高考数学解析几何中常用到的平面几何关系复习进程
高考数学平面解析几何的复习方法总结
高考数学平面解析几何的复习方法总结在高中数学知识体系中,平面解析几何是其中很大的一块,触及到直线及其方程、线性规划、圆及其方程、椭圆及其方程、抛物线及其方程、双曲线及其方程以及曲线与方程的关系及其图像等详细的知识点。
在高考的考察中,又可以将上述的7个知识点停止综合考察,更是添加了考察的难度。
要想学好这局部知识,在高考总不丢分,以下几点是很关键的。
打破第一点,夯实基础知识。
关于基础知识,不只一个知识点都要熟稔于心,还要有才干将这些零散的知识点串联起来。
只要这样,才干构成属于自己的知识框架,才干更冷静的应对考试。
(一)关于直线及其方程局部,首先我们要从总体上掌握住两打破点:①明白基本的概念。
在直线局部,最主要的概念就是直线的斜率、倾斜角以及斜率和倾斜角之间的关系。
倾斜角α的取值范围是打破[0,π),当倾斜角不等于90°的时分,斜率k=tanα;当倾斜角=90°的时分,斜率不存在。
②直线的方程有不同的方式,同窗们应该从不同的角度去归类总结。
角度一:以直线的斜率能否存在停止归类,可以将直线的方程分为两类。
角度二:从倾斜角α区分在[0,π/2)、α=π/2和(π/2,π)的范围内,看法直线的特点。
以此为基础打破,将直线方程的五种不同的方式套入其中。
直线方程的不同方式打破需求满足的条件以及局限性是不同的,我们也要加以总结。
(二)关于线性规划局部,首先我们要看得懂线性规划方程组所表示的区域。
在这里我们可以采用原点法,假设满足条件,那么区域包括原点;假设原点带入不满足条件,那么代表的区域不包括原点。
(三)关于圆及其方程,我们要熟记圆的规范方程和普通方程区分代表的含义。
关于圆局部的学习,我们要拓展初中学过的一切与圆有关的知识,包括三角形的内切圆、外切圆、圆周角、圆心角等概念以及点与圆的位置关系、圆与圆的位置关系、圆的内切正多边形的特征等。
只要这样,才干愈加完整的掌握与圆有关的一切的知识。
(四)关于椭圆、抛物线、双曲线,我们要区分从其两个定义动身,明白焦点的来源、准线方程以及相关的焦距、顶点、打破离心率、通径的概念。
高考数学复习笔记第八章 平面解析几何
第八章⎪⎪⎪平面解析几何第一节直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α(α≠π2),则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.[小题体验]1.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .α+45°或α-135°解析:选D 由倾斜角的取值范围知,只有当0°≤α+45°<180°,即0°≤α<135°时,l 1的倾斜角才是α+45°.而0°≤α<180°,所以当135°≤α<180°时,l 1的倾斜角为α-135°,故选D.2.下列说法中正确的是( )A.y -y 1x -x 1=k 表示过点P 1(x 1,y 1),且斜率为k 的直线方程 B .直线y =kx +b 与y 轴交于一点B (0,b ),其中截距b =|OB | C .在x 轴和y 轴上的截距分别为a 与b 的直线方程是x a +yb =1D .方程(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)表示过点P 1(x 1,y 1),P 2(x 2,y 2)的直线 解析:选D 对于A ,直线不包括点P 1,故A 不正确;对于B ,截距不是距离,是B 点的纵坐标,其值可正可负,故B 不正确;对于C ,经过原点的直线在两坐标轴上的截距都是0,不能表示为x a +yb =1,故C 不正确;对于D ,此方程为直线两点式方程的变形,故D正确.故选D.3.(2018·嘉兴检测)直线l 1:x +y +2=0在x 轴上的截距为________;若将l 1绕它与y 轴的交点顺时针旋转90°,则所得到的直线l 2的方程为________________.解析:对于直线l 1:x +y +2=0,令y =0,得x =-2,即直线l 1在x 轴上的截距为-2;令x =0,得y =-2,即l 1与y 轴的交点为(0,-2),直线l 1的倾斜角为135°,∴直线l 2的倾斜角为135°-90°=45°,∴l 2的斜率为1,故l 2的方程为y =x -2,即x -y -2=0.答案:-2 x -y -2=01.点斜式、斜截式方程适用于不垂直于x 轴的直线;两点式方程不能表示垂直于x ,y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.3.求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论.[小题纠偏]1.直线x cos α+3y +2=0的倾斜角的范围是( ) A.⎣⎡⎦⎤π6,π2∪⎣⎡⎦⎤π2,5π6 B.⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π C.⎣⎡⎦⎤0,5π6 D.⎣⎡⎦⎤π6,5π6解析:选B 设直线的倾斜角为θ,则tan θ=-33cos α, 又cos α∈[-1,1],所以-33≤tan θ≤33, 又0≤θ<π,且y =tan θ在⎣⎡⎭⎫0,π2和⎝⎛⎭⎫π2,π上均为增函数, 故θ∈⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π.故选B. 2.过点(5,10),且到原点的距离为5的直线方程是________. 解析:当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0.由距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0. 答案:x -5=0或3x -4y +25=0考点一 直线的倾斜角与斜率(基础送分型考点——自主练透)[题组练透]1.若直线l 经过A (2,1),B (1,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎝⎛⎭⎫π2,π C.⎣⎡⎭⎫π4,π2D.⎝⎛⎦⎤π2,3π4解析:选C 因为直线l 的斜率k =tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.故倾斜角α的取值范围是⎣⎡⎭⎫π4,π2.2.经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为________,________.解析:如图所示,结合图形,若l 与线段AB 总有公共点,则k PA ≤k ≤k PB ,而k PB >0,k PA <0,故k <0时,倾斜角α为钝角,k =0时,α=0,k >0时,α为锐角.又k PA =-2-(-1)1-0=-1,k PB =1-(-1)2-0=1,∴-1≤k ≤1.又当0≤k ≤1时,0≤α≤π4;当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∈⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 答案:[-1,1] ⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π 3.若A (2,2),B (a,0),C (0,b )(ab ≠0)三点共线,求1a +1b的值.解:∵k AB =0-2a -2=-2a -2,k AC =b -20-2=-b -22,且A ,B ,C 三点共线,∴k AB =k AC ,即-2a -2=-b -22,整理得ab =2(a +b ),将该等式两边同除以2ab 得1a +1b =12.[谨记通法]1.倾斜角与斜率的关系当α∈⎣⎡⎭⎫0,π2且由0增大到π2⎝⎛⎭⎫α≠π2时,k 的值由0增大到+∞. 当α∈⎝⎛⎭⎫π2,π时,k 也是关于α的单调函数,当α在此区间内由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 的值由-∞趋近于0(k ≠0).2.斜率的3种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率. (2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.(3)方程法:若已知直线的方程为Ax +By +C =0(B ≠0),则l 的斜率k =-AB . 考点二 直线的方程(重点保分型考点——师生共研)[典例引领]求适合下列条件的直线方程:(1)经过点(4,1),且在两坐标轴上的截距相等;(2)经过点(-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)经过点(3,4),且与两坐标轴围成一个等腰直角三角形. 解:(1)设直线方程在x ,y 轴上的截距均为a , 若a =0,即直线方程过点(0,0)和(4,1), ∴直线方程为y =14x ,即x -4y =0;若a ≠0,则设直线方程为x a +ya =1,∵直线方程过点(4,1),∴4a +1a =1, 解得a =5,∴直线方程为x +y -5=0.综上可知,所求直线的方程为x -4y =0或x +y -5=0.(2)由已知,设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34.又直线经过点(-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3).即所求直线的方程为x -y +1=0或x +y -7=0.[由题悟法]求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时应用]求适合下列条件的直线方程:(1)经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半的直线方程为________.(2)过点(2,1)且在x 轴上的截距与在y 轴上的截距之和为6的直线方程为________. 解析:(1)由3x +y +1=0,得此直线的斜率为-3, 所以倾斜角为120°,从而所求直线的倾斜角为60°, 所以所求直线的斜率为 3. 又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3), 即3x -y +6=0.(2)由题意可设直线方程为x a +yb=1,则⎩⎪⎨⎪⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2. 故所求直线方程为x +y -3=0或x +2y -4=0.答案:(1)3x -y +6=0 (2)x +y -3=0或x +2y -4=0 考点三 直线方程的综合应用(题点多变型考点——多角探明) [锁定考向]直线方程的综合应用是常考内容之一,它常与函数、导数、不等式、圆相结合,命题多为客观题.常见的命题角度有:(1)与基本不等式相结合的最值问题;(2)与导数的几何意义相结合的问题; (3)由直线方程解决参数问题.[题点全练]角度一:与基本不等式相结合的最值问题1.过点P (2,1)作直线l ,与x 轴和y 轴的正半轴分别交于A ,B 两点,求: (1)△AOB 面积的最小值及此时直线l 的方程;(2)直线l 在两坐标轴上截距之和的最小值及此时直线l 的方程; (3)|PA |·|PB |的最小值及此时直线l 的方程. 解:(1)设直线l 的方程为y -1=k (x -2), 则可得A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k ). ∵直线l 与x 轴,y 轴正半轴分别交于A ,B 两点,∴⎩⎨⎧2k -1k>0,1-2k >0,得k <0.∴S △AOB =12·|OA |·|OB |=12·⎝⎛⎭⎫2-1k ·(1-2k )=12⎝⎛⎭⎫4-1k-4k ≥12⎣⎡⎦⎤4+2 ⎝⎛⎭⎫-1k ·(-4k ) =4,当且仅当-1k=-4k ,即k =-12时,△AOB 的面积有最小值4,此时直线l 的方程为y -1=-12(x -2),即x +2y -4=0.(2)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴截距之和为2-1k +1-2k =3-2k -1k ≥3+2 (-2k )·⎝⎛⎭⎫-1k =3+22,当且仅当-2k =-1k ,即k =-22时等号成立.故截距之和的最小值为3+22, 此时直线l 的方程为y -1=-22(x -2), 即x +2y -2-2=0.(3)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴|PA |·|PB |=1k 2+1·4+4k 2=2⎣⎢⎡⎦⎥⎤1-k +(-k )≥4, 当且仅当-k =-1k , 即k =-1时上式等号成立.故|PA |·|PB |的最小值为4,此时直线l 的方程为y -1=-(x -2),即x +y -3=0. 角度二:与导数的几何意义相结合的问题2.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( ) A.⎣⎡⎦⎤-1,-12 B.[]-1,0 C .[0,1]D.⎣⎡⎦⎤12,1解析:选A 由题意知y ′=2x +2,设P (x 0,y 0), 则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,所以0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.角度三:由直线方程解决参数问题3.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×(2-a )×2+12×(a 2+2)×2=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,四边形的面积最小,故a =12.[通法在握]处理直线方程综合应用的2大策略(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.[演练冲关]1.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:52.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围为[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,∴A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.一抓基础,多练小题做到眼疾手快1.(2019·金华一中模拟)直线x +(a 2+1)y +1=0的倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π 解析:选B 由直线方程可知斜率k =-1a 2+1,设倾斜角为α,则tan α=-1a 2+1,而-1≤-1a 2+1<0,∴-1≤tan α<0,又∵α∈[0,π),∴3π4≤α<π,故选B.2.直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π 解析:选B 设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1].又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.3.(2018·湖州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段P Q 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .-32D.23解析:选B 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可得直线l 的斜率为-3-17+5=-13.4.如图中的直线l1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:选D 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.5.(2018·豫西五校联考)曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为________.解析:设曲线上任意一点处的切线的倾斜角为θ(θ∈[0,π)), 因为y ′=3x 2-1≥-1,所以tan θ≥-1, 结合正切函数的图象可知, θ的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 答案:⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 二保高考,全练题型做到高考达标1.已知A (-1,1),B (3,1),C (1,3),则△ABC 的BC 边上的高所在直线方程为( ) A .x +y =0 B .x -y +2=0 C .x +y +2=0D .x -y =0解析:选B 因为B (3,1),C (1,3), 所以k BC =3-11-3=-1,故BC 边上的高所在直线的斜率k =1,又高线经过点A ,所以其直线方程为x -y +2=0.2.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( )A .y =3x +2B .y =3x -2C .y =3x +12D .y =-3x +2 解析:选A ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2,故选A.3.(2018·温州五校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0的图象可能是( )解析:选B 当a >0,b >0时,-a <0,-b <0,选项B 符合.4.若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)解析:选C 令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2]. 5.函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在mx +ny -1=0(mn >0)上,则1m +1n 的最小值为( )A .2B .4C .8D .1解析:选B ∵函数y =a 1-x (a >0,a ≠1)的图象恒过定点A (1,1). ∴把A (1,1)代入直线方程得m +n =1(mn >0). ∴1m +1n =⎝⎛⎭⎫1m +1n (m +n )=2+n m +m n ≥2+2 n m ·m n =4(当且仅当m =n =12时取等号), ∴1m +1n 的最小值为4.6.(2018·温州调研)已知三角形的三个顶点为A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析:∵BC 的中点坐标为⎝⎛⎭⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x+13y +5=0.答案:x +13y +5=07.若直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为________________.解析:由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎪⎨⎪⎧ x +3=0,y -1=0,可得⎩⎪⎨⎪⎧x =-3,y =1,∴M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),∴所求直线方程为2x +3y +12=0.答案:2x +3y +12=08.若圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是________.解析:由圆x 2+y 2+2x -6y +1=0知其标准方程为(x +1)2+(y -3)2=9, ∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称, ∴该直线经过圆心(-1,3),即-a -3b +3=0, ∴a +3b =3(a >0,b >0). ∴1a +3b =13(a +3b )⎝⎛⎭⎫1a +3b =13⎝⎛⎭⎫1+3a b +3b a +9≥13⎝⎛⎭⎫10+23a b ·3b a =163, 当且仅当3b a =3ab ,即a =b 时取等号. 故1a +3b 的最小值是163.答案:1639.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4, 由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6,解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.10.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎨⎧m +n 2=12·m -3n2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.三上台阶,自主选做志在冲刺名校 1.已知曲线y =1e x+1,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为________.解析:y ′=-e x(e x +1)2=-1e x +1ex +2, 因为e x >0,所以e x +1e x ≥2e x ·1e x =2(当且仅当e x =1e x ,即x =0时取等号),所以e x +1ex+2≥4,故y ′=-1e x +1ex +2≥-14(当且仅当x =0时取等号).所以当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.该切线在x 轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12.答案:122.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,当△ABO 的面积取最小值时,求直线l 的方程.解:法一:设A (a,0),B (0,b )(a >0,b >0), 则直线l 的方程为x a +yb =1.因为l 过点P (3,2),所以3a +2b =1.因为1=3a +2b ≥26ab ,整理得ab ≥24,所以S △ABO =12ab ≥12,当且仅当3a =2b ,即a =6,b =4时取等号. 此时直线l 的方程是x 6+y4=1,即2x +3y -12=0.法二:依题意知,直线l 的斜率k 存在且k <0, 可设直线l 的方程为y -2=k (x -3)(k <0), 则A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4-k≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4-k=12×(12+12)=12, 当且仅当-9k =4-k,即k =-23时,等号成立.所以所求直线l 的方程为2x +3y -12=0.第二节两条直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.三种距离公式1.(2018·金华四校联考)直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m=()A.2B.-3C.2或-3 D.-2或-3解析:选C∵直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,∴2m=m+13≠4-2,解得m=2或-3.2.“a=14”是“直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0相互垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A由直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0相互垂直,得(a+1)(a-1)+3a(a+1)=0,即4a2+3a-1=0,解得a=14或-1,∴“a=14”是“直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0相互垂直”的充分不必要条件,故选A.3.(2018·浙江五校联考)已知动点P的坐标为(x,1-x),x∈R,则动点P的轨迹方程为________,它到原点距离的最小值为________.解析:设点P的坐标为(x,y),则y=1-x,即动点P的轨迹方程为x+y-1=0.原点到直线x+y-1=0的距离为d=|0+0-1|1+1=22,即为所求原点到动点P的轨迹的最小值.答案:x+y-1=02 21.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x,y的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知P :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,Q :a =-1,则P 是Q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.所以P 是Q 的充要条件.2.(2018·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( )A .7B.172C .14D .17解析:选B 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,解得m =172.考点一 两条直线的位置关系(基础送分型考点——自主练透)[题组练透]1.已知a ≠0,直线ax +(b +2)y +4=0与直线ax +(b -2)y -3=0互相垂直,则ab 的最大值为( )A .0B .2C .4D. 2解析:选B 若b =2,两直线方程分别为y =-a 4x -1和x =3a ,此时两直线相交但不垂直.若b =-2,两直线方程分别为x =-4a 和y =a 4x -34,此时两直线相交但不垂直.若b ≠±2,两直线方程分别为y =-a b +2x -4b +2和y =-a b -2x +3b -2,此时两直线的斜率分别为-ab +2,-ab -2,由-ab +2·⎝⎛⎭⎪⎫-a b -2=-1,得a 2+b 2=4.因为a 2+b 2=4≥2ab ,所以ab ≤2,且当a =b =2或a =b =-2时取等号,故ab 的最大值为2.2.(2018·诸暨模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝⎛⎭⎫2a +3b =13+6a b +6b a≥13+2 6a b ·6ba =25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案:253.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎨⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2, 且l 1在y 轴上的截距为-1.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; (2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况. 2.由一般式确定两直线位置关系的方法[提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.考点二 距离问题(重点保分型考点——师生共研)[典例引领]1.(2018·衢州模拟)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( )A.2B.823 C. 3D.833解析:选B 因为l 1∥l 2,所以1a -2=a 3≠62a ,解得a =-1,所以l 1:x -y +6=0,l 2:x-y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪6-232=823.2.直线3x +4y -3=0上一点P 与点Q (2,-2)的连线的最小值是________. 解析:∵点Q 到直线的距离即为P ,Q 两点连线的最小值, ∴|P Q |min =|3×2+4×(-2)-3|32+42=1.答案:13.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析:法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1, 即|3k -1|=|-3k -3|,∴k =-13. ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.故所求直线l 的方程为x +3y -5=0或x =-1.法二:当AB ∥l 时,有k =k AB =-13, ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当l 过AB 中点时,AB 的中点为(-1,4).∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.答案:x +3y -5=0或x =-1[由题悟法]处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而使计算简便.[即时应用]1.已知P 是直线2x -3y +6=0上一点,O 为坐标原点,且点A 的坐标为(-1,1),若|PO |=|PA |,则P 点的坐标为________.解析:法一:设P (a ,b ),则⎩⎪⎨⎪⎧2a -3b +6=0,a 2+b 2=(a +1)2+(b -1)2,解得a =3,b =4.∴P 点的坐标为(3,4).法二:线段OA 的中垂线方程为x -y +1=0,则由⎩⎪⎨⎪⎧ 2x -3y +6=0,x -y +1=0.解得⎩⎪⎨⎪⎧ x =3,y =4,则P 点的坐标为(3,4). 答案:(3,4)2.已知直线l :ax +y -1=0和点A (1,2),B (3,6).若点A ,B 到直线l 的距离相等,则实数a 的值为________.解析:法一:要使点A ,B 到直线l 的距离相等,则AB ∥l ,或A ,B 的中点(2,4)在直线l 上.所以-a =6-23-1=2或2a +4-1=0, 解得a =-2或-32. 法二:要使点A ,B 到直线l 的距离相等, 则|a +1|a 2+1=|3a +5|a 2+1,解得a =-2或-32. 答案:-2或-32考点三 对称问题(题点多变型考点——多角探明)[锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型.常见的命题角度有:(1)点关于点对称;(2)点关于线对称;(3)线关于线对称.[题点全练]角度一:点关于点对称1.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以由两点式得直线l 的方程为x +4y -4=0.答案:x +4y -4=02.已知直线l :2x -3y +1=0,点A (-1,-2),则直线l 关于点A (-1,-2)对称的直线l ′的方程为________.解析:法一:在l :2x -3y +1=0上任取两点,如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二:设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.答案:2x -3y -9=0角度二:点关于线对称3.已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.解:(1)设A ′(x ,y ),则⎩⎨⎧ y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧ x =-3313,y =413.∴A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设M ′(a ,b ),则⎩⎨⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3). 又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.角度三:线关于线对称4.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( )A .x -2y +3=0B .x -2y -3=0C .x +2y +1=0D .x +2y -1=0 解析:选A 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎨⎧ x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2, 由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.[通法在握]1.中心对称问题的2个类型及求解方法(1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程.2.轴对称问题的2个类型及求解方法(1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧ A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎨⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧x =4,y =-2,∴BC 所在直线的方程为y -1=-2-14-3(x -3),即3x +y -10=0. 同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),∴AC 所在直线的方程为y -2=3-2-1-(-4)(x +4),即x -3y +10=0.联立⎩⎪⎨⎪⎧ 3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,可得C (2,4). 2.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎨⎧ b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0. 又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1, 即6x -y -6=0.答案:6x -y -6=03.已知△ABC 中,顶点A (4,5),点B 在直线l :2x -y +2=0上,点C 在x 轴上,求△ABC 周长的最小值.解:设点A 关于直线l :2x -y +2=0的对称点为A 1(x 1,y 1),点A 关于x 轴的对称点为A 2(x 2,y 2),连接A 1A 2交l 于点B ,交x 轴于点C ,则此时△ABC 的周长取最小值,且最小值为||A 1A 2.∵A 1与A 关于直线l :2x -y +2=0对称,∴⎩⎨⎧ y 1-5x 1-4×2=-1,2×x 1+42-y 1+52+2=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=7.∴A 1(0,7).易求得A 2(4,-5), ∴△ABC 周长的最小值为 ||A 1A 2=(4-0)2+(-5-7)2=410.一抓基础,多练小题做到眼疾手快1.(2018·浙江名校协作体联考)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧ a (a -2)=3×1,a ×1≠3×1,解得a =-1,故选C. 2.(2018·丽水调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3) D.⎝⎛⎭⎫1,32 解析:选C 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎪⎨⎪⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3). 3.(2018·诸暨期初)已知点A (7,-4)关于直线l 的对称点为B (-5,6),则该对称直线l 的方程为( )A .6x +5y -1=0B .5x +6y +1=0C .5x -6y -1=0D .6x -5y -1=0 解析:选D 由题可得,直线l 是线段AB 的垂直平分线.因为A (7,-4),B (-5,6),所以k AB =6+4-5-7=-56,所以k l =65.又因为A (7,-4),B (-5,6)的中点坐标为(1,1).所以直线l 的方程为y -1=65(x -1),即6x -5y -1=0. 4.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.因为|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]5.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.解析:依题意知,63=a -2≠c -1, 解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c 2=0, 又两平行直线之间的距离为21313, 所以⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或-6. 答案:2或-6二保高考,全练题型做到高考达标1.(2018·舟山调研)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|M Q |2的值为( )A.102B.10C .5D .10解析:选D 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直, ∴M 位于以P Q 为直径的圆上,∵|P Q |=9+1=10,∴|MP |2+|M Q |2=|P Q |2=10.2.(2018·慈溪模拟)曲线y =2x -x 3在x =-1处的切线为l ,则点P (3,2)到直线l 的距离为( )A.722B.922C.1122D.91010解析:选A 由题可得,切点坐标为(-1,-1).y ′=2-3x 2,由导数的几何意义可知,该切线的斜率为k =2-3=-1,所以切线的方程为x +y +2=0.所以点P (3,2)到直线l 的距离为d =|3+2+2|12+12=722.3.(2018·绵阳模拟)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|P Q |的最小值为( )A.95B.185C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行, 由题意可知|P Q |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910, 所以|P Q |的最小值为2910. 4.(2018·厦门模拟)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n 等于( )A.345B.365C.283D.323解析:选A 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,则⎩⎨⎧ 3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎨⎧ m =35,n =315,故m +n =345. 5.(2018·钦州期中)已知直线l 的方程为f (x ,y )=0,P 1(x 1,y 1)和P 2(x 2,y 2)分别为直线l 上和l 外的点,则方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示( )A .过点P 1且与l 垂直的直线B .与l 重合的直线C .过点P 2且与l 平行的直线D .不过点P 2,但与l 平行的直线解析:选C 由直线l 的方程为f (x ,y )=0,知方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示与l 平行的直线,P 1(x 1,y 1)为直线l 上的点,则f (x 1,y 1)=0,f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0化为f (x ,y )-f (x 2,y 2)=0,显然P 2(x 2,y 2)满足方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0,所以f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示过点P 2且与l 平行的直线.故选C.6.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为________________.解析:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(x 1,y 1),则有⎩⎨⎧ y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧ x 1=0,y 1=3,所以A 1(0,3). 同理设A 2(x 2,y 2),易求得A 2(-2,-1).所以BC 边所在直线方程为2x -y +3=0.答案:2x -y +3=07.(2018·余姚检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析:显然直线l 的斜率不存在时,不满足题意;设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0, 由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k2, ∴k =2或k =-23. ∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0.答案:2x -y -2=0或2x +3y -18=8.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P点,则光线所经过的路程为________.解析:易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1与A 2两点间的距离.于是|A 1A 2|=(4+2)2+(2-0)2=210. 答案:2109.(2018·绍兴一中检测)两平行直线l 1,l 2分别过点P (-1,3),Q (2,-1),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间的距离的取值范围是________.解析:∵l 1∥l 2,且P ∈l 1,Q ∈l 2,∴l 1,l 2间的最大距离为|P Q |=[2-(-1)]2+(-1-3)2=5,又l 1与l 2不重合,∴l 1,l 2之间距离的取值范围是(0,5].答案:(0,5]10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), ∴l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0, 得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.已知线段AB 的两个端点A (0,-3),B (3,0),且直线y =2λx +λ+2与线段AB 总相交,则实数λ的取值范围为________.。
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。
下面就让我们一起来详细梳理一下平面解析几何的相关知识点。
一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。
斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。
两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。
截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。
一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。
2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。
垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。
复习高中数学平面几何解析法
复习高中数学平面几何解析法高中数学平面几何是数学的一个重要分支,在解析几何中起着重要的作用。
掌握解析几何的基础知识,对于学生的学习和理解几何问题具有重要的意义。
本文将回顾高中数学平面几何解析法的基本概念、常用公式和解题方法,帮助读者复习和加深对该知识点的理解。
一、平面直角坐标系及其性质在解析几何中,使用平面直角坐标系是解决几何问题的关键。
平面直角坐标系由两个相互垂直的坐标轴x轴和y轴组成,任意一点都可以用有序数对(x, y)表示。
平面直角坐标系的性质包括:1. 两点之间的距离公式:设A(x₁, y₁)和B(x₂, y₂)是平面上的两点,则AB的距离为√((x₂ - x₁)² + (y₂ - y₁)²)。
2. 点到直线的距离公式:设点P(x₁, y₁)到直线Ax + By + C = 0的距离为d,则d = |Ax₁ + By₁ + C| / √(A² + B²)。
二、直线的方程解析几何中,直线的方程有三种常见形式:一般式、斜截式和点斜式。
1. 一般式:Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。
2. 斜截式:y = kx + b,其中k为直线的斜率,b为直线在y轴上的截距。
3. 点斜式:y - y₁ = k(x - x₁),其中(x₁, y₁)为直线上的一点,k为直线的斜率。
三、常见的直线问题在平面几何解析法中,我们经常遇到的问题包括:点的位置关系、直线的位置关系、直线与圆的位置关系以及直线与直线的位置关系等。
1. 点的位置关系:给定点P(x, y),判断其是否在直线Ax + By + C = 0上,只需将P的坐标(x, y)代入直线的方程,若等式成立,则点P在直线上,否则点P不在直线上。
2. 直线的位置关系:判断两条直线Ax₁ + By₁ + C₁ = 0和Ax₂ + By₂ + C₂ = 0的位置关系,可以比较它们的斜率k₁和k₂。
2024年高考数学总复习第九章《平面解析几何》两条直线的位置关系
2024年高考数学总复习第九章《平面解析几何》§9.2两条直线的位置关系最新考纲1.能根据斜率判定两条直线平行或垂直.2.能用解方程组的方法求两直线的交点坐标.3.探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.1.两条直线的位置关系(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组1x +B 1y +C 1=0,2x +B 2y +C 2=0的解.2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B2.概念方法微思考1.若两条直线l 1与l 2垂直,则它们的斜率有什么关系?提示当两条直线l 1与l 2的斜率都存在时,12l l k k ⋅=-1;当两条直线中一条直线的斜率为0,另一条直线的斜率不存在时,l 1与l 2也垂直.2.应用点到直线的距离公式和两平行线间的距离公式时应注意什么?提示(1)将方程化为最简的一般形式.(2)利用两平行线之间的距离公式时,应使两平行线方程中x ,y 的系数分别对应相等.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.(×)(2)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.(√)(3)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.(×)(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√)(5)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k ,且线段AB 的中点在直线l 上.(√)题组二教材改编2.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于()A.2B .2-2 C.2-1D.2+1答案C 解析由题意得|a -2+3|1+1=1.解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.3.已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________.答案1解析由题意知m -4-2-m=1,所以m -4=-2-m ,所以m =1.4.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.答案-9解析=2x ,+y =3,=1,=2.所以点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,所以m =-9.题组三易错自纠5.直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m 等于()A .2B .-3C .2或-3D .-2或-3答案C解析直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2m =2或-3.故选C.6.直线2x +2y +1=0,x +y +2=0之间的距离是______.答案324解析先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324.7.若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________.答案0或1解析由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.题型一两条直线的平行与垂直例1已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)试判断l 1与l 2是否平行;(2)当l 1⊥l 2时,求a 的值.解(1)方法一当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2-a2=11-a ,3≠-(a +1),解得a =-1,综上可知,当a=-1时,l1∥l2,a≠-1时,l1与l2不平行.方法二由A1B2-A2B1=0,得a(a-1)-1×2=0,由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,∴l1∥l2(a-1)-1×2=0,(a2-1)-1×6≠0,2-a-2=0,(a2-1)≠6,可得a=-1,故当a=-1时,l1∥l2.a≠-1时,l1与l2不平行.(2)方法一当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直,故a=1不成立;当a=0时,l1:y=-3,l2:x-y-1=0,l1不垂直于l2,故a=0不成立;当a≠1且a≠0时,l1:y=-a2x-3,l2:y=11-ax-(a+1),·11-a=-1,得a=23.方法二由A1A2+B1B2=0,得a+2(a-1)=0,可得a=23.思维升华(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.跟踪训练1(1)(2018·潍坊模拟)直线l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8,则“m=-1或m=-7”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析由题意,当直线l1∥l2时,满足3+m2=45+m≠5-3m8,解得m=-7,所以“m=-1或m=-7”是“l1∥l2”的必要不充分条件,故选B.(2)(2018·青岛模拟)已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.①l1⊥l2,且直线l1过点(-3,-1);②l 1∥l 2,且坐标原点到这两条直线的距离相等.解①∵l 1⊥l 2,∴a (a -1)-b =0,又∵直线l 1过点(-3,-1),∴-3a +b +4=0.故a =2,b =2.②∵直线l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在.∴k 1=k 2,即ab=1-a .又∵坐标原点到这两条直线的距离相等,∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .故a =2,b =-2或a =23,b =2.题型二两直线的交点与距离问题1.(2018·西宁调研)若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是()A .-23 B.23C .-32D.32答案A解析由题意,设直线l 的方程为y =k (x -1)-1,分别与y =1,x -y -7=0联立解得1,又因为MN 的中点是P (1,-1),所以由中点坐标公式得k =-23.2.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为()A.95B.185C.2910D.295答案C解析因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.3.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.答案-16,解析方法一=kx +2k +1,=-12x +2,=2-4k 2k +1,=6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴又∵交点位于第一象限,,,解得-16<k <12.方法二如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点),∴动直线的斜率k 需满足k P A <k <k PB .∵k P A =-16,k PB =12.∴-16<k <12.4.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P点坐标为________________.答案(1,-4)解析设点P 的坐标为(a ,b ).∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2).而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3,即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|42+32=2,即4a +3b -2=±10,②由①②a =1,b =-4a =277,b =-87.∴所求点P 的坐标为(1,-4)277,-87思维升华(1)求过两直线交点的直线方程的方法先求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.题型三对称问题命题点1点关于点中心对称例2过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.答案x +4y -4=0解析设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.命题点2点关于直线对称例3如图,已知A (4,0),B(0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是()A .33B .6C .210D .25答案C解析直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.命题点3直线关于直线的对称问题例4直线2x -y +3=0关于直线x -y +2=0对称的直线方程是______________.答案x -2y +3=0解析设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),-y +y 02+2=0,(y -y 0),0=y -2,0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.思维升华解决对称问题的方法(1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)′=2a -x ,′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决.(2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有1,B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.跟踪训练2已知直线l :3x -y +3=0,求:(1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程;(3)直线l 关于(1,2)的对称直线.解(1)设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′),∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.①又PP ′的中点在直线3x -y +3=0上,∴3×x ′+x 2-y ′+y 2+3=0.②由①②′=-4x +3y -95,③′=3x +4y +35.④把x =4,y =5代入③④得x ′=-2,y ′=7,∴点P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 对称的直线方程为-4x +3y -95-3x +4y +35-2=0,化简得7x +y +22=0.(3)在直线l :3x -y +3=0上取点M (0,3),关于(1,2)的对称点M ′(x ′,y ′),∴x ′+02=1,x ′=2,y ′+32=2,y ′=1,∴M ′(2,1).l 关于(1,2)的对称直线平行于l ,∴k =3,∴对称直线方程为y -1=3×(x -2),即3x -y -5=0.妙用直线系求直线方程在求解直线方程的题目中,可采用设直线系方程的方式简化运算,常见的直线系有平行直线系,垂直直线系和过直线交点的直线系.一、平行直线系例1求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程.解由题意,设所求直线方程为3x +4y +c =0(c ≠1),又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11.因此,所求直线方程为3x +4y -11=0.二、垂直直线系例2求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +C =0,又直线过点A (2,1),所以有2-2×1+C =0,解得C =0,即所求直线方程为x -2y =0.三、过直线交点的直线系例3求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解方法一-2y +4=0,+y -2=0,得P (0,2).∵l 3的斜率为34,且l ⊥l 3,∴直线l 的斜率为-43,由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.方法二设直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0.又∵l ⊥l 3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l 的方程为4x +3y -6=0.1.直线2x +y +m =0和x +2y +n =0的位置关系是()A .平行B .垂直C .相交但不垂直D .不能确定答案C解析直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率k 2=-12,则k 1≠k 2,且k 1k 2≠-1.故选C.2.已知直线l 1:x +my +7=0和l 2:(m -2)x +3y +2m =0互相平行,则实数m 等于()A .-1或3B .-1C .-3D .1或-3答案A解析当m =0时,显然不符合题意;当m ≠0时,由题意得,m -21=3m ≠2m7,解得m =-1或m =3,故选A.3.已知过点A (-2,m )和B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为()A .-10B .-2C .0D .8答案A解析因为l 1∥l 2,所以k AB =4-mm +2=-2.解得m =-8.又因为l 2⊥l 3,所以-1n ×(-2)=-1,解得n =-2,所以m +n =-10.4.过点M (-3,2),且与直线x +2y -9=0平行的直线方程是()A .2x -y +8=0B .x -2y +7=0C .x +2y +4=0D .x +2y -1=0答案D 解析方法一因为直线x +2y -9=0的斜率为-12,所以与直线x +2y -9=0平行的直线的斜率为-12,又所求直线过M (-3,2),所以所求直线的点斜式方程为y -2=-12(x +3),化为一般式得x +2y -1=0.故选D.方法二由题意,设所求直线方程为x +2y +c =0,将M (-3,2)代入,解得c =-1,所以所求直线为x +2y -1=0.故选D.5.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为()A.423B .42 C.823D .22答案C解析∵l 1∥l 2,∴a ≠2且a ≠0,∴1a -2=a 3≠62a,解得a =-1,∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =|6-23|2=823.6.已知直线l1:y=2x+3,直线l2与l1关于直线y=-x对称,则直线l2的斜率为()A.1 2B.-12C.2D.-2答案A解析直线y=2x+3与y=-x的交点为A(-1,1),而直线y=2x+3上的点(0,3)关于y=-x的对称点为B(-3,0),而A,B两点都在l2上,所以kl2=1-0-1-(-3)=12.7.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则a=________,此时点P的坐标为________.答案1(3,3)解析∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,即a=1+y-6=0,-y=0,易得x=3,y=3,∴P(3,3).8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n=________.答案34 5解析由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y=2x-3,它也是点(7,3)与点(m,n)连线的中垂线,2×7+m2-3,=-12,=35,=315,故m+n=34 5 .9.直线l1:y=2x+3关于直线l:y=x+1对称的直线l2的方程为______________.答案x-2y=0解析=2x+3,=x+1,解得直线l1与l的交点坐标为(-2,-1),所以可设直线l2的方程为y+1=k(x+2),即kx-y+2k-1=0.在直线l上任取一点(1,2),由题设知点(1,2)到直线l1,l2的距离相等,由点到直线的距离公式得|k -2+2k -1|k 2+1=|2-2+3|22+1,解得k =12(k =2舍去),所以直线l 2的方程为x -2y =0.10.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为______________.答案6x -y -6=0解析设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,=-1,-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.11.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于42.(1)解显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.∵方程可变形为2x -y -6+λ(x -y -4)=0,x -y -6=0,-y -4=0,=2,=-2,故直线经过的定点为M (2,-2).(2)证明过P 作直线的垂线段PQ ,由垂线段小于斜线段知|PQ |≤|PM |,当且仅当Q 与M 重合时,|PQ |=|PM |,此时对应的直线方程是y +2=x -2,即x -y -4=0.但直线系方程唯独不能表示直线x -y -4=0,∴M 与Q 不可能重合,而|PM |=42,∴|PQ |<42,故所证成立.12.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由.解(1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =7510,所以|a +12|5=7510,即|a +12|=72,又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若P 点满足条件②,则P 点在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12|c +12|5,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,0=-3,0=12,(舍去)联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,=19,0=3718.所以存在点P 13.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C的坐标为()A.(-2,4)B.(-2,-4) C.(2,4)D.(2,-4)答案C解析设A(-4,2)关于直线y=2x的对称点为(x,y),则2=-1,2×-4+x2,解得=4,=-2,∴BC所在直线方程为y-1=-2-14-3(x-3),即3x+y-10=0.同理可得点B(3,1)关于直线y=2x的对称点为(-1,3),∴AC所在直线方程为y-2=3-2-1-(-4)(x+4),即x-3y+10=0.x+y-10=0,-3y+10=0,=2,=4,则C(2,4).故选C.14.若三条直线y=2x,x+y=3,mx+ny+5=0相交于同一点,则点(m,n)到原点的距离的最小值为()A.5B.6C.23D.25答案A解析=2x,+y=3,解得x=1,y=2.把(1,2)代入mx+ny+5=0可得,m+2n+5=0.∴m=-5-2n.∴点(m,n)到原点的距离d=m2+n2=(5+2n)2+n2=5(n+2)2+5≥5,当n=-2,m=-1时取等号.∴点(m,n)到原点的距离的最小值为 5.15.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知△ABC的顶点A (1,0),B (0,2),且AC =BC ,则△ABC 的欧拉线的方程为()A .4x +2y +3=0B .2x -4y +3=0C .x -2y +3=0D .2x -y +3=0答案B解析因为AC =BC ,所以欧拉线为AB 的中垂线,又A (1,0),B (0,2),故AB k AB =-2,故AB 的中垂线方程为y -1即2x -4y +3=0.16.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,4)对称,求直线l 的方程.解由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1:y =k (x -3)+5+b ,将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34,∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b ,取直线l 上的一点,b P 关于点(2,4)-m ,8-b ∴8-b -3m 4=34(4-m )+b +114,解得b =98.∴直线l 的方程是y =34x +98,即6x -8y +9=0.。
数学一轮总复习平面解析几何的解法技巧
数学一轮总复习平面解析几何的解法技巧在数学一轮总复习的过程中,平面解析几何是一个重要的内容。
平面解析几何涉及到点、直线、圆等几何图形与坐标之间的关系,通过采用坐标系和代数运算方法来解决几何问题。
本文将介绍平面解析几何的解法技巧,以帮助同学们更好地应对考试。
一、平面解析几何基本概念复习在开始解析几何的问题之前,我们需要对平面解析几何的基本概念进行复习。
1. 坐标系:平面直角坐标系由两条相互垂直的数轴x轴和y轴构成,其中原点为坐标系的交点,通常表示为O(0,0)。
x轴和y轴的正向分别向右和向上延伸,形成四个象限。
2. 点的坐标:在平面直角坐标系中,点P的坐标表示为P(x,y),其中x表示点在x轴上的投影,y表示点在y轴上的投影。
3. 直线的方程:直线的方程有多种形式,常见的有一般式和斜截式。
一般式方程表示为Ax + By + C = 0,斜截式方程表示为y = kx + b,其中A、B、C、k和b为常数。
4. 圆的方程:圆的方程表示为(x - a)² + (y - b)² = r²,其中(a,b)表示圆心的坐标,r表示圆的半径。
二、平面解析几何解法技巧在解决平面解析几何问题时,我们可以采取以下的解法技巧。
1. 利用直线的性质解题:在平面解析几何中,直线是一个重要的概念。
我们可以根据直线的性质,例如平行、垂直、相交等来解题。
例如,当我们需要证明两条直线平行时,可以比较两条直线的斜率是否相等。
当我们需要判断两条直线是否相交时,可以比较两条直线的方程是否有解。
2. 利用圆的性质解题:圆是平面解析几何中常见的几何图形之一,我们可以根据圆的性质来解题。
例如,当我们求两个圆的交点时,可以将两个圆的方程联立,并求解方程组来找到交点的坐标。
3. 利用坐标系解题:在平面解析几何中,坐标系是非常重要的工具。
我们可以通过建立坐标系,将几何图形转化为代数表达式,从而用代数运算来解决几何问题。
例如,当我们需要证明一个点在一条直线上时,可以通过代入点的坐标到直线的方程中,判断等式是否成立。
高三平面解析几何知识点
高三平面解析几何知识点解析几何是数学中的重要分支之一,它研究了点、线、面等几何元素在坐标平面上的几何性质和关系。
在高三学习过程中,平面解析几何是一个重要的知识点。
本文将介绍高三平面解析几何的基本概念和常见问题。
一、二维坐标系在平面解析几何中,我们首先要了解二维坐标系。
二维坐标系由平面上的两条互相垂直的直线组成,分别称为x轴和y轴。
它们的交点称为坐标原点O。
我们可以在坐标系上标出各个点的坐标,用有序数对(x, y)表示,其中x表示点在x轴上的投影,y表示点在y轴上的投影。
二、点的坐标在平面解析几何中,点的坐标表示了点在坐标系上的位置关系。
给定一个点A,在坐标系上,可以通过测量A点到x轴和y轴的距离来确定它的坐标。
设A点到x轴的距离为x,到y轴的距离为y,则A点的坐标为(x, y)。
三、向量的表示在平面解析几何中,向量是一个有方向和大小的量。
向量可以用有序数对(x, y)来表示,其中x表示向量在x轴上的分量,y表示向量在y轴上的分量。
向量的大小可以用向量的模长表示,即√(x² + y²)。
四、直线的方程在平面解析几何中,直线可以用不同的方式表示。
一种常见的表示方式是使用直线的一般方程Ax + By + C = 0,其中A、B、C 是实常数,并且A和B不同时为0。
另一种表示方式是使用截距式方程x/a + y/b = 1,其中a和b分别为直线在x轴和y轴上的截距。
五、直线的性质在平面解析几何中,直线有许多重要的性质。
其中一些常见的性质包括:1. 平行和垂直关系:两条直线平行的条件是它们的斜率相等;两条直线垂直的条件是它们的斜率的乘积为-1。
2. 相交关系:两条直线相交于一点的条件是它们的方程组有唯一解。
3. 距离公式:点到直线的距离可以用点到直线的垂线长来表示,即d = |Ax0 + By0 + C| / √(A² + B²)。
4. 中点公式:两点A(x1, y1)和B(x2, y2)的中点坐标为[(x1+x2)/2, (y1+y2)/2]。
高考数学平面解析几何的复习方法总结
2019年高考数学平面解析几何的复习方法总结在高中数学知识体系中,平面解析几何是其中很大的一块,涉及到直线及其方程、线性规划、圆及其方程、椭圆及其方程、抛物线及其方程、双曲线及其方程以及曲线与方程的关系及其图像等具体的知识点。
在高考的考查中,又可以将上述的7个知识点进行综合考查,更是增加了考查的难度。
要想学好这部分知识,在高考总不丢分,以下几点是很关键的。
突破第一点,夯实基础知识。
对于基础知识,不仅一个知识点都要熟稔于心,还要有能力将这些零散的知识点串联起来。
只有这样,才能形成属于自己的知识框架,才能更从容的应对考试。
(一)对于直线及其方程部分,首先我们要从总体上把握住两突破点:①明确基本的概念。
在直线部分,最主要的概念就是直线的斜率、倾斜角以及斜率和倾斜角之间的关系。
倾斜角α的取值范围是突破[0,π),当倾斜角不等于90°的时候,斜率k=tanα;当倾斜角=90°的时候,斜率不存在。
②直线的方程有不同的形式,同学们应该从不同的角度去归类总结。
角度一:以直线的斜率是否存在进行归类,可以将直线的方程分为两类。
角度二:从倾斜角α分别在[0,π/2)、α=π/2和(π/2,π)的范围内,认识直线的特点。
以此为基础突破,将直线方程的五种不同的形式套入其中。
直线方程的不同形式突破需要满足的条件以及局限性是不同的,我们也要加以总结。
(二)对于线性规划部分,首先我们要看得懂线性规划方程组所表示的区域。
在这里我们可以采用原点法,如果满足条件,那么区域包含原点;如果原点带入不满足条件,那么代表的区域不包含原点。
(三)对于圆及其方程,我们要熟记圆的标准方程和一般方程分别代表的含义。
对于圆部分的学习,我们要拓展初中学过的一切与圆有关的知识,包括三角形的内切圆、外切圆、圆周角、圆心角等概念以及点与圆的位置关系、圆与圆的位置关系、圆的内切正多边形的特征等。
只有这样,才能更加完整的掌握与圆有关的所有的知识。
高三平面解析几何复习的教学策略
高三平面解析几何复习的教学策略高三平面解析几何是数学课程中的重要内容之一,也是考试中常考的题型。
为了帮助学生复习和掌握这一部分知识,教师需要制定相应的教学策略。
本文将从教学内容、教学方法和复习计划三个方面来介绍高三平面解析几何复习的教学策略。
一、教学内容在高三平面解析几何的复习中,教师需要重点复习以下内容:1. 平面方程的应用:包括点斜式、两点式、一般式等平面方程的互相转化和应用;2. 直线与平面的位置关系:直线的方程和位置关系、直线与平面的位置关系等内容;3. 空间几何体的平面截线:包括球、圆锥、圆柱等空间几何体与平面的截线问题;4. 空间向量的应用:包括向量的夹角、向量的共线、向量的运算等内容。
以上内容是高三平面解析几何的重点内容,复习时要注重学生的理解和掌握程度,尤其是与其他几何知识的联系和综合应用。
二、教学方法1. 综合性教学法:平面解析几何与向量、数学分析、几何等知识有很大的联系,复习时可以采用综合性教学法,将平面解析几何与其他知识点相结合,使学生能更好地理解和掌握知识。
2. 案例教学法:通过实际案例的讲解,让学生了解平面解析几何的应用,加深他们对知识点的理解。
学生可以通过解决实际问题来巩固和提升他们的解题能力。
3. 多维度教学法:平面解析几何涉及到三维空间的问题,教师需要引导学生将平面几何的题目转化为三维空间的问题,从多个角度来理解和解决问题。
4. 实践教学法:通过实践操作,比如利用几何软件进行模拟实验,让学生更直观地理解平面解析几何的内容,提高他们的学习兴趣和解题能力。
以上教学方法可以有效地帮助学生巩固和提高平面解析几何的学习成绩,加强和应用所学知识。
三、复习计划为了让学生更好地复习平面解析几何,教师可以制定以下复习计划:1. 明确复习内容:教师首先要明确定义好复习的内容和目标,包括重点、难点和易错点的整理和梳理。
2. 分阶段复习:根据复习内容的特点,可以将复习分为基础阶段、巩固阶段和强化阶段,逐步推进,循序渐进。
高考数学中的平面解析几何知识点整理
高考数学中的平面解析几何知识点整理平面解析几何是高中数学的重要知识点,也是高考数学必考的部分。
平面解析几何涉及坐标系、直线、圆、双曲线、椭圆、抛物线等内容,需要注重理论的掌握、题目的练习和解题技巧的提高。
本篇文章就高考数学中平面解析几何的知识点进行整理和总结,帮助学生更好地应对高考数学。
一、坐标系坐标系是平面解析几何的基础,需要掌握笛卡尔坐标系和极坐标系。
笛卡尔坐标系是平面上以两条相互垂直的直线为坐标轴,确定一点的位置需要用到两个数,称为该点的坐标。
极坐标系是以圆心为原点,以极轴为基准线的坐标系。
一个点在极坐标系中的坐标表示为(r,θ),其中r为该点到圆心的距离,θ为该点与极轴正方向的夹角。
二、直线直线是平面解析几何中最基本也最重要的图形。
直线的斜率、截距和两点式都是需要掌握的公式。
斜率表示直线在笛卡尔坐标系中的倾斜程度,截距表示直线与坐标轴的交点,两点式表示直线经过的两个点的坐标。
三、圆圆是平面上与一个点距离相等的点的集合。
圆的一般式、标准式、参数式都是需要掌握的公式。
一般式表示圆心坐标为(h,k),半径为r的圆,标准式表示圆心在原点,半径为r的圆,参数式表示圆心坐标为(a,b),半径为r的圆,其中参数t在区间[0,2π)内变化。
四、椭圆椭圆是平面上到两个固定点F1和F2距离之和等于常数2a的点的集合。
椭圆的标准式、参数式和离心率都是需要掌握的公式。
标准式表示椭圆的长轴在x轴上,椭圆的中心在原点,离心率小于1;参数式表示椭圆的中心在(a,b)处,椭圆的长轴倾斜角度为θ,离心率小于1。
五、抛物线抛物线是平面上到一个定点F距离等于到另一个定点D的距离的平方的定点P的集合。
抛物线的标准式、参数式和焦距都是需要掌握的公式。
标准式表示抛物线的焦点在原点,开口朝上或朝下;参数式表示抛物线的焦点在(a,b)处,开口朝上或朝下。
六、双曲线双曲线是平面上到两个定点F1和F2距离之差等于常数2a的点的集合。
双曲线的标准式、参数式和离心率都是需要掌握的公式。
2024年高考数学平面解析几何的复习方法总结
2024年高考数学平面解析几何的复习方法总结一、理清知识框架平面解析几何是高中数学的重要内容,复习时首先要理清知识框架,明确各个知识点的内容和重点。
可以根据教材或参考书的章节来进行分类整理,将知识点归纳为直线方程、圆方程、二次曲线方程等等,并注意各个知识点之间的联系和线索。
二、复习关键知识点1. 直线方程:掌握直线的点斜式、斜截式、一般式等多种表示方法,能够灵活转换直线方程,解决直线的位置关系、距离、角平分线等相关问题。
2. 圆方程:了解标准方程和一般方程的定义和性质,能够根据给定条件列出圆的方程,解决圆与直线、圆与圆之间的位置关系、切线、切点等问题。
3. 二次曲线方程:熟练掌握抛物线、双曲线和椭圆的方程表示方法,注意各个二次曲线的基本性质和特点,能够画出二次曲线的图像,解决与二次曲线相关的各种问题。
4. 曲线的判别:掌握判别方程的基本方法,了解直线与二次曲线的位置关系的判别式和条件,能够根据判别式解决相关的问题。
三、掌握基本解题思路1. 了解解题步骤:解决平面解析几何问题通常遵循以下步骤:确定已知条件;列出方程或不等式;解方程或不等式得到未知量的取值范围;根据问题要求,对方程的解或取值范围进行判断与选择。
2. 注意问题的本质:平面解析几何考察的是几何图形的性质和位置关系,因此,在解答问题时要分析问题的本质,结合具体的几何意义去解决。
四、多练习典型题目1. 题海战术:平面解析几何的题目类型较多,考察灵活性较强,因此,在复习过程中要多做一些典型题目,掌握不同类型题目的解题思路和技巧。
2. 整理常见题型:将遇到的题目整理成不同的题型,比如直线方程的求法、圆方程的求法、二次曲线图像的分析等,通过总结常见的题型,加深对知识点的理解,提高解题效率。
五、查缺补漏1. 平时及时记录:在复习过程中,及时记录自己遇到的问题和不理解的知识点,并寻找相关的资料进行补充和学习。
2. 寻求帮助:如果自己在复习过程中遇到难题或困惑,可以向老师、同学或家长寻求帮助,共同解决问题。
2024年高考数学平面解析几何的复习方法总结
2024年高考数学平面解析几何的复习方法总结一、复习前的准备1. 了解考纲:仔细阅读高考数学的考纲,明确平面解析几何部分的重点和难点,有针对性地进行复习。
2. 整理知识框架:将平面解析几何的知识点进行整理和归纳,建立知识框架,便于全面复习和查漏补缺。
3. 完善笔记:对之前学过的平面解析几何知识进行复习,逐一检查自己的笔记是否完整,如有漏洞或不理解的地方,及时补充或向同学、老师请教。
4. 制定学习计划:合理分配复习时间,将平面解析几何的复习内容分成小块,按照计划逐一进行复习。
二、基础知识的复习1. 了解基础概念:回顾平面解析几何的基本概念,如点、直线、平面等,并熟悉它们之间的关系和性质。
2. 复习坐标系:重点复习直角坐标系和极坐标系的原理和使用方法,能够熟练转换坐标系和进行坐标计算。
3. 复习向量:回顾向量的定义、运算法则和性质,同时重点理解向量的几何意义和应用。
4. 复习直线与圆的方程:回顾直线的一般方程、斜截式方程和点斜式方程的互相转换,同时复习圆的标准方程和一般方程的建立方法。
三、常见题型的练习1. 直线与圆的方程的联立:熟练掌握直线与圆的方程的联立方法,能够灵活运用,解决实际问题。
2. 直线与圆的位置关系:理解直线与圆的位置关系,掌握直线与圆的切点、交点等性质,能够准确判断直线与圆的位置关系。
3. 三角形的性质:回顾三角形的基本性质,如三角形的内心、外心、重心、垂心等,并理解它们之间的联系,能够应用这些性质解决三角形相关问题。
4. 镜面对称与旋转:通过练习镜面对称和旋转的题目,理解镜面对称和旋转的概念,并能够快速判断图形的镜面对称性和旋转对称性。
5. 预习未学内容:对于一些未学过的内容(如圆锥曲线、二次函数等),可以进行简单的预习,了解基本概念和性质,为高考后的复习打下基础。
四、真题的训练与模拟考试1. 做高考真题:通过做历年高考真题,了解平面解析几何在高考中的考查点和形式,熟悉解题思路和答题技巧,查漏补缺,增强信心。
高中数学知识点归纳平面解析几何的性质与运算
高中数学知识点归纳平面解析几何的性质与运算高中数学知识点归纳——平面解析几何的性质与运算一、引言在高中数学学习中,平面解析几何是一门重要的数学分支,它将代数和几何相结合,通过运用坐标系的方法来研究平面上的几何性质和相互关系。
本文将对平面解析几何的性质与运算进行归纳总结。
二、平面解析几何的基本概念1. 坐标系平面解析几何中,常使用直角坐标系来描述平面上的点。
直角坐标系由两个相互垂直的轴组成,分别称为x轴和y轴。
点在坐标系中的位置可由其坐标表示,标有符号的数对(x, y)即表示点的坐标,其中x 表示横坐标,y表示纵坐标。
2. 距离公式在平面解析几何中,计算两点之间的距离是常见的操作。
根据勾股定理,可以得到点A(x₁, y₁)和点B(x₂, y₂)之间的距离公式:d = √((x₂ - x₁)² + (y₂ - y₁)²)3. 斜率公式斜率是平面解析几何中的重要概念,表示直线的倾斜程度。
对于直线上的两点A(x₁, y₁)和B(x₂, y₂),可以使用斜率公式计算斜率:斜率k = (y₂ - y₁) / (x₂ - x₁)4. 中点公式平面解析几何中,中点是指线段的中点,可以通过中点公式求得。
对于线段的两个端点A(x₁, y₁)和B(x₂, y₂),中点的坐标为:中点M(x, y) = ((x₁+ x₂)/2 , (y₁+ y₂)/2)三、平面解析几何的性质1. 平行性质平面解析几何中,两条直线平行的判断条件之一是它们的斜率相等。
若两条直线的斜率分别为k₁和k₂,则当k₁= k₂时,两条直线平行。
2. 垂直性质两条直线垂直的判断条件之一是它们的斜率之积为-1。
若两条直线的斜率分别为k₁和k₂,则当k₁ * k₂ = -1时,两条直线垂直。
3. 距离性质平面解析几何中,根据距离公式可得,点P(x, y)到直线Ax + By +C = 0的距离为:d = |Ax + By + C| / √(A² + B²)4. 判定点是否在直线上对于直线Ax + By + C = 0和点P(x₀, y₀),若Ax₀ + By₀ + C = 0,则表明点P在直线上。
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结平面解析几何是高中数学中的一门重要的数学分支,它研究平面上的点、直线和圆等几何图形的性质和关系。
本文将对高中数学中常见的平面解析几何知识点进行总结和归纳,以便于同学们更好地掌握和应用这些知识。
一、坐标与坐标系在平面解析几何中,我们常常使用直角坐标系来描述平面上的点的位置。
在直角坐标系中,平面上的每个点都可以用一对有序实数(x,y)表示,其中x表示点在x轴上的投影,y表示点在y轴上的投影。
这就是点的坐标。
1.1 直角坐标系的建立建立直角坐标系的方法有很多,其中一种常见的方法为选取两条相互垂直的直线作为坐标轴,它们的交点作为原点。
这两条直线称为x 轴和y轴,它们的正方向分别规定为向右和向上,形成了一个右手坐标系。
1.2 坐标的性质与运算在直角坐标系中,点的坐标具有以下性质:(1)两个点的坐标相等,当且仅当这两个点重合;(2)两个点的横坐标(纵坐标)相等,当且仅当这两个点在同一条竖直线(水平线)上;(3)两个点的坐标互为相反数,当且仅当这两个点关于坐标原点对称。
在直角坐标系中,我们可以进行坐标的运算,包括加减、数乘、求中点等。
比如,对于两个点A(x1, y1)和B(x2, y2),它们的中点C的坐标为[(x1 + x2) / 2, (y1 + y2) / 2]。
二、直线的方程在平面解析几何中,直线是最基本的几何图形之一。
我们可以通过直线上的一个点和直线的斜率来确定直线的方程。
在此基础上,本单位还会对三角函数解析式中的三角函数、三角方程进行探讨,希望对同学们理解和掌握这一知识点有所帮助。
2.1 一般式方程直线的一般式方程为Ax + By + C = 0,其中A、B、C为实数,且A和B不同时为0。
该方程中的A、B、C可以称为方程的系数。
2.2 斜率截距式方程直线的斜率截距式方程为y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。
2.3 点斜式方程如果知道直线上的一点P(x0, y0)和直线的斜率k,我们可以利用点斜式方程来表示直线的方程,即y - y0 = k(x - x0)。
高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教学案 理 新人教A版-新
§9.4 直线与圆、圆与圆的位置关系最新考纲考情考向分析1.能判断直线与圆的位置关系.2.能根据给定两个圆的方程判断两圆的位置关系.3.能用直线和圆的方程解决一些简单的问题. 考查直线与圆的位置关系、圆与圆的位置关系的判断;根据位置关系求参数的X 围、最值、几何量的大小等.题型主要以选择、填空题为主,难度中等,但有时也会在解答题中出现.1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系.(最重要)d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交=0⇔相切<0⇔相离2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0)方法位置关系几何法:圆心距d 与r 1,r 2的关系代数法:联立两圆方程组成方程组的解的情况外离 d >r 1+r 2 无解 外切 d =r 1+r 2一组实数解 相交 |r 1-r 2|<d <r 1+r 2两组不同的实数解 内切 d =|r 1-r 2|(r 1≠r 2)一组实数解 内含0≤d <|r 1-r 2|(r 1≠r 2)无解概念方法微思考1.在求过一定点的圆的切线方程时,应注意什么?提示 应首先判断这点与圆的位置关系,若点在圆上则该点为切点,切线只有一条;若点在圆外,切线应有两条;若点在圆内,切线为零条.2.用两圆的方程组成的方程组有一解或无解时能否准确判定两圆的位置关系?提示 不能,当两圆方程组成的方程组有一解时,两圆有外切和内切两种可能情况,当方程组无解时,两圆有外离和内含两种可能情况.题组一 思考辨析1.判断下列结论是否正确(请在括号内打“√”或“×”) (1)若直线平分圆的周长,则直线一定过圆心.( √ ) (2)若两圆相切,则有且只有一条公切线.( × )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(4)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ ) 题组二 教材改编2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值X 围是( ) A.[-3,-1] B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞) 答案 C解析 由题意可得,圆的圆心为(a ,0),半径为2, ∴|a -0+1|12+-12≤2,即|a +1|≤2,解得-3≤a ≤1.3.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A.内切B.相交C.外切D.外离 答案 B解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.4.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得两圆公共弦所在直线为x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2.题组三 易错自纠5.若直线l :x -y +m =0与圆C :x 2+y 2-4x -2y +1=0恒有公共点,则m 的取值X 围是( ) A.[-2,2]B.[-22,22]C.[-2-1,2-1]D.[-22-1,22-1] 答案 D解析 圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为(2,1),半径为2,圆心到直线的距离d =|2-1+m |2,若直线与圆恒有公共点,则|2-1+m |2≤2,解得-22-1≤m ≤22-1,故选D.6.过点A (3,5)作圆O :x 2+y 2-2x -4y +1=0的切线,则切线的方程为__________. 答案 5x -12y +45=0或x -3=0解析 化圆x 2+y 2-2x -4y +1=0为标准方程得(x -1)2+(y -2)2=4,其圆心为(1,2),半径为2, ∵|OA |=3-12+5-22=13>2,∴点A (3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x -3=0,当切线斜率存在时,可设所求切线方程为y -5=k (x -3),即kx -y +5-3k =0.又圆心为(1,2),半径r =2,而圆心到切线的距离d =|3-2k |k 2+1=2,即|3-2k |=2k 2+1, ∴k =512,故所求切线方程为5x -12y +45=0或x -3=0.直线与圆的位置关系命题点1 位置关系的判断例1 已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A.相切B.相交C.相离D.不确定 答案 B解析 因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.命题点2 弦长问题例2 若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12B.1C.22D. 2 答案 D解析 因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22,由勾股定理得,弦长的一半就等于12-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 命题点3 切线问题例3 (2020·某某部分重点中学联考)点P 为射线x =2(y ≥0)上一点,过P 作圆x 2+y 2=3的两条切线,若两条切线的夹角为90°,则点P 的坐标为( ) A.(2,1) B.(2,2) C.(2,2) D.(2,0) 答案 C 解析 如图所示.设切点为A ,B ,则OA ⊥AP ,OB ⊥BP ,OA =OB ,AP =BP ,AP ⊥BP , 故四边形OAPB 为正方形, 则|OP |=6,又x P =2,则P (2,2).命题点4 直线与圆位置关系中的最值问题例4 过点(3,1)作圆(x -2)2+(y -2)2=4的弦,则最短弦所在的直线方程为________. 答案 x -y -2=0解析 设P (3,1),圆心C (2,2), 则|PC |=2,半径r =2,由题意知最短弦过P (3,1)且与PC 垂直,k PC =-1,所以所求直线方程为y -1=x -3,即x -y -2=0. 思维升华 (1)判断直线与圆的位置关系常用几何法.(2)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (3)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 跟踪训练1 (1)(2020·某某江淮十校联考)已知直线l :x cos α+y sin α=1(α∈R )与圆C :x 2+y 2=r 2(r >0)相交,则r 的取值X 围是 ( )A.0<r ≤1B.0<r <1C.r ≥1D.r >1 答案 D解析 圆心到直线的距离d =1cos 2α+sin 2α=1,故r >1. (2)已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A.-2B.-4C.-6D.-8 答案 B解析 由圆的方程x 2+y 2+2x -2y +a =0可得,圆心为(-1,1),半径r =2-a .圆心到直线x +y +2=0的距离为d =|-1+1+2|2=2,由r 2=d 2+⎝ ⎛⎭⎪⎫422,得2-a =2+4,所以a =-4.(3)(2019·某某)已知圆C 的圆心坐标是(0,m ),半径长是r ,若直线2x -y +3=0与圆C 相切于点A (-2,-1),则m =________,r =________. 答案 -25解析 根据题意画出图形,可知A (-2,-1),C (0,m ),B (0,3),∵k AB =2,∴k AC =-12,∴直线AC 的方程为y +1=-12(x +2),令x =0,得y =-2, ∴圆心C (0,-2),∴m =-2. ∴r =|AC |=4+-2+12= 5.(4)从直线l :x +y =1上一点P 向圆C :x 2+y 2+4x +4y +7=0引切线,则切线长的最小值为________. 答案462解析 方法一 圆C 的方程可化为(x +2)2+(y +2)2=1, 圆心为C (-2,-2),半径r =1. 设直线l 上任意一点P (x ,y ), 则由x +y =1,得y =1-x . 则|PC |=x +22+y +22=x +22+1-x +22=2x 2-2x +13.设过点P 的切线与圆相切于点Q ,则CQ ⊥PQ .故|PQ |2=|PC |2-r 2=(2x 2-2x +13)-1=2x 2-2x +12=2⎝ ⎛⎭⎪⎫x -122+232,所以当x =12时,|PQ |2取得最小值,最小值为232,此时切线长为|PQ |=232=462. 方法二 圆C 的方程可化为(x +2)2+(y +2)2=1, 圆心为C (-2,-2),半径r =1.设过点P 的切线与圆相切于点Q ,则CQ ⊥PQ . 故|PQ |=|PC |2-r 2=|PC |2-1. 故当|PC |取得最小值时,切线长最小.显然,|PC |的最小值为圆心C 到直线l 的距离d =|-2-2-1|12+12=522, 所以切线长的最小值为⎝ ⎛⎭⎪⎫5222-1=462. 圆与圆的位置关系例5 已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0.求: (1)m 取何值时两圆外切?(2)m 取何值时两圆内切,此时公切线方程是什么? (3)求m =45时两圆的公共弦所在直线的方程和公共弦的长.解 两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6), 半径分别为11和61-m . (1)当两圆外切时,5-12+6-32=11+61-m .解得m =25+1011.(2)当两圆内切时,两圆圆心间距离等于两圆半径之差的绝对值.故有61-m -11=5,解得m =25-1011. 因为k MN =6-35-1=34,所以两圆公切线的斜率是-43.设切线方程为y =-43x +b ,则有⎪⎪⎪⎪⎪⎪43×1+3-b ⎝ ⎛⎭⎪⎫432+1=11.解得b =133±5311.容易验证,当b =133+5311时,直线与圆x 2+y 2-10x -12y +m =0相交,舍去.故所求公切线方程为y =-43x +133-5311,即4x +3y +511-13=0.(3)两圆的公共弦所在直线的方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0, 即4x +3y -23=0.由圆的半径、弦长、弦心距间的关系,不难求得公共弦的长为2×112-⎝⎛⎭⎪⎫|4+3×3-23|42+322=27. 思维升华 (1)判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和及差的绝对值的大小关系判断,一般不用代数法.重视两圆内切的情况,作图观察.(2)两圆相交时,公共弦所在直线方程的求法两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到. (3)两圆公共弦长的求法求两圆公共弦长,常选其中一圆,由弦心距d ,半弦长l2,半径r 构成直角三角形,利用勾股定理求解.跟踪训练2 (1)(2020·某某模拟)圆C 1:(x +2)2+(y -2)2=4和圆C 2:(x -2)2+(y -5)2=16的位置关系是( ) A.外离B.相交 C.内切D.外切 答案 B解析 易得圆C 1的圆心为C 1(-2,2),半径r 1=2,圆C 2的圆心为C 2(2,5),半径r 2=4,圆心距|C 1C 2|=[2--2]2+5-22=5<2+4=r 1+r 2且5>r 2-r 1,所以两圆相交.(2)若圆x 2+y 2=a 2与圆x 2+y 2+ay -6=0的公共弦长为23,则a =________. 答案 ±2解析 两圆作差得公共弦所在直线方程为a 2+ay -6=0.原点到a 2+ay -6=0的距离为d =⎪⎪⎪⎪⎪⎪6a-a .∵公共弦长为23,∴a 2=(3)2+⎪⎪⎪⎪⎪⎪6a-a 2,∴a 2=4,a =±2.1.已知a ,b ∈R ,a 2+b 2≠0,则直线l :ax +by =0与圆C :x 2+y 2+ax +by =0的位置关系是( )A.相交B.相切C.相离D.不能确定 答案 B解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +a 22+⎝ ⎛⎭⎪⎫y +b 22=a 2+b 24,圆心C ⎝ ⎛⎭⎪⎫-a 2,-b 2,半径r =a 2+b 22,圆心到直线ax +by =0的距离为d =⎪⎪⎪⎪⎪⎪-a 2×a +⎝ ⎛⎭⎪⎫-b 2×b a 2+b 2=a 2+b 22=r ,所以直线与圆相切.2.直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A.相交B.相切C.相离D.不确定 答案 A解析 方法一 由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交.方法二 直线l :mx -y +1-m =0过定点(1,1), 因为点(1,1)在圆x 2+(y -1)2=5的内部, 所以直线l 与圆相交.3.若两圆x 2+y 2=m 和x 2+y 2+6x -8y -11=0有公共点,则实数m 的取值X 围是( ) A.(-∞,1) B.(121,+∞) C.[1,121] D.(1,121) 答案 C解析 x 2+y 2+6x -8y -11=0化成标准方程为(x +3)2+(y -4)2=36. 圆心距为d =0+32+0-42=5,若两圆有公共点,则|6-m |≤5≤6+m , 所以1≤m ≤121.故选C.4.(2019·某某八市重点高中联考)已知圆x 2+y 2-2x +2y +a =0截直线x +y -4=0所得弦的长度小于6,则实数a 的取值X 围为( ) A.(2-17,2+17) B.(2-17,2) C.(-15,+∞) D.(-15,2) 答案 D解析 圆心(1,-1),半径r =2-a ,2-a >0,∴a <2, 圆心到直线x +y -4=0的距离d =|1-1-4|2=2 2.则弦长为22-a2-222=2-a -6<6.解得a >-15,故-15<a <2.5.已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( ) A.m ∥l ,且l 与圆相交 B.m ⊥l ,且l 与圆相切 C.m ∥l ,且l 与圆相离 D.m ⊥l ,且l 与圆相离 答案 C解析 ∵点P (a ,b )(ab ≠0)在圆内,∴a 2+b 2<r 2. ∵圆x 2+y 2=r 2的圆心为O (0,0),故由题意得OP ⊥m , 又k OP =b a ,∴k m =-a b,∵直线l 的斜率为k l =-a b =k m ,圆心O 到直线l 的距离d =r 2a 2+b 2>r 2r=r ,∴m ∥l ,l 与圆相离.故选C.6.(2020·某某华附、省实、广雅、深中四校联考)过点A (a ,0)(a >0),且倾斜角为30°的直线与圆O :x 2+y 2=r 2(r >0)相切于点B ,且|AB |=3,则△OAB 的面积是( ) A.12B.32C.1D.2答案 B解析 由切线的性质可得△ABO 是以点B 为直角顶点的直角三角形,在Rt△ABO 中,∠OAB =30°,AB =3,则OB =1,OA =2,△OAB 的面积是12×1×3=32.7.已知直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,则实数a 的值为( ) A.6或-6B.5或-5C.6D. 5 答案 B解析 因为直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a |12+-22=1,所以a =± 5.8.(2020·西南地区名师联盟调研)以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的标准方程为________. 答案 (x -2)2+(y +1)2=9 解析 圆心到直线的距离为|3×2-4×-1+5|5=3,则所求圆的标准方程为(x -2)2+(y +1)2=9.9.(2020·某某“荆、荆、襄、宜”四地七校联考)已知圆C 经过直线x +y +2=0与圆x 2+y 2=4的交点,且圆C 的圆心在直线2x -y -3=0上,则圆C 的方程为________.答案 (x -3)2+(y -3)2=34解析 方法一 联立方程⎩⎪⎨⎪⎧x +y +2=0,x 2+y 2=4,解得交点坐标为A (-2,0),B (0,-2).弦AB 的垂直平分线方程为y +1=x +1即x -y =0.由⎩⎪⎨⎪⎧x -y =0,2x -y -3=0,解得⎩⎪⎨⎪⎧x =3,y =3.弦AB 的垂直平分线过圆心,所以圆心坐标为(3,3), 半径r =[3--2]2+32=34, 故所求圆C 的方程为(x -3)2+(y -3)2=34.方法二 设所求圆的方程为(x 2+y 2-4)+a (x +y +2)=0, 即x 2+y 2+ax +ay -4+2a =0,∴圆心为⎝ ⎛⎭⎪⎫-a 2,-a2,∵圆心在直线2x -y -3=0上,∴-a +a2-3=0,∴a =-6.∴圆的方程为x 2+y 2-6x -6y -16=0, 即(x -3)2+(y -3)2=34.10.若过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=______. 答案 32解析 由题意,得圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PB ⊥x 轴,|PA |=|PB |= 3. ∵△POA 为直角三角形,其中|OA |=1,|AP |=3, 则|OP |=2,∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos60°=32.11.(2019·某某青山区模拟)已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.解 (1)根据题意,圆C :x 2+y 2-8y +12=0,则圆C 的标准方程为x 2+(y -4)2=4,其圆心为(0,4),半径r =2,若直线l 与圆C 相切,则有|4+2a |1+a 2=2,解得a =-34. (2)设圆心C 到直线l 的距离为d ,则⎝⎛⎭⎪⎫|AB |22+d 2=r 2,即2+d 2=4,解得d =2,则有d =|4+2a |1+a 2=2,解得a =-1或-7,则直线l 的方程为x -y +2=0或7x -y +14=0.12.已知一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,求该圆的方程.解 方法一 ∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ),又所求圆与y 轴相切,∴半径r =3|a |,又所求圆在直线y =x 上截得的弦长为27, 圆心(3a ,a )到直线y =x 的距离d =|2a |2,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=a -b22+7,即2r 2=(a -b )2+14.①由于所求圆与y 轴相切,∴r 2=a 2,②又∵所求圆的圆心在直线x -3y =0上,∴a -3b =0,③联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E2,半径r =12D 2+E 2-4F .在圆的方程中,令x =0,得y 2+Ey +F =0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F .①圆心⎝ ⎛⎭⎪⎫-D 2,-E2到直线y =x 的距离为d =⎪⎪⎪⎪⎪⎪-D 2+E 22,由已知得d 2+(7)2=r 2, 即(D -E )2+56=2(D 2+E 2-4F ).② 又圆心⎝ ⎛⎭⎪⎫-D 2,-E 2在直线x -3y =0上, ∴D -3E =0.③联立①②③,解得⎩⎪⎨⎪⎧ D =-6,E =-2,F =1或⎩⎪⎨⎪⎧D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.13.(2019·某某师大附中月考)已知圆x 2+(y -1)2=2上任一点P (x ,y ),其坐标均使得不等式x +y +m ≥0恒成立,则实数m 的取值X 围是( ) A.[1,+∞) B .(-∞,1] C.[-3,+∞) D .(-∞,-3] 答案 A解析 如图,圆应在直线x +y +m =0的右上方,圆心C (0,1)到直线l 的距离为|1+m |2,切线l 0应满足|1+m |2=2,∴|1+m |=2,m =1或m =-3(舍去),从而-m ≤-1,∴m ≥1.14.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为_______. 答案7解析 设直线上一点P ,切点为Q ,圆心为M ,M 的坐标为(3,0),则|PQ |即为切线长,|MQ |为圆M 的半径,长度为1,|PQ |=|PM |2-|MQ |2=|PM |2-1,要使|PQ |最小,即求|PM |最小值,此题转化为求直线y =x +1上的点到圆心M 的最小距离, 设圆心到直线y =x +1的距离为d , 则d =|3-0+1|12+-12=22,∴|PM |的最小值为22, |PQ |=|PM |2-1=222-1=7.15.已知圆O :x 2+y 2=9,点P 为直线x +2y -9=0上一动点,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,则直线AB 过定点( )A.⎝ ⎛⎭⎪⎫49,89B.⎝ ⎛⎭⎪⎫29,49C.(1,2) D.(9,0) 答案 C解析 因为P 是直线x +2y -9=0上的任一点,所以设P (9-2m ,m ),因为PA ,PB 为圆x 2+y 2=9的两条切线,切点分别为A ,B ,所以OA ⊥PA ,OB ⊥PB ,则点A ,B 在以OP 为直径的圆(记为圆C )上,即AB 是圆O 和圆C 的公共弦,易知圆C 的方程是⎝ ⎛⎭⎪⎫x -9-2m 22+⎝ ⎛⎭⎪⎫y -m 22=9-2m2+m24,①又x 2+y 2=9,②②-①得,(2m -9)x -my +9=0,即公共弦AB 所在直线的方程是(2m -9)x -my +9=0, 即m (2x -y )+(-9x +9)=0,由⎩⎪⎨⎪⎧2x -y =0,-9x +9=0得x =1,y =2.所以直线AB 恒过定点(1,2),故选C.16.已知圆C 经过(2,4),(1,3)两点,圆心C 在直线x -y +1=0上,过点A (0,1)且斜率为k 的直线l 与圆C 相交于M ,N 两点. (1)求圆C 的方程;(2)①请问AM →·AN →是否为定值,若是,求出该定值,若不是,请说明理由; ②若OM →·ON →=12(O 为坐标原点),求直线l 的方程. 解 (1)设圆C 的方程为(x -a )2+(y -b )2=r 2, 依题意,得⎩⎪⎨⎪⎧2-a 2+4-b 2=r 2,1-a 2+3-b2=r 2,a -b +1=0,解得⎩⎪⎨⎪⎧a =2,b =3,r =1,∴圆C 的方程为(x -2)2+(y -3)2=1. (2)①AM →·AN →为定值.过点A (0,1)作直线AT 与圆C 相切,切点为T , 易得|AT |2=7,∴AM →·AN →=|AM →|·|AN →|cos0°=|AT |2=7, ∴AM →·AN →为定值,且定值为7.②依题意可知,直线l 的方程为y =kx +1,设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入(x -2)2+(y -3)2=1,并整理,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=41+k 1+k 2,x 1x 2=71+k2,∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k 1+k1+k2+8=12, 即4k1+k1+k2=4,解得k =1, 又当k =1时Δ>0,∴k =1,∴直线l 的方程为y =x +1.。
2024年高考数学平面解析几何的复习方法总结
2024年高考数学平面解析几何的复习方法总结如下:
1. 理清知识框架:首先,需要理解平面解析几何的基本概念和公式,包括直线的方程、直线的性质、圆的方程、圆的性质等。
建立起完整的知识框架可以帮助你对各个知识点进行系统学习和理解。
2. 刷题巩固:做大量的题目是复习的关键。
刷题可以帮助你提高对各类题型的解题技巧和策略,以及加深对知识点的理解。
可以选择做一些基础题帮助你巩固基础知识,然后再逐渐提高难度做一些模拟试题和历年高考试题。
3. 整理笔记:在复习过程中,及时整理笔记是非常重要的。
将每个知识点的公式、性质、解题步骤等整理出来,可以帮助你更好地回顾知识点,也可以方便你在考场上查阅。
4. 合理利用工具:在复习过程中,可以合理利用计算器和数学软件等工具,帮助你更好地理解和应用解析几何的知识。
但是,也要注意不过度依赖工具,还是要培养自己的手算能力。
5. 多维度理解:解析几何的知识点通常可以从几何、代数和物理多个维度进行理解和应用。
可以尝试从不同的角度来理解和解答问题,这样可以帮助你拓宽思路和方法。
6. 考点分析:查阅往年高考试题和模拟试卷,分析近几年的考点和命题趋势,了解哪些知识点和题型比较重要,及时调整复习重点。
总之,高考数学平面解析几何的复习方法需要通过理清知识框架、刷题巩固、整理笔记、合理利用工具、多维度理解和考点分析等步骤,全面提升解析几何的学习水平。
第 1 页共 1 页。
平面解析几何高考复习知识点
平面解析几何高考复习知识点平面解析几何是数学中的一个分支,主要研究平面上的点、直线、圆、曲线等几何图形的性质和运算。
在高考中,平面解析几何通常是在数学试卷中占有一定的比重。
本文将介绍平面解析几何的高考复习知识点,包括坐标系、点的坐标、线的方程、圆的方程等内容。
一、坐标系1.笛卡尔坐标系:平面上的点可以用两个有序实数来表示,称为点的坐标。
一个点的坐标用有序对(x,y)表示,其中x为横坐标,y为纵坐标。
横纵坐标轴相互垂直,且原点的坐标为(0,0)。
2.极坐标系:平面上的点可以用极径和极角来表示。
极径为点到原点的距离,极角为点到横轴的角度。
极坐标系转换为直角坐标系的公式为:x = rcosθy = rsinθ3.参数方程:平面上的点可以用一个参数来表示。
参数方程为:x=x(t)y=y(t)4.直角坐标系与极坐标系的转换:r²=x²+y²tanθ = y/x二、点的坐标1.两点间的距离:设两点A(x₁,y₁)和B(x₂,y₂),则两点之间的距离d 为:d=√[(x₂-x₁)²+(y₂-y₁)²]2.中点:设两点A(x₁,y₁)和B(x₂,y₂),则两点连线的中点M的坐标为:x=(x₁+x₂)/2y=(y₁+y₂)/2三、线的方程1.一般式方程:形如Ax+By+C=0的线的方程。
其中A、B、C为实数,且A和B不同时为0。
2.点斜式方程:已知线上一点A(x₁,y₁)和该线的斜率k,线的方程可以表示为:y-y₁=k(x-x₁)3.斜截式方程:已知直线与y轴的交点为(0,b),直线的斜率为k,则直线的方程可以表示为:y = kx + b4.两点式方程:已知直线上两点A(x₁,y₁)和B(x₂,y₂),直线的方程可以表示为:(y-y₁)/(y₂-y₁)=(x-x₁)/(x₂-x₁)5.截距式方程:已知直线与x轴和y轴的截距分别为a和b,直线的方程可以表示为:x/a+y/b=1四、圆的方程1.标准方程:圆心为(h,k)、半径为r的圆的方程可以表示为:(x-h)²+(y-k)²=r²2.参数方程:圆心为(h,k)、半径为r的圆的参数方程为:x = h + rcosθy = k + rsinθ3.一般方程:圆心为(h,k)、半径为r的圆的一般方程可以表示为:x²+y²+Dx+Ey+F=0五、其他知识点1.直线与圆的位置关系:直线与圆相交、相切或相离。
高中数学平面解析几何知识点归纳
高中数学平面解析几何知识点归纳高中数学平面解析几何知识点有哪些你知道吗?近年的高中数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,一起来看看高中数学平面解析几何知识点,欢迎查阅!高中数学平面解析几何知识点平面解析几何初步:①直线与方程是解析几何的基础,是高考重点考查的内容,单独考查多以选择题、填空题出现;间接考查则以直线与圆、椭圆、双曲线、抛物线等知识综合为主,多为中、高难度试题,往往作为把关题出现在高考题目中。
直接考查主要考查直线的倾斜角、直线方程,两直线的位置关系,点到直线的距离,对称问题等,间接考查一定会出现在高考试卷中,主要考查直线与圆锥曲线的综合问题。
②圆的问题主要涉及圆的方程、直线与圆的位置关系、圆与圆的位置关系以及圆的'集合性质的讨论,难度中等或偏易,多以选择题、填空题的形式出现,其中热点为圆的切线问题。
③空间直角坐标系是平面直角坐标系在空间的推广,在解决空间问题中具有重要的作业,空间向量的坐标运算就是在空间直角坐标系下实现的。
空间直角坐标系也是解答立体几何问题的重要工具,一般是与空间向量在坐标运算结合起来运用,也不排除出现考查基础知识的选择题和填空题。
高中数学平面解析几何知识点平面解析几何,又称解析几何(英语:Analytic geometry)、坐标几何(英语:Coordinate geometry)或卡氏几何(英语:Cartesian geometry),早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。
解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。
平面解析几何基本理论坐标在解析几何当中,平面给出了坐标系,即每个点都有对应的一对实数坐标。
最常见的是笛卡儿坐标系,其中,每个点都有x-坐标对应水平位置,和y-坐标对应垂直位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何题中用到的几何关系一、常用到的一些结论(初中)1 定理三角形两边的和大于第三边2 推论三角形两边的差小于第三边3 三角形内角和定理三角形三个内角的和等于180°4 定理在角的平分线上的点到这个角的两边的距离相等5 定理到一个角的两边的距离相同的点,在这个角的平分线上6 等腰三角形的顶角平分线、底边上的中线和高互相重合7 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半8 直角三角形斜边上的中线等于斜边上的一半9 定理线段垂直平分线上的点和这条线段两个端点的距离相等10 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c212定理四边形的内角和等于360°13平行四边形性质定理平行四边形的对角线互相平分14矩形性质定理矩形的对角线相等15矩形判定定理对角线相等的平行四边形是矩形16菱形性质定理菱形的对角线互相垂直,并且每一条对角线平分一组对角17正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角18等腰梯形性质定理等腰梯形在同一底上的两个角相等19等腰梯形的两条对角线相等20平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等21 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半22 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h23 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d24 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d25 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b26 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例27 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比28 性质定理2 相似三角形周长的比等于相似比29 性质定理3 相似三角形面积的比等于相似比的平方30垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧31推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧32定理一条弧所对的圆周角等于它所对的圆心角的一半33推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径34定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角34 ①直线L和⊙O相交d﹤r ②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r35 切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线36 切线的性质定理 圆的切线垂直于经过切点的半径37 推论1 经过圆心且垂直于切线的直线必经过切点38 推论2 经过切点且垂直于切线的直线必经过圆心39切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角40 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等41推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 42切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项43推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 44如果两个圆相切,那么切点一定在连心线上45① 两圆外离 d ﹥R+r ②两圆外切 d=R+r ③两圆相交 R-r ﹤d ﹤R+r(R ﹥r) ④两圆内切 d=R-r(R ﹥r) ⑤两圆内含d ﹤R-r(R ﹥r)46定理 相交两圆的连心线垂直平分两圆的公共弦47正n 边形的每个内角都等于(n-2)×180°/n48弧长计算公式:L=n πR/180 =aR49扇形面积公式:S 扇形=n πR/360=LR/22、平行线分线段成比例定理:(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
如图:a ∥b ∥c ,直线l 1与l 2分别与直线a 、b 、c 相交与点A 、B 、CD 、E 、F ,则有,,AB DE AB DE BC EF BC EF AC DF AC DF=== (2)推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
如图:△ABC 中,DE ∥BC ,DE 与AB 、AC 相交与点D 、E ,则有:,,AD AE AD AE DE DB EC DB EC AB AC BC AB AC====*3、直角三角形中的射影定理:如图:Rt △ABC 中,∠ACB =90o ,CD ⊥AB 于D ,则有: (1)2CD AD BD =⋅(2)2AC AD AB =⋅(3)2BC BD AB=⋅4、圆的有关性质: (1)垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径;c B(2)圆心角的度数等于它所对的弧的度数;(3)一条弧所对的圆周角等于它所对的圆心角的一半;(4)圆周角等于它所对的弧的度数的一半;(5)90º的圆周角所对的弦是直径,反之,直径所对的圆周角是90º,直径是最长的弦; (6)圆内接四边形的对角互补;(7)直径所对的圆周角是直角.5、三角形的重心垂心内心与外心:重心:三角形的三条中线相交于一点,这点称为三角形的重心。
重心到顶点的距离与重心到对边中点的距离之比为2︰1。
垂心:三角形的三条高或其延长线相交于一点,这点称为三角形的垂心。
垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角角平分线的交点. 三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点. 常见结论:(1)Rt △ABC 的三条边分别为:a 、b 、c (c 为斜边),则它的内切圆的半径2a b c r +-=; (2)△ABC 的周长为l ,面积为S ,其内切圆的半径为r ,则12S lr = *7、相交弦定理、割线定理、切割线定理: 相交弦定理:圆内的两条弦相交,被交点分成的两条线段长的积相等。
如图①,即:P A·PB = PC·PD割线定理 :从圆外一点引圆的两条割线,这点到每条割线与圆交点的两条线段长的积相等。
如图②,即:P A·PB = PC·PD切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
如图③,即:PC 2 = P A·PB① ② ③8、面积公式:①S 正△=×(边长)2. ②S 平行四边形=底×高.③S 菱形=底×高=×(对角线的积),1()2S =+⨯=⨯梯形上底下底高中位线高 P O C A B D P O C B A D P O C A B④S圆=πR2.⑤l圆周长=2πR.⑥弧长L=.⑦213602n rS lrπ==扇形9、射影定理:参考选修教材《几何证明》10、对称图形的应用,主要有:(1)以坐标轴或动直线、定直线为对称轴的轴对称图形;(2)以原点或动点、定点为中心的中心对称图形。
11、合分比定理如果 a/b=c/d (a>b, c>d)那么 (a+b)/(a-b)=(c+d)/(c-d)合分比定理的证明设a/b=c/d=t,那么a=bt,c=dt ;a=bt ;则 a+b=bt+ba+b=b(t+1)(b+a)/b=t+1同理(a-b)/b=t-1代入,即(a+b)/(a-b)=(t+1)/(t-1)同理(c+d)/(c-d)=(t+1)/(t-1)因此(a+b)/(a-b)=(c+d)/(c-d)合比定理:如果a/b=c/d,那么(a+b)/b=(c+d)/d (b、d≠0)分比定理:如果a/b=c/d那么(a-b)/b=(c-d)/d (b、d≠0)合分比定理:如果a/b=c/d那么(a+b)/(a-b)=(c+d)/(c-d) (b、d、a-b、c-d≠0)更比定理:如果a/b=c/d那么a/c=b/d(a、b、c、d≠0)【合比定理】在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这叫做比例中的合比定理。
【分比定理】在一个比例里,第一个比的前后项的差与它的后项的比,等于第二个比的前后项的差与它们的后项的比,这叫做比例中的分比定理。
【合分比定理】一个比例里,第一个前后项之和与它们的差的比,等于第二个比的前后项的和与它们的差的比。
这叫做比例中的合分比定理。
【更比定理】一个比的前项与另一个比的后项互调后,所得结果仍是比例.一般用来证明三角条件等式等,一般考试也用来速算小题推论:若a1/b1=a2/b2=a3/b3=....=an/bn则a1/b1=a2/b2=...=(a1+a2+a3+...+an)/(b1+b2+b3+...+bn)。