数形结合思想论文直觉思维论文

合集下载

数形结合思想在初中数学教学中的应用优秀获奖科研论文-2

数形结合思想在初中数学教学中的应用优秀获奖科研论文-2

数形结合思想在初中数学教学中的应用优秀获奖科研论文数形结合是一种非常重要的数学思想方法,也是数学解题中要求掌握的重要思想方法之一,在数学学习中有着重要的地位.数形结合,有利于学生对数学知识的理解,落实新课标的要求,即通过“以形助数,以数解形”,能够将复杂问题简单化,抽象问题具体化.很多数学问题利用数形结合思想来解决,能够达到化难为易的目的.在初中数学教学中,教师应重视数形结合思想,从而提高学生分析问题和解决问题的能力.下面结合自己的教学实践就数形结合思想在初中数学教学中的应用谈点体会.一、数形结合思想在集合问题中的应用在教学中,教师单一地讲解集合问题,很难使学生想象出各数集之间的关联性,而利用图示法,能够解决抽象的集合问题,让学生对集合问题一目了然.在图形中,一般利用圆来表示集合,两集合有公共的元素则两圆相交,两圆相离则表示没有公共的元素.例如,在学校开展兴趣班时,初中某班共有28个学生,其中有15人参加音乐兴趣班,有8人参加舞蹈兴趣班,有14人参加书法兴趣班,同时参加音乐和舞蹈兴趣班的有3人,同时参加音乐和书法兴趣班的有3人,没有人同时参加三个兴趣班,问:同时参加舞蹈班和书法兴趣班的有多少人?只参加音乐兴趣班的有多少人?图1解析:如图1,设A={参加音乐兴趣班的学生},B={参加舞蹈兴趣班的学生},C={参加书法兴趣班的学生},同时参加舞蹈和书法兴趣班的学生有x人.由题意可知,card(A交B)=3.card(A交C)=3,card(B交C)=x,则15+8+14-3-3-x=28,得x=3.因此,同时参加舞蹈和书法班的有3人,只参加音乐兴趣班的有15-3-3=9人.这样,利用图示法,可以使复杂的数学问题变得简单化和具体化,降低做题难度,有助于激发学生的学习兴趣.二、数形结合思想在函数问题中的应用函数是整个数学的重点,关于函数类型的题也数不胜数.利用函数求极值的问题是常见的题型,以数辅形,需要将图象中的数量关系整理清楚,以函数的形式表达出来,把握函数与图形之间的关系,达到快速解决数学问题的目的,体现数形结合在解题中的重要性.初中生对一次函数和二次函数的图象有着很深的了解,因此在面对这类函数问题时,往往可以根据函数图象来解答.这样,不但可以加深学生对基本概念的理解,还可以加强学生对这些基本知识的灵活运用.例如,当0 解析:方程中含有两个未知数,无法直接求解,可以转化成两个函数问题,图2求解的个数就是求函数图象的交点个数.由|1-x2|=kx+k,可构造y=|1-x2|和y=kx+k,如图2.所以原方程解的个数为3个.这样,复杂的函数问题,利用图形进行展示,能够直接得出问题的答案,强化了学生的认知,深化了学生的思维训练,提升了教学效率.三、数形结合思想在概率问题中的应用概率作为初中数学教学中的重点内容,一直是教学的难点.许多概率问题在思考中都存在着抽象,如果借助于坐标平面或数学模型的问题,以形助数,运用数形结合思想,就能够帮助学生迅速找到问题的切入点,优化解题过程,提高解题速度.总之,在初中数学教学中,数形结合思想既是一种教学手段,又是一种解题方法.运用数形结合思想,能够拓宽学生的思维;运用数形之间的关联性,以图形助数学解题,能够强化学生对数学本质的认知和了解,提高学生数学思维的灵活性、根基性等.教师应适当运用数形结合思想开展教学活动,从学生的角度出发,培养学生的综合技能和素质,提升初中数学教学质量,确保学生全面发展.。

初中数学教学数形结合思想论文

初中数学教学数形结合思想论文

初中数学教学数形结合思想论文摘要:数和形是初中数学内容的两大板块和两条主线。

数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。

数形结合思想主要指借助数形对应转化进而解决实际问题,倘若我们令数量关系借助图形性质便可令较多抽象关系、概念变得更为形象与直观,十分有利于探求合理的解题途径,即所谓的以形助数,而倘若一些图形问题能合理的借助数量关系转化又可获取一般化简捷的解题方式,即以数解形。

由此可见数形结合理念的实质就是有效将直观图形与数学语言结合,令形象思维与抽象思维融合,通过数形转化、图形认识培养学生的形象性与灵活性思维,进而令复杂数学问题趋向简单、抽象问题趋向具体。

可以说数形结合是初中数学教学最为基本的价值化思想之一,在教学实践中应用广泛,是合理解决多类数学问题的重要思维。

一、数形结合方法及主要类型所谓数形结合就是抓住数与形之间本质上的联系,将抽象的数学语言与直观的图形结合起来的一种思想,通过“以形助数”或“以数解形”,使复杂问题简单化、抽象问题具体化,从而达到优化解题的目的。

数形结合思想的主要内容体现在以下几个方面:(1)建立适当的代数模型(主要是方程、不等式或函数模型),(2)建立几何模型(或函数图象)解决有关方程和函数的问题。

(3)与函数有关的代数、几何综合性问题。

(4)以图象形式呈现信息的应用性等问题。

在初中学数学的解题中,数形结合方法主要有三种类型:(1)以“数”转化为“形”这类问题,解决问题的基本思路:明确题中所给的条件和所求的目标,从题中已知条件或结论出发,先观察分析其是否相似(相同)于已学过的基本公式(定理)或图形的表达式,再作出或构造出与之相适合的图形,(2)以“形”变“数”,通过图像找出与数的对应关系。

(3)“数”“形”结合,利用数画出图,利用图找出与数的对应关系。

数学思维论文(5篇)

数学思维论文(5篇)

数学思维论文(5篇)数学思维论文(5篇)数学思维论文范文第1篇一、数学直觉概念的界定简洁的说,数学直觉是具有意识的人脑对数学对象(结构及其关系)的某种直接的领悟和洞察。

对于直觉作以下说明:(1)直觉与直观、直感的区分直观与直感都是以真实的事物为对象,通过各种感觉器官直接获得的感觉或感知。

例如等腰三角形的两个底角相等,两个角相等的三角形是等腰三角形等概念、性质的界定并没有一个严格的证明,只是一种直观形象的感知。

而直觉的讨论对象则是抽象的数学结构及其关系。

庞加莱说:"直觉不必建立在感觉明白之上.感觉不久便会变的无能为力。

例如,我们仍无法想象千角形,但我们能够通过直觉一般地思索多角形,多角形把千角形作为一个特例包括进来。

"由此可见直觉是一种深层次的心理活动,没有详细的直观形象和可操作的规律挨次作思索的背景。

正如迪瓦多内所说:"这些富有制造性的科学家与众不同的地方,在于他们对讨论的对象有一个活全生的构想和深刻的了解,这些构想和了解结合起来,就是所谓''''直觉''''……,由于它适用的对象,一般说来,在我们的感官世界中是看不见的。

"(2)直觉与规律的关系从思维方式上来看,思维可以分为规律思维和直觉思维。

长期以来人们刻意的把两者分别开来,其实这是一种误会,规律思维与直觉思维从来就不是割离的。

有一种观点认为规律重于演绎,而直观重于分析,从侧重角度来看,此话不无道理,但侧重并不等于完全,数学规律中是否会有直觉成分?数学直觉是否具有规律性?比如在日常生活中有很多说不清道不明的东西,人们对各种大事作出推断与猜想离不开直觉,甚至可以说直觉无时无刻不在起作用。

数学也是对客观世界的反映,它是人们对生活现象与世界运行的秩序直觉的体现,再以数学的形式将思索的理性过程格式化。

数学最初的概念都是基于直觉,数学在肯定程度上就是在问题解决中得到进展的,问题解决也离不开直觉,下面我们就以数学问题的证明为例,来考察直觉在证明过程中所起的作用。

妙用“数形结合”提升思维能力 论文

妙用“数形结合”提升思维能力 论文

妙用“数形结合”提升思维能力摘要:“敷”和“脑”是数学教学中两个最范本的研究对象,有着初为紧密的联系,在一定条件下可以相互转化.通过数和彩的转化能够让复杂问题简单化,抽象问飕形象化。

通过数学学科所要学习的内容来看,数量关系的相互转化无疑是理点,然而通过一些困舫将这些具有抽象性的数量关系进行转变,将其以更加互现的形式展现在学生而前,学生势必会对好地理解这些教量关系,进而在计算和分析的过程中也会变存更加细致入微。

有鉴于此,本文在对数形蟀合概念及必要性进行分析基础上,提出了基于小学生"致形结合”思维培养的教学教邨术∙养有效构成的系略。

关健四:小学生:敦杉结合:关维能力引言为了实现这一目的,小学一线数学老师也做了很多尝试,数形结合就是i种实操性强的方式,为了更好地实现这一目的就需要数学教师结合自身的教学实践经验,对数形结合的方法进行重点研究,以此来实现学生数学思维的有效培养。

对学生的思维能力进行培养能够有效带动学生学习效果的提升。

一、数形结合及其K要性分析有关数形结合的思想主要包含两个方面的内容:一是借形助数,用代数构建形状,让代数知识史形象,加深学生对数学知识的理解和把握;二是由数思形.以形状为教体寻找和代数存在的关系,然后以代数为基础对形状进行构思,以进而对图形问题进行解决。

这•方式就是在明确形状和代数关系基础上来解决问题。

因此借助数形结合的方式可以让学生参与数学学习的热情更高.在实现教学效果提升方面发挥着非常重要的价值。

因此,数形结合也是•种重要的数学理念,对于优化思维模式方面发挥了很大的价值。

(一)培养学生数学思维能力的关键相较于传统教学模式,借助数形结合的方式,能够让学生更全面掌握数学知识,尤其是对!区难点知识的学习,数形结合的方式更能促进学生学习效果的提升。

当小学生的数形结合意识得到有效改善后,可以让学生快速解决遇到的数学问题,有助于更好地提升学生的数学成绩。

(二)促进小学数学教学改革的有效途径在数形结合教学模式指引下,可以让小学生的思维能力得到有效锻炼,带动他们核心素养的改善0另一方面,教和通过在课堂上引导学生利用数形结合的理念指导学生的数学学习活动,可以让学生高效的解题技巧.二、小学数学教学中存在的问题(一)数学教学模式传统化,创新力不足结合我国教育实际可知,目前教育者的教育理念、教育方法和原则受传统教学模式的影响比较大,其教学方法大部分都是做题,背口诀,在考试和应用的时候,将得好的句里进行嵌套就可以。

数形结合思想方法论文

数形结合思想方法论文

数形结合的思想方法数形结合思想是高考必考的七大数学思想之一,是数学研究对象的数量关系和空间形式,即数与形两个方面,把数量关系的研究转化为图形性质的研究,或者把图形性质的研究转化为数量关系的研究,这种解决问题过程中“数”与“形”相互转化的研究策略,就是数形结合的思想。

数形结合思想就是要使抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来。

在使用的过程中,由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化却需要转化的意识,因此,数形结合的思想的使用往往偏重于由“数”到“形”的转化。

在一维空间,实数与数轴上的点建立一一对应关系;在二维空间,实数对与坐标平面上的点建立一一对应关系。

特别是在集合、函数、不等式、数列、向量、解析几何、导数与积分等能够用图形表述的知识点,就要用数形结合形象化,高考在选择题、填空题侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化。

1.集合问题中的数形结合例1.已知全集u=r,集合a=x|-2≤x≤3,b=x|x4,那么集合ai(c∪b)等于()a.x|-2≤x0)时f’(x0),函数y=f(x)的图象过原点,所以顶点在第一象限评注:要熟悉导函数与原函数之间的关系,对一次、二次函数关系及其图象的特点要很熟悉。

4.利用不等式表示的平面区域解答问题例4.若m为不等式组x≤0y≥0y-x≤2表示的平面区域,则当 a 从-2连续变化到1时,动直线x+y=a扫过m中的那部分区域的面积为分析:作出不等式表示的平面区域,然后再作平行线x+y=-2 和x+y=1 则夹在两平行线之间的部分即为所求。

解:如图知δaob是直角边为2 的等腰直角三角形,δbcd是斜边为1等腰直角三角形,则所求区域的面积为s=sδaob-sδbcd=■×2×2-■×1×■=■评注:涉及到不等式表示的平面区域问题时常常要画出图形数形结合解答问题。

数形结合思想数学论文1400字_数形结合思想数学毕业论文范文模板

数形结合思想数学论文1400字_数形结合思想数学毕业论文范文模板

数形结合思想数学论文1400字_数形结合思想数学毕业论文范文模板数形结合思想数学论文1400字(一):小学数学数形结合教学思想论文一、数形结合教学思想在小学数学教学中的运用数形结合作为一种教学思想方法,一般包含两方面内容,一个方面是“以形助数”,另一个方面的内容是“以数解形”。

下面介绍这两个方面的内容在小学数学教学中的运用。

(一)以形助数所谓“以形助数”,是指老师在讲解某些数学知识的时候,仅靠数字讲解学生不太能理解,借助几何图形的特点,将所要讲的知识点更直观地展现在学生面前,从而将抽象化的问题转变为具体化的问题。

学生在学习行程问题的应用题时,可以运用图形的办法清晰地展现问题。

如:一辆汽车从甲地开往乙地,先是经过上坡路,然后是平地,最后是下坡路,汽车上坡速度是每小时20千米,在平地的速度是每小时30千米,而下坡的速度则是每小时40千米,汽车从甲地到乙地一共上坡花了6小时,平地花了2小时,下坡花了4小时。

请问汽车从乙地到甲地需要多长时间?在这道题中,既存在变量,又存在不变量。

变量就是上坡路和下坡路随着汽车行驶的方向而发生改变,当汽车从乙地到甲地行驶时,原先的上坡路变成了下坡路,原先的斜坡路变成了上坡路。

而不变量就是这两个路程汽车行驶的速度都是始终不变的。

那么在解决问题的时候,就可以直观地展现出来。

先算出汽车从乙地到甲地的上坡时间,即(40×4)÷20=8(小时),然后算出下坡所花费的时间,即(20×6)÷40=3(小时),而平地所花费的时间是不变的,所以汽车从乙地到甲地所花费的时间是8+3+2=13(小时)。

在这道题中,运用图像将数学中的数量关系、运算都直观地展现出来,学生比较易于理解,这样的教学可以在很大程度上提高教学效率。

(二)以数解形虽然图形可以更加直观地展现数学中的数量关系,但是对于一些几何图形,特别是小学数学中的几何图形来讲,非常简单,如果仅仅是通过直接观察反而看不出规律,这时就可以运用“以数解形”的方式教学。

小学数学数形结合论文

小学数学数形结合论文

小学数学数形结合论文浅析小学数学课堂中数形结合思想的运用一、数形结合思想的由来。

华罗庚先生在《谈谈与蜂房结构有关的数学问题》中首次提出“数形结合”思想,强调数与形的对应关系和相互转化,以几何与代数统一为核心。

数形结合思想能将抽象的数学问题直观化,使复杂问题简明化,有助于抽象思维与形象思维的协调发展。

小学中的数形结合思想主要借助实物和直观性活动,如摆、数、画等,使抽象的数与现实生活相联系,培养学生的数学思维和感知能力,为未来的数学学习打下基础。

二、小学教学中运用数形结合思想的必要性。

在小学课堂中用好数形结合思想,对于老师教学和学生成长都大有裨益。

(一)对于教师而言。

“双减”背景下,教师应遵循科学原则布置作业,特别是对于小学一、二年级的学生,不应布置书面作业。

这一政策的实施对传统教学模式产生了深远影响,促使教师们积极转变观念,重新审视并调整自己的教育实践。

基于小学低年级学生的认知特点,数学教师需更深入地解读教材,有效融入数形结合等数学思想,以激发低年级学生的数学兴趣,努力提升课堂教学质量,为国家教育改革做贡献。

(二)对于学生而言。

数形结合思想在小学数学低年级教学中的应用,可以有助于学生获得“四能”,即从生活中发现并提出数学问题、分析并解决问题。

数形结合思想增强了学生学习数学的主动性和自觉性,丰富了学生对于数学意义的理解,对于培养小学生数学素养和创新能力有很大的帮助。

三、如何在课堂上用好数形结合的思想。

下面通过一些教学案例,具体阐释如何把数形结合思想融入小学课堂当中。

在小学数学中,数形结合思想的具体运用主要有“以形助数”和“以数解形”两类。

“以形助数”是借助形的几何直观性来阐明某些概念及数之间的关系。

例如可以借助形来认识数、掌握加减法、掌握乘除法并解决数学问题。

在理解乘法的意义时,教师可以先提问几?然后展示一张有3排,每排5张桌子的图片,引导学生理解其中的联系。

“以数解形”是借助于数的精确性、程序性和可操作性来阐明形的某些属性。

数形结合在小学数学论文_数学论文

数形结合在小学数学论文_数学论文

数形结合在小学数学论文_数学论文论文搜集网络仅供交流学习版权归原作者所有摘要:数学思想方法对研究和应用数学具有指导意义,学生一旦掌握将会终身受益。

数形结合思想是一种在小学数学教学中常用数学思想,本文联系自己的数学教学实践,从理解算理过程中渗透数形结合思想,教学新知中渗透数形结合思想,数学练习题中挖掘数形结合思想三方面浅谈了数形结合思想在小学数学教学中的渗透。

关键词:思想方法数形结合渗透日本数学史家米山国藏在他的著作《数学的精神、思想和方法》中说道:不管他们(指学生)从事什么业务工作,即使把所教给的知识(概念、定理、法则和公式等)全忘了,唯有铭刻在他们心中的数学精神、思想和方法都随时随地地发生作用,使他们受益终生。

随着社会的发展,要想实现“终身学习”和“人的可持续发展”,重要的是在教育中发展学生的能力,使之掌握获得知识和进一步学习的方法,逐渐掌握蕴涵在知识内的数学思想方法。

只有这样,才能使学生真正感受到数学的价值和力量。

小学是学生学习数学知识的启蒙时期,这一阶段注意给学生渗透基本的数学思想便显得尤为重要。

数形结合思想是一种重要的数学思想。

数形结合就是通过数(数量关系)与形(空间形式)的相互转化、互相利用来解决数学问题的一种思想方法。

它既是一个重要的数学思想,又是一种常用的数学方法。

数形结合,可将抽象的数学语言与直观的图形相结合,是抽象思维与形象思维结合。

著名数学家华罗庚说过“数缺形时少直观、形少数时难入微”。

有些数量关系,借助于图形的性质,可以使抽象的概念和关系直观化、形象化、简单化;而图形的一些性质,借助于数量的计量和分析,得以严谨化。

那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。

一、在理解算理过程中渗透数形结合思想。

小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。

但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很大功夫,却更加忽视了算理的理解。

小学数学教学数形结合思想论文

小学数学教学数形结合思想论文

小学数学教学数形结合思想论文概要:在数形结合的思想中,无论是“以数解形”还是“以形助数”,最后都是为了更容易理解与更快的学会数学而存在的数学思维。

现在的数学教材都大量的应用了数形结合的思想来帮助同学们理解数学问题。

这种方法在一定程度上大大减少了数学问题的复杂性,使问题简单化,更有益于同学们的理解。

尤其是小学数学,因为小学数学是数学的启蒙阶段,学生太小,还难以理解数学问题的复杂性和抽象性,这时候数形结合可以帮助他们构建更直观的数学知识体系。

方便他们未来更容易的学好数学。

北师大版的小学数学就应用到了许多数形结合思想。

其中“以数解形”的例子就有很多。

这种思想是依靠数字帮助更好地去判断图形。

比如,“北师大版六年级数学下册:空间与图形”这一章节中,在线与角的讲解中“第三题给同学们画出了两个角,分别为∠1和∠2两个角,并且问∠1和∠2哪个角要更大一些?还问同学们大的角比小的角大多少度?”要解决这道题的第一个问题,首先同学们最直接的办法是肉眼判断两个角的大小,哪个角的开口大一些,那个角就大。

对于差别比较大的两个角我们可以这么直接的判断,但是如果两个角的差别很小,我们还可以用肉眼直接分辨出来吗?显然答案是否定的,至少有可能看到的是不准确的。

并且第二个问题大多少我们也看不出来。

这个时候我们就要想办法解决这个问题,让答案更准确精准,也更具体。

此时,数形结合中的“以数解形”就派上了用场。

我们可以用量角器直接去测量两个角的大小,比如一个角50度,另一个角55度,那么此时55度的角肯定要大一些,这道题的第二个问题也就迎刃而解了,直接用大角55度减去小角50度,算出结果为5度。

这就是使几何问题代数化,抽象问题具体化的解决方法。

也就是“以数解形”的实践应用。

明显把图形问题变成数字问题时,这样的数学题就好解多了。

“北师大版六年级数学下册一圆柱和圆锥”这一章节也有“以数解形”的身影。

比如让同学们写出圆锥、圆柱、正方体、长方体的长、宽、高、底边直径等。

数形结合论文

数形结合论文

数形结合论文引言数形结合是一种将几何形状与数学概念相结合的方法,通过这种方法我们可以更深入地理解和解决数学问题。

数形结合在数学教育中有着重要的地位,它不仅可以激发学生对数学的兴趣,还可以提高学生的思维能力和问题解决能力。

本论文将详细介绍数形结合的概念、应用和教学策略,并通过实例分析说明其在数学学习中的重要性。

数形结合的概念与应用1. 数形结合的基本概念数形结合是指通过几何形状来揭示和解释数学概念。

它是将数学与几何相结合的一种方法,通过对几何形状的分析和观察,可以得出一定的数学规律和结论。

数形结合的本质是将抽象的数学概念转化为直观的几何表示,使学生更容易理解和记忆。

2. 数形结合的应用领域数形结合广泛应用于各个数学领域,包括代数、几何、概率等等。

在代数中,可以通过几何图形表示多项式的乘法、因式分解等运算,帮助学生理解代数运算的本质。

在几何中,可以通过数学公式和方程与几何图形相结合,解决几何问题。

在概率中,可以通过几何模型来表示随机事件的概率,并进行相关计算。

数形结合在数学中的应用是多种多样的,它能够让抽象的数学概念变得具体可见,增加学生对数学的体验和理解。

数形结合的教学策略1. 主动探究数形结合的教学应该注重学生的主动参与和探究。

教师可以引导学生通过观察、分析和实践等方式,提出问题、发现规律,培养学生的数学思维和解决问题的能力。

学生通过自主探究和互动合作,能够更深入地理解数学概念和思想。

2. 多样化的教学方法在数形结合的教学中,应该采用多样化的教学方法来激发学生的学习兴趣。

例如,可以通过使用实物模型、图形软件等教具,让学生亲身感受数学与几何形状的联系;还可以运用问题解决法、探究法等教学策略,培养学生的思维能力和创新意识。

3. 融入实际问题数形结合的教学应该注重将数学概念和实际问题相结合。

通过将数学知识运用到实际问题中,可以增加学生对数学的兴趣和动力。

教师可以设计一些与日常生活息息相关的问题,让学生在解决问题的过程中,更好地理解和应用数学概念。

数学课堂教学中应加强学生直觉思维培养论文

数学课堂教学中应加强学生直觉思维培养论文

毕业论文数学课堂教学中应加强学生直觉思维的培养In the process of Mathematics teaching,theteacher should strengthen thestudents'Cultivation of intuitive thinking.直觉思维是人们在面临新的问题,新的事物和现象时,能迅速理解并作出判断的思维活动。

直觉思维作为一种心理现象,不仅存在于日常生活之中,而且也贯穿于科学研究之中。

在数学学习与教学过程中,直觉思维是至关重要的,它能使我们对偶然出现的现象提出猜想和假设,能使我们快速地发现问题的答案,能使我们在酝酿中顿悟。

传统观点认为数学是一门抽象的数字符号科学,它需要的是逻辑思维。

毋庸置疑,逻辑思维对于数学的研究与学习是必不可少的,但是快速跳跃的直觉思维往往是创新思维的开始。

灵感的瞬间迸发,刹那间的顿悟,直觉思维起着举足轻重的作用。

本文从直觉思维的起源与定义出发,论述了直觉思维的特点,在数学学习与教学过程中所扮演的角色及其对数学研究的重要意义。

传统教学活动中对直觉思维培养的匮乏使直觉思维在数学教学活动中如何培养成为关键问题。

文章最后介绍了一些培养学生数学直觉思维的方法。

数学直觉思维的培养要从中小学开始起步,鼓励学生大胆创新,大胆猜想,将成为数学教学乃至整个教育界的最终目标。

关键词:直觉思维;数学;创造性Intuition thinking is:when people face new problems,difficult things and phenomenon,they can quickly understand and make a judgement.As a kind of psychology phenomenon,it not only exist in daily life,but also penetrate the scientific research work.In mathematics learning and teaching process,intuition thinking is the key.It can make us raise guess and hypothesis for some occasional phenomenon,can make us quickly find the answer to the question,can make us insightful in brewing.Traditional ideas think that mathematics is an abstract number symbols science,it needs logical thinking.No doubt logical thinking is indispensablefor mathematical research and study,but quickly and jumping intuition thinking is always the beginning of creative thinking.The moment of inspiration hair collapse,and in an instant the enlightenment,intuition thinking plays a very important role.Begin with the origin of intuition thinking and definition,this paper discusses the characteristics of the intuition thinking,the role it plays in the process of learning and teaching,the significance for mathematics research.The lack of intuition thinking training in traditional teaching process makes the development become the key st but not least,the paper introduces some methods to train mathematics intuition thinking.To train the mathematics intuition thinking should begin from primary school,and encourage student to the bold innovative,bold guess,it will become mathematics teaching and the whole education's ultimate goal.Key word:intuition thinking;mathematics;creative ability摘要 (Ⅰ)Abstract (Ⅱ)目录 (Ⅲ)第一章数学直觉思维的相关定义 (1)1.1直觉思维的定义 (1)1.2数学直觉思维的定义 (1)第二章直觉思维的特点 (2)2.1直觉思维的特点 (3)2.1.1快速性2.1.2跳跃性2.1.3坚信性2.1.4或然性2.2直觉思维在数学解题应用中的特点2.2.1潜逻辑性2.2.2整体性2.2.3随机性2.2.4创造性第三章加强学生数学直觉思维的培养3.1精心设计课堂教学,努力发展学生的数学直觉思维3.1.1科学猜想,发展学生数学直觉思维3.1.2加强对学生基础知识的巩固,发展学生数学直觉思维3.1.3鼓励学生发现与提出问题,发展学生数学直觉思维3.2深化学生对数学思想方法的理解,努力提高学生的数学直觉思维3.2.1从数形结合思想入手,大力发展学生的数学直觉思维3.2.2从化归思想入手,大力发展学生的数学直觉思维3.2.3从抽象思想入手,大力发展学生的数学直觉思维第一章数学直觉思维的相关定义数学作为研究现实世界数量关系和空间形式的科学,以其高度的抽象性和逻辑性而著称,由于抽象,思维的培养对数学的学习与发展至关重要。

近几年论述数形结合思想的国外论文

近几年论述数形结合思想的国外论文

近几年论述数形结合思想的国外论文
数形结合思想是指在解决数学问题中有效地利用数与形之间的关系来进行转化,进而更好地解决实际问题。

同时,数形结合思想也是通过几何图形的性质来解决抽象的数学问题的重要方法。

由此可知,数形结合思想实际是将抽象问题具体化,培养学生的数学思维,进而将复杂问题简单化,从而有效地解决数学难题.下面结合自己的教学实践谈点体会。

一、数形结合思想的表现形式
在初中数学教学中渗透数形结合思想是有效解决数学难题的重要途径.所谓数形结合思想,正是“以形助数”以及“以数解形”的思想来源.通过这一方法的运用,能有效地将复杂问题简单化,将抽象问题具体化,从而达到简化解题步骤的目的。

数形思想的内容主要反映在如下方面:
(1)针对各类方程、不等式以及函数模型,数形结合思想主要体现在建立适合的相关的代数模型。

(2)针对函数图象,数形结合思想主要体现在建立几何模型,以此来解决有关的方程以及函数的问题。

(3)运用数形结合思想解决与函数相关的代数、几何相结合的综合性问题,
(4)针对信息应用类的问题,以图象形式呈现信息等相关问题。

高中数学教学中重视数形结合思想优秀获奖科研论文

高中数学教学中重视数形结合思想优秀获奖科研论文

高中数学教学中重视数形结合思想优秀获奖科研论文数形结合思想是数学思想的一种.数形结合的思想,不仅可以应用在解决数学问题的过程中,还可以应用到数学学习过程中.数学教师要多引导学生用数形结合的思想学习数学知识.如果学生能用这种宏观的数学思想来看待数学知识,就会对数学知识有更深刻的理解.一、应用数形结合的思想,帮助学生理解数学概念概念教学是数学教学中的重要内容之一,部分教师在概念教学中常常给学生灌输抽象的概念,部分学生不能完全理解教师所说的数学概念,或者对数学概念的理解有岐义.如果学生不能正确理解数学概念,在应用数学概念知识时就会犯下错误.图形直观性强,数学教师可用数形结合的方法,帮助学生理解数学概念.例如,在讲“集合”时,教师可提出问题:现在有一个班级,所有的学生都参加了学习小组,其中数学小组的学生有28人、参加物理小组的学生有25人、参加化学小组的学生有25人,而其中同时参加数学小组和化学小组的学生有6人、同时参加数学小组和物理小组的学生有8人、同时参加物理小组和化学小组的学生有7人.请问:同时参加了数、理、化小组的学生有多少人?如果教师应用数形结合的方法引导学生理解这一概念,学生便能清晰地了解集合的概念.如图 1.教师可引导学生了解到,每一个集合可以绘制为封闭的图形,这是由于集合的范围有确定性的缘故,集合里的元素有互异性的特质,比如A集合里有28个完全不同的元素……学生一边听教师的讲解,一边可对比图形了解教师所说的意思.教师还可引导学生用图片来归纳学习过的知识点.思维导图的方式,就是应用图片帮助学生把知识整理成一套有序系统的图形工具.二、应用数形结合的思想,帮助学生分析运算规律高中数学与初中数学的区别为,高中数学的运算不再着重于数据与数据的运算,而着重于一个数学运算规律与另一个数学运算规律的计算,这种计算抽象性强,十分复杂,有时学生难以迅速理解计算的方法.假设教师能够引导学生化抽象为具体,就能让学生迅速找到运算规律.高中数学运算问题规律性很强,如果学生不能了解其中的规律,可能根本不知道如何着手数学运算,教师可引导学生用数形结合思想突破这一学习难关,提高学生的数学运算水平.三、应用数形结合的思想,帮助学生拓展发散范围高中数学问题具有综合性强的特点,有时学生应用一个角度不能有效解决数学问题时,将这个数学问题转换成另一个数学问题,切换解决数学问题的角度,可能就会找到答案.图形可以成为一个数学思路和另一个数学思路之间的桥梁,学生应用图形发散思维,能够激发解题的想象力.科学研究证明,人们面对图形时,会有较强的发散思维能力.教师可引导学生在解决数学问题时应用数形结合的方法帮助发散思维,拓宽解决数学问题的切入点.总之,教师可通过数学教学引导学生理解数形结合思想,不仅是一种解决数学问题的思想,更是一种理解科学问题的思想.如果学生能应用数形结合的方法突破学习数学知识的障碍,就能提高学习数学知识的效率,高中数学教师也就能提高数学教学效率.。

小学课程中的数形结合思想(小学数学论文参考)

小学课程中的数形结合思想(小学数学论文参考)

小学课程中的数形结合思想(小学数学论文参考)小学课程中的数形结合思想摘要:从小学数学教材中对数学教学内容的安排来看,数形结合思想在很多地方都有着应用。

教师应当利用好这一思想帮助学生学习数学,让学生掌握更加高效、科学的数学思维方式以及数学思考的方法,从而达到提高教学效果、增强学生学习积极性的教学目的。

关键词:数形结合小学数学教学应用教学探究“数”与“形”是数学中两个最古老且基本的研究对象,也是数学的两大重要组成部分,二者之间互相关联、互相渗透,有着十分紧密的联系。

著名数学家华罗庚有句诗写得好:“数形结合百般好,隔离分家万事休”,所以将“数”与“形”结合起来进行研究与学习几乎成为数学的主要思维方式。

所以教师可以将数学结合思想应用于数学概念教学、数学计算教学等方面,并且利用这一思想帮助学生突破学习中的重点和难点,从而获得数学教学上的成功。

1.利用数形结合帮助学生理解数学概念数学概念是学生学习数学的重要前提,也是学生学习数学的主要目的,所以在数学教学中,对于有关数学概念的教学是重中之重。

学生在数学计算过程中的马虎、经常搞不清楚数学规律、不明白图形之间的关系等,学生学习数学时经常会犯的常见问题都是由于学生对数学概念模糊不清而导致的。

但是在传统的小学数学概念教学过程中,教师只将教学重心放在对概念的记忆上,忽视了学生对概念的理解,所以最后导致的结果就是学生自己也只是对概念稍有理解。

这种“机械化”的数学概念学习模式极大地阻碍了学生对数学概念的理解和吸收,并且提高学生的学习难度,让学生很难体会到学习的乐趣。

而利用“数形结合思想”帮助学生学习数学概念,能够将模糊且难以理解的数学概念转化为直观且易于接受的直接结果,从而帮助学生从深层次理解数学中的种种概念,达到更好的教学效果。

2.利用数形结合思想提高学生的计算能力数学计算是数学教学的核心内容,也是学生数学综合素质的直接体现,而且学生的计算能力直接决定了学生日后数学发展的情况,很多十分伟大而杰出的数学家都具有极强的基础计算能力甚至是口算、心算能力,可见计算对于数学的重要性。

数形结合思想在数学教学中的运用论文

数形结合思想在数学教学中的运用论文

数形结合思想在数学教学中的运用论文摘要:数形结合思想是指在数学教学中,通过将抽象的数学概念与具体的图形结合起来,以图形化的方式呈现数学问题,从而帮助学生理解和解决问题。

本文从数形结合思想的原理和影响、在数学教学中的具体运用等方面进行探讨,并通过实例讲述了数形结合思想在数学教学中的具体应用。

关键词:数形结合思想,数学教学,图形化,解决问题一、引言数学是一门抽象的学科,对于学生来说,往往难以理解和应用其中的概念和原理。

因此,在数学教学中运用数形结合思想,将抽象的概念与具体的图形相结合,可以帮助学生更好地理解和记忆数学知识,并能够运用数学知识解决问题。

二、数形结合思想的原理和影响1.数形结合思想的原理数形结合思想的原理是通过将抽象的数学概念与具体的图形结合起来,使数学问题变得直观可见,从而更好地理解数学概念和解决问题。

通过图形化的方式,可以使学生对数学问题产生直观感受,并能够从直观角度思考和分析问题,提高解题能力。

2.数形结合思想的影响数形结合思想在数学教学中的应用具有重要影响力。

首先,它可以提高学生对数学概念的理解和记忆能力。

通过将抽象的数学概念转化为具体的图形,可以使学生更加深入地理解和记忆数学知识。

其次,数形结合思想可以提高学生的问题解决能力。

通过图形化的方式呈现问题,可以帮助学生更好地分析和解决问题,培养学生的逻辑思维和推理能力。

三、数形结合思想在数学教学中的具体运用1.数学概念的图形化呈现在数学教学中,可以通过绘图等方式将抽象的数学概念转化为具体的图形,使学生更加直观地理解和记忆数学知识。

例如,在教授几何知识时,可以通过绘制图形来讲解和解决几何问题,帮助学生理解和记忆各种几何概念和性质。

2.问题的图形化分析在解决数学问题时,可以通过绘制图形的方式来进行问题分析和解答。

例如,在解决代数方程时,可以通过绘制函数图像来观察函数的性质和方程的解决方式,帮助学生更好地理解和解决方程问题。

3.数学实验和模拟通过数学实验和模拟的方式,可以将数学问题转化为具体的图形或实际操作,使学生通过实际操作来理解和解决问题。

中学数学数形结合思想论文

中学数学数形结合思想论文

浅议中学数学中的数形结合思想数形结合是中学数学重要的基本思想方法之一,是数学的本质特征.在解决数学问题时,将抽象的数学语言同直观的图形相结合,实现抽象的概念与具体形象的联系和转化,使数与形的信息相互渗透,可以开拓我们的解题思路,使许多数学问题简单化.新教材打破了原来的代数、几何分家的现象,不仅从形式上把代数、几何统一编排,而且在内容的处理上也提出明确的要求,在很大程度上也体现了数形结合的思想.教师要充分利用教材,着力培养学生形成数形结合的思维.一、应用数形结合思想应注意的几个问题数与形是中学数学研究的两类基本对象,相互独立,又互相渗透.尤其在坐标系建立以后数与形的结合更加紧密,而且在数学应用中若就数而论,缺乏直观性,若就形而论缺乏严密性,当二者结合往往可优势互补,收到事半功倍的效果.(1)要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;(2)要恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;(3)要正确确定参数取值范围的作用.二、数形结合在中学数学中的主要应用数形结合思想贯穿于高中数学的始终,它是数学思想方法的核心,中学数学中的多项内容都用到数形结合,教师要引导学生对此加以灵活应用.1在新课标必修1的《集合》中,对于集合的各种运算和关系,如果能借助韦恩图,便能使问题直观、具体,从而更好的解决问题.例1有48名学生,每人至少参加一个活动小组,参加数理化小组的人数分别为28,25,15,同时参加数理小组的8人,同时参加数化小组的6人,同时参加理化小组的7人,问同时参加数理化小组的有多少人?2函数是高中数学的主要内容,它在高中数学中的地位和作用毋庸言表,在这章,数形结合思想的应用尤为广泛.利用二次函数图像解二次方程、二次不等式,有关指数函数、对数函数单调性应用,方程和不等式问题等都需结合两类函数的图像;近几年加大对三角函数图像的考查,顺利解决这类问题最主要就是看识图画图能力.如一些数值大小的比较,我们可转化为对应函数的函数值,利用它们的图像的直观性进行比较.例2试判断032,log203,203三个数之间的大小顺序.分析这三个数我们可以看成三个函数:y1=x2,y2=log2x,y3=2x,在x=03时,所对应的函数值.在同一坐标系内作出这三个函数的图像(如图),从图像可以直观地看出当x=03时,所对应的三个点p1,p2,p3的位置,从而可得出结论:203>032>log203.3向量的加法、减法可以通过平行四边形法则解决,由此很多向量问题可以转化为几何问题,借助几何图形快速解决.4等差数列、等比数列都可以看做关于n的函数,特别是等差数列.通项公式an是关于n的一次函数,前n项和sn是关于n缺常数项的二次函数,在解决等差数列中的最值问题时尤为好用.5解决这类问题首先要画图定位.华罗庚曾指出:“三角与解析几何有极多的数形结合处.”可见数形结合思想在这章的重要性.三、如何在课堂教学中渗透数形结合思想1数学思想方法的内容相当丰富,任何一种数学知识的讲解及数学思想的渗透都要注意学生的接受能力,认真钻研课标和教材,结合学生实际,配备不同的例题,调动全体学生的学习积极性,由易到难,由浅入深,渗透数形结合这一数学思想.2数学概念、公式等知识都明显地写在教材中,是有形的,而数学思想却隐含在数学知识体系里,是无形的,并且不成系统地分散于教材各章节中.因此,作为教师首先要更新观念,从认识和思想上不断提高在数学课堂教学中渗透数学思想方法的重要性,把掌握数学知识和渗透数学思想方法同时纳入教学目标,把数学思想方法的渗透要求融入教学设计中.其次要深入钻研教材,努力挖掘教材中可以进行数形结合思想方法渗透的各种因素,对于可以应用数形结合的每一章每一节,都要考虑如何结合具体内容进行这一思想的渗透.同时要让学生明白数形结合这一数学思想的重要性,在学习过程中提高自我学习的意识.3思想使学生形成数形结合的数学思想,必须经过循序渐进和反复训练,才能使学生真正地有所领悟和掌握.教师的提炼和概括是十分重要的,教师还要有意识地培养学生自我提炼、揣摩、概括数学思想方法的能力,还应在适当的时候进行“画龙点睛”式地总结,这样才能把数学思想方法的渗透落在实处.。

小议数形结合思想论文

小议数形结合思想论文

小议数形结合思想在中学数学教学中,培养学生的数学能力是最重要的目的,而“培养思维品质是发展智力与能力的突破口”,“学生数学能力的差异,通过数学思维的深刻性、灵活性和敏捷性等思维品质来体现”,“思维的深刻性是一切思维品质的基础”.数形结合有利于提高思维的深刻性,因此在中学数学教学中,数形结合不应仅仅作为一种解题方法,而应作为一种基本的、重要的数学思想,作为数学知识的精髓,作为将知识转化为能力的“桥梁”来学习和研究.我们要从“形”与“数”的结合上做好教材分析,揭示数学问题的实质.例如,函数是中学数学最重要的内容之一,这部分的内容也比较适合采用数形结合的方法来组织教学.对于函数的概念和性质,除正面讲清用数量关系给出的定义外,还要借助于图形直观性的一面,用不同的语言(数的语言、形的语言:开始介绍集合——可用韦恩图表示集合间的关系“交”、“并”、“补”;定义域和值域概念及其表示——通过不等式(组)的解,引用区间、线段,用数轴描写实数集,用数轴的全体或部分来表示定义域和值域;函数关系与图象——用平面点集(有序对)来描写、揭示函数关系(对应法则),而且用这个平面点集组成的曲线的、来描写函数的性质;奇偶性——关于点(原点o)或坐标轴对称,有界性——是否存在平行线或直线;周期性——图象能否有规律的重复出现或叠合;互为反函数的函数——关于y=x对称的图象,等等)、从不同的角度、以不同的形式来认识函数问题的本质.可见,在代数的核心内容函数的教学中,我们要做好这种“数”与“形”的关系的揭示、转化与统一——这正是函数知识的精髓,这样学生就能抓住函数知识的本质,抓住知识的内部联系,从而有助于系统地理解、掌握和运用函数知识去解决相关问题,这正是思维的深刻性与灵活性的体现,也体现了数形结合思想是将知识转化为能力的“桥梁”.数形结合不仅能够帮助我们分析和处理教材,而且它在解题教学和解题实践中更是大显身手.作为解题方法的数形结合应包含两方面的内容:一方面,对于“形”的问题,引入坐标系或寻找其数量关系式,用“数”的分析加以解决;另一方面,对于数量关系间的关系问题,分析其几何意义,找出数形结合其所反映的“形”之间的关系,借助形的直观来解决,二者都是数形结合.下面就六个方面来具体介绍数形结合思想在解题实践中的应用.(一)运用数形结合思想解决函数问题借助于图象研究函数的性质,是一种常用的解题方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法,运用这种思想有助于理解题意,探求解题思路,检验解题结果.例:设方程log3x+x-3=0的根为x1,方程3x+x-3=0的根为x2,求x1+x2的值.y3 bpay=x o 3 x分析:由题设的两个方程很难解出x1,x2的值,如图所示,若单独使用图象法将第一个方程写成log3x=3-x,再求函数y=log3x与y=3-x图象的交点,只能求出近似值,但如果考虑到y=log3x与y=3x关于y=x对称,可得如下解法解:所给两方程可变形为log3x=3-x,3x=3-x,第一个方程的根是x1,就是y=log3x与y=3-x图象的交点a的横坐标;第二个方程的是x2就是y=3x与y=3-x图象交点b的横坐标,设y=x与y=3-x的交点为p.因为直线y=x垂直于y=3-x,并且y=log3与y=3x的图象关于y=x对称,所以a与b关于点p对称,易求,从而有,所以x1+x2=3(二)运用数形结合思想解决三角问题有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般先将函数化成基本三角函数的形式,借助于单位圆后三角函数的图象来处理,数形结合思想是处理三角函数问题的重要思想方法.例:已知0分析:对于本题中的3个比较量,可用作差法比较sina(三)运用数形结合思想解决不等式问题数形结合处理不等式问题即从题目的条件与结论出发,着重分析其几何意义,从图形上找出解题的思路.运用数形结合解题主要有两个途径:(1)转化:即将代数式转化为几何式.(2)构造:即构造图形或函数.例:若0≤x2+ax+5≤4恰有一个解,求常数a.yy=4o x解在同一直角坐标系内作出y=4图象及y=x2+ax+5的草图,如图所示.如果抛物线的顶点在直线y=4的下方,则原不等式有无数个解;如果抛物线的顶点在y=4的上方y=4,则原不等式无解.因此,当且仅当抛物线的顶点在y=4上时,原不等式才有一解.易知抛物线顶点的纵坐标为,从而应有 .∴a=±2,这时对应的不等式的解为x=(四)运用数形结合思想处理方程问题用数形结合思想处理方程问题,即把方程根的问题看成两个函数图象的交点问题,借助函数图象采用直观分析的方法,通过研究函数图象的交点问题来研究方程根的问题.例:k为何值时,方程7x2-(k+b)x+k2-k=2的两根分别在(0,1)和(1,2)内.分析:本题若用韦达定理来做,虽然也能得出结果,但过程会比较麻烦,要是结合函数图形来做就会简单许多,且过程也比较明了.解:设f(x)=7x2-(k+b)x+k2-k-2此函数图象是开口向上的的抛物线,根据图象得即即-20,s130,s13<0.∴sn=g(n)图象如图所示,抛物线顶点的横坐标n0满足12<2n0<13,∴6<n0<6.5,由于n0∈n*,离它最近的整数为6,既s6最大.(六)运用数形结合思想研究解析几何问题解析几何的基本思想就是数形结合,在解题中要善于将数形结合的思想方法运用于对圆锥曲线的性质和相互关系的研究中.例:试求出过点的直线,使它与抛物线y=4x2仅有一个公共点.yo x解设过(0.1)的直线y=kx+1,把它与y=4x2联立代入得x的二次方程k2x2+(2k-4)+1=0,令其判别式δ=0后,出k=1,得出直线y=x+1.这里忽视一个限制条件:二次项系数不为0.而且对直线与曲线的相切和只有一个交点这两个概念混为一谈.又因在使用斜截式方程时,默认斜率存在或倾斜角不为90°,因而使解法不够完整,所以我们必须注意k的两个临界值:k=0或k不存在(k→∞)时的极端情形,经过实际验证得到满足问题的另外两个解:直线y=1与x=0.在解题教学中要将数形结合思想贯穿于始终,要不断启发学生去尝试,去“形”中觅“数”,“数”中思“形”,通过“以数解形”或“以形助数”,兼取数的严谨与形的直观两方面的长处,使复杂问题简单化,抽象问题具体化,开拓解题思路,训练解题技能积累解题经验,享受使用数形结合思想带来的喜悦。

浅谈初中数学教学中的数形结合思想论文

浅谈初中数学教学中的数形结合思想论文

浅谈初中数学教学中的数形结合思想论文浅谈初中数学教学中的数形结合思想论文【摘要】数形结合是把握数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合。

它将“静态”为“动态”,变“无形”为“有形”。

它一方面是解题的过程,又是学生形象思维与抽象思维协同运用互相促进,共同发展的过程,对提高学生的观察能力和思维能力是非常有帮助的。

【关键词】数形结合初中数学教学数形结合思想数形结合是运用数与形的相互关系来解决问题的思想方法。

其中“数”在初中阶段,主要包括实数和代数对象及其关系,它们是比较抽象的。

而其中的“形”主要是指几何图形,它们是比较形象的。

通过数形结合,利用数和形的各自优点,将抽象的数学语言与直观的图形相结合,使问题简单化、特殊化、具体化,从而使问题轻松得到解决。

一、数形结合思想的渗透过程(一)有效导入数形结合思维在初中数学课程教学的过程中,如何充分运用数形结合思维,将数形结合的作用有效发挥出来,最主要的就是在教学过程中巧妙导入数形结合思维。

许多学生对数形结合的概念不够了解,因此教师在教学时,要自然巧妙导入数形结合思维.如在对正负数加以讲解时,教师可以先画出数轴,举出相应的数字让学生在数轴上进行寻找,从而使学生对数轴上正负数以及零有一个清晰的认知。

另外,教师还可以利用数轴,让学生对正负数变化、象限以及绝对值有具体的了解,从而使学生拥有较为扎实的数学基础。

(二)有效展开数形结合思维一般统计的数学概念是初中数学学习中的重点和难点,学生在学习的过程中往往会存在一些问题。

因此教师在对此进行讲解时,可以有效引入数形结合思维,从而来简化求解过程.如在讲解统计的相关知识时,教师可以先画出相应的坐标,一般坐标上的数字即是离散的点,为了有效算出这些离散点的中位数、平均数以及众数,对数据波动的大小产生的方差以及标准差,教师可以充分利用数形结合,让学生对相关知识有一个清楚的认知。

(三)有效升华数形结合思维一般初中数学教学过程中,函数是教学难点,教师在对函数课程进行讲解时,可以巧妙运用数形结合思维,从而提高教学效率。

数的奥秘形来体现--数形结合思想 论文

数的奥秘形来体现--数形结合思想 论文

数的奥秘形来体现——数形结合思想摘要:数形结合思想在数学学习中贯穿了整个数学学习的阶段,数与形结合之间存在一种相辅相成的关系,二者辩证统一,联系紧密、不可分割。

数形结合思想作为一种重要的思想方式,在实际学习过程当中能够帮助学生更好地理解掌握数学思维模式,提高学生的数学素质和能力,同时也为学生树立终身学习的思想奠定了良好的基础。

关键词:数形结合,小学数学,思维,小学生引言:低年级的小学生没有很好的抽象思维能力,对于低龄的孩子认识事物最简单的方式是直观的方式进行认识。

数学问题具有多样化,解决数学问题的方法也应该随机应变。

数学学习的思想方法有很多种,但是,数形结合思想在学生学习数学中具有重要的作用,数形结合可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。

它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。

数形结合的思想贯穿整个数学学习阶段,从小学一年级刚开始学习的认识数字,结合图形的数量认识数字,以及小学阶段的几何和数学应用题的学习,到中学阶段的函数的学习中都体现了数学结合的思想。

一、数形结合思想的概述华罗庚曾经说过:“数缺形时少直观,形少数时难入微。

〃这就强调了把数与形结合起来考虑的重要性。

数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。

数形结合思想既涉及“数〃,又涉及“形”,是对数学问题进行研究与解决的主要方法。

在实际运用中要根据学生实际情况、教学内容,实现数与形的融合,帮助学生更好地认知数学脉络。

运用数形结合思想存在两种现象:一方面,以数解形,是运用数的精准性对形进行探究的过程;另一方面,以形助数,是借助形的直观化,对数进行说明的研究过程。

数形结合是研究数学和数学教学中的重要思维原则之一,其解法跨越了数学各分科知识的界限.数形结合是沟通数形之间的联系,并通过这种联系所产生的感知或认知的作用,形成和谐完美的数学概念,寻找问题解决途径的一种有效方法,数形结合是直观与抽象,感知与思维的结合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数形结合思想论文直觉思维论文:
数形结合思想探析
摘要:试就数形结合思想在数学中的应用做一综述,对于如何培养学生的数形结合意识,加强数形结合思想训练的方法做一总结和建议,体现数形结合思想在数学中的基础性和重要性。

关键词:数形结合;直觉思维;性别差异;数学思想;意识培养
1 数形结合思想在中学数学中的重要性
数形结合思想是中学数学中的一种重要的数学思想。

所谓数形结合是将数学中抽象的数学语言,数量关系与具体直观的图像结合起来,利用抽象思维与形象思维的有机结合,借助形的具体明确来反应数量之间的关系,借助数来具体描述形的本质内涵。

用这种思想来解决数学问题往往可以使复杂的问题简单化,抽象问题具体化。

数形结合思想既能发挥代数的优势,又可以充分利用图形的直观性,从多个角度探索问题,对思维能力的发展大有稗益。

我国著名的数学家华罗庚曾写下这样一首诗,形象生动的阐述了数形结合的意义。

“数与形,本是相倚依,焉能分作两边飞。

数缺形时少直觉,形缺数时难入微。

数形结合百般好,隔裂分家万事非。

切莫忘,几何代数统一体,永远联系,切莫分离。

”可见,数与形二者相辅相成,缺一不可。

数的抽象,形的具体,两者珠联璧合,对于数学解题将有出其不意的效果。

2 直觉思维对学习数形结合思想的影响
在心理学的意义上对于直觉思维是这样定义的:所谓直觉思维就是人脑对于突然出现在面前的事物、现象、问题及其关系的一种迅速识别,敏锐而深入的洞察,直接的本质理解和综合的整体判断。

直觉思维是贯穿于日常生活学习中,具有迅捷性、直接性、本能意识等特点。

伊恩•斯图加特曾经说过这样两句话:“数学的全部力量就在于直觉和严格性的巧妙的结合在一起,受控制的精神和富有灵感的逻辑”,“直觉是真正的数学家赖以生存的东西。

”而事实也证明了直觉思维对数学学习具有巨大的影响:欧几里德的欧式几何中的五个公设均基于直觉思维。

可见,直觉思维是学生学习数学的必要条件。

利用数形结合思想方法解题时,能够充分调动了学生的直觉思维和逻辑思维。

学生审题结束后,要根据题目中的已知条件对问题的大致方向,所牵涉的知识要点,相关知识结构,利用直觉思维进行最直接的判断,即判断是否可以利用数形结合思想解题。

简而言之,直觉思维是能否利用数形结合思想解题的最初判断。

而我国的数学教育一直侧重于学生逻辑思维能力的培养,强调的是对数学概念的明晰度,逻辑推理的严密度,而对学生直觉思维的培养甚少。

因而,直觉思维对于数形结合思想的运用在一定程度上存在影响。

直觉思维越活跃往往可以将数形结合思想掌握的更牢固运用的更灵活。

3 性别差异对学习数形结合思想的影响
在数学的学习上,男性善于辨别和判断事物的种类,他们习惯着眼于全局,从整体考虑处理问题,并且具有较强的空间想象能力,对于形
的感知较强。

女生则擅长模仿,注重细节,对于基础知识和技能的掌握优于男性。

但是,随着年级的上升,数学内容逐步深化,难度逐步提高,对学生数学能力的要求也日益增加,与此同时女生对于数学的学习就不是很轻松了,而男生的优势却日益明显了。

可见,性别对数学的学习有一定影响。

对于数形结合思想的学习和运用也是如此,男生对于它的运用较女生而言更灵活一些。

之所以出现这样的问题是因为数形结合思想的学习对于学生而言是一个在对事物认识上的一个转折。

以往的数学题是单纯的对于数或形这样的单个个体而展开的,而数形结合思想却同时包含了“数”和“形”两个对象,将原本看上去无关的代数和几何融合在一起,甚至是将其融会贯通。

这就给学生的学习加大了难度。

研究对象可由“数”转变为“形”,也可由“形”转变为“数”,学生要改变以往单一的处理符号信息或者是图形信息的操作,要将两种信息同时进行操作。

而男性对于形的认识高于女性,对于问题大的整体把握也优于女性。

因此,性别的差异就造成了对于数形结合思想运用的差异性。

4 培养学生对“数形结合”的兴趣
数学家哈代曾说过:“数学就像画家的颜色或者诗人的文字一样,一定会和谐地组合在一起。

美感是首要的试金石,丑陋的数学在世界上是站不住脚的。

”数学美感是数学美在生活和情感等方面的体现,如果在数学教学中揭示数形结合思想的同时,也能够使学生享受到美感,那么就能激发学生学习和运用数形结合思想的兴趣,从而大大地提高
他们的学习效果。

数形结合思想在数学的学习中是较为常用的,但是很大一部分学生对此存在误解,认为数形结合思想是非常枯燥和抽象的,在数学学习过程中,学生往往陷入只知数,不看形,将数与形分开,只死记公式应用,不理解公式推导过程,数形脱节等误区。

因而在学习和运用数形结合思想的时候会存在反感心理。

其实,数形结合思想不仅有教学功能,它还拥有美育功能。

教师在教学中应当从数形结合的本质出发,在数学教学中改革教学方法,选择有数学美典型特征的知识进行教学,从学生熟悉的数学内容开始,多方面结合,增强学生对数形结合思想的美感体验,选择恰当的时机和环境开展教学。

例如黄金分割在生活中的运用,举世闻名的完美建筑古希腊帕提依神庙,建筑师们发现由于高和宽的比是0.618,按照这样的比例进行建筑设计,建筑物会更加壮观舒适。

古希腊维纳斯女塑像故意延长双腿,使之与身高的比值为0.618,从而创造艺术美。

音乐家发现,二胡演奏中,“千金”分弦的比符合0.618∶1时,演奏出的音调更为和谐和悦耳。

教师可以再教学中引导学生体会数形结合的美感,增强他们对数形结合思想的兴趣,从而更加积极地学习和运用数形结合思想。

5 充分挖掘教学中数形结合思想的体现
现行数学课程的内容,基本上是根据学生的认知水平和接受能力相适应的。

课程内容强调学生的数学活动,发展学生的数感、符号感、空间观念、统计观念以及应用意识和能力。

由于数形结合思想是一种深层的数学知识,它隐含于数学教材之中,教学的首要任务就在于引导学生充分挖掘教材中的数形结合思想,而挖掘过程采用的主要方法是归纳和提炼。

教师在教学过程中根据数学知识编排课程内容时,要注意根据学生的认知规律,渗透一些数学结合的初步思想。

根据教学实际情况引导说明,抓住数形结合的思想引导学生学习,既借助图形使数量更加直观形象,又借助代数方法研究图形特征。

这样,既有利于数形结合思想的阐述,又比较符合学生的心理发展规律和认识规律。

这样,有利于提高学生学习数学的兴趣,开拓学生的解题思路、活跃课堂气氛、发展学生的形象思维能力、空间想像能力等。

6 加强数形结合思想训练
当学生弄清楚了数形结合思想以后,教师在数学基础知识教学和及解题指导中,应尽量体现数形结合思想方法的运用,使其达到自觉、自由的熟练运用。

在进一步的运用过程中继续加深对数形结合思想的理解。

这个阶段要注意设置阶梯,有明显的层次感,循序渐进,由浅入深。

数形结合思想方的运用必须恰当,有时貌似数与形没有联系,实则不然,有时需要先转化再用数形结合思想;有时则是一开始研究问题就需要运用数形结合思想。

掌握其间的分寸,正是加强数形结合思想训练的目的。

7 结论
数学是一门逻辑思维很强的科学,在解答数学题是,同样存在着现在所谓的“性价比”之说。

“性价比高”即在解答问题时用最小的“代价”取得尽可能大的成果。

数学思想方法就是打开“高性价比”之门的钥匙,数形结合思想作为数学思想方法中重要的一员,也具有重要的地位和作用。

因而,数形结合思想在中学数学中是比较重要的。

数形结合思想在数学中的应用非常广泛,在集合,不等式,函数,平面向量,解析几何,不定积分的应用等多方面都有所涉及。

可见,数形结合思想是不可或缺的一门知识。

学生要从单纯的学习数学知识上升至对于数学思想的认识,这样才能真正体会到数学“美”的真谛。

数形结合思想是解答数学试题的的一种常用方法与技巧,特别是在解决一些疑难问题中有奇特功效,往往会给人们带来一种“柳暗花明又一村”的感觉。

在教学中,教师要注意及时总结数形结合思想的特点,渗透数形结合意识,培养学生的直觉思维。

根据男女性别差异对于数学学习的影响,因材施教,强化其对于数形结合思想的理解,以提高利用数形结合思想方法解题的能力。

参考文献
[1]李士著.PME:数学教育心理[M].上海:华东师范大学出版社,2001:235.
[2]喻平.数学教育学引导[M].桂林:广西师范大学出版社,1998.
[3]M. Lee Manning,Gender differences in young
adolescents' mathematics and science achievement [J]. Commission on Mathematical Instruction. Education,2004,(14):18-26.
[4]Thomas Raizen, Gender Differences in Mathematics.[J]. Ann Gallagher James Kanfman,2005,(16):24-28.。

相关文档
最新文档