平面 PBC . (2)若 PD 底面 ABCD ,且 PD BC 2 ,求点 E 到平面 PBC 的距离.
高考立体几何大题及答案(理)
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高考立体几何大题及答案(理)地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容1.如图,四棱锥中,底面为矩形,底面,,,点在侧棱上,。
(I)证明:是侧棱的中点;求二面角的大小。
2.如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BACBA1B1C1DED-C为60°,求B1C与平面BCD所成的角的大小3.如图,平面,,,,分别为的中点.(I)证明:平面;(II)求与平面所成角的正弦值.4.如图,四棱锥的底面是正方形,,点E在棱PB上.(Ⅰ)求证:平面;(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.5.如图,在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面交于点.(1)求证:平面⊥平面;(2)求直线与平面所成的角;(3)求点到平面的距离.6.如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(I)求证:;(II)设线段、的中点分别为、,求证:∥(III)求二面角的大小。
7.如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD =AD=a,点E是SD上的点,且DE=a(0<≦1). (Ⅰ)求证:对任意的(0、1),都有AC⊥BE:(Ⅱ)若二面角C-AE-D的大小为600C,求的值。
8.如图3,在正三棱柱中,AB=4, ,点D是BC的中点,点E 在AC上,且DEE.(Ⅰ)证明:平面平面; (Ⅱ)求直线AD 和平面所成角的正弦值。
9.如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(I)求证:;(II)设线段、的中点分别为、,求证:∥(III)求二面角的大小。
高一数学立体几何练习题及部分答案大全.docx
立体几何试题一.选择题(每题 4 分,共 40 分)1. 已知 AB3003001500空间,下列命题正确的个数为()(1)有两组对边相等的四边形是平行四边形, (2)四边相等的四边形是菱形(4)有两边及其夹角对应相等的两个三角(3)平行于同一条直线的两条直线平行 ;形全等A 1B 2C 3D 43.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是()A平行B相交C在平面内D平行或在平面内4. 已知直线 m过平面外一点,作与平行的平面,则这样的平面可作()A 1 个或 2 个B 0个或1个C1个 D 0个6.如图 , 如果 MC 菱形 ABCD 所在平面 , 那么 MA与 BD的位置关系是 ( )A平行B垂直相交C异面D相交但不垂直7. 经过平面外一点和平面内一点与平面垂直的平面有()A 0 个B 1个C无数个 D 1个或无数个8.下列条件中 , 能判断两个平面平行的是 ( )B一个平面内的两条直线平行于另一个平面C一个平面内有无数条直线平行于另一个平面D一个平面内任何一条直线都平行于另一个平面9. 对于直线m ,n 和平面,, 使成立的一个条件是 ( )A m // n, n, mB m // n, n,mC m n,I m, nD m n, m //, n //)10 . 已知四棱锥 , 则中 , 直角三角形最多可以有 (A 1个B2个 C 3个D4个二.填空题(每题 4 分,共16 分)11. 已知ABC的两边 AC,BC分别交平面于点M,N,设直线AB与平面交于点O,则点 O与直线 MN的位置关系为 _________12.过直线外一点与该直线平行的平面有 ___________个,过平面外一点与该平面平行的直线有_____________条13. 一块西瓜切 3 刀最多能切 _________块14.将边长是 a 的正方形 ABCD沿对角线 AC 折起 , 使得折起后 BD得长为 a, 则三棱锥D-ABC的体积为 ___________三、解答题15(10 分)如图,已知 E,F 分别是正方形ABCD A1B1C1 D1的棱 AA1和棱 CC1上的点,且 AE C1 F 。
高一数学立体几何解答题与答案详解
高一数学立体几何解答题与答案详解1.在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1;(2)求证:平面CAA 1C 1⊥平面CB 1D 1. (1)证明:连结BD .在长方体1AC 中,对角线11//BD B D .又E 、F 为棱AD 、AB 的中点, //EF BD ∴. 11//EF B D ∴.又B 1D 1⊂≠ 平面11CB D ,EF ⊄平面11CB D ,∴ EF ∥平面CB 1D 1. (2) 在长方体1AC 中,AA 1⊥平面A 1B 1C 1D 1,而B 1D 1⊂≠ 平面A 1B 1C 1D 1, ∴ AA 1⊥B 1D 1.又在正方形A 1B 1C 1D 1中,A 1C 1⊥B 1D 1,∴ B 1D 1⊥平面CAA 1C 1. 又 B 1D 1⊂≠ 平面CB 1D 1,∴平面CAA 1C 1⊥平面CB 1D 1.2.如图,长方体1111D C B A ABCD -中,1==AD AB ,21=AA ,点P 为1DD 的中点。
(1)求三棱锥D PAC -的体积;(2)求证:直线1BD ∥平面PAC ; (3)求证:直线1PB ⊥平面PAC . 解:(1)11113326D PAC P DAC DAC V V S PD DA DC PD --∆==⋅=⨯⨯⨯⨯= (2)证明:设O 为AC 、BD 的交点,连接PO 在1D DB ∆,PO 是中位线,1//PO D B ∴ 又1D B ⊄平面PAC ,PO ⊂平面PAC 1//D B ∴平面PAC (3)证明:1AB AD == ∴四边形ABCD 是正方形∴AC BD ⊥又1B B ⊥平面ABCD ,AC ⊂平面ABCD ∴1B B ⊥AC 而1ACBB B = ∴ AC ⊥平面11BB D D又1B P ⊂平面11BB D D ∴AC ⊥1B P 连接1B O ,由条件知22211113B P D P B D =+=,22232PO DP DO =+=2221192B O BB BO =+=, 显然 22211B O B P PO =+ ∴1B P PO ⊥ 又1B PAC O =PD 1C 1B 1A 1DC BA图6CCA B A1C1B1D∴1B P ⊥平面PAC3.在 正三棱柱C B A ABC 111-中,底面边长为2 (1)设侧棱长为1,求证C B B A 11⊥;(2)设B A 1与C B 1成600角,求侧棱长。
(完整版)高考立体几何大题及答案(理)
故AD=AF。又AD⊥AF,所以四边形ADEF为正方形。
因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。
连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD。
连接CH,则∠ECH为 与平面BCD所成的角。
因ADEF为正方形,AD= ,故EH=1,又EC= =2,
(II)设线段 、 的中点分别为 、 ,
求证: ∥
(III)求二面角 的大小。
10.如题(18)图,在五面体 中, ∥ , , ,四边形 为平行四边形, 平面 , .求:
(Ⅰ)直线 到平面 的距离;
(Ⅱ)二面角 的平面角的正切值.
11.如图,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅱ)设平面BCD的法向量 则
又 =(-1,1,0),
=(-1,0,c),故
令x=1,则y=1,z= , =(1,1, ).
又平面 的法向量 =(0,1,0)
由二面角 为60°知, =60°,
故 °,求得
于是 ,
,
°
所以 与平面 所成的角为30°
3、(Ⅰ)证明:连接 ,在 中, 分别是 的中点,所以 ,又 ,所以 ,又 平面ACD,DC 平面ACD,所以 平面ACD
(1)证明:PA⊥BD;
(2)设PD=AD,求二面角A-PB-C的余弦值.
12(本小题满分12分)
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB CD,AC BD,垂足为H,
PH是四棱锥的高,E为AD中点
(1)证明:PE BC
(2)若 APB= ADB=60°,求直线PA与平面PEH所成角的正弦值
高中空间立体几何经典例题精选全文完整版
可编辑修改精选全文完整版立体几何一、选择题1.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D2 2.(20XX 年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C 【答案】A3 3.(20XX 年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 4.(20XX 年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B .2C .2-12D .2+12【答案】C5.(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面是边长为3.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A.512πB .3πC.4πD.6π【答案】B6.(20XX年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C7.(20XX年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为,m n,那么m n+=()A.8 B.9 C.10 D.11【答案】A二、填空题8.(20XX年高考北京卷(理))如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.1D1BPD1CCEBA1A【答案】2559.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2410.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-11.(20XX 年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π12.(20XX 年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______AB C1A D EF1B 1C【答案】3π三、解答题13.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB14.(20XX 年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,113tan 6233BC CC BC C =⋅∠==从而2333ABC S BC ∆==因此该三棱柱的体积为1336183ABC V S AA ∆=⋅==15.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))B 1 A 1C 1ACB如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF ∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF ∥平面ABC 同理:FG ∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC ∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SAB AF ⊥SB∴AF ⊥平面SBC 又∵BC ⊆平面SBC ∴AF ⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC ⊥平面SAB 又∵SA ⊆平面SAB ∴BC ⊥SA16.(20XX 年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11A【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1AD C ∆中,11AC DC AD ==故132AD C S ∆= AB CSGFE所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.17.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD=由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故2OH =,从而2A H '== 所以cos OH A HO A H '∠=='所以二面角ACD B '--向量法:以O 点为原点,建立空间直角坐标系O -.CO BDEA CDOBE'A图1图2C DO BE'AH则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- 由(Ⅰ)知,(OA '=为平面CDB 的一个法向量,所以3cos ,3n OA n OA n OA'⋅'===',即二面角A CD B '--的平面角的余弦值为5.18.(20XX年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为2, 求线段AM的长.6【答案】19.(20XX年高考陕西卷(理))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,12AB AA==(Ⅰ) 证明: A1C⊥平面BB1D1D;(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.1A【答案】解:(Ⅰ) BDOAABCDBDABCDOA⊥∴⊂⊥11,,面且面;又因为,在正方形AB CD 中,BDCAACACAACABDAACOABDAC⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD中,AO = 1 . .111=∆OAOAART中,在OECAOCEAEDB1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又OOBDDDBBODDBBBD=⋂⊂⊂111111E.E,DDBBCA111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O为原点,以OC为X轴正方向,以OB为Y轴正方向.则)1,0,1()1,1,1(),10(),1(,0,1,0111-=⇒CABACB,,,,)(.由(Ⅰ)知, 平面BB1D1D的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OCOBCAn设平面OCB1的法向量为,则0,0,2122=⋅=⋅OCnOBnn).1-,1,0(法向量2=n为解得其中一个21221||||||,cos|cos212111=⋅=⋅=><=nnnnnnθ.所以,平面OCB1与平面BB1D1D的夹角θ为3π1A。
高中数学立体几何证明题汇总
高中数学立体几何证明题汇总立体几何常考证明题1.已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点。
1)证明EFGH是平行四边形。
2)已知BD=23,AC=2,EG=2,求异面直线AC、BD所成的角和EG、BD所成的角。
2.如图,已知空间四边形ABCD中,BC=AC,AD=BD,E 是AB的中点。
1)证明AB垂直于平面CDE。
2)证明平面CDE垂直于平面ABC。
3.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。
证明A1C平行于平面BDE。
4.已知三角形ABC中∠ACB=90,SA垂直于面ABC,AD垂直于SC。
证明AD垂直于面SBC。
5.已知正方体ABCD-A1B1C1D1,O是底面ABCD对角线的交点。
1)证明C1O平行于面AB1D1.2)证明AC1垂直于面AB1D1.6.正方体ABCD-A1B1C1D1中。
1)证明AC垂直于平面B1D1D。
2)证明BD1垂直于平面ACB1.7.正方体ABCD-A1B1C1D1中。
1)证明平面A1BD平行于平面B1DC。
2)已知E、F分别是AA1、CC1的中点,证明平面EB1D1平行于平面FBD。
8.四面体ABCD中,AC=BD,E、F分别为AD、BC的中点,且EF=AC/2,∠XXX。
证明BD垂直于平面ACD。
9.如图P是△ABC所在平面外一点,PA=PB,CB垂直于平面PAB,M是PC的中点,N是AB上的点,AN=3NB。
1)证明XXX垂直于AB。
2)当∠APB=90,AB=2BC=4时,求MN的长度。
10.如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是AB、AD、C1D1的中点。
证明平面D1EF平行于平面BDG。
11.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。
1)证明A1C平行于平面BDE。
2)证明平面A1AC垂直于平面BDE。
12、已知矩形ABCD,PA垂直于平面ABCD,AB=2,PA=AD=4,E为BC的中点。
高一数学立体几何练习题及部分答案汇编(K12教育文档)
高一数学立体几何练习题及部分答案汇编(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学立体几何练习题及部分答案汇编(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学立体几何练习题及部分答案汇编(word版可编辑修改)的全部内容。
立体几何试题一.选择题(每题4分,共40分)1。
已知AB//PQ,BC//QR,则∠PQP等于()A 0150 D 以上结论都不对30 C 030 B 02。
在空间,下列命题正确的个数为( )(1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形(3)平行于同一条直线的两条直线平行;(4)有两边及其夹角对应相等的两个三角形全等A 1B 2C 3D 43.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是()A 平行B 相交C 在平面内D 平行或在平面内4。
已知直线m//平面α,直线n在α内,则m与n的关系为()A 平行B 相交C 平行或异面D 相交或异面5。
经过平面α外一点,作与α平行的平面,则这样的平面可作( )A 1个或2个B 0个或1个C 1个D 0个6.如图,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是( )A 平行B 垂直相交C 异面D 相交但不垂直7。
经过平面α外一点和平面α内一点与平面α垂直的平面有( )A 0个B 1个C 无数个D 1个或无数个8。
下列条件中,能判断两个平面平行的是( )A 一个平面内的一条直线平行于另一个平面;B 一个平面内的两条直线平行于另一个平面C 一个平面内有无数条直线平行于另一个平面D 一个平面内任何一条直线都平行于另一个平面9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( )A //,,m n n m βα⊥⊂B //,,m n n m βα⊥⊥C ,,m n m n αβα⊥=⊂D ,//,//m n m n αβ⊥10 。
高一数学立体几何试题答案及解析
高一数学立体几何试题答案及解析1.设三棱柱的体积为,分别是侧棱上的点,且,则四棱锥的体积为()A.B.C.D.【答案】C【解析】假设重合,重合,则【考点】棱柱棱锥的体积2.如图,四棱锥中,,四边形是边长为的正方形,若分别是线段的中点.(1)求证:∥底面;(2)若点为线段的中点,求三角形的面积。
【答案】(1)见解析;(2)【解析】要想证明线面平行,只需证明出该线段与面内的任意一条线段平行即可,在本题中,需要连接辅助线进行解答,在解此问题时主要运用了三角形内中位线平行于底边的性质;首先需要掌握知识,三角形的中位线的长度为底边的一半,先求出所需边的长度,再运用余弦定理,求出角的度数,在运用三角形面积公式即可得到结果。
试题解析:(1)解:连接,由题意知,为中点,为的中位线,平面平面平面(2)连接由(1)知:,同理可得:,,【考点】空间几何的运算3.如图,在四棱台中,底面,四边形为正方形,,,平面.(1)证明:为的中点;(2)求点到平面的距离.【答案】(1)详见解析;(2)【解析】(1)根据线面平行的性质定理,线面平行则,线线平行,所以可证,可证四边形是平行四边形,即证明是中点;(2)根据等体积转化,可证是直角三角形,写出体积公式,求解距离.试题解析:解(1)连接AD1,则D1C1∥DC∥AB,∴A、E、C1、D1四点共面,∵C1E∥平面ADD1A1,则C1E∥AD1,∴AEC1D1为平行四边形,∴AE=D1C1=1,∴E为AB的中点.(6分)(2),∵AD⊥DC,AD⊥DD1,∴AD⊥平面DCC1D1,AD⊥DC1.设点E到平面ADC1的距离为h,则,解得.【考点】1.线面平行的性质定理;2.等体积转化.4.设长方体的长、宽、高分别为2,1, 1,其顶点都在同一个球面上,则该球的体积为_______.【答案】【解析】球直径为长方体的体对角线,故半径为【考点】球内接长方体的性质,球体积的计算5.(本小题12分)如图所示,三棱柱ABC-A1B1C1中,.(1)证明:;(2)若,求三棱柱ABC-A1B1C1的体积.【答案】(1)见解析;(2)3【解析】(1)取AB的中点O,连接OC,OA1,A1B,证得,,则根据线面垂直的判定定理可得,进而得出;(2)先证明,进而证出,再求出,最后利用柱体的体积公式求出体积;试题解析:(1)取AB 的中点O ,连接.因为,所以.由于,故△AA 1B 为等边三角形,所以.因为,所以.又,故.(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以. 又,则,故.因为所以,为三棱柱的高.又△ABC 的面积,故三棱柱的体积.【考点】1.线面垂直的判定定理;2.线线垂直的证明方法;3.柱体的体积公式;6. 如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误的是( ).A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1角为60°【答案】D【解析】因为易证∥,由线面平行的判定定理可证得∥面,所以A 选项结论正确; 由正方体可得面,可证得,由为正方体得,因为,所以面,从而可证得.同理可证明,根据线面垂直的判定定理可证得面,所以B ,C 选项结论都正确; 因为∥,所以为异面直线与所成的角,由正方体可得,所以D 选项的内容不正确. 故选D 。
(完整)高中数学《立体几何》大题及答案解析.doc
高中数学《立体几何》大题及答案解析( 理)1.( 2009 全国卷Ⅰ)如图,四棱锥S ABCD 中,底面 ABCD 为矩形, SD底面ABCD,AD2 ,DCo SD 2 ,点 M 在侧棱 SC 上,∠ABM=60。
(I )证明:M是侧棱SC的中点;求二面角 S AM B 的大小。
2.( 2009 全国卷Ⅱ)如图,直三棱柱DE ⊥平面 BCC 1(Ⅰ)证明: AB=AC 的角的大小ABC-A 1B1C1中, AB ⊥ AC,D 、E 分别为 AA 1、 B1C 的中点,(Ⅱ)设二面角A-BD-C 为 60°,求 B 1C 与平面 BCD 所成A 1 C1B1D EACB3. ( 2009浙江卷)如图,DC平面ABC,EB / / DC,AC BC EB 2DC 2 ,ACB 120o, P,Q 分别为 AE , AB 的中点.(I)证明: PQ / / 平面ACD;(II)求AD与平面 ABE 所成角的正弦值.4.( 2009 北京卷)如图,四棱锥P ABCD 的底面是正方形,PD 底面 ABCD ,点E在棱PB上.(Ⅰ)求证:平面AEC 平面 PDB ;(Ⅱ)当 PD2AB 且E为PB的中点时,求 AE 与平面 PDB 所成的角的大小.5.( 2009 江西卷)如图,在四棱锥P ABCD 中,底面 ABCD 是矩形, PA平面ABCD,PA AD 4 , AB 2 .以 BD 的中点 O 为球心、 BD 为直径的球面交PD 于点 M .(1)求证:平面ABM⊥平面PCD;(2)求直线PC与平面ABM所成的角;(3)求点O到平面ABM的距离.PMA DOBC6(. 2009 四川卷)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ ABE 是等腰直角三角形,AB AE , FA FE , AEF 45 (I)求证: EF 平面 BCE ;( II )设线段 CD 、 AE 的中点分别为 P 、 M ,求证: PM ∥平面BCE ( III )求二面角 F BD A 的大小。
高中立体几何证明题
高中立体几何证明题一、线面平行的证明题1已知正方体ABCD - A_{1}B_{1}C_{1}D_{1},E,F分别是AB,BC的中点,求证:EF∥平面A_{1}C_{1}D。
解析1. 连接AC。
- 在 ABC中,因为E,F分别是AB,BC的中点,所以EF∥ AC。
2. 正方体ABCD - A_{1}B_{1}C_{1}D_{1}中:- AC∥ A_{1}C_{1}。
- 由EF∥ AC和AC∥ A_{1}C_{1}可得EF∥ A_{1}C_{1}。
- 又A_{1}C_{1}⊂平面A_{1}C_{1}D,EFnot⊂平面A_{1}C_{1}D。
- 根据线面平行的判定定理,所以EF∥平面A_{1}C_{1}D。
题2在三棱柱ABC - A_{1}B_{1}C_{1}中,D是AB的中点,求证:AC_{1}∥平面CDB_{1}。
解析1. 连接BC_{1},交B_{1}C于点E。
- 在三棱柱ABC - A_{1}B_{1}C_{1}中,E为BC_{1}的中点。
2. 因为D是AB的中点:- 所以在 ABC_{1}中,DE∥ AC_{1}。
- 又DE⊂平面CDB_{1},AC_{1}not⊂平面CDB_{1}。
- 根据线面平行的判定定理,可得AC_{1}∥平面CDB_{1}。
二、线面垂直的证明题3在四棱锥P - ABCD中,底面ABCD是正方形,PA = PB = PC = PD,求证:PA⊥平面ABCD。
解析1. 连接AC,BD交于点O,连接PO。
- 因为底面ABCD是正方形,所以O为AC,BD中点。
- 又PA = PC,PB = PD,根据等腰三角形三线合一的性质:- 可得PO⊥ AC,PO⊥ BD。
- 而AC∩ BD = O,AC⊂平面ABCD,BD⊂平面ABCD。
- 根据直线与平面垂直的判定定理,所以PO⊥平面ABCD。
- 又PA = PB = PC = PD,AO = BO = CO = DO,所以 PAO≅ PBO≅ PCO ≅ PDO。
立体几何经典试题(含答案)
1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比. 【解析】(Ⅰ)由题设知BC BC⊥⊥1CC ,BC ,BC⊥⊥AC AC,,1CC AC C Ç=,∴BC ^面11ACC A , , 又又∵1DC Ì面11ACC A ,∴1DC BC ^,由题设知01145A DC ADC Ð=Ð=,∴1CDC Ð=090,即1DC DC ^, 又∵DC BC C Ç=, , ∴∴1DC ⊥面BDC , , ∵∵1DC Ì面1BDC , ∴面BDC ⊥面1BDC ;(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132+´´´=12,由三棱柱111ABC A B C -的体积V =1,∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1. 2. 如图5所示,在四棱锥P ABCD -中,AB ^平面PAD ,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点且12DF AB =,PH 为△PAD 中AD 边上的高. (1)证明:PH ^平面ABCD ;(2)若1PH =,2AD =,1FC =,求三棱锥E BCF -的体积;的体积;(3)证明:EF ^平面PAB . B 1C B A D C 1A 1【解析】(1)证明:因为AB ^平面PAD ,所以PH AB ^。
因为PH 为△PAD 中AD 边上的高,边上的高, 所以PH AD ^。
因为AB AD A = ,所以PH ^平面ABCD 。
(2)连结BH ,取BH 中点G ,连结EG 。
(完整版)高一数学常考立体几何证明的题目及答案
1、如图,已知空间四边形ABCD 中,,BCAC ADBD ,E 是AB 的中点。
求证:(1)AB平面CDE; (2)平面CDE 平面ABC 。
2、如图,在正方体1111ABCDA B C D 中,E 是1AA 的中点,求证:1//AC 平面BDE 。
3、已知ABC 中90ACB o,SA面ABC ,AD SC ,求证:AD面SBC .4、已知正方体1111ABCDA B C D ,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1AC 面11AB D .5、正方体''''ABCD A B C D 中,求证:(1)''AC B D DB 平面;(2)''BD ACB 平面.6、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ;(2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD .AED BCAED 1CB 1DCBASDCBAD 1ODBAC 1B 1A 1CA 1B 1C 1C D 1DGEF7、四面体ABCD 中,,,ACBD E F 分别为,AD BC 的中点,且22EFAC ,90BDCo,求证:BD平面ACD8、如图,在正方体1111ABCDA B C D 中,E 、F 、G 分别是AB 、AD 、11C D 的中点.求证:平面1D EF ∥平面BDG .9、如图,在正方体1111ABCDA B C D 中,E 是1AA 的中点.(1)求证:1//A C 平面BDE ;(2)求证:平面1A AC 平面BDE .10、已知ABCD 是矩形,PA 平面ABCD ,2AB,4PA AD ,E 为BC 的中点.(1)求证:DE 平面PAE ;(2)求直线DP 与平面PAE 所成的角.11、如图,在四棱锥P ABCD 中,底面ABCD 是60DAB且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .(1)若G 为AD 的中点,求证:BG 平面PAD ;(2)求证:AD PB .12、如图1,在正方体1111ABCDA B C D 中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO 平面MBD .13、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD .14.(12分)求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形.已知:如图,三棱锥S—ABC,SC∥截面EFGH,AB∥截面EFGH.求证:截面EFGH是平行四边形.15.(12分)已知正方体ABCD—A1B1C1D1的棱长为a,M、N分别为A1B和AC上的点,A1M=AN=23a,如图.(1)求证:MN∥面BB1C1C;(2)求MN的长.16.(12分)(2009·浙江高考)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.17.(12分)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥面ACD.(2)平面EFC ⊥平面BCD.1、如图,已知空间四边形ABCD 中,,BC AC AD BD ,E 是AB 的中点。
2024届高考数学专项立体几何大题含答案
立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).2024届高考数学专项立体几何大题含答案模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.3(22·23·张家口·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,∠CBB1=60°,AB= BC=2,AC=AB1=2.(1)证明:平面ACB1⊥平面BB1C1C;(2)求平面ACC1A1与平面A1B1C1夹角的余弦值.4(22·23·湛江·二模)如图1,在五边形ABCDE中,四边形ABCE为正方形,CD⊥DE,CD=DE,如图2,将△ABE沿BE折起,使得A至A1处,且A1B⊥A1D.(1)证明:DE⊥平面A1BE;(2)求二面角C-A1E-D的余弦值.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.8(22·23下·温州·二模)已知三棱锥D-ABC中,△BCD是边长为3的正三角形,AB=AC=AD, AD与平面BCD所成角的余弦值为33.(1)求证:AD⊥BC;(2)求二面角D-AC-B的平面角的正弦值.9(22·23下·浙江·二模)如图,四面体ABCD,AD⊥CD,AD=CD,AC=2,AB=3,∠CAB=60°,E为AB上的点,且AC⊥DE,DE与平面ABC所成角为30°,(1)求三棱锥D-BCE的体积;(2)求二面角B-CD-E的余弦值.10(22·23下·襄阳·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为矩形,∠BAC=90°,AB= AC=2,AA1=4,A1在底面ABC的射影为BC的中点N,M为B1C1的中点.(1)求证:平面A1MNA⊥平面A1BC;(2)求平面A1B1BA与平面BB1C1C夹角的余弦值.11(22·23·唐山·二模)如图,在三棱柱ABC-A1B1C1中,△ABC是等边三角形,侧面ACC1A1⊥底面ABC,且AA1=AC,∠AA1C1=120°,M是CC1的中点.(1)证明:A1C⊥BM.(2)求二面角A1-BC-M的正弦值.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G为弧CD的中点,且C,E,D,G四点共面.(1)证明:平面BDF⊥平面BCG;(2)若平面BDF与平面ABG所成二面角的余弦值为155,且线段AB长度为2,求点G到直线DF的距离.13(22·23下·江苏·三模)如图,圆锥DO中,AE为底面圆O的直径,AE=AD,△ABC为底面圆O的内接正三角形,圆锥的高DO=18,点P为线段DO上一个动点.(1)当PO=36时,证明:PA⊥平面PBC;(2)当P点在什么位置时,直线PE和平面PBC所成角的正弦值最大.14(22·23下·镇江·三模)如图,四边形ABCD是边长为2的菱形,∠ABC=60°,四边形PACQ为矩形,PA=1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP,DP与平面ABCD所成角相等;②三棱锥P-ABD体积为33;③cos∠BPA=55(1)平面PACQ⊥平面ABCD;(2)求二面角B-PQ-D的大小;(3)求点C到平面BPQ的距离.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.17(22·23·汕头·三模)如图,圆台O1O2的轴截面为等腰梯形A1ACC1,AC=2AA1=2A1C1=4,B为底面圆周上异于A,C的点.(1)在平面BCC1内,过C1作一条直线与平面A1AB平行,并说明理由;(2)若四棱锥B-A1ACC1的体积为23,设平面A1AB∩平面C1CB=l,Q∈l,求CQ的最小值.18(19·20下·临沂·二模)如图①,在Rt△ABC中,B为直角,AB=BC=6,EF∥BC,AE=2,沿EF将△AEF折起,使∠AEB=π3,得到如图②的几何体,点D在线段AC上.(1)求证:平面AEF⊥平面ABC;(2)若AE⎳平面BDF,求直线AF与平面BDF所成角的正弦值.19(22·23下·广州·三模)如图,四棱锥P-ABCD的底面为正方形,AB=AP=2,PA⊥平面ABCD,E,F分别是线段PB,PD的中点,G是线段PC上的一点.(1)求证:平面EFG⊥平面PAC;(2)若直线AG与平面AEF所成角的正弦值为13,且G点不是线段PC的中点,求三棱锥E-ABG体积.20(22·23下·长沙·一模)斜三棱柱ABC-A1B1C1的各棱长都为2,∠A1AB=60°,点A1在下底面ABC 的投影为AB的中点O.(1)在棱BB1(含端点)上是否存在一点D使A1D⊥AC1若存在,求出BD的长;若不存在,请说明理由;(2)求点A1到平面BCC1B1的距离.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.22(22·23·衡水·一模)如图所示,A ,B ,C ,D 四点共面,其中∠BAD =∠ADC =90°,AB =12AD ,点P ,Q 在平面ABCD 的同侧,且PA ⊥平面ABCD ,CQ ⊥平面ABCD .(1)若直线l ⊂平面PAB ,求证:l ⎳平面CDQ ;(2)若PQ ⎳AC ,∠ABP =∠DAC =45°,平面BPQ ∩平面CDQ =m ,求锐二面角B -m -C 的余弦值.23(22·23下·湖北·三模)已知平行六面体(底面是平行四边形的四棱柱)ABCD-A1B1C1D1的各条棱长均为2,且有∠AA1D1=∠AA1B1=∠D1A1B1=60°.(1)求证:平面AA1C1C⊥平面A1B1C1D1;(2)求直线B1D与平面AA1C1C所成角的正弦值.24(22·23下·武汉·三模)如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E为线段PB的中点,F为线段BC上的动点.(1)求证:平面AEF⊥平面PBC;(2)求平面AEF与平面PDC夹角的最小值.25(22·23下·黄冈·三模)如图1,在四边形ABCD中,BC⊥CD,AE∥CD,AE=BE=2CD=2,CE =3.将四边形AECD沿AE折起,使得BC=3,得到如图2所示的几何体.(1)若G为AB的中点,证明:DG⊥平面ABE;(2)若F为BE上一动点,且二面角B-AD-F的余弦值为63,求EFEB的值.26(22·23·德州·三模)图1是直角梯形ABCD,AB⎳CD,∠D=90°,AD=3,AB=2,CD=3,四边形ABCE为平行四边形,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在线段BE上存在点P使得PA与平面ABC1的正弦值为365,求平面BAC1与PAC1所成角的余弦值.27(22·23·山东·二模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⎳CD,AB⊥BC,PA =AB=BC=2,CD=4.(1)证明:AD⊥PC;(2)若M为线段PB的靠近B点的四等分点,判断直线AM与平面PDC是否相交?如果相交,求出P到交点H的距离,如果不相交,说明理由.28(22·23·黄山·三模)如图,在直角梯形ABCD中,AD⎳BC,AD⊥CD,四边形CDEF为平行四边形,对角线CE和DF相交于点H,平面CDEF⊥平面ABCD,BC=2AD,∠DCF=60°,G是线段BE上一动点(不含端点).(1)当点G为线段BE的中点时,证明:AG⎳平面CDEF;(2)若AD=1,CD=DE=2,且直线DG与平面CDEF成45°角,求二面角E-DG-F的正弦值.29(22·23·菏泽·三模)已知在直三棱柱ABC-A1B1C1中,其中AA1=2AC=4,AB=BC,F为BB1的中点,点E是CC1上靠近C1的四等分点,A1F与底面ABC所成角的余弦值为2 2.(1)求证:平面AFC⊥平面A1EF;(2)在线段A1F上是否存在一点N,使得平面AFC与平面NB1C1所成的锐二面角的余弦值为277,若存在,确定点N的位置,若不存在,请说明理由.30(22·23·福州·三模)如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=2,AB=AC=1,将△PAB绕着PA逆时针旋转π3到△PAD的位置,得到如图所示的组合体,M为PD的中点.(1)当∠BAC为何值时,该组合体的体积最大,并求出最大值;(2)当PC⎳平面MAB时,求直线PC与平面PBD所成角的正弦值.31(22·23·福州·二模)如图1,在△ABC 中,AB =AC =2,∠BAC =2π3,E 为BC 的中点,F 为AB 上一点,且EF ⊥AB .将△BEF 沿EF 翻折到△B EF 的位置,如图2.(1)当AB =2时,证明:平面B AE ⊥平面ABC ;(2)已知二面角B -EF -A 的大小为π4,棱AC 上是否存在点M ,使得直线B E 与平面B MF 所成角的正弦值为1010?若存在,确定M 的位置;若不存在,请说明理由.32(22·23·三明·三模)如图,平面五边形ABCDE 由等边三角形ADE 与直角梯形ABCD 组成,其中AD ∥BC ,AD ⊥DC ,AD =2BC =2,CD =3,将△ADE 沿AD 折起,使点E 到达点M 的位置,且BM =a .(1)当a =6时,证明AD ⊥BM 并求四棱锥M -ABCD 的体积;(2)已知点P 为棱CM 上靠近点C 的三等分点,当a =3时,求平面PBD 与平面ABCD 夹角的余弦值.33(22·23·宁德·一模)如图①在平行四边形ABCD 中,AE ⊥DC ,AD =4,AB =3,∠ADE =60°,将△ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,得到图②所示几何体.(1)若M 为BD 的中点,求四棱锥M -ABCE 的体积V M -ABCE ;(2)在线段DB 上,是否存在一点M ,使得平面MAC 与平面ABCE 所成锐二面角的余弦值为235,如果存在,求出DMDB的值,如果不存在,说明理由.34(22·23·龙岩·二模)三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =AC =2,侧面A 1ACC 1为矩形,∠A 1AB =2π3,三棱锥C 1-ABC 的体积为233.(1)求侧棱AA 1的长;(2)侧棱CC 1上是否存在点E ,使得直线AE 与平面A 1BC 所成角的正弦值为55?若存在,求出线段C 1E 的长;若不存在,请说明理由.35(22·23下·浙江·二模)如图,在多面体ABC-A1B1C1中,AA1⎳BB1⎳CC1,AA1⊥平面A1B1C1,△A1B1C1为等边三角形,A1B1=BB1=2,AA1=3,CC1=1,点M是AC的中点.(1)若点G是△A1B1C1的重心,证明;点G在平面BB1M内;(2)求二面角B1-BM-C1的正弦值.36(22·23下·浙江·三模)如图,三棱台ABC-A1B1C1中,A1C1=4,AC=6,D为线段AC上靠近C的三等分点.(1)线段BC上是否存在点E,使得A1B⎳平面C1DE,若不存在,请说明理由;若存在,请求出BEBC的值;(2)若A1A=AB=4,∠A1AC=∠BAC=π3,点A1到平面ABC的距离为3,且点A1在底面ABC的射影落在△ABC内部,求直线B1D与平面ACC1A1所成角的正弦值.37(22·23下·苏州·三模)如图,在三棱锥P-ABC中,△ABC是边长为62的等边三角形,且PA= PB=PC=6,PD⊥平面ABC,垂足为D,DE⊥平面PAB,垂足为E,连接PE并延长交AB于点G.(1)求二面角P-AB-C的余弦值;(2)在平面PAC内找一点F,使得EF⊥平面PAC,说明作法及理由,并求四面体PDEF的体积.38(22·23·沧州·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C,E,D,G在同一平面内,且CG=DG.(1)证明:平面BFD⊥平面BCG;(2)若直线GC与平面ABG所成角的正弦值为105,求平面BFD与平面ABG所成角的余弦值.39(23·24上·永州·一模)如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且AD=2AB=4,M、N分别为PD、BC的中点,H在线段PC上,且PC=3PH.(1)求证:MN⎳平面PAB;(2)当AM⊥PC时,求平面AMN与平面HMN的夹角的余弦值.40(22·23·潍坊·三模)如图,P为圆锥的顶点,O是圆锥底面的圆心,AC为底面直径,△ABD为底面圆O的内接正三角形,且边长为3,点E在母线PC上,且AE=3,CE=1.(1)求证:PO∥平面BDE;(2)求证:平面BED⊥平面ABD(3)若点M为线段PO上的动点.当直线DM与平面ABE所成角的正弦值最大时,求此时点M到平面ABE的距离.立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),22所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,。
立体几何证明题目
立体几何证明题目一、直线与平面平行的证明题目1:在正方体ABCD - A_1B_1C_1D_1中,E为DD_1的中点,求证:BD_1∥平面AEC。
解析:1. 连接BD交AC于O点。
- 在正方体中,底面ABCD是正方形,根据正方形对角线的性质,对角线互相平分,所以O为BD的中点。
2. 连接OE。
- 因为E为DD_1的中点,在三角形BD_1D中,O是BD中点,E是DD_1中点,根据三角形中位线定理,中位线平行于第三边且等于第三边的一半,所以OE∥ BD_1。
3. 又因为OE⊂平面AEC,BD_1not⊂平面AEC。
- 根据直线与平面平行的判定定理,如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行,所以BD_1∥平面AEC。
二、平面与平面平行的证明题目2:已知四棱锥P - ABCD中,底面ABCD是平行四边形,点M,N分别在PA,BD上,且PM:MA = BN:ND。
求证:平面MNQ∥平面PBC(设AC∩ BD = Q,连接MQ、NQ)。
解析:1. 因为四边形ABCD是平行四边形,AC∩ BD = Q,所以AQ = QC,BQ=QD。
- 由于PM:MA = BN:ND,在三角形PAQ中,(PM)/(MA)=(BN)/(ND),可得MQ∥ PC。
- 理由是:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
2. 在三角形ABD中,(BN)/(ND)=(PM)/(MA),可得NQ∥ AD。
- 又因为底面ABCD是平行四边形,AD∥ BC,所以NQ∥ BC。
3. 因为MQ∥ PC,MQnot⊂平面PBC,PC⊂平面PBC,根据直线与平面平行的判定定理,可得MQ∥平面PBC。
- 同理,NQ∥ BC,NQnot⊂平面PBC,BC⊂平面PBC,可得NQ∥平面PBC。
4. 又因为MQ∩ NQ = Q,MQ⊂平面MNQ,NQ⊂平面MNQ。
- 根据平面与平面平行的判定定理,如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,所以平面MNQ∥平面PBC。
高一数学立体几何试题答案及解析
高一数学立体几何试题答案及解析1.如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为()A.B.C.D.【答案】A【解析】略2.在正方体ABCD–A1B1C1D1中,已知E是棱C1D1的中点,则异面直线B1D1与CE所成角的余弦值的大小是()A.B.C.D.【答案】D【解析】略3.如图1,正方体中,、是的三等分点,、是的三等分点,、分别是、的中点,则四棱锥的侧视图为()【答案】C【解析】侧视图从左向右投影,对应,对应,对应,对应,因此侧视图为C项【考点】三视图4.已知直线,平面,下列命题正确的是()A.B.C.D.【答案】D【解析】根据两个平面平行的判定定理:一个平面内的两条相交直线和另一个平面平行,则这两个平面平行,符号表示为:;【考点】空间中两个平面平行的判定定理;5.(本小题满分13分)如图,在棱长均为的直三棱柱中,是的中点.(1)求证:平面;(2)求直线与面所成角的正弦值.【答案】(1)见解析;(2).【解析】(1)直三棱柱的侧棱和底面垂直,从而可得到AD⊥BB1,并且AD⊥BC,从而由线面垂直的判定定理可得到AD⊥平面BCC1B1;(2)连接C1D,从而可得到∠AC1D为直线AC1和平面BCC1B1所成角,在Rt△AC1D中,容易求出AD,AC1,从而sin∠AC1D=.试题解析:(1)直三棱柱中,,又,D是BC的中点,,平面;(2)连接,由(1)平面,则即为直线与面所成角,在直角中,,,,.即直线与面所成角的正弦值为.【考点】直线与平面所成的角;直线与平面垂直的判定.6.正方体的表面积为24,则该正方体的内切球的体积为____________.【答案】【解析】正方形边长设为,内切球的直径为2,所以体积为【考点】正方体与球的基本知识7.在正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于()A.30°B.45°C.60°D.90°【答案】B【解析】根据二面角的定义,是所求二面角的平面角,易得:.【考点】二面角8.已知是直线,是平面,下列命题中:①若垂直于内两条直线,则;②若平行于,则内可有无数条直线与平行;③若m⊥n,n⊥l则m∥l;④若,则;正确的命题个数为()A.1B.2C.3D.4【答案】A【解析】①改为垂直于平面内的两条相交直线;②正确;③改为或相交或异面;④改为或异面.故选A.【考点】线与线,面与面,线与面位置关系9.如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是________【答案】【解析】直观图中等腰直角三角形斜边长为2,所以两条直角边为,面积为1,因为直观图和平面图面积比为,所以平面图形的面积为【考点】平面直观图10.如图,是一个平面图形的水平放置的斜二测直观图,则这个平面图形的面积等于.【答案】【解析】水平放置的斜二测直观图还原成平面图形如上图,由斜二测画法的定义:平行于轴的线段仍平行于轴,长度不变,平行于轴的线段仍平行于轴,但长度减半,所以,,,所以.【考点】斜二测画法.11.如图,是正方体的棱的中点,给出下列命题①过点有且只有一条直线与直线,都相交;②过点有且只有一条直线与直线,都垂直;③过点有且只有一个平面与直线,都相交;④过点有且只有一个平面与直线,都平行.其中真命题是:A.①②③B.①②④C.①③④D.②③④【答案】B【解析】直线与是两条互相垂直的异面直线,点不在这两异面直线中的任何一条上,如图所示:取的中点,则,且,设与交于,则点共面,直线必与直线相交于某点.所以,过点有且只有一条直线与直线都相交;故①正确;过点有且只有一条直线与直线都垂直,此垂线就是棱,故②正确;过点有无数个平面与直线都相交,故③不正确;过点有且只有一个平面与直线都平行,此平面就是过点与正方体的上下底都平行的平面,故④正确.综上,①②④正确,③不正确,故选B.【考点】1.直线与平面平行的性质;2.平面与平面垂直的性质.【思路点睛】本题考查立体几何图形中直线和平面的相交、平行、垂直的性质,体现了数形结合的数学思想,①需要构造一个过点M且与直线AB、B1C1都相交的平面,就可判断;②利用过空间一点有且只有一条直线与已知平面平行判断;③可举反例,即找到两个或两个以上过点m且与直线AB、B1C1都相交的平面,即可判断.④利用线面平行的性质来判断即可.12.若圆锥的表面积是15π,侧面展开图的圆心角是60°,求圆锥的体积________________.【答案】【解析】因为设圆锥的底面半径为,母线为,利用圆锥的底面周长就是圆锥的侧面展开图的弧长,推出底面半径与母线的关系,通过圆锥的表面积求出底面半径,,得,圆锥的高,即圆锥的高为,即圆锥的体积.【考点】锥体的侧面积公式.【思路点睛】设圆锥的底面半径为,母线为,利用圆锥的底面周长就是圆锥的侧面展开图的弧长,推出底面半径与母线的关系,通过圆锥的表面积求出底面半径,求出圆锥的高,然后再根据圆锥的体积公式,即可求出圆锥的体积.13.正六棱柱的底面边长为,侧棱长为1,则动点从沿表面移到点时的最短的路程是.【答案】【解析】如下图所示,作出正六棱柱的展开图,如果动点从经侧面通过移到点时,则路程为;如果动点从经经沿上底面移到点时,根据题目条件,,则路程为;而,所以最短的路程是.【考点】1、棱锥的展开图;2、最值问题.14.若底面为正三角形的几何体的三视图如图所示,则几何体的侧面积为()A.B.C.D.【答案】D【解析】由三视图可知该几何体为底面为正三角形的直三棱柱,底面三角形的高为,棱柱高为4,设底面边长为x,则解得,故几何体的侧面积为故选:D.【考点】三视图,几何体的侧面积15.如下图所示,观察四个几何体,其中判断正确的是()A.①是棱台B.②是圆台C.③不是棱锥D.④是棱柱【答案】D【解析】图①不是由棱锥截来的,所以①不是棱台;图②上、下两个面不平行,所以②不是圆台;图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱;很明显③是棱锥,选D.【考点】空间几何体的结构特征.16.在空间直角坐标系中,给定点,若点与点关于平面对称,点与点关于轴对称,则()A.2B.4C.D.【答案】A【解析】由题意知:,,则,故选A.【考点】空间两点间的距离公式.17.某几何体的三视图如图所示(单位:),则该几何体的体积是()A.B.C.D.【答案】C【解析】由三视图可知该几何体的形状是棱长为的正方体上有一个高为的正四棱锥,其体积为.【考点】1、三视图;2、空间几何体的体积.18.(2015秋•大连校级期末)如图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥面PBC.(1)证明:EF∥BC.(2)证明:AB⊥平面PFE.(3)若四棱锥P﹣DFBC的体积为7,求线段BC的长.【答案】(1)、(2)见解析;(3)BC=3或BC=.【解析】(1)由EF∥面PBC可得出EF∥BC;(2)由PC=PD=CD=4可知△PDC是等边三角形,故PE⊥AC,由平面PAC⊥平面ABC可得PE⊥平面ABC,故PE⊥AB,由EF∥BC,BC⊥AB可得AB⊥EF,从而AB⊥平面PEF;(3)设BC=x,用x表示出四边形DFBC的面积,根据体积列出方程解出x.解:(1)证明:∵EF∥面PBC.EF⊂面ABC,面PBC∩面ABC=BC,∴EF∥BC.(2)∵由CD=DE+EC=4,PD=PC=4,∴△PDC是等边三角形,∴PE⊥AC,又∵平面PAC⊥平面ABC,平面PAC∩面ABC=AC,PE⊂平面PAC,∴PE⊥平面ABC,∵AB⊂平面ABC,∴PE⊥AB,∵∠ABC=,EF∥BC.∴AB⊥EF,又∵PE⊂平面PEF,EF⊂平面PEF,PE∩EF=E,∴AB⊥平面PEF.(3)设BC=x,则AB=,∴=,∵EF∥BC,∴△AFE∽△ABC,∴.∵AD=AE,,∴S=,四边形DFBC由(2)可知PE⊥平面ABC,且PE=,∴V=,解得x=3或者,∴BC=3或BC=.【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积.19.(2015秋•鞍山校级期末)如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,AB=2,AC=.(Ⅰ)求证:AO⊥平面BCD;(Ⅱ)求O点到平面ACD的距离.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(1)连结OC,推导出AO⊥BD,AO⊥OC,由此能证明AO⊥平面BCD.(Ⅱ)设点O到平面ACD的距离为h,由V﹣ACD=V A﹣OCD,能求出点O到平面ACD的距离.O证明:(1)连结OC,∵△ABD为等边三角形,O为BD的中点,∴AO⊥BD.∵△ABD和△CBD为等边三角形,O为BD的中点,,∴.在△AOC中,∵AO2+CO2=AC2,∴∠AOC=90°,即AO⊥OC.∵BD∩OC=0,∴AO⊥平面BCD.解:(Ⅱ)设点O到平面ACD的距离为h.∵V﹣ACD=V A﹣OCD,∴.O在△ACD中,AD=CD=2,.而,,∴.∴点O到平面ACD的距离为.【考点】点、线、面间的距离计算;直线与平面垂直的判定.20.平面截球的球面所得圆的半径为1,球心到平面的距离为,则此球的体积为()A.B.C.D.【答案】B【解析】利用截面圆的性质先求得球的半径长.如图,设截面圆的圆心为,为∴,即球的半径为,∴,故选B.【考点】1、球体的体积;2、球体的性质.【思路点晴】本题考察的是球体的性质,属于中档题目;用平面截球面,得到一个圆,球心到圆心的连线垂直于圆所在的平面,从而得到直角三角形,利用勾股定理即可求出球的半径,再将球的半径代入球的体积公式中,即可求出球的体积.21.某几何体的三视图如图所示,则该几何体的体积为________.【答案】24【解析】由俯视图可以判断该几何体的底面为直角三角形,由正视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,,.故几何体的体积为.【考点】1、三视图;2、组合体的体积.【技巧点晴】本题考查的是空间几何体的体积的求法、三视图问题,属于中档题目;要先从三视图的俯视图入手,如果俯视图是圆,几何体为圆锥或三圆柱,如果俯视图是三角形,几何体为三棱柱或三棱锥;根据三视图得出该几何体为三棱柱截去三棱锥后的几何体,用两个体积相减即可.22.如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD CD,将四边形ABCD沿对角线BD折成四面体,使平面平面BCD,则下列结论正确的是 .(1);(2);(3)与平面所成的角为;(4)四面体的体积为.【答案】(2)(4)【解析】由BD CD,使平面平面BCD,知平面,所以,又由,得,即,所以平面,即.因此是错误的,是正确的,由上面证明知是与平面所成的角,由知,.故选(2)(4)正确.【考点】命题的真假判断.【名师】折叠问题是考查学生空间想象能力的较好载体.如本题,不仅要求学生象解常规立几综合题一样懂得线线,线面和面面位置关系的判定方法及相互转化,角的作法,还要正确识别出平面图象折叠后的空间图形,更要识得折前折后有关线线、线面位置的变化情况以及有关量(边长与角)的变化情况,否则无法正确解题.这正是折叠问题的价值所在.23.如图,矩形ABCD中,BC=2,AB=1,PA⊥平面ABCD,BE∥PA,BE=PA,F为PA的中点.(1)求证:PC∥平面BDF.(2)记四棱锥C-PABE的体积为V1,三棱锥P-ACD的体积为V2,求的值.【答案】(1)证明见解析;(2).【解析】(1)要证线面平行,就是要证线线平行,这条平行线就是过的平面与平面的交线,从图中看,设与的交点为,就是要找的平行线,由中位线定理可证得平行;(2)题中四棱锥与三棱锥的体积没有直接的关系,我们可以通过体积公式进行转化,首先,而三棱锥与四棱锥的高相等(同),因此只要求得其底面积之比即可.试题解析:(1)证:连接EF,连接BD交AC与点O,连OF,依题得O为AC中点,又F为PA的中点,所以OF为中位线,所以OF//PC因为所以PC∥平面BDF。
(完整)立体几何证明基础题
立体几何证明基础题一.解答题(共28小题)1.如图,在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点(1)求证:PB∥平面EFG;(2)求证:BC⊥EG.2.如图,在三棱锥P﹣ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.(1)求证DE∥PA(2)求证:DE∥平面PAC;(3)求证:AB⊥PB.3.如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE且CE=AC=2BD,试在AE上确定一点M,使得DM∥平面ABC.4.如图:在四棱锥P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.(Ⅰ)证明:BC⊥平面AMN;(Ⅱ)求三棱锥N﹣AMC的体积;(Ⅲ)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.5.如图,四棱锥P﹣ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA上的动点.(1)求四棱锥P﹣ABCD的体积;(2)如果E是PA的中点,求证:PC∥平面BDE;(3)是否不论点E在侧棱PA的任何位置,都有BD⊥CE?证明你的结论.6.已知四棱锥A ﹣BCDE ,其中AB=BC=AC=BE=1,CD=2,CD ⊥面ABC,BE ∥CD,F 为AD 的中点. (Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:平面ADE ⊥平面ACD ; (Ⅲ)求四棱锥A ﹣BCDE 的体积.7.如图,四棱柱ABCD ﹣A 1B 1C 1D 1中,平面A 1ABB 1⊥平面ABCD ,且∠ABC=.(1)求证:BC ∥平面AB 1C 1;(2)求证:平面A 1ABB 1⊥平面AB 1C 1.8.如图,三角形ABC中,AC=BC=,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G、F分别是EC、BD的中点.(Ⅰ)求证:GF∥底面ABC;(Ⅱ)求证:AC⊥平面EBC;(Ⅲ)求几何体ADEBC的体积V.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.10.已知直三棱柱ABC ﹣A 1B 1C 1的底面△ABC 中,∠C=90°,BC=,BB 1=2,O 是AB 1的中点,D是AC 的中点,M 是CC 1的中点, (1)证明:OD ∥平面BB 1C 1C ; (2)试证:BM ⊥AB 1.11.如图,在四棱锥P ﹣ABCD 中,四边形ABCD 是平行四边形,E 、F 分别是AB 、PC 中点,求证:EF ∥面PAD .12.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E 是AA 1的中点,求证: (Ⅰ)A 1C ∥平面BDE ; (Ⅱ)平面A 1AC ⊥平面BDE .13.如图,四棱锥P ﹣ABCD 中,底面ABCD 为矩形,E 为PD 的中点. (1)求证:PB ∥平面AEC ;(2)若PA ⊥平面ABCD ,PA=AD ,求证:平面AEC ⊥平面PCD .14.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点. 求证: (1)PA ∥平面BDE ; (2)BD ⊥平面PAC .15.如图,正四棱柱ABCD ﹣A 1B 1C 1D 1,底面边长AB=1,侧棱长AA 1=2. (Ⅰ)求正四棱柱ABCD ﹣A 1B 1C 1D 1的表面积; (Ⅱ)证明:AC ⊥平面BDD 1B 1.16.已知正方体ABCD ﹣A 1B 1C 1D 1,O 是底ABCD 对角线的交点.求证: (1)C 1O ∥面AB 1D 1; (2)A 1C ⊥面AB 1D 1.17.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,M ,E,F,N 分别为A 1B 1,B 1C 1,C 1D 1,D 1A 1的中点,求证: (1)E ,F ,D ,B 四点共面; (2)面AMN ∥平面EFDB .18.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=1,AA 1=2,点P 是DD 1的中点. 求证:(1)直线BD 1∥平面PAC(2)①求异面直线PC 与AA 1所成的角. ②平面PAC ⊥平面BDD 1.19.如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=CB=CC1=2,E是AB中点.(Ⅰ)求证:AB1⊥平面A1CE;(Ⅱ)求直线A1C1与平面A1CE所成角的正弦值.20.如图,在正方体ABCD﹣A1B1C1D1中,E、F、G分别是AB、AD、C1D1的中点.求证:平面D1EF∥平面BDG.21.(文科)如图,正方体ABCD﹣A1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.22.如图,在四棱锥P﹣ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,过A、D、N三点的平面交PC于M,E为AD的中点,求证:(1)EN∥平面PDC;(2)BC⊥平面PEB;(3)平面PBC⊥平面ADMN.23.如图,在正三棱锥P﹣ABC中,D,E分别是AB,BC的中点.(1)求证:DE∥平面PAC;(2)求证:AB⊥PC.24.如图所示,在四棱锥P﹣ABCD中,底面是边长为1的正方形,侧棱PD=1,PA=PC=.(1)求证:PD⊥平面ABCD;(2)求证:平面PAC⊥平面PBD.25.如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB ⊥BC,D 为AC 的中点,A 1A=AB=2. (1)求证:AB 1∥平面BC 1D ;(2)过点B 作BE ⊥AC 于点E,求证:直线BE ⊥平面AA 1C 1C (3)若四棱锥B ﹣AA 1C 1D 的体积为3,求BC 的长度.26.如图,已知四棱锥P ﹣ABCD 的底面ABCD 是菱形,PA ⊥平面ABCD ,点F 为PC 的中点. (1)求证:PA ∥平面BDF ; (2)求证:PC ⊥BD .27.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E 是CC 1的中点. (1)求证:AC 1⊥BD . (2)求证:AC 1∥平面BDE .28.已知空间四边形ABCD (如图所示),E 、F 分别是AB 、AD 的中点,G 、H 分别是BC 、CD 上的(完整)立体几何证明基础题点,且CG=BC,CH=DC.求证:①E、F、G、H四点共面;②三直线FH、EG、AC共点.立体几何证明基础题参考答案与试题解析一.解答题(共28小题)1.如图,在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点(1)求证:PB∥平面EFG;(2)求证:BC⊥EG.【分析】(1)推导出GF∥PB,由此能证明PB∥平面EFG.(2)推导出EF⊥BC,GF⊥BC,从而BC⊥平面EFG,由此能证明BC⊥EG.【解答】证明:(1)∵点F,G分别为BC,PC,的中点,∴GF∥PB,∵PB⊄平面EFG,FG⊂平面EFG,∴PB∥平面EFG.(2)∵在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点,∴EF∥AC,GF∥PB,∴EF⊥BC,GF⊥BC,∵EF∩FG=F,∴BC⊥平面EFG,∵EG⊂平面EFG,∴BC⊥EG.【点评】本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.2.如图,在三棱锥P﹣ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.(1)求证DE∥PA(2)求证:DE∥平面PAC;(3)求证:AB⊥PB.【分析】(1)由D,E分别是AB,PB的中点,能证明DE∥PA.(2)由PA⊂平面PAC,DE∥PA,且DE⊄平面PAC,能证明DE∥平面PAC.(3)推导出AB⊥PC,AB⊥BC,得AB⊥平面PBC,由此能证明AB⊥PB.【解答】证明:(1)因为D,E分别是AB,PB的中点,所以DE∥PA.(2)因为PA⊂平面PAC,DE∥PA,且DE⊄平面PAC,所以DE∥平面PAC.(3)因为PC⊥平面ABC,且AB⊂平面ABC,所以AB⊥PC.又因为AB⊥BC,且PC∩BC=C.所以AB⊥平面PBC.又因为PB⊂平面PBC,所以AB⊥PB.【点评】本题考查线线平行、线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.3.如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE且CE=AC=2BD,试在AE上确定一点M,使得DM∥平面ABC.【分析】AE中点为M,取AC中点为N,通过证明四边形MNBD是平行四边形得出DM∥BN,从而可得DM∥平面ABC.【解答】解:取AE中点为M,取AC中点为N,连结MD,MN,NB,在△ABC中,∵M,N分别是边AC,AE的中点,∴CE=2MN且MN∥CE,又∵CE=2BD且BD∥CE,∴MN∥BD且MN=BD,∴四边形BDMN是平行四边形.∴DM∥BN,又∵BN⊂平面ABC,DM⊄平面ABC,∴DM∥平面ABC.故M为AE的中点时,DM∥平面ABC.【点评】本题考查了线面平行的判定,属于基础题.4.如图:在四棱锥P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.(Ⅰ)证明:BC⊥平面AMN;(Ⅱ)求三棱锥N﹣AMC的体积;(Ⅲ)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.【分析】(I)要证线与面垂直,只要证明线与面上的两条相交线垂直,找面上的两条线,根据四边形是一个菱形,从菱形出发找到一条,再从PA⊥平面ABCD,得到结论.(II)要求三棱锥的体积,首先根据所给的体积确定用哪一个面做底面,会使得计算简单一些,选择三角形AMC,做出底面面积,利用体积公式得到结果.(III)对于这种是否存在的问题,首先要观察出结论,再进行证明,根据线面平行的判定定理,利用中位线确定线与线平行,得到结论.【解答】解:(Ⅰ)证明:∵ABCD为菱形,∴AB=BC又∠ABC=60°,∴AB=BC=AC,又M为BC中点,∴BC⊥AM而PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC 又PA∩AM=A,∴BC⊥平面AMN(II)∵又PA⊥底面ABCD,PA=2,∴AN=1•AN∴三棱锥N﹣AMC的体积S△AMC=(III)存在点E,取PD中点E,连接NE,EC,AE,∵N,E分别为PA,PD中点,∴又在菱形ABCD中,∴,即MCEN是平行四边形∴NM∥EC,又EC⊂平面ACE,NM⊄平面ACE∴MN∥平面ACE,即在PD上存在一点E,使得NM∥平面ACE,此时.【点评】本题考查空间中直线与平面之间的位置关系,是一个非常适合作为高考题目出现的问题,题目包含的知识点比较全面,重点突出,是一个好题.5.如图,四棱锥P﹣ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA上的动点.(1)求四棱锥P﹣ABCD的体积;(2)如果E是PA的中点,求证:PC∥平面BDE;(3)是否不论点E在侧棱PA的任何位置,都有BD⊥CE?证明你的结论.【分析】(1)利用四棱锥的体积计算公式即可;(2)利用三角形的中位线定理和线面平行的判定定理即可证明;(3)利用线面垂直的判定和性质即可证明.【解答】解:(1)∵PA⊥底面ABCD,∴PA为此四棱锥底面上的高.∴V==.四棱锥P﹣ABCD(2)连接AC交BD于O,连接OE.∵四边形ABCD是正方形,∴AO=OC,又∵AE=EP,∴OE∥PC.又∵PC⊄平面BDE,OE⊂平面BDE.∴PC∥平面BDE.(3)不论点E在侧棱PA的任何位置,都有BD⊥CE.证明:∵四边形ABCD是正方形,∴BD⊥AC.∵PA⊥底面ABCD,∴PA⊥BD.又∵PA∩AC=A,∴BD⊥平面PAC.∵CE⊂平面PAC.∴BD⊥CE.【点评】熟练掌握线面平行、垂直的判定和性质定理及四棱锥的体积计算公式是解题的关键.6.已知四棱锥A﹣BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F为AD的中点.(Ⅰ)求证:EF∥面ABC;(Ⅱ)求证:平面ADE⊥平面ACD;(Ⅲ)求四棱锥A﹣BCDE的体积.【分析】(Ⅰ)取AC中点G,连接FG、BG,根据三角形中位线定理,得到四边形FGBE为平行四边形,进而得到EF∥BG,再结合线面平行的判定定理得到EF∥面ABC;(Ⅱ)根据已知中△ABC为等边三角形,G为AC的中点,DC⊥面ABC得到BG⊥AC,DC⊥BG,根据线面垂直的判定定理得到BG⊥面ADC,则EF⊥面ADC,再由面面垂直的判定定理,可得面ADE⊥面ACD;(Ⅲ)方法一:四棱锥四棱锥A﹣BCDE分为两个三棱锥E﹣ABC和E﹣ADC,分别求出三棱锥E﹣ABC和E﹣ADC的体积,即可得到四棱锥A﹣BCDE的体积.的高,求出底面面积和方法二:取BC的中点为O,连接AO,可证AO⊥平面BCDE,即AO为VA﹣BCDE高代入棱锥体积公式即可求出四棱锥A﹣BCDE的体积.【解答】证明:(Ⅰ)取AC中点G,连接FG、BG,∵F,G分别是AD,AC的中点∴FG∥CD,且FG=DC=1.∵BE∥CD∴FG与BE平行且相等∴EF∥BG.EF⊄面ABC,BG⊂面ABC∴EF∥面ABC…(4分)(Ⅱ)∵△ABC为等边三角形∴BG⊥AC又∵DC ⊥面ABC ,BG ⊂面ABC ∴DC ⊥BG ∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …(6分) ∵EF ∥BG ∴EF ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …(8分) 解:(Ⅲ)方法一:连接EC ,该四棱锥分为两个三棱锥E ﹣ABC 和E ﹣ADC ..…(12分)方法二:取BC 的中点为O ,连接AO,则AO ⊥BC ,又CD ⊥平面ABC , ∴CD ⊥AO ,BC ∩CD=C ,∴AO ⊥平面BCDE , ∴AO 为V A ﹣BCDE 的高,,∴.【点评】本题考查的知识点是直线与平面平行的判定,平面与平面垂直的判定,棱锥的体积,其中熟练掌握空间线面平行或垂直的判定、性质、定义、几何特征是解答此类问题的关键.7.如图,四棱柱ABCD ﹣A 1B 1C 1D 1中,平面A 1ABB 1⊥平面ABCD,且∠ABC=.(1)求证:BC ∥平面AB 1C 1;(2)求证:平面A 1ABB 1⊥平面AB 1C 1.【分析】(1)根据BC ∥B 1C 1,且B 1C 1⊂平面AB 1C 1,BC ⊄平面AB 1C 1,依据线面平行的判定定理推断出BC ∥平面AB 1C 1.(2)平面A 1ABB 1⊥平面ABCD ,平面ABCD ∥平面A 1B 1C 1D 1,推断出平面A 1ABB 1⊥平面A 1B 1C 1D 1,又平面A 1ABB 1∩平面A 1B 1C 1D 1=A 1B 1,A 1B 1⊥C 1B 1,C 1B 1⊂平面AB 1C 1,根据面面垂直的性质推断出平面A 1ABB 1⊥平面AB 1C 1.【解答】证明:(1)∵BC ∥B 1C 1,且B 1C 1⊂平面AB 1C 1,BC ⊄平面AB 1C 1, ∴BC ∥平面AB 1C 1.(2)∵平面A 1ABB 1⊥平面ABCD ,平面ABCD ∥平面A 1B 1C 1D 1, ∴平面A 1ABB 1⊥平面A 1B 1C 1D 1,∵平面A 1ABB 1∩平面A 1B 1C 1D 1=A 1B 1,A 1B 1⊥C 1B 1, ∴C 1B 1⊂平面AB 1C 1,∴平面A 1ABB 1⊥平面AB 1C 1.【点评】本题主要考查了线面平行和面面垂直的判定定理.注重了对基础知识的考查.8.如图,三角形ABC 中,AC=BC=,ABED 是边长为1的正方形,平面ABED ⊥底面ABC ,若G 、F 分别是EC 、BD 的中点. (Ⅰ)求证:GF ∥底面ABC ;(Ⅱ)求证:AC⊥平面EBC;(Ⅲ)求几何体ADEBC的体积V.【分析】(1)证法一:证明一条直线与一个平面平行,除了可以根据直线与平面平行的判定定理以外,通常还可以通过平面与平面平行进行转化,比如取BE的中点H,连接HF、GH,根据中位线定理易证得:平面HGF∥平面ABC,进一步可得:GF∥平面ABC.证法二:根据直线与平面平行的判定定理可知:如果不在一个平面内的一条直线和平面内的一条直线平行,那么直线和这个平面平行.故只需在平面ABC中找到与GF平行的直线即可.因为G、F分别是EC、BD的中点,故平移是可以通过构造特殊的四边形、三角形来实现.证法三:根据直线与平面平行的判定定理可知:如果不在一个平面内的一条直线和平面内的一条直线平行,那么直线和这个平面平行.故只需在平面ABC中找到与GF平行的直线即可.因为G、F分别是EC、BD的中点,所以构造中位线是常用的找到平行直线的方法.(2)证明直线与平面垂直,关键要找到两条相交直线与之都垂直.有时候题目中没有现成的直线与直线垂直,需要我们先通过直线与平面垂直或者平面与平面垂直去转化一下.由第一问可知:GF∥平面ABC,而平面ABED⊥平面ABC,所以BE⊥平面ABC,所以BE⊥AC;又由勾股定理可以证明:AC⊥BC.(3)解决棱锥、棱柱求体积的问题,关键在于找到合适的高与对应的底面,切忌不审图形,盲目求解;根据平面与平面垂直的性质定理可知:CN⊥平面ABED,而ABED是边长为1的正方形,进一步即可以求得体积.【解答】解:(I)证法一:取BE的中点H,连接HF、GH,(如图)∵G、F分别是EC和BD的中点∴HG∥BC,HF∥DE,(2分)又∵ADEB为正方形∴DE∥AB,从而HF∥AB∴HF∥平面ABC,HG∥平面ABC,HF∩HG=H,∴平面HGF∥平面ABC∴GF∥平面ABC(5分)证法二:取BC的中点M,AB的中点N连接GM、FN、MN(如图)∵G、F分别是EC和BD的中点∴(2分)又∵ADEB为正方形∴BE∥AD,BE=AD∴GM∥NF且GM=NF∴MNFG为平行四边形∴GF∥MN,又MN⊂平面ABC,∴GF∥平面ABC(5分)证法三:连接AE,∵ADEB为正方形,∴AE∩BD=F,且F是AE中点,(2分)∴GF∥AC,又AC⊂平面ABC,∴GF∥平面ABC(5分)(Ⅱ)∵ADEB为正方形,∴EB⊥AB,∴GF∥平面ABC(5分)又∵平面ABED⊥平面ABC,∴BE⊥平面ABC(7分)∴BE⊥AC又∵CA2+CB2=AB2∴AC⊥BC,∵BC∩BE=B,∴AC⊥平面BCE(9分)(Ⅲ)连接CN,因为AC=BC,∴CN⊥AB,(10分)又平面ABED⊥平面ABC,CN⊂平面ABC,∴CN⊥平面ABED.(11分)∵三角形ABC是等腰直角三角形,∴,(12分)∵C﹣ABED是四棱锥,==(14分)∴VC﹣ABED【点评】本小题主要考查空间线面关系、面面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.【分析】(1)连结AC交BQ于N,连结MN,只要证明MN∥PA,利用线面平行的判定定理可证;(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离.【解答】解:(1)连结AC交BQ于N,连结MN,因为∠ADC=90°,Q为AD的中点,所以N为AC的中点.…(2分)当M为PC的中点,即PM=MC时,MN为△PAC的中位线,故MN∥PA,又MN⊂平面BMQ,所以PA∥平面BMQ.…(5分)(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离,所以VP﹣BMQ =VA﹣BMQ=VM﹣ABQ,取CD的中点K,连结MK,所以MK∥PD,,…(7分)又PD⊥底面ABCD,所以MK⊥底面ABCD.又,PD=CD=2,所以AQ=1,BQ=2,,…(10分)所以VP﹣BMQ =VA﹣BMQ=VM﹣ABQ=.,…(11分)则点P到平面BMQ的距离d=…(12分)【点评】本题考查了线面平行的判定定理的运用以及利用三棱锥的体积求点到直线的距离.10.已知直三棱柱ABC ﹣A 1B 1C 1的底面△ABC 中,∠C=90°,BC=,BB 1=2,O 是AB 1的中点,D 是AC 的中点,M 是CC 1的中点, (1)证明:OD ∥平面BB 1C 1C ; (2)试证:BM ⊥AB 1.【分析】(1)连B 1C 利用中位线的性质推断出OD ∥B 1C ,进而根据线面平行的判定定理证明出OD ∥平面BB 1C 1C .(2)先利用线面垂直的性质判断出CC 1⊥AC ,进而根据线面垂直的判定定理证明出AC ⊥平面BB 1C 1C ,进而可知AC ⊥MB .利用证明△BCD ∽△B 1BC,推断出∠CBM=∠BB 1C ,推断出BM ⊥B 1C ,最后利用线面垂直的判定定理证明出BM ⊥平面AB 1C ,进而可知BM ⊥AB 1. 【解答】证明:(1)连B 1C ,∵O 为AB 1中点,D 为AC 中点, ∴OD ∥B 1C ,又B 1C ⊂平面BB 1C 1C,OD ⊄平面BB 1C 1C,∴OD ∥平面BB 1C 1C . (2)连接B 1C ,∵直三棱柱ABC ﹣A 1B 1C 1,∴CC 1⊥平面ABC AC ⊂平面ABC, ∴CC 1⊥AC,又AC ⊥BC ,CC 1,BC ⊂平面BB 1C 1C , ∴AC ⊥平面BB 1C 1C ,BM ⊂平面BB 1C 1C , ∴AC ⊥MB .在Rt △BCM 与Rt △B 1BC 中,==,∴△BMC ∽△B 1BC, ∴∠CBM=∠BB 1C,∴∠BB 1C+∠B 1BM=∠CBM+∠B 1BM=90°, ∴BM ⊥B 1C ,AC ,B 1C ⊂平面AB 1C , ∴BM ⊥AB 1C , ∵AB 1⊂平面AB 1C , ∴BM ⊥AB 1.【点评】本题主要考查了线面平行和线面垂直的判定定理的应用.证明线线平行和线线垂直是解题的关键.11.如图,在四棱锥P ﹣ABCD 中,四边形ABCD 是平行四边形,E 、F 分别是AB 、PC 中点,求证:EF ∥面PAD .【分析】取PD的中点G,连接FG、AG,由PF=CF,PG=DG,所以FG∥CD,且FG=CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE∥CD,且AE=CD.证得四边形EFGA是平行四边形,所以EF∥AG,由线面平行的判定定理即可得证.【解答】证明:取PD的中点G,连接FG、AG.因为PF=CF,PG=DG,所以FG∥CD,且FG=CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE∥CD,且AE=CD.所以FG∥AE,且FG=AE,所以四边形EFGA是平行四边形,所以EF∥AG.又因为EF⊄平面PAD,AG⊂平面PAD,所以EF∥平面PAD.【点评】本题考查直线与平面平行的证明,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.12.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E 是AA 1的中点,求证: (Ⅰ)A 1C ∥平面BDE ; (Ⅱ)平面A 1AC ⊥平面BDE .【分析】(Ⅰ)连接AC 交BD 于O,连接EO ,△A 1AC 中利用中位线,得EO ∥A 1C .再结合线面平行的判定定理,可得A 1C ∥平面BDE;(II )根据正方体的侧棱垂直于底面,结合线面垂直的定义,得到AA 1⊥BD .再结合正方形的对角线互相垂直,得到AC ⊥BD ,从而得到BD ⊥平面A 1AC,最后利用面面垂直的判定定理,可以证出平面A 1AC ⊥平面BDE .【解答】证明:(Ⅰ)连接AC 交BD 于O ,连接EO , ∵E 为AA 1的中点,O 为AC 的中点 ∴EO 为△A 1AC 的中位线 ∴EO ∥A 1C又∵EO ⊂平面BDE ,A 1C ⊄平面BDE ∴A 1C ∥平面BDE ;…(6分)(Ⅱ)∵AA 1⊥平面ABCD,BD ⊂平面ABCD ∴AA 1⊥BD又∵四边形ABCD 是正方形 ∴AC ⊥BD ,∵AA1∩AC=A,AA1、AC⊂平面A1AC∴BD⊥平面A1AC又∵BD⊂平面BDE∴平面A1AC⊥平面BDE.…(12分)【点评】本题以正方体为例,要求我们证明线面平行和面面垂直,着重考查了空间直线与平面的位置关系和平面与平面位置关系等知识点,属于基础题.13.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,E为PD的中点.(1)求证:PB∥平面AEC;(2)若PA⊥平面ABCD,PA=AD,求证:平面AEC⊥平面PCD.【分析】(1)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(2)要证平面PDC⊥平面AEC,需要证明CD⊥AE,AE⊥PD,即垂直平面AEC内的两条相交直线.【解答】证明:(1)连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,又EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC.(2)∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD,又AD⊥CD,且AD∩PA=A,∴CD⊥平面PAD,又AE⊂平面PAD,∴CD⊥AE.∵PA=AD,E为PD中点,∴AE⊥PD.又CD∩PD=D,∴AE⊥平面PDC,又AE⊂平面PAD,∴平面PDC⊥平面AEC.【点评】本题考查了线面平行,面面垂直的判定定理,属于基础题.14.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:(1)PA∥平面BDE;(2)BD⊥平面PAC.【分析】(1)连接OE,根据三角形中位线定理,可得PA∥EO,进而根据线面平行的判定定理,得到PA∥平面BDE.(2)根据线面垂直的定义,可由PO⊥底面ABCD得到BD⊥PO,结合四边形ABCD是正方形及线面垂直的判定定理可得BD⊥平面PAC【解答】证明(1)连接OE,在△CAP中,CO=OA,CE=EP,∴PA∥EO,又∵PA⊄平面BDE,EO⊂平面BDE,∴PA∥平面BDE.(2)∵PO⊥底面ABCD,BD⊂平面ABCD,∴BD⊥PO又∵四边形ABCD是正方形,∴BD⊥AC∵AC∩PO=O,AC,PO⊂平面PAC∴BD⊥平面PAC【点评】本题考查的知识点是直线与平面平行的判定,直线与平面垂直的判定,熟练掌握空间线面关系的判定定理是解答的关键.15.如图,正四棱柱ABCD ﹣A 1B 1C 1D 1,底面边长AB=1,侧棱长AA 1=2. (Ⅰ)求正四棱柱ABCD ﹣A 1B 1C 1D 1的表面积; (Ⅱ)证明:AC ⊥平面BDD 1B 1.【分析】(I)求出各面的面积即可得出表面积;(II )根据BB 1⊥平面ABCD 可得AC ⊥BB 1,根据正方形ABCD 的性质可得AC ⊥BD ,从而有AC ⊥平面BDD 1B 1.【解答】解:(I)正四棱柱的表面积为1×1×2+1×2×4=10. (II )连接AC,BD,B 1D 1,∵BB 1⊥平面ABCD ,AC ⊂平面ABCD , ∴AC ⊥BB 1,∵四边形ABCD 是正方形, ∴AC ⊥BD,又BD ⊂平面BDD 1B 1,BB 1⊂平面BDD 1B 1,BD ∩BB 1=B , ∴AC ⊥平面BDD 1B 1.【点评】本题考查了直棱柱的结构特征,线面垂直的判定,属于基础题.16.已知正方体ABCD ﹣A 1B 1C 1D 1,O 是底ABCD 对角线的交点.求证: (1)C 1O ∥面AB 1D 1; (2)A 1C ⊥面AB 1D 1.【分析】(1)欲证C 1O ∥面AB 1D 1,根据直线与平面平行的判定定理可知只需证C 1O 与面AB 1D 1内一直线平行,连接A 1C 1,设A 1C 1∩B 1D 1=O 1,连接AO 1,易得C 1O ∥AO 1,AO 1⊂面AB 1D 1,C 1O ⊄面AB 1D 1,满足定理所需条件;(2)欲证A 1C ⊥面AB 1D 1,根据直线与平面垂直的判定定理可知只需证A 1C 与面AB 1D 1内两相交直线垂直根据线面垂直的性质可知A 1C ⊥B 1D 1,同理可证A 1C ⊥AB 1,又D 1B 1∩AB 1=B 1,满足定理所需条件.【解答】证明:(1)连接A 1C 1,设A 1C 1∩B 1D 1=O 1,连接AO 1, ∵ABCD ﹣A 1B 1C 1D 1是正方体, ∴A 1ACC 1是平行四边形,∴A1C1∥AC且A1C1=AC,又O1,O分别是A1C1,AC的中点,∴O1C1∥AO且O1C1=AO,∴AOC1O1是平行四边形,∴C1O∥AO1,AO1⊂面AB1D1,C1O⊄面AB1D1,∴C1O∥面AB1D1;(2)∵CC1⊥面A1B1C1D1∴CC1⊥B1D!,又∵A1C1⊥B1D1,∴B1D1⊥面A1C1C,即A1C⊥B1D1,∵A1B⊥AB1,BC⊥AB1,又A1B∩BC=B,AB1⊥平面A1BC,又A1C⊂平面A1BC,∴A1C⊥AB1,又D1B1∩AB1=B1,∴A1C⊥面AB1D1【点评】本题主要考查了线面平行、线面垂直的判定定理,考查对基础知识的综合应用能力和基本定理的掌握能力.17.如图所示,在正方体ABCD﹣A1B1C1D1中,M,E,F,N分别为A1B1,B1C1,C1D1,D1A1的中点,求证:(1)E,F,D,B四点共面;(2)面AMN∥平面EFDB.【分析】(1)由E,E分别是B1C1,C1D1的中点,知EF∥B1D1,从而得到EF∥BD,由此能证明E,F,B,D,四点共面.(2)由题设条件推导出MN∥EF,AN∥CF,由此能够证明面MAN∥面EFDB.【解答】证明:(1)∵E,E分别是B1C1,C1D1的中点,∴EF∥B1D1 ,∵B1D1∥BD,∴EF∥BD,∴E,F,B,D,四点共面.(2)∵M,N分别是A1B1,D1A1的中点,∴MN∥B1D1,∵EF∥B1D1,∴MN∥EF,∵F,N分别是D1C1、A1B1的中点,∴NF A1D1,∵,∴NF AC,∴四边形NFCA是平行四边形,∴AN∥CF,∵MN∩AN=N,EF∩DF=F,∴面MAN∥面EFDB.【点评】本题考查四点共面的证明,考查两个平面平行的证明.解题时要认真审题,注意中位线定理和平行公理的合理运用.18.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=1,AA 1=2,点P 是DD 1的中点. 求证:(1)直线BD 1∥平面PAC(2)①求异面直线PC 与AA 1所成的角. ②平面PAC ⊥平面BDD 1.【分析】(1)连接BD ,交AC 于O,连接PO ,由三角形的中位线定理和线面平行的判定定理,即可得证;(2)①连接PC 1,AA 1∥CC 1,∠C 1CP 即为异面直线PC 与AA 1所成的角,分别求出△C 1CP 的三边,由解三角形即可得到所求角;②运用正方形的对角线垂直和线面垂直的性质定理,可得AC ⊥平面BDD 1B 1,再由面面垂直的判定定理,即可得证.【解答】(1)证明:连接BD ,交AC 于O ,连接PO , 在△BDD1中,OP 为中位线,可得OP∥BD1,又OP⊂平面PAC,BD1⊄平面PAC,则直线BD1∥平面PAC;(2)①连接PC1,AA1∥CC1,∠C1CP即为异面直线PC与AA1所成的角,在△C1CP中,C1C=2,PC===,PC1===,由PC2+PC12=CC12,可得△C1CP为等腰直角三角形,则异面直线PC与AA1所成的角为45°;②证明:在底面ABCD中,AB=AD,即有四边形ABCD为正方形,可得AC⊥BD,D1D⊥平面ABCD,AC⊂平面ABCD,即有D1D⊥AC,D1D∩BD=D,可得AC⊥平面BDD1B1,AC⊂平面PAC,则平面PAC⊥平面BDD1.【点评】本题考查线面平行的判定,注意运用中位线定理和线面平行的判定定理,考查异面直线所成角的求法,注意运用平移法,考查面面垂直的判定,注意运用线面垂直的判定和性质,考查空间想象能力和推理能力,属于基础题.19.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ;(Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值.【分析】(Ⅰ)由ABC ﹣A 1B 1C 1是直三棱柱,可知CC 1⊥AC ,CC 1⊥BC ,∠ACB=90°,AC⊥BC .建立空间直角坐标系C ﹣xyz .则A ,B 1,E ,A 1,可得,,,可知,根据,,推断出AB 1⊥CE ,AB 1⊥CA 1,根据线面垂直的判定定理可知AB 1⊥平面A 1CE . (Ⅱ)由(Ⅰ)知是平面A 1CE 的法向量,,进而利用向量数量积求得直线A 1C 1与平面A 1CE 所成角的正弦值【解答】(Ⅰ)证明:∵ABC ﹣A 1B 1C 1是直三棱柱, ∴CC 1⊥AC,CC 1⊥BC, 又∠ACB=90°, 即AC ⊥BC .如图所示,建立空间直角坐标系C ﹣xyz .A (2,0,0),B 1(0,2,2),E(1,1,0),A 1(2,0,2), ∴,,.又因为 ,,∴AB 1⊥CE ,AB 1⊥CA 1,AB 1⊥平面A 1CE . (Ⅱ)解:由(Ⅰ)知,是平面A 1CE 的法向量,,∴|cos <,>|==.设直线A 1C 1与平面A 1CE 所成的角为θ,则sinθ=|cos <,>|=.所以直线A 1C 1与平面A 1CE 所成角的正弦值为.【点评】本题主要考查了线面垂直的判定定理,向量的数量积的运用,法向量的运用.综合考查了学生所学知识的灵活运用.20.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 、G 分别是AB 、AD 、C 1D 1的中点.求证:平面D 1EF ∥平面BDG .【分析】欲证平面D 1EF ∥平面BDG,根据面面平行的判定定理可知只需在一个平面内找两相交直线与另一平面平行,EF ∥BD 又EF ⊄平面BDG ,BD ⊂平面BDG 根据线面平行的性质可知EF ∥平面BDG ,同理可证D 1E ∥平面BDG ,EF ∩D 1E=E ,满足定理条件. 【解答】证明:∵E 、F 分别是AB 、AD 的中点,∴EF ∥BD 又EF ⊄平面BDG ,BD ⊂平面BDG ∴EF ∥平面BDG ∵D 1G EB ∴四边形D 1GBE 为平行四边形,D 1E ∥GB 又D 1E ⊄平面BDG,GB ⊂平面BDG∴D 1E ∥平面BDG,EF ∩D 1E=E , ∴平面D 1EF ∥平面BDG【点评】本小题主要考查空间中的线面关系,考查线面平行的判定,考查识图能力和逻辑思维能力与推理论证能力,考查转化思想,属于基础题.21.(文科)如图,正方体ABCD ﹣A 1B 1C 1D 1中,M ,N,E ,F 分别是棱A 1B 1,A 1D 1,B 1C 1,C 1D 1的中点, 求证:平面AMN ∥平面EFDB .【分析】连接B 1D 1,NE ,分别在△A 1B 1D 1中和△B 1C 1D 1中利用中位线定理,得到MN ∥B 1D 1,EF ∥B 1D 1,从而MN ∥EF,然后用直线与平面平行的判定定理得到MN ∥面BDEF .接下来利用正方形的性质和平行线的传递性,得到四边形ABEN 是平行四边形,得到AN ∥BE ,直线与平面平行的判定定理得到AN ∥面BDEF,最后可用平面与平面平行的判定定理,得到平面AMN ∥平面EFDB ,问题得到解决.【解答】证明:如图所示,连接B 1D 1,NE∵M,N ,E ,F 分别是棱A 1B 1,A 1D 1,B 1C 1,C 1D 1的中点 ∴MN ∥B 1D 1,EF ∥B 1D 1 ∴MN ∥EF又∵MN ⊄面BDEF ,EF ⊂面BDEF ∴MN ∥面BDEF∵在正方形A 1B 1C 1D 1中,M ,E ,分别是棱 A 1B 1,B 1C 1的中点∴NE∥A1B1且NE=A1B1又∵A1B1∥AB且A1B1=AB∴NE∥AB且NE=AB∴四边形ABEN是平行四边形∴AN∥BE又∵AN⊄面BDEF,BE⊂面BDEF∴AN∥面BDEF∵AN⊂面AMN,MN⊂面AMN,且AN∩MN=N∴平面AMN∥平面EFDB【点评】本题借助于正方体模型中的一个面面平行位置关系的证明,着重考查了三角形的中位线定理、线面平行的判定定理和面面平行的判定定理等知识点,属于基础题.22.如图,在四棱锥P﹣ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,过A、D、N三点的平面交PC于M,E为AD的中点,求证:(1)EN∥平面PDC;(2)BC⊥平面PEB;(3)平面PBC⊥平面ADMN.【分析】(1)先证明AD∥MN由N是PB的中点,E为AD的中点,底面ABCD是边长为2的菱形得EN∥DM,DM⊂平面PDC,可得EN∥平面PDC;(2)由侧面PAD是正三角形,且与底面ABCD垂直,E为AD的中点,得PE⊥AD,PE⊥EB,PE⊥BC,由∠BAD=60°,AB=2,AE=1,由余弦定理可得BE=,由正弦定理可得:BE⊥AD,有由AD∥BC可得BE⊥BC,可得BC⊥平面PEB;(3)由(2)知BC⊥平面PEB,EN⊂平面PEB可得PB⊥MN,由AP=AB=2,N是PB的中点,得PB ⊥AN,有MN∩AN=N.PB⊥平面ADMN,可证平面PBC⊥平面ADMN.【解答】解:(1)∵AD∥BC,AD⊂平面ADMN,BC⊄平面ADMN,∴BC∥平面ADMN,∵MN=平面ADMN∩平面PBC,BC⊂平面PBC,∴BC∥MN.又∵AD∥BC,∴AD∥MN.∴ED∥MN∵N是PB的中点,E为AD的中点,底面ABCD是边长为2的菱形,∴ED=MN=1∴四边形ADMN是平行四边形.∴EN∥DM,DM⊂平面PDC,∴EN∥平面PDC;(2)∵侧面PAD是正三角形,且与底面ABCD垂直,E为AD的中点,∴PE⊥AD,PE⊥EB,PE⊥BC∵∠BAD=60°,AB=2,AE=1,由余弦定理可得BE=,由正弦定理可得:BE⊥AD∴由AD∥BC可得BE⊥BC,∵BE∩PE=E∴BC⊥平面PEB;(3)∵由(2)知BC⊥平面PEB,EN⊂平面PEB∴BC⊥EN∵PB⊥BC,PB⊥AD∴PB⊥MN∵AP=AB=2,N是PB的中点,∴PB⊥AN,∴MN∩AN=N.PB⊥平面ADMN,∵PB⊂平面PBC∴平面PBC⊥平面ADMN.【点评】本题主要考察了平面与平面垂直的判定,直线与平面平行的判定,直线与平面垂直的判定,属于基本知识的考查.23.如图,在正三棱锥P﹣ABC中,D,E分别是AB,BC的中点.(1)求证:DE∥平面PAC;(2)求证:AB⊥PC.【分析】(1)推导出DE∥AC,由此能证明DE∥平面PAC.(2)连结PD,CD,则PD⊥AB,CD⊥AB,从而AB⊥平面PDC,由此能证明AB⊥PC.【解答】证明:(1)∵在正三棱锥P﹣ABC中,D,E分别是AB,BC的中点.∴DE∥AC,∵DE⊄平面PAC,AC⊂平面PAC,∴DE∥平面PAC.(2)连结PD,CD,∵正三棱锥P﹣ABC中,D是AB的中点,∴PD⊥AB,CD⊥AB,∵PD∩CD=D,∴AB⊥平面PDC,∵PC⊂平面PDC,∴AB⊥PC.【点评】本题考查线面平行的证明,考查线线垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.24.如图所示,在四棱锥P﹣ABCD中,底面是边长为1的正方形,侧棱PD=1,PA=PC=.(1)求证:PD⊥平面ABCD;(2)求证:平面PAC⊥平面PBD.【分析】(1)由勾股定理逆定理可证明AD⊥PD,PD⊥CD即可得出PD⊥平面ABCD;(2)由(1)可得PD⊥AC,结合AC⊥BD,得出AC⊥平面PBD,从而平面PAC⊥平面PBD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。
求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。
2、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。
3、已知ABC ∆中90ACB ∠=o,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .4、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D .5、正方体''''ABCD A B C D -中,求证: (1)''AC B D DB ⊥平面; (2)''BD ACB ⊥平面.6、正方体ABCD —A 1B 1C 1D 1中. (1)求证:平面A 1BD ∥平面B 1D 1C ;(2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD .7、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且22EF AC =,90BDC ∠=o , 求证:BD ⊥平面ACDAED BCAED 1CB 1DCBASDCB AD 1ODB AC 1B 1A 1CA AB 1B C 1 CD 1DGEF8、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、11C D 的中点.求证:平面1D EF ∥平面BDG .9、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE .10、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点. (1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角.11、如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥.12、如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD .13、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H. 求证:AH ⊥平面BCD .14.(12分)求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形.已知:如图,三棱锥S —ABC ,SC ∥截面EFGH ,AB ∥截面EFGH .求证:截面EFGH是平行四边形.15.(12分)已知正方体ABCD—A1B1C1D1的棱长为a,M、N分别为A1B和AC上的点,A1M=AN=23a,如图.(1)求证:MN∥面BB1C1C;(2)求MN的长.16.(12分)(2009·浙江高考)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.17.(12分)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥面ACD.(2)平面EFC⊥平面BCD.1、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。
求证:(1)⊥AB 平面CDE;(2)平面CDE ⊥平面ABC 。
证明:(1)BC AC CE AB AE BE =⎫⇒⊥⎬=⎭同理,AD BD DE AB AE BE =⎫⇒⊥⎬=⎭又∵CE DE E ⋂= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE又∵AB ⊆平面ABC , ∴平面CDE ⊥平面ABC 2、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。
证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。
3、已知ABC ∆中90ACB ∠=o,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .证明:90ACB ∠=∵° BC AC ∴⊥又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥又,SC AD SC BC C ⊥⋂=AD ∴⊥面SBC4、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D . 证明:(1)连结11A C ,设11111A CB D O ⋂=,连结1AO∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO =11AOC O ∴是平行四边形111,C O AO AO ∴⊂∥面11AB D ,1C O ⊄面11AB D ∴C 1O ∥面11AB DAEDBCAED 1CB 1DCBASD CB A D 1ODBAC 1B 1A 1C(2)1CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 又1111A CB D ⊥∵, 1111B D AC C ∴⊥面 111AC B D ⊥即 同理可证11A C AD ⊥, 又1111D B AD D ⋂=∴1AC ⊥面11AB D 5、正方体''''ABCD A B C D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面.6、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 证明:(1)由B 1B ∥DD 1,得四边形BB 1D 1D 是平行四边形,∴B 1D 1∥BD , 又BD ⊄平面B 1D 1C ,B 1D 1⊂平面B 1D 1C , ∴BD ∥平面B 1D 1C .同理A 1D ∥平面B 1D 1C .而A 1D ∩BD =D ,∴平面A 1BD ∥平面B 1CD .(2)由BD ∥B 1D 1,得BD ∥平面EB 1D 1.取BB 1中点G ,∴AE ∥B 1G .从而得B 1E ∥AG ,同理GF ∥AD .∴AG ∥DF .∴B 1E ∥DF .∴DF ∥平面EB 1D 1.∴平面EB 1D 1∥平面FBD .7、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且22EF AC =, 90BDC ∠=o ,求证:BD ⊥平面ACD证明:取CD 的中点G ,连 结,EG FG ,∵,E F 分别为,AD BC 的中点,∴EG12//AC = 12//FG BD =,又,AC BD =∴12FG AC =,∴在EFG ∆中,222212EG FG AC EF +== ∴EG FG ⊥,∴BD AC ⊥,又90BDC ∠=o,即BD CD ⊥,AC CD C ⋂= ∴BD ⊥平面ACD8、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、11C D 的中点.求证:平面1D EF ∥平面BDG .证明:∵E 、F 分别是AB 、AD 的中点,∴EF ∥BD 又EF ⊄平面BDG ,BD ⊂平面BDG ∴EF ∥平面BDG ∵1D GEB ∴四边形1D GBE 为平行四边形,1D E ∥GB又1D E ⊄平面BDG ,GB ⊂平面BDG ∴1D E ∥平面BDG1EF D E E⋂=,∴平面1D EF ∥平面BDG9、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点.A AB 1C 1C D 1D G EF(1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE . 证明:(1)设AC BD O ⋂=,∵E 、O 分别是1AA 、AC 的中点,∴1A C ∥EO又1AC ⊄平面BDE ,EO ⊂平面BDE ,∴1A C ∥平面BDE (2)∵1AA ⊥平面ABCD ,BD ⊂平面ABCD ,1AA BD ⊥ 又BD AC ⊥,1AC AA A⋂=,∴BD ⊥平面1A AC ,BD ⊂平面BDE ,∴平面BDE ⊥平面1A AC10、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥ 又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,42PD =,在Rt DCE ∆中,22DE = 在Rt DEP ∆中,2PD DE =,∴030DPE ∠=11、如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .(1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥. 证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥12、如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD . 证明:连结MO ,1A M ,∵DB ⊥1A A ,DB ⊥AC ,1A A AC A⋂=,∴DB ⊥平面11A ACC ,而1AO ⊂平面11A ACC ∴DB ⊥1A O . 设正方体棱长为a ,则22132A O a =,2234MO a =. 在Rt △11A C M 中,22194A M a =.∵22211A O MO A M +=,∴1AO OM ⊥. ∵OM ∩DB =O ,∴ 1A O ⊥平面MBD .13、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD . 证明:取AB 的中点F,连结CF ,DF . ∵AC BC =,∴CF AB ⊥.∵AD BD =,∴DF AB ⊥.又CF DF F =I ,∴AB ⊥平面CDF . ∵CD ⊂平面CDF ,∴CD AB ⊥. 又CD BE ⊥,BE AB B ⋂=, ∴CD ⊥平面ABE ,CD AH ⊥.∵AH CD ⊥,AH BE ⊥,CD BE E ⋂=,∴ AH ⊥平面BCD .14.(12分)求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形. 已知:如图,三棱锥S —ABC ,SC ∥截面EFGH ,AB ∥截面EFGH . 求证:截面EFGH 是平行四边形.证明:∵SC ∥截面EFGH ,SC ⊄平面EFGH ,SC ⊂平面ASC ,且平面ASC ∩平面EFGH =GH , ∴SC ∥GH .同理可证SC ∥EF ,∴GH ∥EF . 同理可证HE ∥GF . ∴四边形EFGH 是平行四边形.15.(12分)已知正方体ABCD —A 1B 1C 1D 1的棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN=23a ,如图.(1)求证:MN ∥面BB 1C 1C ; (2)求MN 的长.解:(1)证明:作NP ⊥AB 于P ,连接MP .NP ∥BC ,∴AP AB =AN AC =A 1M A 1B,∴MP ∥AA 1∥BB 1,∴面MPN ∥面BB 1C 1C . MN ⊂面MPN ,∴MN ∥面BB 1C 1C .(2)NPBC=ANAC=23a2a=13,NP=13a,同理MP=23a.又MP∥BB1,∴MP⊥面ABCD,MP⊥PN.在Rt△MPN中MN=49a2+19a2=53a.16.(12分)(2009·浙江高考)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.解:(1)证明:因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,又PQ⊄平面ACD,从而PQ∥平面ACD.(2)如图,连接CQ,DP,因为Q为AB的中点,且AC=BC,所以CQ⊥AB.因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC,因此CQ⊥EB. 故CQ⊥平面ABE.由(1)有PQ∥DC,又PQ=12EB=DC,所以四边形CQPD为平行四边形,故DP∥CQ,因此DP⊥平面ABE,∠DAP为AD和平面ABE所成的角,在Rt△DP A中,AD=5,DP=1,sin∠DAP=55,17.(12分)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥面ACD.(2)平面EFC⊥平面BCD.证明:(1)在△ABD中,∵E、F分别是AB、BD的中点,∴EF∥AD.又AD⊂平面ACD,EF⊄平面ACD,∴直线EF∥面ACD.(2)在△ABD中,∵AD⊥BD,EF∥AD,∴EF⊥BD.在△BCD中,∵CD=CB,F为BD的中点,∴CF⊥BD.∵CF∩EF=F,∴BD⊥平面EFC,又∵BD⊂平面BCD,∴平面EFC⊥平面BCD.。