高等数学期末复习-向量代数与空间解析几何
向量代数与空间解析几何知识点总结
向量代数与空间解析几何知识点总
结
向量代数:
1、定义:向量代数是一种数学技术,用于处理和描述空间中的向量。
2、性质:向量的加法满足交换律、结合律,乘法满足分配律。
3、应用:向量代数可以用来求解空间几何问题,例如夹角的大小、两点之间的距离、点的位置等。
空间解析几何:
1、定义:空间解析几何是一种数学技术,用于研究平面图形和立体图形之间的关系。
2、性质:空间解析几何以点、线、面为基本单位,引入向量代数,通过空间关系、变换、测量等方法来求解几何问题。
3、应用:空间解析几何可以用来解决工程设计、地理学、天文学等领域的实际问题。
(完整版)高数期末复习题第八章空间解析几何与向量代数
第八章一、填空题8.1.1.1、点)1,3,2(-M 关于xoy 面的对称点是)1,3,2(-- .8.1.2.3、向量)2,20(),1,4,2(-=-=b a ϖϖ,则同时垂直于b a ϖϖ,的单位向量为)1,1,1(31--±. 8.1.3.1、向量=⊥-=-=c ,),,2,1(),1,1,3( 则: 且 b a c b a ϖϖϖϖ 1 . 8.1.41、点)1,2,1(M 到平面01022=-++z y x 的距离为 1 .8.1.51、. 过点02)1,2,1(=+-z y x 与平面 平行的平面方程为12=+-z y x 8.1.6.2、平面3=y 在坐标系中的位置特点是 平行xoz 面 .8.1.7.2、过三点A (2,0,0),B (0,3,0),C (0,0,4)的平面方程为1432=++z y x . 8.1.8.2、过两点)(,(2,0,1),1,2321--M M 的直线方程是12241-==-+z y x . 8.1.9.3、过点)4,2,0(且与平面2312=-=+z y z x 及都平行的直线是14322-=-=-z y x . 8.1.10.3、曲面z y x =-22在xoz 面上的截痕的曲线方程为⎩⎨⎧==02y z x . 二、选择题8.2.1.2、点)3,0,4(在空间直角坐标的位置是 ( C )A .y 轴上; B. xoy 平面上; C. xoz 平面上; D. 第一卦限内。
8.2.2.2、设AB 与u 轴交角为α,则AB 在u 轴上的投影AB j u Pr = (C )A .αcos ; B. αsin ; C. α ; D. α.8.2.3.2、两个非零向量b a ρρ与互相垂直,则 ( B )A .其必要不充分条件是0=⋅b a ϖϖ; B. 充分必要条件是0=⋅b a ϖϖ;C .充分不必要条件是0=⋅b a ϖϖ; D. 充分必要条件是0=⨯b a ϖϖ.8.2.4.2、向量),,(z y x a a a a =ϖ, ),,(z y x b b b b =ϖ 且 0=++z z y y x x b a b a b a 则 ( C )A. b a ϖϖ//;B. λλ(b a ϖϖ=为非零常数) ;C. b a ϖϖ⊥ ;D. 0ϖϖϖ=+b a .8.2.5.2、平面0633=--y x 的位置是 ( B )A .平行xoy 面;B . 平行z 轴 ; C. 垂直z 轴; D. 通过z 轴.8.2.6.2、过点131111)1,1,1(--=+=-z y x 与直线 垂直的平面方程为 ( A ) A. 1=-+z y x ; B. 2=-+z y x ;C. 3=-+z y x ;D. 0=-+z y x .8.2.7.2、直线37423L z y x =-+=-+:与平面3224=--z y x 的位置关系是( A ) A .平行; B. 直线在平面上; C. 垂直相交; D. 相交但不垂直.8.2.8.2、xoy 面上曲线369422=-y x 绕x 轴旋转一周,所得曲面方程是( C )A .369)4222=-+y z x (; B. 36)(9)42222=+-+z y z x (; C. 36)(94222=+-z y x ; D. 369422=-y x .8.2.9.2、球面2222R z y x =++与平面a z x =+交线在xoy 平面上投影曲线方程是( D )A .2222)R z y z a =++-(; B. ⎩⎨⎧==++-0)(2222z R z y z a ; C. 2222)(R x a y x =-++; D. ⎩⎨⎧==-++0)(2222z R x a y x 8.2.10.3、方程⎩⎨⎧==++13694222y z y x 表示 ( B )A .椭球面; B. 1=y 平面上椭圆;C. 椭圆柱面;D. 椭圆柱面在平面0=y 上的投影曲线.三、计算题8.3.1.2、 一平面过点)1,0,1(-,且平行于向量)0,1,1()1,1,2(-==b a ϖϖ和,求这个平面。
高数A2总复习资料
(ax bx )i (ay by ) j (az bz )k
a b {ax bx , ay by , az bz }
a
(ax
{ax ,
bx )i
ay ,
(ay
az }
by
)
j
(az
bz
)k
(ax )i (ay ) j (az )k
向量模长的坐标表示式
| a |
的距离为
M0
d
n
M1
(3) 点
到直线
的距离为
M 0 (x0 , y0 , z0 ) d
d M0M1 s s
s (m,n, p)
M1(x1, y1, z1)
i
j
k
1 m2 n2 p2
x1 x0 m
y1 y0 z1 z0
n
p
(4)两直线间的距离
命题1 两平行直线
l1 :
x x1 X
T( x, z) 0
y
0
10、平面
[1] 平面的点法式方程 A( x x0 ) B( y y0 ) C(z z0 ) 0
[2] 平面的一般方程
Ax By Cz D 0
[3] 平面的截距式方程 x yz 1 a bc
z
n
M0 M
o
y
x
M 0( x0 , y0 , z0 )
n { A, B, C}
y)
2z z
xy
( ) y x
f xy ( x, y)
2 z z
yx
( ) x y
f yx (x,
y)
2 z z
y 2
( ) y y
f yy(x, y)
高等数学二第一章向量代数与空间解析几何
在 z 轴上, 则 x = y = 0
2.空间向量的坐标表示
(1)起点在原点的向量OM
z z
C
设点 M (x, y,z)
以 i, j, k分别表示沿x, y, z轴 正向的单位向量, 称为基本单位 向量.
ok xi xA
j
M yB y N
OM = OA + AN +NM
a,
b
(起点同).
b
(a,b)
规定:
a
a,
b正向间位于0到之间的那个夹角为
a,
b
的夹角,
记(1)为若(aa,, bb)同或向(,b,则a) (a,b) 0
(2) (3)
若 若
a , a ,
bb不反平向行,,则则(a(a,b,b))(0,
有MC
=
1 2
(a
b)
MA
又
b
= MC a = BD
=
1 2
(a
2MD
b)
D
b
A
a
有MD
=
1 2
(b
MB = MD
a)
1 2
(b
a)
1 2
(a
b)
C M
B
(四) 向量在轴上的投影
1. 点在轴上投影
设有空间一点A及轴
A
u, 过A作u轴的垂直平面,
即: (4 0)2 (1 0)2 (7 z)2
(3 0)2 (5 0)2 (2 z)2
解得:
z
[全]高等数学之向量代数与空间解析几何知识点与题型总结[下载全]
高等数学之向量代数与空间解析几何知识点与题型总结
向量代数与空间解析几何知识点:
(1)向量代数知识点
(2)两平面夹角与两直线夹角公式
两平面夹角和两直线夹角公式(3)点到直线的距离公式
点到直线的距离
(4)常见二次曲线
常见二次曲线
题型一:求曲线上一点到某一固定平面的最近距离和最远距离例1:
【分析】:曲线上一点(x,y,z)到XOY面的距离为|z|,但把目标函数设为
f(x,y,z)=|z|,不便于计算,因而常把目标函数设为f(x,y,z)=z^2,把两个方程看成约束条件使用拉格朗人数乘法求解即可。
解:
题型二:求直线方程
建立直线方程有两个基本方法:
(1)已知直线L上的一个点P(x0,y0,z0)和直线L的方向向量s={l,m,n}就可以确定直线L;
(2)两个不平行的平面相交于一直线;
例2:求过点(-1,0,4)且平行于平面3x-4y+z=10,又与直线x+1=y-3=z/2相交的直线方程。
分析:只要求出所求直线方向向量即可,可利用所求直线与已知平面平行且与已知直线相交直接求。
解:。
高等数学——空间解析几何与向量代数
练 习 题
一、填空: 1 、向量是_________的量; 2 、向量的___________叫做向量的模; 3 、___________的向量叫做单位向量; 4 、_____________的向量叫做零向量; 5 、与_____无关的向量称为自由向量; 6 、平行于同一直线的一组向量叫做 _________ ,三 个或三个以上平行于同一平面的一组向量叫做___ _________; 7、两向量___________,我们称这两个向量相等; 8、两个模相等、____________的向量互为逆向量; 9、把空间中一切单位向量归结到共同的始点,则终点 构成____________;
Ⅲ
z
yoz面
Ⅳ
zox 面
Ⅱ
xoy面
Ⅶ Ⅷ
o
y
Ⅵ Ⅴ
Ⅰ
x
空间直角坐标系共有八个卦限
有序数组 ( x , y , z ) 空间的点
特殊点的表示: 坐标轴上的点,坐标面上的点,
各卦象的点, z
R(0,0, z )
1 1
O ( 0, 0, 0 )
M ( x, y, z )若直线段落AB 被点C ( 2 , 0 , 2 ) 及点D( 5 ,2 , 0 ) 内 分为3 等分, 则端点 A 的坐标为_________, 端点 B 的坐标为_________ .
二、在 yoz 面上,求与三个已知点A( 3 , 1 , 2 ) , B( 4 ,2 ,2 ) 和C ( 0 , 5 , 1 ) 等距离的点 .
[1] 加法: a b c
(平行四边形法则) (三角形法则)
b
c
a
特殊地:若 a‖ b 分为同向和反向 |c || a | | b | c b a b c a | c | | a | | b |
高等数学第八章空间解析几何与向量代数
|
c
|
102 52 5 5,
c0
|
c c
|
2
j
5
1 5
k
.
k
4 10 j 5k, 2
作业 P23习题8-2
1(1)、(3),3,4,9
第三节 平面及其方程
一、平面的点法式方程
z
如果一非零向量垂直于一
平面,这向量就叫做该平
面的法线向量.
o
y
x
法线向量的特征: 垂直于平面内的任一向量.
定的平面, 指向符合右手系。
定义
向量
a
与
b
的向量积为
c
a
b
(其中
为a
与b
的夹角)
c 的方向既垂直于a,又垂直于b ,
指向符合右手系。
向量积也称为“叉积”、“外积”。
1、关于向量积的说明:
(1)
a
a
0.
( 0 sin 0)
(2) a//b
a b 0.
(a
0,
b
,
ab .
()
ab,
,
2
cos 0,
ab
|
a
|| b
2
| cos
0.
2、数量积符合下列运算规律:
(1) 交换律:
a
b
b
a
(2) 分配律:
(a b) c a c b c
(3) 若 为常数:
若 、 为常数:
(a)
b
a
(b)
(a
(a)
( b )
(a
b ).
3、向量积的坐标表达式
设
a
axi
高等数学下空间解析几何与向量代数
一、向量的概念
向量:
既有大小又有方向的量.
向量表示:
模长为1的向量.
零向量:
模长为0的向量.
| |
向量的模:
向量的大小.
单位向量:
或
或
或
自由向量:
不考虑起点位置的向量.
相等向量:
大小相等且方向相同的向量.
负向量:
大小相等但方向相反的向量.
向径:
空间直角坐标系中任一点 与原点构成的向量.
二、向量的加减法
[1] 加法:
(平行四边形法则)
特殊地:若
‖
分为同向和反向
(平行四边形法则有时也称为三角形法则)
向量的加法符合下列运算规律:
(1)交换律:
(2)结合律:
(3)
[2] 减法
三、向量与数的乘法
数与向量的乘积符合下列运算规律:
(1)结合律:
两个向量的平行关系
(2)分配律:
证 充分性显然; 必要性 ‖ 两式相减,得
按照向量与数的乘积的规定,
上式表明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.
例1 化简
解
结论得证.
证
例2 试用向量方法证明:对角线互相平分的四边形必是平行四边形.
与 平行且相等,
(注意与标量的区别)
向量的概念
(平行四边形法则)
向量的加减法
(注意数乘后的方向)
向量与数的乘法
四、小结
思考题
已知平行四边形ABCD的对角线
试用 表示平行四边形四边上对应的向量.思考题解答Fra bibliotek练 习 题
练习题答案
(完整版)向量代数与空间解析几何期末复习题高等数学下册(上海电机学院)
第七章 空间解析几何一、选择题1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限2.方程2222=+y x 在空间解析几何中表示的图形为[ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3.直线312141:1+=+=-z y x l 与⎩⎨⎧=-++=-+-0201:2z y x y x l ,的夹角是 [ C ] A.4π B. 3π C. 2πD. 0 4. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3)5.将xoz 坐标面上的抛物线x z 42=绕z 轴旋转一周,所得旋转曲面方程是[B ] A. )(42y x z += B. 2224y x z +±=C. x z y 422=+ D. x z y 422±=+6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是[B ] A. 13- B.13 C. 23- D. 237. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ]A. (-1,2,3)B. (1,-2,3)C. (-1,-2,3)D. (1,2,-3)8.方程22222x y z a b+=表示的是 [ B ]A.椭圆抛物面B.椭圆锥面C. 椭球面D. 球面9. 已知a ϖ={0, 3, 4}, b ϖ={2, 1, -2},则=b proj a ϖρ[ C ]A. 3B.31-C. -1D.1 10.已知,a b 为不共线向量,则以下各式成立的是 DA. 222()a b a b =• B. 222()a b a b ⨯=⨯C. 22()()a b a b •=⨯D. 2222()()a b a b a b •+⨯=11.直线1l 的方程为03130290x y z x y z ++=⎧⎨--=⎩,直线2l 的方程为03031300x y z x y z ++=⎧⎨--=⎩,则1l 与2l 的位置关系是 DA.异面B.相交C.平行D.重合12.已知A 点与B 点关于XOY 平面对称,B 点与C 点关于Z 轴对称,那么A 点与C 点是 CA.关于XOZ 平面对称B.关于YOZ 平面对称C.关于原点对称D.关于直线x y z ==对称13.已知A 点与B 点关于YOZ 平面对称,B 点与C 点关于X 轴对称,那么A 点与C 点 C A.关于XOZ 平面对称 B.关于XOY 平面对称 C.关于原点对称 D.关于直线x y z ==对称 14. 下列那个曲面不是曲线绕坐标轴旋转而成的 CA.2221x y z ++= B.221x y z ++= C.21x y z ++= D.221x y z ++=15. 已知,a b 为不共线向量,则下列等式正确的是 CA.2a a a = B. 2()a a b a b ••= C. 2()a b b ab ••= D. 222()a b a b =•16.已知向量(1,2,1)a =,(3,4,3)b =--,那么以,a b 为两边的平行四边形的面积是 B A.20B. C.10D.17.已知直线l 方程2303450x y z x y z ++=⎧⎨++=⎩与平面π方程20x z -++=,那么l 与π的位置关系是CA. l 在π内B. l 垂直于πC. l 平行于πD.不能确定18.两向量,a b 所在直线夹角4π,0ab <,那么下列说法正确的是 B A. ,a b 夹角4πB. ,a b 夹角34πC. ,a b 夹角可能34π或4π D.以上都不对19.已知||1=a,||=b ¶(,)4π=a b ,则||+=a b (D ). (A) 1(B) 1+ (C) 2(D) 20.设有直线3210:21030x y z L x y z +++=⎧⎨--+=⎩及平面:4220x y z π-+-=,则直线L ( C )。
第八章空间解析几何与向量代数知识点题库与答案
第八章:空间解析几何与向量代数一、重点与难点1重点① 向量的基本概念、向量的线性运算、向量的模、方向角; ② 数量积(是个数)、向量积(是个向量); ③ 几种常见的旋转曲面、柱面、二次曲面;④ 平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程) 的夹角;⑤ 空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程) 两直线的夹角、直线与平面的夹角;2、难点① 向量积(方向)、混合积(计算);② 掌握几种常见的旋转曲面、柱面的方程和二次曲面所对应的图形; ③ 空间曲线在坐标面上的投影;④ 特殊位置的平面方程(过原点、平行于坐标轴、垂直于坐标轴等; )⑤ 平面方程的几种表示方式之间的转化; ⑥ 直线方程的几种表示方式之间的转化;二、基本知识1、向量和其线性运算① 向量的基本概念:向量 既有大小 又有方向的量;向量表示方法:用一条有方向的线段(称为有向线段)来表示向量有向线段的长度表示向量的大小 有向线段的方向表示向量的方向 .;向量的符号 以A 为起点、B 为终点的有向线段所表示的向量记作表示 也可用上加箭头书写体字母表示例如a 、r 、v 、F 或a 、r 、v 、F ;向量的模 向量的大小叫做向量的模 向量a 、a 、AB 的模分别记为|a|、|a|、|AB |单位向量模等于1的向量叫做单位向量;向量的平行 两个非零向量如果它们的方向相同或相反就称这两个向量平行向量a 与b平行 记作a // b 零向量认为是与任何向量都平行; 两向量平行又称两向量共线零向量 模等于0的向量叫做零向量记作0或0 零向量的起点与终点重合 它的方向可以看作是任意的共面向量:设有k (k 3)个向量 当把它们的起点放在同一点时如果k 个终点和公共起点在一个平面上 就称这k 个向量共面;,两平面AB 向量可用粗体字母两向量夹角:当把两个非零向量a与b的起点放到同一点时两个向量之间的不超过的夹角称为向量a 与b 的夹角 记作(a :b)或(b :a)如果向量a 与b 中有一个是零向量 规定它们的夹角可以在 0与 之间任意取值;② 向量的线性运算向量的加法(三角形法则):设有两个向量a 与b 平移向量使b 的起点与a 的终点重合 此 时从a 的起点到b 的终点的向量c 称为向量a 与b 的和 记作a+b 即 c a+b .平行四边形法则 向量a 与b 不平行时 平移向量使a 与b 的起点重合 以a 、b 为邻边作一平行四边形 从公共起点到对角的向量等于向量a 与b 的和a b向量的加法的运算规律(1)交换律abba(2)结合律(a b) c a (b c)负向量 设a 为一向量 与a 的模相同而方向相反的向量叫做a 的负向量 记为a把向量a 与b 移到同一起点 0则从a 的终点A 向b 的终点B 所引向量AB 便是向量b 与a 的差b a向量a 与实数 的乘积记作规定 a 是一个向量 方向当>0时与a 相同 当<0时与a 相反 当 向量这时它的方向可以是任意的a③ 空间直角坐标系在空间中任意取定一点 O 和三个两两垂直的单位向量 i 、j 、k 就确定了三条都以 O 为 原点的两两垂直的数轴依次记为x 轴(横轴卜y 轴(纵轴卜z 轴(竖轴)统称为坐标轴 它们 构成一个空间直角坐标系称为Oxyz 坐标系注:(1)通常三个数轴应具有相同的长度单位(2) 通常把x 轴和y 轴配置在水平面上 而z 轴则是铅垂线(3) 数轴的的正向通常符合右手规则坐标面 在空间直角坐标系中 任意两个坐标轴可以确定一个平面 这种平面称为坐标面x 轴和y 轴所确定的坐标面叫做xOy 面 另两个坐标面是 yOz 面和zOx 面 卦限三个坐标面把空间分成八个部分每一部分叫做卦限含有三个正半轴的卦限叫做第一卦限它位于xOy 面的上方在xOy 面的上方按逆时针方向排列着第二卦限、 第三卦限和第四卦限 在xOy 面的下方 与第一卦限对应的是第五卦限 按逆时针方向还排列着第六卦限、 第七卦限和第八卦限 八个卦限分别用字母I 、II 、III 、IV 、V 、VI 、VII 、VIII 表示向量的坐标分解式任给向量r 对应有点M 使OM r 以OM 为对角线、三条坐标轴为棱作长方体 有 r OM OP PN NM OP OQ OR向量的减法 向量与数的乘法: 它的模| a| | ||a|它的 0时| a| 0即a 为零运算规律(1)结合律 (a) ( a) ( )a ;(2)分配律()a a a ; (a b) a b 向量的单位化 设a0则向量看是与a 同方向的单位向量记为e a ,于是a |a|e a定理1 设向量a 0那么向量b 平行于a 的充分必要条件是存在唯一的实数设 OP Xi OQ yj OR zk 贝U r OM xi yj zk上式称为向量r 的坐标分解式xi 、yj 、zk 称为向量r 沿三个坐标轴方向的分向量点M 、向量r 与三个有序x 、y 、z 之间有一一对应的关系M r OM xi yj zk (x, y, z)投影的性质性质1 (a)u |a|cos (即Prj u a |a|cos )其中 为向量与u 轴的夹角 性质 2 (a b)u (a)u (b)u (即 Prj u (a b) Prj u a Prj u b) 性质 3 ( a)u (a)u (即 Prj u ( a) Prj u a)有序数x 、y 、z 称为向量 r (在坐标系Oxyz )中的坐标 记作r (x y z) 向量r OM 称为点M 关于原点O 的向径 ④ 利用坐标作向量的线性运算设 a (a x a y a z ) b (b x b y b z )a b (a x b x a y b y a z b z ) a b (a x b x a y b y a z b z ) a ( a x a y a z )利用向量的坐标判断两个向量的平行设 a (a x a y a z ) 0 b (b x b y b z )向量 b//a b a即 b//a (b x b y b z )(a x a y a z )于是 bx b y axaybzaz⑤ 向量的模、方向角、投影 设向量r (x y z )作OM r 则 向量的模长公式|r| ..x 2 y 2 z 2设有点 A(x i y i z i )、B(x y 2 z 2) AB OB OA(x 2 y 2 Z 2)(X 1 y 1 Z 1)(X 2 X 1 y 2 y 1 Z 2 z”A 、B 两点间的距离公式为: |AB| |AB|、(X 2 %)2 (y 2 yj 2厶 乙)2方向角:非零向量r 与三条坐标轴的夹角 称为向量r 的方向角设 r (x y z) 则 x |r|cos y |r|cos z |r|coscos 、cos 、cos 称为向量 r 的方向余弦cos x cos|r|从而(cos ,cos 1,COS ) F|r e r2 2 2cos cos cos 12、数量积、向量积、混合积① 两向量的数量积数量积 对于两个向量a 和b 它们的模|a|、|b|和它们的夹角 的 余弦的乘积称为向量 a 和b 的数量积记作ab 即a b |a| |b| cos数量积的性质⑴ a a |a| 2(2)对于两个非零向量 a 、b 如果a b 0贝U a b;反之如果a b 则a b 0如果认为零向量与任何向量都垂直 则a b a b 0两向量夹角的余弦的坐标表示设 (a 人b)则当a 0、b 0时有数量积的坐标表示设 a (a x a y a z ) b (b x b y b z )贝U a b a x b x a y b y a z b z 数量积的运算律 (1) 交换律 a b b a;⑵分配律 (a b) c a c b c(3) ( a) b a ( b) (a b)(a) (• b) (a b)、为数② 两向量的向量积向量积 设向量c 是由两个向量a 与b 按下列方式定出c 的模|c| |a||b|sin其中 为a 与b 间的夹角;c 的方向垂直于a 与b 所决定的平面 c 的指向按右手规则从 a 转向b 来确定那么 向量c 叫做向量a 与b 的向量积 记作a b 即c a b向量积的性质(1) a a 0(2) 对于两个非零向量 a 、b 如果a b 0则a//b 反之 如果a//b 则a b 0 如果认为零向量与任何向量都平行 则a//b a b 0数量积的运算律(1) 交换律a b b a (2) 分配律(a b) c a c b c (3) ( a) b a ( b) (a b)(为数)数量积的坐标表示 设a (a x a y a z ) b (b x b y b z )a b (a yb z a z b y ) i ( a z b xa xb z ) j (a xb y a y b x ) kcosa xb x a y b y a z b z|a||b|X a 2 a z为了邦助记忆利用三阶行列式符号 上式可写成a yb z i a z b x j a x b y k a y b x k a x b z j a z b y ii j k a x a y a z b x b y b z(a y b z a z b y ) i ( a z b x a x b z ) j ( a x b y a y b x ) k③三向量的混合积混合积的几何意义: 混合积[abc]是这样一个数,它的绝对值表示以向量a 、b 、c 为棱的平行六面体的体积,如果向量a 、b 、c 组成右手系,那么混合积的符号是正的,如果a 、b 、c 组成左手系,那么混合积的符号是负的。
同济大学数学系《高等数学》笔记和课后习题(含考研真题)详解(向量代数与空间解析几何)【圣才出品】
图 8-1-3 4.利用坐标作向量的线性运算 设
,λ 为实数,则
注:当向量 时,向量 相当于
Hale Waihona Puke ,坐标表示式为5 / 77
圣才电子书 十万种考研考证电子书、题库视频学习平台
即
5.向量的模、方向角、投影 (1)向量的模 向量 r=(x,y,z),则模
(2)两点距离公式
设点
6 / 77
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)性质
①
;
②a·b=0⇔a⊥b(a、b 都为非零向量).
(3)运算规律
①交换律 a·b=b·a;
②分配律(a+b)·c=a·c+b·c;
③结合律
.
(4)两向量夹角余弦的坐标表示式
2.两向量的向量积 (1)定义
①当 a、b、c 组成右手系时,α 为锐角,[abc]为正; ②当 a、b、c 组成左手系时,α 为钝角,[abc]为负. (5)a、b、c 共面⇔混合积[abc]=0,即
9 / 77
圣才电子书
十万种考研考证电子书、题库视频学习平台
ax ay az bx by bz 0 cx cy cz
2 / 77
圣才电子书 十万种考研考证电子书、题库视频学习平台
个平面上,称这 k 个向量共面.
2.向量的线性运算
(1)向量的加法
①定义
设有两个向量 a 与 b,任取一点 A,作
,再以 B 为起点,作
,连接
AC(图 8-1-2),则
向量
称为向量 a 与 b 的和,记作 a+b,即 c=a+b.
设 a (ax , ay , az ), b (bx , by , bz ), c (cx , cy , cz ) ,则 ax ay az
空间解析几何与向量代数复习题答案
间解析几何与 向量代数1. 2. 3. 4. 5. 、选择题 已知 A(1,0,2), 设 a = (1,-1,3 (-1,1,5 ). 设 a = (1,-1,3 -i -2 j +5k B B(1,2,1)求两平面x 2y已知空间三点 是空间两点,向量AB 的模是 (A ),b= (2,-1,2 ),求 c=3a-2b 是(B )(-1,-1,5 ) . C (1,-1,5 ).D (-1,-1,6 ),b= (2, 1,-2 -i -j +3k C z 3 0和2x),求用标准基i , j , k 表示向量c=a-b 为(A-i -j +5k D -2i - j +5ky z 5 0的夹角是(C )M(1,1,1) 、A(2,2,1) 和 B (2, 1, 2),求/ AMB 1( C )6.求点M (2, 1,10)到直线L :1 z 21的距离是:(A )A 138B ,118 158 Dr r r r r2i 3j k,求 a b 是:(D )A -i -2j +5kB - i -j +3kC - i -j +5kC x+y+1=011、设a,b 为非零向量,a b ,则必有(C )A a b | |a | |baba8.设/ ABC 的顶点为 A(3,0,2), B(5,3,1), C(0, 1,3), 求三角形的面积是:(A ) 9.求平行于z 轴, 且过点 M 1(1,0,1)和 M 2(2, 1,1)的平面方程是:(D ) A 2x+3y=5=0x-y+1=010、若非零向量a,b 满足关系式,则必有 (C );12、已知 a= 2, 1,2 ,b = 1, 3,2,则 Prj b a =);A5;5■■ 14 •7.设 a i k,D 3i -3j+3ka b| |a | |b13、直线y 1 Z 1与平面2x y z 4 0的夹角为(B )1 0 1A-;B7C D634214点(1,1,1)在平面x 2y z 10的投影为(A )、(A) 丄,0,3;(B) 丄,0,3;(C) 1, 1,0 ; (D) 1 1 12 222 2 215向量a与b的数量积a b= ( C).、A a rj b a ;B a rj a b ;C a rj a b;D b rj a b .16、非零向量a,b满足a b0,则有(C ).A a // b;B a b (为实数);C a b;D a b 0.17、设a与b为非零向量,则a b 0是(A ).A a // b的充要条件;B a丄b的充要条件;C a b的充要条件;D a // b的必要但不充分的条件.18、设a 2i 3j 4k,b 5i j k,则向量c 2a b在y轴上的分向量是(B).A 7B 7 jC - 1;D -9 k2 2 .219、方程组2x y 4z 9表示(B ).x 1A 椭球面;B x 1平面上的椭圆;C 椭圆柱面;D 空间曲线在x 1平面上的投影.20、方程x 2 y 2 0在空间直角坐标系下表示 (C )A 坐标原点(0,0,0) ;B xoy 坐标面的原点(0,0) ;C z 轴;D xoy 坐标面.22、设空间三直线的方程分别为A L 1 // L 2 ;B L 1 // L 3 ;C L 2 L 3 ;D L 1 L 2 .23、 直线 J $ 4 Z 与平面4x 2y 2z 3的关系为(A ).273A 平行但直线不在平面上;B 直线在平面上;C 垂直相交;D 相交但不垂直.24、 已知 a 1,b.2,且(a,b )-,贝 U a b = ( D ).4A 1 ;B 1 2 ;C 2 ;D 5 .25、下列等式中正确的是(C )21、设空间直线的对称式方程为0 I 2则该直线必A 过原点且垂直于x 轴;B 过原点且垂直于y 轴;C 过原点且垂直于z 轴;D 过原点且平行于x 轴.3tL i;x 2y z 100,则必有(Dy2 7t、计算题解:由题设知的投影及在y 轴上的分向量。
空间解析几何与向量代数》知识点、公式总结
空间解析几何与向量代数》知识点、公式总结空间解析几何与向量代数是数学中非常重要的分支,它们在物理、工程、计算机科学等领域得到了广泛的应用。
以下是一些知识点和公式的总结:一、向量的数量积与向量积1. 向量的数量积:两个向量 a 和 b 的数量积 (也叫数量积或点积) 定义为一个新的向量,记作 a·b,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 c,(a·b)·c=a·(b·c)。
2. 向量积:两个向量 a 和 b 的向量积 (也叫向量积或叉积)定义为一个新的向量,记作 a×b,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 c,(a×b)·c=a·(b×c)。
二、向量的混合积1. 向量的混合积:三个向量的混合积 (也叫叉积) 定义为一个新的向量,记作 (ab)c,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 d,(ab)c·d=a·(b·c)d。
2. 向量共面的条件:三个向量 a、b、c 共面的条件是它们对应的三条法向量共面。
三、空间平面及其方程1. 空间平面的方程:空间中两个不共线的平面的方程分别为Px+My+Nz=C 和 Px+My+Nz=D,其中 P、M、N 为平面上的任意三个点,C 和D 为已知常数。
2. 平面的点法式方程:设 M(x0,y0,z0) 为平面上的已知点,n(A,B,C) 为法向量,M(x,y,z) 为平面上的任一点,则平面的点法式方程为 A(x-x0)B(y-y0)C(z-z0)=0。
四、空间直线及其方程1. 空间直线的方程:空间中一条直线的方程为 x+My+Nz=C,其中 P、M、N 为直线上的任意三个点,C 为已知常数。
2. 空间直线的参数方程:空间中一条直线的参数方程为x=f(t),y=g(t),z=h(t),其中 t 为参数,f、g、h 分别为直线上的点的 x、y、z 坐标。
《高等数学》向量代数和空间解析几何
a∥ b
运算律
(1) ab ba (2) 分配律 (ab)cacbc
(3) 结合律 (a)ba(b)(ab)
向量积的坐标表达式
ab ( a y b z a z b y ) i ( a z b x a x b z ) j ( a x b y a y b x ) k
i j k a b ax ay az
例5. 求通过 x 轴和点( 4, – 3, – 1) 的平面方程.
解: 因平面通过 x 轴 , 故 AD0 设所求平面方程为 ByCz0
代入已知点 (4,3,1)得 C3B
化简,得所求平面方程 y3z0
空间直线
一般式 A A 21xx B B 2 1y y C C 1 2zz D D 12 00
从柱面方程看柱面的特征:
只含 x, y而缺z的方程F(x, y) 0,在 空间直角坐标系中表示母线平行于 z 轴的柱 面,其准线为 xoy面上曲线C .
(3) 二次曲面
椭球面
a x2 2b y2 2cz2 21 (a,b,c为正 ) 数 z
x
y
抛物面
z
椭圆抛物面
x2 y2 z ( p , q 同号) 2p 2q
n (0 ,B ,C ) i,平面平行于 x 轴; • A x+C z+D = 0 表示 平行于 y 轴的平面; • A x+B y+D = 0 表示 平行于 z 轴的平面; • C z + D = 0 表示平行于 xoy 面 的平面; • A x + D =0 表示平行于 yoz 面 的平面; • B y + D =0 表示平行于 zox 面 的平面.
o
y
3、空间曲线 (1) 空间曲线的一般方程
高等数学期末复习-向量代数与空间解析几何
高等数学期末复习第八章向量代数与空间解析几何一、内容要求1、了解空间直角坐标系,会求点在坐标面、坐标轴上的投影点的坐标2、掌握向量与三个坐标面夹角余弦关系3、会运用定义和运算性质求向量数量积4、会运用定义和运算性质求向量的向量积5、掌握向量数积和向量积的定义形式6、掌握向量模的定义与向量数量积关系7、掌握向量的方向余弦概念8、掌握向量的平行概念9、掌握向量的垂直概念10、能识别如下空间曲面图形方程:柱面,球面、锥面,椭球面、抛物面,旋转曲面,双曲面11、掌握空间平面截距式方程概念,会化平面方程为截距式方程和求截距12、会求过三点的平面方程,先确定平面法向量13、会用点法式求平面方程,通常先确定平面法向量14、会求过一点,方向向量已知的直线对称式方程,通常先确定直线方向向量15、会用直线与平面平行、垂直的方向向量法向量关系确定方程中的参数16、掌握直线对称式方程标准形式,能写出直线方向向量二、例题习题1、点)2,4,1P在yoz面上的投影点为( );(内容要求1)(-A. )2,4,1Q D. )2,4,0(Q(-(-(-Q B. )2,0,1Q C. )0,4,1解:yoz 面不含x ,所以x 分量变为0,故选D2、设向量a 与三个坐标面zox yoz xoy ,,的夹角分别为321,,θθθ(2,,0321πθθθ≤≤),则=++322212cos cos cos θθθ( ) (A) 0 (B) 1 (C) 2 (D); 3 解:由作图计算可知,222123cos cos cos 2θθθ++=,所以选C 。
(内容要求2)3、设向量a 与三个坐标面zox yoz xoy ,,的夹角分别为321,,θθθ(2,,0321πθθθ≤≤),则=++322212cos cos cos θθθ ; 解:222123cos cos cos 2θθθ++=,所以填2。
(内容要求2)4、向量)3,1,1(-=a ,)2,1,3(-=b ,则=⋅b a ( );A. 0B. 1C. 2D. )2,11,5(---解:311(1)232a b ⋅=-⨯+⨯-+⨯=,所以选C 。
高等数学向量代数与空间解析几何总结
高等数学向量代数与空间解析几何总结高等数学是大学数学学科的一门重要基础课程,其中向量代数与空间解析几何是其重要的内容之一、本文将对向量代数与空间解析几何的主要内容进行总结,让我们一起来了解一下吧!向量代数是研究向量的代数性质和运算法则的数学分支,旨在通过研究向量的各种运算进行分析与求解问题。
空间解析几何则是研究点、线、面等几何对象在三维空间中的位置关系和几何性质的学科。
首先,我们先来了解一下向量代数的基本概念和运算法则。
在向量代数中,向量是具有大小和方向的量,通常用一个有向线段表示。
向量的加法是指两个向量相加,得到一个新的向量,其结果是由两个向量的平行四边形法则确定的。
向量的乘法有数量乘法和点乘法两种形式。
数量乘法是指数与向量相乘,得到一个新的向量,其长度与原向量的长度相乘,方向与原向量相同或相反。
点乘法是指两个向量进行点乘,得到一个实数结果,其大小等于两个向量的长度相乘再乘以它们的夹角的余弦值,方向与夹角为锐角的原向量相同,为钝角时与原向量相反。
向量代数的运算法则包括交换律、结合律和分配律。
接下来,我们来了解一下空间解析几何的基本内容。
空间解析几何主要研究三维空间中的点、直线和平面的位置关系和几何性质。
其中,点是空间中没有大小、没有方向的对象,用坐标表示。
直线是由无数个点组成的无限延伸的几何对象,可以通过两点确定一条直线,也可以通过点和方向向量确定一条直线。
平面是由无数个点组成的无限延伸的几何对象,可以通过三个点确定一个平面,也可以通过点和法向量确定一个平面。
空间解析几何要求我们掌握点与点之间的距离、点与直线之间的关系、直线与直线之间的关系、点与平面之间的关系、直线与平面之间的关系等内容。
对于这些关系,我们可以通过向量的性质和运算进行解决。
在向量代数与空间解析几何中,还有一些重要的概念与定理需要了解。
例如,向量的模长是指向量的长度,可以通过向量的坐标和勾股定理求得。
向量的单位向量是指长度为1的向量,可以通过将向量的坐标除以其模长得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学期末复习第八章 向量代数与空间解析几何一、容要求1、了解空间直角坐标系,会求点在坐标面、坐标轴上的投影点的坐标2、掌握向量与三个坐标面夹角余弦关系3、会运用定义和运算性质求向量数量积4、会运用定义和运算性质求向量的向量积5、掌握向量数积和向量积的定义形式6、掌握向量模的定义与向量数量积关系7、掌握向量的方向余弦概念8、掌握向量的平行概念9、掌握向量的垂直概念10、能识别如下空间曲面图形方程:柱面,球面、锥面,椭球面、抛物面,旋转曲面,双曲面11、掌握空间平面截距式方程概念,会化平面方程为截距式方程和求截距 12、会求过三点的平面方程,先确定平面法向量13、会用点法式求平面方程,通常先确定平面法向量14、会求过一点,方向向量已知的直线对称式方程,通常先确定直线方向向量 15、会用直线与平面平行、垂直的方向向量法向量关系确定方程中的参数 16、掌握直线对称式方程标准形式,能写出直线方向向量二、例题习题1、点)2,4,1(-P 在yoz 面上的投影点为( ); (容要求1)A. )2,4,1(-QB. )2,0,1(-QC. )0,4,1(-QD. )2,4,0(Q 解:yoz 面不含x ,所以x 分量变为0,故选D2、设向量a 与三个坐标面zox yoz xoy ,,的夹角分别为321,,θθθ(2,,0321πθθθ≤≤),则=++322212cos cos cos θθθ( )(A) 0 (B) 1 (C) 2 (D); 3解:由作图计算可知,222123cos cos cos 2θθθ++=,所以选C 。
(容要求2)3、设向量a 与三个坐标面zox yoz xoy ,,的夹角分别为321,,θθθ(2,,0321πθθθ≤≤),则=++322212cos cos cos θθθ ;解:222123cos cos cos 2θθθ++=,所以填2。
(容要求2)4、向量)3,1,1(-=a,)2,1,3(-=b ,则=⋅b a ( );A. 0B. 1C. 2D. )2,11,5(---解:311(1)232a b ⋅=-⨯+⨯-+⨯=,所以选C 。
(容要求3) 5、向量32,2,=--=+-a i j k b i j k 则(2)-⋅=a b解:2624i j k -=-++a ,所以(2)61224(1)6-⋅=-⨯+⨯+⨯-=-a b ,所以填6-。
(容要求3)6、设a =2 i +2j +2k ,b =3j -4k ,则a ·b = 。
解:23202(4)2a b ⋅=⨯+⨯+⨯-=-,所以填-2。
(容要求3)7、向量}3,0,1{=a,}2,1,1{-=b ,则=⨯b a ( );A. 6B. 6-C. }1,1,3{-D. }1,1,3{--解:133112ij ka b i j k ⨯==+--,所以选C 。
(容要求4)8、向量}1,1,1{},2,1,3{-=-=b a,则=⨯b a ;解:3122111ij ka b i j k ⨯=-=---,所以填2i j k --,或填{1,1,2}--。
(容要求4)9、a 与b 为两个向量,θ为二者的夹角,则a b ⋅=( ).(A) sin ab θ (B) sin a b θ (C) cos ab θ (D) cos a b θ 解:由定义,选D 。
(容要求5)10、设,a b 为非零向量,则a b ⋅( )a b ⋅. (A) = (B) ≤ (C) ≥ (D) ≠解:因为||||cos θ⋅=⋅a b a b ,所以|||||cos |||||θ⋅=⋅⋅≤⋅a b a b a b ,选B 。
(容要求5) 11、已知1,a b ==a 与b 的夹角为4π,则a b +=( ). (A)(B) 1 (C) 2 (D) 1解:222||||2||||cos 5θ+=++⋅=a b a b a b ,所以,+=a b A 。
(容要求6) 12、设,a b 为非零向量,且⊥a b ,则必有( ). (A) +=+a b a b (B) -=-a b a b(C) +=-a b a b (D) +=-a b a b解:22222||||2||||cos ||||θ+=++⋅=+a b a b a b a b ,(cos θ=0)22222||||2||||cos ||||θ-=+-⋅=+a b a b a b a b所以选C 。
(容要求6)13、设向量a与三个坐标轴的正向的夹角分别为γβα,,,则=++γβα222cos cos cos ;解:222cos cos cos 1αβγ++=,所以填1。
(容要求7) 14、设向量a 与三个坐标轴的正向的夹角分别为γβα,,,已知,4,4πβπα==则γ=解:因为向量a 与三个坐标轴的正向的夹角分别为γβα,,,,4,4πβπα==222cos cos cos 1αβγ++=,所以cos 0γ=,2πγ=,所以填2πγ=。
(容要求7)15、设{1,2,3},{2,4,}a b λ=-=,且//a b ,则λ=( );(A)103 (B) 103- (C) 6- (D) 6 解:因为//a b ,所以12324λ-==,所以选C 。
(容要求8)16、设向量{2,1,10}a =--,{4,2,1}b =-,则向量a 与向量b 的关系是( ). (A) 平行 (B) 斜交(C) 垂直 (D) 不能确定 解:0⋅=a b ,所以选C 。
(容要求9)17、已知向量}4,1,1{,-=⊥a b a,}1,,2{-=m b ,则=m ( );A. 1B. 1-C. 2D. 2-解:因为a b ⊥,所以2402a b m m ⋅=--=⇒=-,所以选D 。
(容要求9)18、在空间直角坐标系中, 方程4922y x z +=表示的曲面是( ); A. 椭圆抛物面 B. 双曲抛物面 C. 椭圆锥面 D. 椭球面解:4922y x z +=为椭圆抛物面,所以选A 。
(容要求10) 19、在空间直角坐标系中,方程222=+z x y 表示的曲面是 ( ).(A) 双曲抛物面 (B) 旋转抛物面 (C) 椭圆抛物面 (D) 圆锥面 解:222=+z x y 为圆锥面,所以选D 。
(容要求10)20、空间直角坐标系中,方程222R y x =+表示的图形是( ); A. 圆 B. 球面 C. 椭球面 D. 圆柱面 解:222R y x =+为圆柱面,所以选D 。
(容要求10)21、空间直角坐标系中,方程22y x z +=表示的图形是( ); A. 球面 B. 圆锥面 C. 圆柱面 D. 旋转抛物面 解:22y x z +=为旋转抛物面,所以选D 。
(容要求10) 22、空间直角坐标系中,方程224y x +=表示的图形是( ); A. 球面 B. 圆柱面 C. 圆锥面 D. 旋转抛物面 解:224y x +=为圆柱面,所以选B 。
(容要求10) 23、方程2244y z -=表示( ).(A) 双曲柱面 (B) 双曲线 (C) 单叶双曲面 (D) 双叶双曲面 解:2244y z -=为双曲柱面,所以选A 。
(容要求10) 24、指出旋转曲面2222z x y =+的一条母线和旋转轴( ).(A) 220z x y ⎧=⎨=⎩,z 轴 (B)220z x y ⎧=⎨=⎩,x 轴 (C) 220z x y ⎧=⎨=⎩,y 轴 (D)220z y x ⎧=⎨=⎩,y 轴 解:2222z x y =+为220z x y ⎧=⎨=⎩绕z 轴旋转的旋转抛物面,所以选A 。
(容要求10)25、平面212xy z ++=在,,x y z 轴上的截距分别是( ). (A) 1,1,22 (B) 12,1,2(C) 1,2,1 (D) 2,1,2 解:化截距式方程为11212x y z++=在,,x y z 轴上的截距为12,1,2,所以选B 。
(容要求11)26、过三点(1,1,1)-,(2,2,2)--,(1,1,2)-的平面方程为( ). (A) 320x y z --= (B) 321x y z --= (C) 320x y z +-= (D) 320x y z -+=解:过三点(1,1,1)-,(2,2,2)--,(1,1,2)-的平面法向量1(2)1(2)12333396111(1)12023=------=-=-++------i j k i j kn i j k所以所求平面方程为3(1)9(1)6(1)0320--+-++=⇒--=x y z x y z ,所以选A 。
(容要求12)27、求过点(1,0,1)-且与直线241131x y z -++==-垂直的平面方程. 解:过点(1,0,1)-且与直线241131x y z -++==-垂直的平面的法向量就是直线 241131x y z -++==-的方向向量{1,3,1}-,所以所求平面方程为 (1)3(1)0320x y z x y z --+++=⇒---=(容要求13)28、求过点(1,1,1)且与直线24113-+==+-x y z 垂直的平面方程. 解:直线24113-+==+-x y z 的方向向量为{1,3,1}-,所以过点(1,1,1)且与直线24113-+==+-x y z 垂直的平面方程为 1(1)3(1)10330x y z x y z --+-+-=⇒--+=(容要求13)29、求通过点(2 , 0 , -1)A 且与两直线-1-2111x y z ==和3-12-13x y z +==平行的平面方程.解:所求平面法向量为11143213ij kn i j k ==---,于是所求平面方程为4(2)3(1)043110x y z x y z ---+=⇒---=(容要求13)30、已知两条直线的方程是 1123:101x y z L ---==-,221:211x y zL +-==,求过1L且平行于2L 的平面方程.解:所求平面法向量为1013211ij kn i j k =-=-+,令1231101x y z ---===-得直线上的点(2,2,2),于是所求平面方程为23(2)20320x y z x y z ---+-=⇒-++=(容要求13)31、过点(2,5,3)-且平行于xoz 面的平面方程为解:因为平行于xoz 面的平面为y d =型,所以平面方程应填5y =-。
或者, xoz 面的平面的法向量为{0,1,0}n =,所以平面方程为0(2)1(5)0(3)0x y z ⋅--⋅++⋅-=所以平面方程应填5y =-(容要求13)32、过点(2,1,3)-且与平面740x y z -+=垂直的直线方程为 解:过点(2,1,3)-且与平面740x y z -+=垂直的直线方向向量就是平面740x y z -+=的法向量{1,7,4}-,所以所填直线方程为213174--+==-x y z 。