多元凸函数的性质及其应用

合集下载

凸函数的性质与应用

凸函数的性质与应用

凸函数的性质与应用凸函数是一种特殊的函数,它的图像在任何一点处都是凸的,也就是说,它的图像在任何一点处都是向上凸的。

凸函数的性质和应用非常广泛,它们在数学、统计学、经济学、机器学习等领域都有着重要的应用。

首先,凸函数的性质可以用来求解最优化问题。

最优化问题是指在给定条件下,求解使目标函数取得最大值或最小值的变量值。

凸函数的性质可以用来求解最优化问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解最优化问题。

其次,凸函数的性质可以用来求解线性规划问题。

线性规划问题是指在给定条件下,求解使目标函数取得最大值或最小值的变量值,而且变量值必须满足一组线性约束条件。

凸函数的性质可以用来求解线性规划问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解线性规划问题。

此外,凸函数的性质还可以用来求解最小二乘问题。

最小二乘问题是指在给定条件下,求解使目标函数取得最小值的变量值,而且变量值必须满足一组线性约束条件。

凸函数的性质可以用来求解最小二乘问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解最小二乘问题。

最后,凸函数的性质还可以用来求解机器学习问题。

机器学习是一种人工智能技术,它可以自动从数据中学习规律,并做出预测。

凸函数的性质可以用来求解机器学习问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解机器学习问题。

总之,凸函数的性质和应用非常广泛,它们在数学、统计学、经济学、机器学习等领域都有着重要的应用。

凸函数的性质可以用来求解最优化问题、线性规划问题、最小二乘问题和机器学习问题,从而为科学研究和实际应用提供了重要的理论支持。

多元凸函数判据

多元凸函数判据

多元凸函数判据是数学中的一个重要概念,它在优化理论、机器学习等领域有着广泛的应用。

下面我将简要介绍多元凸函数判据的基本概念和性质。

首先,我们需要了解什么是多元函数。

在n个变量中的实值函数就是n元函数。

在数学上,多元函数是一个集合,其中的元素是一个二元有序数组,代表一个变量和该变量对应的函数值。

凸函数是一种特殊的函数,它在定义域的某个子集上是凸的。

对于多元函数,如果它在定义域的某个子集上的所有点处的导数都存在,且满足一定的条件(如对所有的点都成立),则这个多元函数被称为凸函数。

多元凸函数判据是一种判断多元函数是否为凸函数的准则。

它的基本思想是利用函数的几何性质来判断函数的导数性质。

在多元函数的几何学习中,我们知道函数的局部性态常常反映了全局的性质,因此可以通过研究局部性质来判断全局性质。

多元凸函数判据的主要内容包括:1. 定义域和值域:多元凸函数的定义域是一个凸集,值域是一个凸集。

这意味着函数的定义域和值域都满足一定的凸性条件。

2. 梯度:多元函数的梯度是一个向量场,它描述了函数在某一点处的变化趋势。

如果一个多元函数的梯度在某个子集上是存在的,且具有某些特定的性质(如线性或恒等性),则这个多元函数被称为是可微分的。

3. 拉格朗日函数:在多元函数中,拉格朗日函数是一个非常重要的工具。

它可以用来表示多元函数的泛函关系,并且可以借助它来推导函数的性质。

综上所述,多元凸函数判据是数学中的一个重要概念,它提供了一种判断多元函数是否为凸函数的简便方法。

通过定义域、梯度、拉格朗日函数等概念和性质的研究,我们可以更深入地了解多元函数的性质,为解决实际问题提供更有价值的工具和方法。

例谈凸函数的性质及应用

例谈凸函数的性质及应用

例谈凸函数的性质及应用江苏省盐都县龙冈中学吕成荣(224011)随着新高考模式的确定,高考命题将更加依据课程标准而又不拘泥于课程标准,在知识边缘处命题将会不断出现,在今年高考北京卷(第12题)中就涉及到凸函数理论,现行教材中没有阐明凸函数理论,本文通过具体的例子进行简要的论述。

一、凸函数的定义1、设f(x)是定义在区间D上的函数,若对于任何x1、x2∈D 和实数λ∈(0,1),有f[λx1+(1-λ)x2]≥λf(x1)+(1-λ)f(x2),则称f(x)是D上的凸函数。

(如图1)2、若-f(x)是区间D上的凸函数,则称f(x)是D上的凹函数(如图2)。

3、线性函数既是凸函数,也是凹函数。

图1 凸函数图2 凹函数h1=f[λx1+(1-λ)x2],h2=λf(x1)+(1-λ)f(x2)现行教材中所涉及的一次函数、二次函数、指数、对数函数、三角函数等都存在凸函数,掌握凸函数理论解题有时很容易,反之茫然。

例1:(2002高考北京卷)如图所示,f i (x )(i=1, 2, 3, 4)是定义在[0,1]上的四个函数,其中满足性质:“[0,1]中任意的x 1和x 2,任意λ∈[0,1],f[λx 1+(1-λ)x 2]≤λf(x 1)+(1-λ)f(x 2)恒成立”的只有( )A f 1(x), f 3(x )B f 2(x)C f 2(x),f 3(x)D f 4(x)分析:由于x 1∈[0,1],x 2∈[0,1],λ∈[0,1],设x 1=x 2 = 21, λ=21,代入题目所给的不等式,则f[21x 1+21x 2] ≤21f(x 1)+ 21f(x 2) ,即 f(221x x ) ≤ 21[f(x 1) + f(x 2)],当且仅当x 1 = x 2时等号成立。

上式与凸函数的定义②、③相同,即凹的,而y = ax+b (a ≠0) ,也可看成凸函数或凹函数,故选(A )。

例2:(94全国文)已知函数f(x) = log a x (a > 0且 a ≠1 ,x ∈R +),若x 1, x 2∈R +,判断21[f(x 1) + f(x 2)]与f(221x x +)的大小,并加以证明。

凸函数的性质和应用

凸函数的性质和应用
万方数据

由定理2,可得F(茹):丛三L盟是单调递增的 石一再O
所以,+(髫)在(口,6)上是单调递增的。z E D
广+(茹)在(n,6)上的不连续点有至多可数个.即除了
至多可数个点外,处处存在.
所以.,X篁)=厂+(茗)=广一(茗)
XE D
由于当Z E Dl时,+(£)是单调递增
所以以茹)也是单调递增
故_r为,=(O,+*)上的凹函数。
h半≥÷㈨z, 根据定理8的反向不等式取A。=÷(1=1,2,^,n)

,l
而s半 又因以x)=znx是单调递增函数,所以又得不等式
再作g(髫):一zn。 显然g(x)={>o
故有,g(石)为,=(o,+*)上的凸函数.取Al=÷ ,●
故有,一饥卫—兰—i 上+上+人+上 s一上[h上+^+jn
2005年第5期
沙洋师范高等专科学校学报
Journal of Shayang Teachers College
No.5 2005
定理8可得詹森不等式成立。)
3、凸函数的应用(詹森不等式的应用)
s而s坐半 例:证明: 一
[蔓丛丛]告
其中石i>0(i=1,2,工,n)
证明:作,(石):zn菩(;>o),由于厂(石):一丢<o 茗
[3]华东师范大学数学系.数学分析[M].高等教育
出版社.1999.
[4]毛羽辉.数学分析选论[M].科学出版社,1991.
[5]列玉建,傅沛仁.数学分析讲义(上册第三版)
[M].高等教育出版社,1981. [6]胡长松.实变函数[M].科学出版社,2002.
(责任编辑:闫涛涛)
Nature and Application of ConVex Function

凸函数的性质及其应用 毕业论文

凸函数的性质及其应用  毕业论文

凸函数的性质及其应用摘要凸函数是一类重要的函数,在数学规划中有着广泛的应用,本文给出了凸函数的三种等价定义,并讨论了凸函数的有关性质,以及它在不等式方面的相关应用。

[关键词]凸函数等价定义性质应用最优化Nature and Application of Convex FunctionAbstractConvex function is an important function and it has a wide application in mathematic programming. This essay gives three kinds of equal definitions of convex function and discusses some relative nature of it. And it also discusses some relative applications on inequality[Key wards] Convex function The definition of equivalence nature applicationOptimization目录绪论 (1)1凸函数的概念与等价定义 (1)1.1凸函数的概念 (1)1.2凸函数的等价定义 (2)2凸函数的简单性质 (3)3凸函数的判定定理 (5)4关于凸函数的几个重要不等式 (7)4.1Jensen不等式 (7)4.2Hadamard不等式 (10)5 凸函数的应用 (11)5.1 凸函数在证明不等式中的应用 (11)般凸函数和凸集 (13)广义凸函数求极小的问题 (14)5.4广义凸函数求极大的问题 (16)结束语 (19)致谢 (19)参考文献 (20)绪论凸函数是一类非常重要的函数,广泛应用于数学规划,控制论等领域,函数凸性是数学分析中的一个重要概念,它在判定函数的极值、研究函数的图象以及证明不等式诸方面都有广泛的应用.凸分析作为数学的一个比较年轻的分支,是在50年代以后随着数学规划,最优控制理论、数理经济学等应用数学学科的兴起而发展起来的。

凸函数的性质与应用【文献综述】

凸函数的性质与应用【文献综述】

文献综述数学与应用数学凸函数的性质与应用凸函数是数学分析中一类非常重要的函数,它不仅在一些具体学科,如机器人学,模具设计或一些数学分支(如全局优化,运筹学等)中具有重要的应用,在具体的数学学科学习中也有重要的应用.我们在华东师范大学数学系编的数学分析书上册的第六章第五节学习了凸函数的有关定义和性质.在该书中对凸函数的定义叙述为:定义1[1] 设f 为定义在区间I 上的函数,若对I 上的任意两点1x ,2x 和任意实数λ∈(0,1)总有: 1212((1))()(1)()f x x f x f x λλλλ+-≤+-,则称f 为I 上的凸函数.几何形状如下图所示:根据凸函数的定义和相关引理,我们可以得出关于二阶可导凸函数的一个重要的充要条件:定理2[1]设f 为区间I 上的二阶可导函数,则在I 上f 为凸函数的充要条件是: 0)(''≥x f ,I x ∈.从凸函数的定义,图像,充要条件上,我们可以看到凸函数有其本身的特殊性和直观性,而这些性质对于证明某些较复杂的不等式,解答高中里的数学题目均有很大的帮助.国内外现状与研究方向:由于凸函数在数学上的广泛应用,国内外越来越多的学者专注于对凸函数各个方面的研究.首先,在凸函数的众多研究课题当中,对其基本定义和性质的研究最为广泛和普遍.研究的主要内容包括凸函数及对其概念的理解,等价定义,判别法,它的线形性[华东师范大学.数学分析上册(第三版)就对凸函数的概念和定义作了详细的说明].除了对凸函数原有性质的研究之外,对其新性质的研究也使研究者们趋之若鹜.目前越来越多的学者专注于凸函数的若干新性质在求解线性与非线性不等式组和线性规划中的应用,寻找求解线性与非线性不等式组的新方法.其次,在对凸函数的定义和性质有了充分研究的前提下,研究者们更加关注对凸函数的应用的研究.例如研究其与不等式证明有关的下凸函数的性质[邱忠文,刘瑞金.函数的凹凸性及不等式的证明;王新奇.利用函数的凹凸性证明一类三角不等式];利用Jenven不等式证明当 n 取任意自然数时该性质的推广;在不等式中的应用[于靖.利用曲线的凹凸性证明柯西不等式];凸函数与极值,导数的一些关系[裴礼文.数学分析中的典型问题与方法;孙本旺,汪浩.数学分析中的典型例题和方法];判断函数极值点与拐点等应用.凸函数在高中数学中的研究也是一大亮点:由于凸函数是一类象形函数,在高中课程中虽然没有明确引入它的定义和概念,但因其性质具有明显的直观性,可以考查学生的观察能力和知识迁移能力,又可考查函数的各种性质,还能使平淡的题目增色,所以近年来已受高考命题人的青睐.初等函数基本都是凸函数,研究凸函数性质的纵向和横向的发散应用[方良秋.高考题中凸函数的题型及应用].最后,随着凸函数的凸性在数学,物理学,经济学,管理学,最优化理论等领域的广泛应用,对凸函数的凸性的进一步研究已成为众多学者密切关注的一个焦点,而由凸集和凸函数拓展延伸而产生的各类凸集和凸函数的不断出现,不仅极大地丰富了凸分析理论,而且有力地推动了数学科学的发展,特别是对数学规划,控制论,最优化等领域的发展起到巨大的作用,也引起了众多学者的密切关注和极大兴趣[钟伟,周彬林.凸函数的几种不同定义及应用].进展情况:一开始时,凸函数的重要作用被认为是在一些具体学科,如机器人学,模具设计或一些数学分支(如全局优化,运筹学等)中的应用.但随着对凸函数横向和纵向研究的逐渐深入,研究者们越来越意识到凸函数是数学分析中的一个重要概念,它涉及了许多数学命题的讨论证明和应用.例如由重庆师范大学罗超群学者所写的《凸函数在分析中的初探》就详细得探讨了凸函数的线形性和凸函数与极值,倒数的一些关系;由中国科学院计算数学与科学工程计算研究所时贞军学者和曲阜师范大学运筹与管理学院岳丽学者所写的《凸函数的若干新性质及应用》则详细讨论凸函数的性质在求解线性与非线性不等式组和线性规划中的应用,为线性与非线性不等式组,线性规划的求解提供了一种新方法;由井冈山职业技术学院的晏忠红学者所写的《凸函数的应用》则对用凸函数方法和凸函数詹生不等式推证几种重要的不等式作出了讨论;由湖南省汨罗市第二中学的刘正良和宋加文老师则在《凸函数理论及应用策略》中描述了凸函数在初高中数学学科中的具体应用.总之,学者们对凸函数各方面的研究是趋之若鹜,使得凸函数在各方面的应用也越来越深入.存在问题:现阶段关于凸函数主要存在三个方面的问题:(1)在一元微积分的教学里,函数的凹凸性的的概念却往往被忽视.在一些工科类的微积分教材中,对于函数的凹凸性的判断甚至就简单地通过比较函数图像和其切线(或割线)的上下位置关系来描述.(2)对二元凸函数的性质研究较少.(3)对于凸函数的定义和基本性质的介绍比较分散,跨度大.参考文献:[1] 华东师范大学. 数学分析上册(第三版)[M]. 北京:高等教育出版社,2006:119-125.[2] 雷澜.凸函数的性质与不等式证明[N].渝州大学学报,2000,17(4):19-21.[3] 裴礼文. 数学分析中的典型问题与方法[M]. 北京: 高等教育出版社, 2006: 186-191.[4] 卢兴江,金蒙伟. 高等数学竞赛教程[M]. 杭州: 浙江大学出版社, 2010: 20-46.[5] 顾荣. 函数凹凸性定义的探讨[J]. 佳木斯教育学院学报,2010, 102(6): 299.[6] 王庆东,侯海军. R n 中函数凹凸性判定的充要条件[J]. 河北理科教学研究, 2003, 3: 50.[7] 张国坤. 多元函数的凹凸性再探[J], 曲靖师专学报. 1995, 14(6): 29-31.[8] 陈朝晖. 二元函数凹凸性的判别法及最值探讨[J]. 高师理科学刊, 2010, 30(5): 25-28.[9] 白景华. 凸函数的性质、等价定义及应用[J]. 开封大学学报, 2003, 17(2), 69-64.[10] 赵文彼, 栗洪敏. 利用函数的凹凸性推导出一批积分不等式[J]. 工科数学, 1994, 10(4):227-229.[11] 王新奇. 利用函数的凹凸性证明一类三角不等式[J]. 西安文理学院学报(自然科学版), 2005,8(3): 37-40.[12] 于靖. 利用曲线的凹凸性证明柯西不等式[J]. 辽宁师专学报, 2003, 5(2): 2-3.[13] 沈文国. 用泰勒公式研究函数凹凸性的一种拓广[J]. 兰州工业高等专科学校学报, 2001,8(4): 4-8.[14] 普丰山, 李兆强. 连续函数的单调性及凸凹性研究[J]. 河南科学, 2009, 27(8): 896-899.[15] 陈传璋. 数学分析[M]. 北京: 高等教育出版社, 1992:203-205.[16] 时贞军. 无约束优化的超记忆梯度算法[J]. 工程数学学报, 2000, 17(2): 99-104.[17] 孙本旺, 汪浩. 数学分析中的典型例题和方法[M]. 长沙: 湖南科学技术出版社, 1983:246-264.[18] 方良秋.高考题中的凸函数题型及其应用[J].数学教学通讯报,2007,271:38-4.[19] 李碧荣.凸函数及其性质在不等式证明中的应用[N].广西师范学院学报,2004,21(2):93-95.[20] 邱忠文, 刘瑞金. 函数的凹凸性及不等式的证明[J]. 工科数学, 1993, 19(3): 151-154.[21] 陈太道.凸函数判定及其应用[N].临沂师范学院学报,2002,24(3):91-92.[22] 古小敏.对凸函数定义之间等价性的进一步研究[J].重庆工商大学学报(自然科学版),2009,26(2):172-182.。

凸函数的性质及应用(0907142王波波).docx

凸函数的性质及应用(0907142王波波).docx

目录1引言 (2)2凸函数的定义及性质 (2)2.1凸函数的几种不同定义及其关联 (2)2.2凸函数的判定定理及证明 (4)2.3凸函数的性质 (5)3凸函数的应用 (6)3.1詹森不等式及应用 (6)3.2凸函数在微分学的应用 (8)3.3凸函数在积分学的应用 (9)结论 (11)参考文献 (11)凸函数的性质及应用王波波,数学计算机科学学院扌商要:凸函数是高等数学中的一个基本内容,它在证明比较复杂的不等式方面有着重要的作用•在本文中,我们分析总结了凸函数的性质及相关定理•最后用凸函数方法和詹森不等式推证几种重要的不等式,并对某些结论作一些讨论. 关键i司:凸函数;方法;不等式;推论Properties of Convex Function and Its ApplicationWangbobo , College of Mathematic and Computer Science Abstract:Convex function is a basic content of higher maths.lt plays an important role in proving more complex inequality. In this paper,we summarized some properties and theorem of convex function . And finally we proved some important inequality using the method of Convex function and Jensen inequality of convex function and discussed some conclusion.Key words:Convex function; Method; Inequality; Inference1引言在很多数学问题的分析与证明中,我们都需要用到凸函数,例如在数学分析、函数论、泛函分析、黎曼集合、最优化理论等当中•常用的凸函数有两种,一种叫上凸函数,即曲线位于每一点切线的下方或曲线上任意两点间的弧段总在这两点连线上方的函数;另一种叫下凸函数,即曲线位于每一点切线的上方或曲线上任意两点间的弧段总在这两点连线下方的函数。

凸函数的性质及其在不等式证明中的应用

凸函数的性质及其在不等式证明中的应用

凸函数的性质及其在不等式证明中的应用凸函数是数学中一个重要的概念,广泛应用于优化理论、经济学、物理学等领域。

在不等式证明中,凸函数可以帮助我们简化证明过程,并且提供了一些常用的不等式。

1. 定义:对于定义在实数域上的函数f(x),如果对于任意的x1、x2,以及0≤t≤1,都有f(tx1+(1-t)x2)≤tf(x1)+(1-t)f(x2),则称函数f(x)是凸函数。

如果不等式方向反过来,即f(tx1+(1-t)x2)≥tf(x1)+(1-t)f(x2),则称函数f(x)是凹函数。

2.一阶导数判别法:如果函数f(x)在区间(a,b)上二次可导,且f''(x)≥0,则f(x)是凸函数;如果f''(x)≤0,则f(x)是凹函数。

3. Jensen不等式:如果函数f(x)是凸函数,则对于任意的实数x1,x2,…,xn,以及任意的正实数λ1,λ2,…,λn,满足λ1+λ2+…+λn=1,有f(λ1x1+λ2x2+…+λnxn)≤λ1f(x1)+λ2f(x2)+…+λnf(xn)。

在不等式证明中,凸函数可以用来简化证明过程,常用的应用有:1. 平均值不等式:对于任意的正实数x1,x2,…,xn,有(x₁+x₂+⋯+xₙ)/n ≥ √(x₁x₂⋯xₙ)。

这个不等式可以通过使用以函数f(x)=ln(x)为代表的凸函数来证明。

由于ln(x)在定义域(0,+∞)上是凸函数,我们可以使用Jensen不等式来证明平均值不等式。

2. Cauchy-Schwarz不等式:对于任意的实数a1,a2,…,an以及b1,b2,…,bn,有(a₁²+a₂²+⋯+aₙ²)(b₁²+b₂²+⋯+bₙ²) ≥(a₁b₁+a₂b₂+⋯+aₙbₙ)²。

这个不等式也可以通过使用凸函数来证明,常用的方法是构造凸函数f(x)=x²,然后应用Jensen不等式。

凸函数的性质及其应用

凸函数的性质及其应用

摘要高等数学的重点研究对象凸函数是数学学科中的一个最基本的概念。

凸函数的许多良好性质在数学中都有着非常重要的作用。

凸函数在数学,对策论,运筹学,经济学以及最优控制论等学科都有非常广泛的应用,现在已经成为了这些学科的重要理论基础和强有力的工具。

同时,凸函数也有一些局限性,因为在实际的运用中大量的函数并不是凸函数的形式,这给凸函数的运用造成了不便。

为了突破其局限性并加强凸函数在实际中的运用,于是在60年代中期便产生了凸分析。

本文主要是研究凸函数在数学和经济学方面的应用,在数学方面,文主要探究了不等式的证明,看看它与传统方法比较哪个更为简洁;在经济学方面,主要介绍了凸函数的一些新的发展,即最优问题,该问题在投资决策中起到了非常重要的作用;最后简单的介绍了一下经济学中的有关Arrow-pratt风险厌恶度量的知识。

关键词:凸函数;不等式;经济学;最优化问题AbstractConvex function, the main study object of higher mathematics, is one of the most fundamental concepts in mathematics. Many good properties of convex function have a very important role in mathematics. Convex function has a very wide range of applications in mathematics, game theory, operations research, economics and optimal control theory, and now has become the most important theoretical basis and the most powerful tool of these disciplines.Convex function has some limitations at the same time, because large numbers of functions are not convex functions in the practical application, which has caused inconvenience to the use of convex functions. In order to break its limitations and strengthen the use of convex function in practice, convex analysis was produced in the mid 60's.The paper is mainly study the applications of convex function in mathematics and economics. In mathematics, the paper mainly discusses the poof of inequality to see which is more simple compared with the traditional method. In the aspect of economics, the paper mainly introduces some new developments of convex functions, namely, optimal problems, which play an important role in the investment decision. Finally, the paper introduces the related knowledge of the Arrow-pratt risk aversion measure in economics simply.Key words:Convex function;Inequality;Economics;Optimization problem目录摘要 (I)Abstract ......................................................................................................................... I I第1章绪论 (1)第2章预备知识 (3)2.1 凸函数的定义 (3)2.2 凸函数的定理 (6)2.3 凸函数的简单性质 (9)2.4 几种常见的不等式 (10)第3章在数学中的应用 (12)3.1. 初等不等式的证明 (12)3.2 函数不等式的证明 (14)3.3 积分不等式的证明 (15)第4章凸函数在经济学的中应用 (19)4.1 最优化问题 (19)4.1.1 线性规划下的最优化问题 (19)4.1.2 非线性规划下的最优化问题 (21)4.2 Arrow-pratt风险厌恶度量 (26)结论 (28)参考文献 (29)致谢 (30)第1章绪论提起凸函数我们就知道它是一种性质特殊的函数,在初高中阶段我们只是对其性质,及其图像进行了简单的认识。

凸函数的性质及其在不等式证明中的应用

凸函数的性质及其在不等式证明中的应用

凸函数的性质及其在不等式证明中的应用凸函数是一类在数学中非常重要的函数,它具有很多重要的性质,并且在不等式证明中有着广泛的应用。

在本文中,我将介绍凸函数的性质,并给出一些在不等式证明中的具体应用。

一、凸函数的定义:对于定义在区间上的函数,如果对于区间上的任意两个点和以及任意实数,都有那么我们称函数是凸函数。

如果上式中的等号只在时成立,那么我们称函数是严格凸函数。

二、凸函数的性质:1.凸函数的一阶导数是非递减的。

2.凸函数的二阶导数是非负的。

3.函数的局部极小值点是凸函数。

4.凸函数的和、乘积以及复合仍然是凸函数。

三、凸函数在不等式证明中的应用:凸函数具有很多重要的性质,这些性质使得凸函数在不等式证明中有着广泛的应用。

下面是一些具体的应用示例:1.利用凸函数判断不等式的方向:考虑不等式f(x)≥g(x)如果函数和是凸函数,且在区间上有,那么可以得到f(x) ≥ g(x) for a ≤ x ≤ b2.利用凸函数证明不等式:有时候,我们需要证明一个不等式,其中和可能是一些函数或者表达式。

如果我们可以找到一个凸函数,使得在区间上有,以及在边界处有,那么我们就可以得到f(x) ≥ g(x) for a ≤ x ≤ b从而证明原始的不等式。

3.利用凸函数确定不等式的最优解:在一些优化问题中,我们需要求解一个约束条件下的最优解。

如果我们可以找到一个凸函数,使得在区间上有,且在边界处有,那么我们就可以确定约束条件的最优解。

4.利用凸函数证明柯西不等式:对于实数集和,柯西不等式指的是(a1b1 + a2b2 + ... + anbn)^2 ≤ (a1^2 + a2^2 + ... +an^2)(b1^2 + b2^2 + ... + bn^2)其中和是任意实数。

我们可以通过构造一些凸函数的性质,如二次函数,来证明柯西不等式。

在不等式证明中,凸函数是一个非常重要的工具。

它的性质使得我们可以利用它来判断不等式的方向,证明不等式,确定不等式的最优解,甚至证明柯西不等式等等。

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用凸函数(Convex function)是数学中的一种特殊函数,具有一些特殊的性质和应用。

在证明不等式中,凸函数的性质可以帮助我们简化问题,提供了一种有效的方法。

1. 定义:对于定义在实数集上的函数f(x),如果对于任意的x1,x2∈R以及0≤t≤1,都有f(tx1+(1-t)x2)≤tf(x1)+(1-t)f(x2),那么f(x)是凸函数。

2.几何意义:凸函数的几何意义可以通过以下两点来理解。

首先,凸函数的图像上的任意两点形成的线段在函数图像的上方或者处于函数图像上。

其次,凸函数的下方的切线都位于函数图像下方。

3.一阶导数条件:对于凸函数来说,一阶导数是单调递增的。

也就是说,如果f(x)是凸函数,则f'(x)≥0。

4.二阶导数条件:凸函数的二阶导数是非负的。

也就是说,如果f(x)是凸函数,则f''(x)≥0。

凸函数在证明不等式中的应用:1.约束条件:凸函数在一些约束条件下的最大值或最小值通常是问题的关键。

我们可以通过构造一个约束函数和一个目标函数,来求解最优化问题。

通常情况下,约束函数是一个凸函数,而目标函数是可以转化为凸函数的。

2.差分近似:在证明不等式过程中,我们常常需要利用凸函数近似一些复杂的函数。

这是因为凸函数在大部分区间上是递增的,所以可以将复杂的问题简化为凸函数问题。

3. Jensen不等式:Jensen不等式是证明凸函数不等式的重要工具。

Jensen不等式指出,如果f(x)是凸函数且x1, x2, ..., xn是任意实数,那么有f(λ1x1+λ2x2+...+λnxn) ≤λ1f(x1)+λ2f(x2)+...+λnf(xn),其中λ1, λ2, ..., λn是非负实数且满足λ1+λ2+...+λn=14. Karamata不等式:Karamata不等式是一种更加广义的不等式,可以被用于证明许多重要的几何不等式。

这个不等式是基于对凸函数定义的一个扩展。

关于多元凸函数性质的探讨

关于多元凸函数性质的探讨

多元凸函数性质是一种常见的数学函数,它可以用来描述多元变量之间的关系。

它可以用来描述多维空间中的函数,以及它们之间的关系。

它在统计学、机器学习、图像处理、数值计算等领域都有广泛的应用。

多元凸函数的性质有很多,首先它是一个多元函数,它的变量可以是实数、向量或矩阵,它的定义域和值域也可以是实数、向量或矩阵。

其次,多元凸函数是凸函数,它的凸性指的是它的值域只有一个最大值。

它的凸性可以用来判断一个函数的取值范围,也可以用来求解函数的极值点。

此外,多元凸函数还具有可微性,即它可以被微分。

它的微分可以用来求解函数的局部极值点,从而求解函数的极值点。

最后,多元凸函数还具有可积性,即它可以被积分。

它的积分可以用来求解函数的积分,从而求解函数的积分值,从而求解函数的取值范围。

以上就是多元凸函数的性质,它的应用非常广泛,可以用来描述多元变量之间的关系,也可以用来求解函数的极值点和积分值,为统计学、机器学习、图像处理、数值计算等领域提供了重要的性质。

凸函数的性质与应用

凸函数的性质与应用

> 设
x
2
,

,
(
4 )
x
,
式 成立
x
十 1
,
我们 证 明
1

n
n
+
(
q
,
4 )
:
,
式 也 成立

,
:
为 I 上 的任 意
+
+
i
个点
q
x
Z
:
,
q
:
为 满足 条 件
`
q
,



q

l
=
1
的任 意
n
个正 实 数
,
不 失 一般 性 设 x
,
<
< … <
x
<
x
、 」。
因为
!
x
<
l


X +
+ r
+
:
丝 吐 +

:
不妨 设 X
)
:
<
利用 拉格朗 日 中值 公 式
,

2`
互) (五 毛 【( 迄
l
2
` (
X
;

l
f(
X :

`
签』

x
,
)
)f

“X
,
」!

“一 ,

`
(五 名k )』
’ “`
c
Z
=
(
x

凸函数的性质及其应用研究论文

凸函数的性质及其应用研究论文

凸函数的性质及其应用研究论文凸函数是数学分析中的一个重要概念,它在许多领域中都有着广泛的应用。

本文将介绍凸函数的性质,并探讨其在实际应用中的研究。

首先,凸函数的定义是:如果函数 f(x)在区间上连续,且对于任意的 a 和 b(a<b),都有 f((1-t)a + tb)≤ (1-t)f(a)+tf(b),那么 f(x)就是在区间上的凸函数。

其中,(1-t)a + tb 是 a 和 b 的凸组合,t 是一个取值在 [0,1] 的实数。

凸函数具有以下几个基本性质:1.一阶导数和二阶导数的关系:凸函数的一阶导数是严格递增的,而二阶导数是非负的。

这个性质可以通过凸函数的定义来证明。

2.凸函数的局部和全局性质:凸函数在局部和全局上都具有单调性和凸性。

如果一个函数在区间上是凸函数,那么它在该区间上的任意子区间也是凸函数。

3.凸函数的支撑超平面:对于凸函数f(x),在任意一点x0处,存在一个超平面,使得这个超平面与函数图像的接触点就是x0。

这个超平面被称为凸函数在x0处的支撑超平面。

凸函数具有许多应用,下面将介绍几个常见的应用:1.最优化问题:在最优化问题中,凸函数经常被用来建立目标函数和约束条件。

利用凸函数的性质,我们可以推导出最优解的存在性、唯一性和求解方法。

2.经济学:在经济学中,凸函数被广泛应用于建模和分析。

例如,成本函数、效用函数和收益函数都可以用凸函数来描述。

3.控制理论:在控制理论中,凸函数被用来建立系统的性能指标和优化问题。

通过优化这些凸函数,我们可以设计出更好的控制方案。

4.图像处理:在图像处理中,凸函数经常被用来作为图像去模糊、图像分割和图像重建等问题的约束条件或目标函数。

5.金融学:在金融学中,凸函数被广泛应用于资产组合优化、风险管理和衰退模型等问题。

通过研究凸函数的性质,我们可以更好地理解和管理金融风险。

综上所述,凸函数具有一些重要的性质,并且在许多领域中都有着广泛的应用。

对凸函数的研究不仅可以推动数学理论的发展,还可以解决各种实际问题。

凸函数的性质

凸函数的性质

凸函数的性质凸函数是数学中非常重要的一类函数,它在经济学、物理学、计算机科学等领域中得到广泛应用。

在本篇文章中,我将会讲解凸函数的性质及其应用。

一、凸函数的定义首先,我们先来回顾一下凸函数的定义。

对于定义在$R^n$上的函数$f(x)$,若对任意$ x_1, x_2∈R^n $,以及$0≤λ≤1$都有$$ f(λx_1+(1−λ)x_2)≤λf(x_1)+(1−λ)f(x_2)$$则称$f(x)$为凸函数。

当$λ \in (0,1)$时,式子称为严格凸。

凸函数的定义很简单,但是它却有着非常重要的数学性质。

二、(一)一阶导数首先,我们来考虑凸函数的一阶导数。

对于一元函数$f(x)$而言,若其在点$x$处可导,则有:$$f(x + h) = f(x) + f'(x)h + o(h)$$其中$o(h)$为比$h$高阶的无穷小,即当$h$趋于0时,$o(h)/h$趋近于0。

因为$f(x)$是凸函数,所以有:$$ \begin{aligned} \frac{f(x + h) - f(x)}{h} &≥ \frac{(1-λ)f(x) + λf(x + h) - f(x)}{λh} \\ &≥ \frac{(1-λ)f(x) + λf(x) + λhf'(x) + o(h) -f(x)}{λh} \\ &= f'(x) + \frac{o(h)}{h} \end{aligned} $$所以有:$$ f'(x+)≥f'(x) $$也就是说,凸函数的导数是单调非减的。

类似地,我们可以证明一阶导数单调非增的函数是凹函数。

(二)二阶导数接下来,我们来考虑凸函数的二阶导数。

对于一元函数$f(x)$而言,若其在$x$处二阶可导,则有:$$f(x+h) = f(x) + f'(x)h + f''(x)\frac{h^2}{2} + o(h^2)$$同时,因为$f(x)$是凸函数,所以有:$$\begin{aligned} f(λx_1+(1-λ)x_2)&≤λf(x_1)+(1-λ)f(x_2) \\f′(λx_1+(1-λ)x_2)&≥ \frac{f(x_2)-f(x_1)}{x_2−x_1} \end{aligned}$$对右边的式子取极限,得到:$$ f''(x_)≥0 $$也就是说,凸函数的二阶导数是非负的。

凸函数的若干性质及应用

凸函数的若干性质及应用

凸函数的若干性质及应用凸函数是数学分析中的重要概念,具有许多重要的性质和广泛的应用。

本文将从性质和应用两个方面来阐述凸函数的相关内容。

一、性质:1. 定义:凸函数的定义是指函数f(x)在定义域的任意两点x1和x2,对于任意的t∈[0,1],都有f(tx1+(1-t)x2)≤tf(x1)+(1-t)f(x2)成立。

这个定义也可以用来判定函数的凹凸性。

2. 凸函数的图像:凸函数的图像总是位于其切线的下方,且曲线向上凸起,在凸函数的图像上取任意两点,连接这两点与曲线的切线,切线位于曲线的下方。

3. 严格凸函数:如果函数f(x)在定义域内的每两个不同的点x1和x2之间,对于任意的t∈(0,1),都有f(tx1+(1-t)x2)<tf(x1)+(1-t)f(x2)成立,则称函数f(x)为严格凸函数。

4. 凸函数的一次导数:凸函数的一次导数是非递减的,也就是说,若函数f(x)是凸函数,则它的导函数f'(x)是非递减的。

二、应用:凸函数在许多领域都有广泛的应用,以下介绍凸函数的一些常见应用:1. 最优化问题:凸函数在最优化问题中具有重要作用,特别是线性规划和凸规划。

通过建立优化问题的目标函数为凸函数,可以快速求得该问题的最优解。

2. 机器学习:在机器学习中,凸函数常用于构建损失函数和约束条件。

通过选择合适的凸函数作为损失函数,可以用来拟合模型和训练模型,如线性回归和逻辑回归等。

3. 经济学:凸函数在微观经济学中具有广泛的应用,特别是在效用函数和供求关系中。

凸函数可以描述消费者偏好和生产者的成本、收益等经济现象,为经济学家提供了重要的理论工具。

4. 几何学:凸函数与凸集有着密切的关系,可以通过凸函数来描述凸集。

凸函数在几何学中被广泛用于解决凸优化问题、凸包问题等凸几何相关的问题。

5. 图像处理:在数字图像处理中,凸函数常用于图像的分割、边缘检测、图像重建等问题。

通过构建合适的凸函数和优化算法,可以提高图像处理的效率和精度。

多元凸函数的性质及其应用

多元凸函数的性质及其应用

多元 凸函数 的性质 及 其应 用
游 煦
( 京 石 油 化 工 学 院 数 理 系 , 京 12 1 ) 北 北 06 7


从 多 元 凸 函数 的定 义 及 文 献 中 已有 的性 质 出发 , 用 方 向导 数 和极 限 等 数 学 工 具 , 利
给 出 了 一 个 判别 多元 函数 凸性 的充 分必 要 条 件 , 一 步 利 用 函数 , x 的 Hes 矩 阵 H ( ( ) 半 正 进 () se , ) 的
北京石 油化 工学 院学 报
J u n l fB in n t u eo r a ej g I si t f o o i t
Pe r — he ia c ol g t o c m c lTe hn o y
Vo . 6 NO 4 1 1 .
De . 0 c 2 08
01 4 7
凸分 析是近几 十年 形成 和发展 起来 的一 个 新数学 分支 。它在 数学 规划 、 控制 论 、 多元统 计
例 1 二元 函数 f x, 一z 一2 + + ( ) z + 为 R 上 的凸 函数 。
因 为
f( ) x, 一
等领域 都 有 广 泛 的应 用 。文 献 [ —] 出 了 一 13 给 些 判别 多元 函数 凸性 的 充分 必 要 条件 , 是 这 但
_(X + ( 一 X ) t ) ( 一 f x ) 厂t 1 1 ) 2 ≤ f( 1 + 1 ) ( 2 ,
任取一l 一。R∈, 意 f, [∈,c a a 。 6 l 2 ]
1,ቤተ መጻሕፍቲ ባይዱ) 则
-t1 ( 厂( + 1一 ) 2 一 x ) f(a + ( 一 t a , + ( t1 1 )2t b1 1一 tb ) ) z 一

凸函数的性质及其应用研究论文

凸函数的性质及其应用研究论文

凸函数的性质及其应用研究摘要凸函数是一类重要的函数,它的概念最早见于Jensen [1905]著述中。

它在纯粹数学和应用数学的众多领域中具有广泛的应用,现已成为数学规划、对策论、数理经济学、变分学和最优控制学等学科的理论基础和有力工具。

凸函数的许多重要性质在数学的许多领域中都有着广泛的应用,但是它的局限性也很明显,所以研究凸函数的一些定义和性质就显得十分必要了。

考虑到凸函数的连续性,可导性及凸函数在不等式证明方面的应用和意义,本文结合现有文献给出了凸函数12种定义,总结了凸函数常用的性质;由于凸函数的定义是由不等式给出的,基于此,凸函数广泛应用于对某些特殊不等式的证明,本文探讨了它在证明Jensen不等式、一般不等式、Cauchy不等式、Holder不等式中的重要应用,并讨论了Jensen不等式,Cauchy 不等式,Holder不等式在证明其他不等式的应用。

关键词:凸函数,定义,性质,应用,不等式Properties and Applications of Convex FunctionAbstractConvex function is a kind of important function. The concept of the earliest can be found in Jensen’s [1905] writing. Convex function has applied in pure mathematics and many applied mathematics extensive fields. Now it become the foundation and powerful tool to study mathematical programming, theory of strategy, mathematical economics, calculus of variations and such disciplines as the optimal control theory. Many important properties of convex function have been widely used in many fields of mathematics application, but its limitations are also obviously. So the study of some definitions and properties of convex function is necessary. Considering the application and significance to prove inequality and the continuity and conductivity of convex function, this paper presents 13 kind definitions and summarizes the properties of convex function which are commonly used. Convex function are widely used in some special inequality proof, because of convex function is defined by the inequality. This paper discusses the important applications of convex function in proving Jensen inequality, general inequality, Cauchy inequality, Holder Inequality. The important applications of Cauchy inequality, Holder inequality and Jensen inequality to prove other inequalities are also discussed.Key Words: Convex function, definition, properties, applications, inequality目录中文摘要 (I)英文摘要 (Ⅱ)1 引言 (1)2凸函数的定义 (1)2.1凸函数的12种定义 (1)3 凸函数的性质 (4)3.1凸函数的常用性质 (4)4 凸函数的应用 (11)4.1凸函数在微分学中的应用 (11)4.2凸函数在积分学中的应用 (13)4.3利用凸函数和Jensen不等式证明不等式 (15)4.4利用凸函数证明Cauchy不等式 (17)4.5利用凸函数证明Holder不等式 (18)4.6利用凸函数证明一般不等式 (19)参考文献 (24)致谢 (25)1 引言凸函数是一类重要的函数,它的概念最早见于Jensen [1905]著述中。

多元凸函数

多元凸函数

多元凸函数
在大学学习相关专业的时候会涉及到。

凸函数是一类基本函数,具有非常好的分析学性质,在极值研究,不等式证明,数学规划,逼近论,变分学,最优控制理论,对策论等领域有着广泛的应用。

人们对元凸函数性质和判定方法已经有了丰富的研究,但随着凸函数应用范围的不断扩展,多元凸函数越来越多的被研究。

一元函数凸性的判定方法也被推广到多元函数,将凸函数与导函数之间的关系推广,给出了用梯度判定多元函数凸性的方法,将凸函数与二阶导数之间的关系推广,给出了用黑塞矩阵判定多元函数凸性的方法。

而多元函数的梯度与黑塞矩阵在计算中往往比较繁琐。

着力研究多元函数凸性判定方法的改进,使凸函数判定的计算更加简洁,应用更加方便。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

收稿日期:2008-06-30
第16卷 第4期
2008年12月
北京石油化工学院学报
Journal of Beijing Institute of
Petro-chemical Technology
Vol.16 No.4
Dec.2008
多元凸函数的性质及其应用
游 煦
别它的凸性。这在实际应用中有一定的意义。
关键词 多元凸函数;梯度向量;Hesse矩阵;半正定阵;二次函数
中图法分类号 O174
凸分析是近几十年形成和发展起来的一个
新数学分支。它在数学规划、控制论、多元统计
等领域都有广泛的应用。文献[1-3]给出了一
些判别多元函数凸性的充分必要条件,但是这
ence[1,3],we can get some necessary and sufficient conditions for judging the convexity of func-
tion of many variables by directional derivative and limit.Furthermore,we obtain the method of
(北京石油化工学院数理系,北京102617)
摘要 从多元凸函数的定义及文献中已有的性质出发,利用方向导数和极限等数学工具,
给出了一个判别多元函数凸性的充分必要条件,进一步利用函数f(x)的Hesse矩阵Hf(x)的半正
定性来判定函数的凸性。特别地,对于二次函数f(x)=12xTAx+bTx直接利用矩阵A的正定性可以判
t≤
f(x2)-f(x1), (5)
令t※0+,式(5)左端得到f(x)在点x1处沿方
向l=x2-x1的方向导数[4],即
limt※0+f tx2+(1-t)x1-f(x1)t=
limt※0+fx1+t(x2-x1)-f(x1)t= f lx1,
则由式(5)得
f(x2)-f(x1)≥ f lx1=gradf(x1)x2-x1x2-x1
the determination of convex function of many variables by using the positive semi-definite of the
gradf(y)·1-tM(x1-y)+tM(x2-y)=
f(y)+1Mgradf(y)·(1-t)(x1-y)+
t(x2-y) =f(y)=f tx2+(1-t)x1,
根据凸函数的定义可以得到f(x)为凸函
数。同理可以证明严格凸函数的情形。
定理2 设f(x)是定义在非空开凸集D
Rn的二次可微函数,则f(x)是凸函数的充分
t(a1-b1)+(1-t)(a2-b2)2+
t(a1+b1)+(1-t)(a2+b2),
tf(x1)+(1-t)f(x2)=t(a1-b1)2+
(1-t)(a2-b2)2+t(a1+b1)+
(1-t)(a2+b2),
利用一元函数g(x)=x2为x∈R上的凸
函数可知
t(a1-b1)+(1-t)(a2-b2)2≤
ti=λiλ1+λ2+ … +λk,i=1,2,…,k,有
fλ1x1+λ2x2+…+λkxkλ1+λ2+…+λk≤
λ1f(x1)+λ2f(x2)+…+λkf(xk)
λ1+λ2+…+λk;(3)
这里f(x)是定义在Rn上的凸函数;如果f(x)
是定义在Rn上的严格凸函数,有
fλ1x1+λ2x2+…+λkxkλ1+λ2+…+λk<
凸函数的几何意义如下:设x1,x2是凸集
上的任意两点,tx1+(1-t)x2为这两点连线
上的一点,则f(x)在tx1+(1-t)x2处的函数
值ftx1+(1-t)x2不超过f(x1)与f(x2)的
加权平均值f(x1)+(1-t)f(x2)。
例1 二元函数f(x,y)=x2-2xy+y2+
(9)
又f(x)在x*处二阶可微,根据Taylor公式有
f(x*+tx)=f(x*)+gradf(x*)×
x
x+12x2xTHf(x*)x+t2ox2,
(10)
由式(9)、式(10)可得
1
2x2xTHf(x*)x+t2ox2≥0,
令t※0,有
xTHf(x*)x≥0,
即f(x)的Hesse矩阵Hf(x)半正定。
再证充分性。设f(x)的Hesse矩阵
Hf(x)在任意点x∈D处半正定,则对任意
x*,x∈D,由中值定理有
f(x)=f(x*)+gradf(x*)·x-x*x-x*+
1
2x-x*2x-x*THf(ξ)(x-x*),
(11)
其中ξ=tx*+(1-t)x,t∈(0,1),因为D是凸
集,所以ξ∈D,而Hf(ξ)半正定,则
x+y为R2上的凸函数。
因为
f(x,y)=
1
2x y2-2-2 2xy+1 1xy,
令f(x,y)=f(x)=12xTAx+bTx,其中
x=x
y,A=2-2-2 2,b=11。
任意取x1=a1
b1,x2=a2b2∈R2,t∈(0,
1),则
f tx1+(1-t)x2=
f ta1+(1-t)a2,tb1+(1-t)b2=
格凸函数。
而对于二次函数f(x)=12xTAx+bTx,因
为Hf(x)=A,则有
推论2 二次函数f(x)=12xTAx+bTx
是严格凸函数的充分必要条件是f(x)的Hes-
se矩阵A正定。
凹函数也可以得到以上类似的结论。
3 应用举例
例2 函数f(x,y)=xe-x-y是R2上的严
格凹函数。
[1] 刘梦琼,陈上仿.多元凸函数的特征[J].湖南冶
金职业技术学院学报,2005,5(3):322-324.
[2] 杨定华.广义多元凸函数的判别条件[J].科学技
术与工程,2005,5(21):1581-1585.
[3] 李碧荣,李日光.多元凸函数的判别条件[J].哈
尔滨师范大学自然科学学报,2004,20(3):32-34.
其中gradf(x1)表示f(x)在点x1处的梯度向
量,x2-x1表示x2-x1的模长。
证明 先证必要性。设f(x)是D上的凸
函数,由定义1,对任意的x1,x2∈D及t∈(0,
1),有
f tx2+(1-t)x1≤tf(x2)+(1-t)f(x1),
变形后得
f tx2+(1-t)x1-f(x1)
必要条件是在任意点x∈D处f(x)的Hesse
矩阵Hf(x)半正定。
62北京石油化工学院学报2008年第16卷证明 先证必要性。设f(x)是D上的凸
函数。对任意的x*∈D及x∈Rn,因为D为开
集,则必存在δ>0,当t∈[-δ,δ]时,x*+tx∈
D,由定理1得
f(x*+tx)≥f(x*)+gradf(x*)·xx,
t(a1-b1)2+(1-t)(a2-b2)2,
因此,f(x,y)=x2-2xy+y2+x+y是R2上
的凸函数。利用凸函数的定义可以得到如下的
性质[1]:
设f(x)是定义在Rn上的凸函数,则对于
任意的x1,x2…xk∈Rn和t1,t2…tk≥0且t1+
t2+ … +tk=1,有
f t1x1+t2x2+…+tkxk≤
x-x*THf(ξ)(x-x*)≥0,(12)
由式(11)、式(12)得
f(x)≥f(x*)+gradf(x*)·x-x*x-x*,
根据定理1,f(x)是D上的凸函数。
推论1 设f(x)是定义在非空开凸集D
Rn的二次可微函数,若f(x)的Hesse矩阵大学应用数学系.高等数学[M].北京:高等
教育出版社,2002.
[5] Chen D R,You X.Minimax optimal rates of
convergence for multicategory classifications[J].
Acta Mathematica Sinica,2007,27(8):
λ1f(x1)+λ2f(x2)+…+λkf(xk)
λ1+λ2+…+λk。(4)
式(3)、式(4)则是推广的多元函数Jensen
不等式。
2 主要结论及其证明
利用凸函数的定义及其性质可以判别函数
的凸性,但是从例1中可以看到在实际应用的
过程中计算比较复杂,很不实用。下面进一步
研究凸函数的判别方法。
凹函数。
例3 二次函数f(x,y)=3x2+2y2-
4xy+x+y+1是R2上的严格凸函数。
相关文档
最新文档