机械原理(平面机构的力分析新)解析

合集下载

孙桓《机械原理》笔记和课后习题(含考研真题)详解(平面机构的力分析)【圣才出品】

孙桓《机械原理》笔记和课后习题(含考研真题)详解(平面机构的力分析)【圣才出品】

第4章平面机构的力分析4.1 复习笔记一、机构力分析的任务、目的和方法1.作用在机械上的力根据力对机械运动影响的不同,可分为两大类。

(1)驱动力①定义驱动机械运动的力称为驱动力。

②特点驱动力与其作用点的速度方向相同或成锐角,其所作的功为正功,称为驱动功或输入功。

(2)阻抗力①定义阻止机械运动的力称为阻抗力。

②特点阻抗力与其作用点的速度方向相反或成钝角,其所作的功为负功,称为阻抗功。

③分类a.有效阻抗力机械在生产过程中为了改变工作物的外形、位置或状态而受到的阻力,即工作阻力。

克服这类阻力所完成的功称为有效功或输出功。

b.有害阻抗力机械在运转过程中所受到的非生产阻力。

克服这类阻力所作的功称为损失功。

2.机构力分析的任务和目的(1)确定运动副中的反力运动副反力是指运动副两元素接触处彼此作用的正压力和摩擦力的合力。

(2)确定机械上的平衡力或平衡力偶平衡力是指机械在已知外力的作用下,为了使该机构能按给定的运动规律运动,必须加于机械上的未知外力。

3.机构力分析的方法对于不同的研究对象,适用的方法不同。

(1)低速机械惯性力可以忽略不计,只需要对机械作静力分析。

(2)高速及重型机械①惯性力不可以忽略,需对机械作动态静力分析。

②设计新机械时,由于各构件尺寸、材料、质量及转动惯量未知,因此其动态静力分析方法如下:a.对机构作静力分析及静强度计算,初步确定各构件尺寸;b.对机构进行动态静力分析及强度计算,并据此对各构件尺寸作必要修正;c.重复上述分析及计算过程,直到获得可以接受的设计为止。

二、构件惯性力的确定构件惯性力的确定有一般力学法和质量代换法。

1.一般力学方法如图4-1-1(a)所示为曲柄滑块机构,借此说明不同运动形式构件所产生的惯性力。

(1)作平面复合运动的构件惯性力系有两种简化方式。

①简化为一个加在质心S i上的惯性力F I2和一个惯性力偶矩M I2,即F I2=-m2a S2,M I2=-J S2α2②简化为一个大小等于F I2,而作用线偏离质心S2一定距离l h2的总惯性力F I2′,而l h2=M I2/F I2F′I2对质心S2之矩的方向应与α2的方向相反。

1机械原理课件_东南大学_郑文纬_第七版第09章_平面机构的力分析111解析

1机械原理课件_东南大学_郑文纬_第七版第09章_平面机构的力分析111解析

惯性力:是一种虚拟加在有变速运动的构件上的力。
惯性力是是阻力还是驱动力? 当构件减速时,它是驱动力;加速时,它是阻力 特点:在一个运动循环中惯性力所作的功为零。低速机械的惯性力 一般很小,可以忽略不计。
二、研究机构力分析的目的
确定运动副反力。
因为运动副中反力的大小和性质对于计算机构各个零 件的强度、决定机构中的摩擦力和机械效率、以及计 算运动副中的磨损和确定轴承型式都是有用的已知条 件。
选定一点B, 再选定另一点为K
可以任意选择两个代换点
B b B
S k S
K
mB mK m mB (b) mK k 0
mk mB bk
K
mb mK bk
动代换
两质量点动代换: 选定一点B; 则另一点为K。
不能同时任意选择两个代换点
mB mK m
K k
mB (b) mK k 0
例 9- 6
例9-6 p367
5 E Aω 1
1
Fi5 G5
6 Fr
D B 2 3
4
在如图所示的牛头刨床机构 中,已知:各构件的位置 和尺寸、曲柄以等角速度 w1顺时针转动、刨头的重 力G5、惯性力Fi5及切削 阻力(即生产阻力)Fr。
C
试求:机构各运动副中的反力及需要施于曲柄1上的平 衡力偶矩(其他构件的重力和惯性力等忽略不计)。
π
Fi 2 Fi 2b Fi 2k
5、动静法应用
不考虑摩擦时机构动静法分析的步骤:
1. 求出各构件的惯性力,并把其视为外力加于产生 该惯性力的构件上; 2. 根据静定条件将机构分解为若干个杆组和平衡力 作用的构件; 3. 由离平衡力作用最远的杆组开始,对各杆组进行 力分析; 4. 对平衡力作用的构件作力分析。

机械原理-第02章 平面连杆机构及其设计 - 平面连杆机构的力分析

机械原理-第02章 平面连杆机构及其设计 - 平面连杆机构的力分析

件惯性力对机械性能的影响。
G′
2020年4月23日星期四
5
§2-5 平面连杆机构的力分析
WHUT
3、机构力分析的方法
静力分析和动态静力分析。
由于最初设计时,各构件的结构尺寸、形状、材料、质量及 转动惯量未知,因而惯性力(矩)无法确定。此时,一般先 对机构作静强度计算,初步确定各构件尺寸,然后再对构件 进行动态静力分析及强度计算,并以此为依据对各构件作必 要的修正。一般不考虑摩擦力的影响。
(2) 绕定轴转动的构件
a. 回转轴线通过构件质心
S
Pi = 0 Mi = -Js ε ( ε = 0 或 ε ≠0 ) b. 回转轴线不通过质心
Pi = -mas Mi = - Jsε
其中:h=Mi/Pi
2020年4月23日星期四
WHUT
Pi' Pi
h S
Mεi
8
§2-5 平面连杆机构的力分析
(3) 作平面复合运动的构件
2020年4月23日星期四
21
WHUT
(2) 判定构件间的相对转向
F
R12
R12
ω21
v
1
2
R23ω23
3Q
ω14
4
R41
R32R32
R43
(3) 判定作用力在摩擦圆上切点位置
Q R23
R21
F
R43 R41
(4) 依据力平衡条件求解
对构件3:Q + R23 + R43 = 0 对构件1:R21 + R41+ F = 0
2020年4月23日星期四
3
§2-5 平面连杆机构的力分析
2、机构力分析的任务和目的

机械原理第八版答案与解析

机械原理第八版答案与解析

机械原理第八版答案与解析Prepared on 22 November 2020机械原理第八版 西北工业大学平面机构的结构分析1、如图a 所示为一简易冲床的初拟设计方案,设计者的思路是:动力由齿轮1输入,使轴A 连续回转;而固装在轴A 上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。

试绘出其机构运动简图(各尺寸由图上量取),分析其是否能实现设计意图并提出修改方案。

解 1)取比例尺l μ绘制其机构运动简图(图b )。

2)分析其是否能实现设计意图。

图 a )由图b 可知,3=n ,4=l p ,1=h p ,0='p ,0='F 故:00)0142(33)2(3=--+⨯-⨯='-'-+-=F p p p n F h l因此,此简单冲床根本不能运动(即由构件3、4与机架5和运动副B 、C 、D 组成不能运动的刚性桁架),故需要增加机构的自由度。

图 b )3)提出修改方案(图c )。

为了使此机构能运动,应增加机构的自由度(其方法是:可以在机构的适当位置增加一个活动构件和一个低副,或者用一个高副去代替一个低副,其修改方案很多,图c 给出了其中两种方案)。

图 c1) 图 c2)2、试画出图示平面机构的运动简图,并计算其自由度。

图a )解:3=n ,4=l p ,0=h p ,123=--=h l p p n F图 b )解:4=n ,5=l p ,1=h p ,123=--=h l p p n F3、计算图示平面机构的自由度。

将其中的高副化为低副。

机构中的原动件用圆弧箭头表示。

3-1解3-1:7=n ,10=l p ,0=h p ,123=--=h l p p n F ,C 、E 复合铰链。

3-2解3-2:8=n ,11=l p ,1=h p ,123=--=h l p p n F ,局部自由度 3-3解3-3:9=n ,12=l p ,2=h p ,123=--=h l p p n F 4、试计算图示精压机的自由度解:10=n ,15=l p ,0=h p 解:11=n ,17=l p ,0=h p (其中E 、D 及H 均为复合铰链) (其中C 、F 、K 均为复合铰链)5、图示为一内燃机的机构简图,试计算其自由度,并分析组成此机构的基本杆组。

机械原理第八版答案与解析

机械原理第八版答案与解析

第八版西北工业大学平面机构的结构分析1、如图a所示为一简易冲床的初拟设计方案,设计者的思路是:动力由齿轮1输入, 使轴A连续回转;而固装在轴A上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。

试绘出其机构运动简图(各尺寸由图上量取),分析其是否能实现设计意图?并提出修改方案。

解1 )取比例尺i绘制其机构运动简图(图b)。

2 )分析其是否能实现设计意图。

图a)由图 b 可知,n3,p 4,p h 1,p 0,F 0故:F 3n (2p l p h p) F 3 3 (2 4 1 0) 0 0因此,此简单冲床根本不能运动(即由构件3、4与机架5和运动副B、C、D组成不能运动的刚性桁架),故需要增加机构的自由度。

图b)3)提出修改方案(图c )。

为了使此机构能运动,应增加机构的自由度(其方法是:可以在机构的适当位置增加一个活动构件和一个低副,或者用一个高副去代替一个低副,其修改方案很多,图c给出解 3— 1: n 7, p i 10,P h 解 3 — 2: n 8,p i 11, P h3n 了其中两种方案)图cl ) 图c2 )2、试画出图示平面机构的运动简图,并计算其自由度图a )3、计算图示平面机构的自由度。

将其中的高副化为低副。

机构中的原动件用圆弧箭头表示。

解:n 3,p 4, P h 0, F 3n 2p i P h 1 解:n 4,p i 5, p h 1, F 3n 2p i P h 1 3n 2p i2P i解3-3: n 9 , p 12 , p h 2, F 3n 2p i P h 14、试计算图示精压机的自由度解:n 10,p l 15,p h 0解:n 11,P i 17,P h 0(其中E、D及H均为复合铰链)(其中C F、K均为复合铰链)5、图示为一内燃机的机构简图,试计算其自由度,并分析组成此机构的基本杆组。

又如在该机构中改选EG为原动件,试问组成此机构的基本杆组是否与前者有所不同。

机械原理第四章 力分析

机械原理第四章 力分析

FN21/2
G
FN21/2
式中, fv为 当量摩擦系数 fv = f / sinθ
若为半圆柱面接触: FN21= k G,(k = 1~π/2)
摩擦力计算的通式:
Ff21 = f FN21 = fvG
其中, fv 称为当量摩擦系数, 其取值为:
G
平面接触: fv = f ; 槽面接触: fv = f /sinθ ; 半圆柱面接触: fv = k f ,(k = 1~π/2)。
说明 引入当量摩擦系数之后, 使不同接触形状的移动副中 摩擦力的计算和比较大为简化。因而这也是工程中简化处理问题
的一种重要方法。
(2)总反力方向的确定
运动副中的法向反力与摩擦力 的合力FR21 称为运动副中的总反力, 总反力与法向力之间的夹角φ, 称 为摩擦角,即
φ = arctan f
FR21
FN21
机械原理
第四章 平面机构的力分析
§4-1 概述 §4-2 运动副中总反力的确定 §4-3 不考虑摩擦时平面机构的动态静力分析 §4-4 机械的效率和自锁 §4-5 考虑摩擦时机构的受力分析
§4-1 概述
一、作用在机械上的力
有重力、摩擦力、惯性力等,根据对机械运动的影响,分为两类: (1)驱动力 驱动机械运动的力。 与其作用点的速度方向相同或者成锐角; 其功为正功, 称为驱动功 或输入功。
放松:M′=Gd2tan(α φv)/2
三、转动副中摩擦力的确定
G
1 径向轴颈中的摩擦 1)摩擦力矩的确定
转动副中摩擦力Ff21对轴颈的摩
擦力矩为 Mf = Ff21r = fv G r
轴颈2 对轴颈1 的作用力也用
ω12
Md O

平面机构的力分析

平面机构的力分析

G
1)FR21偏斜于法向反力一摩擦角φ ;
2) FR21偏斜旳方向应与相对速度v12旳方向相反。
(2)槽面接触旳移动副
G FN 21 FN 21 0 22
FN 21 2
G
sin(90 ) sin 2
FN 21
G
sin
F
F 2 N 21 f
G
f G
f
f 21
2
sin
sin
θ
FN21 2
举例: 例4-1 斜面机构
正行程:F= G tan(α +φ) 反行程:F ′ = G tan(α - φ)
例4-2 螺旋机构 拧紧:M = Gd2tan(α +φv)/2 放松:M′=Gd2tan(α -φv)/2
2. 转动副中摩擦力旳拟定
(1)摩擦力矩旳拟定
转动副中摩擦力Ff21对轴颈旳摩 擦力矩为
t Mf
其总反力方向旳拟定为: 1)总反力FR21旳方向与 法向反力偏斜一摩擦角;
2)偏斜方向应与构件1相对
构件2旳相对速度v12旳方向相反。
n
Ff21
2
FR21
φn FN21
ω12
1
V12 t
§4-5 考虑摩擦时机构旳受力分析
例 铰链四杆机构考虑摩擦时旳受力分析 例 曲柄滑块机构考虑摩擦时旳受力分析 小结 在考虑摩擦时进行机构力旳分析,关键是拟定运动副 中总反力旳方向, 而且一般都先从二力构件作kf
fV 当量摩擦系数
k 1~ 2
摩擦力计算旳通式:
Ff21 = f FN21 = fvG
平面接触: fv = f ; 槽面接触: fv = f /sinθ ; 半圆柱面接触: fv = k f ,(k = 1~π/2)。

机械原理-平面机构的力分析

机械原理-平面机构的力分析
完全组合、收摺组合、曲柄滑块组合
传动条件
曲柄摇杆机构、齿轮传动机构
存储条件
转动机构、滑动机构
力的基本概念
1 力的作用点
力作用的位置或接触点。
2 力的方向
力作用的方向或施力线。
3 力的大小
力作用的大小或强弱。
平面机构的受力分析
1
受力分析
2
根据力的分解结果,分析各构件的受力情况。
3
力的分解
将力分解为平行于连接构件的分力和垂直于 连接构件的分力。
交叉槽的弯曲影响
交叉槽是指曲柄和滑块之间存在的交叉形状,它会导致机构的弯曲失效和运 动不稳定。
非正交曲柄机构的分析
1 自由度分析
根据曲柄滑块机构的结构,确定其自由度以及运动学约束。
2 力分析
通过力的平衡分析,确定机构各处的力大小和方向。
3 运动模拟
使用模拟软件或物理实验,验证机构设计的正确性和稳定性。
摆线和椭圆曲柄机构的分析
摆线曲柄机构
利用摆线曲线的特性,实现更平稳的运动传动。
椭圆曲柄机构
利用椭圆曲线的特性,实现更精确的运动传动。
内嵌框架的应用
机构设计
通过内嵌框架的布局,实现机构零 件的紧凑排列和高效传动。
机器人技术
内嵌框架在机器人领域的应用,提 高了机器人的稳定性和工作效率。
汽车工程
通过内嵌框架的结构布局,实现汽 车发动机和悬挂系统的高性能和节 能效果。
力的平衡
通过分析和计算,判断平面机构是否处于力 的平衡状态。
计算机构的自由度
自由度是指机构中独立变量的个数,它决定了机构的运动和约束情况。
平面机构的结构形式
齿轮传动
通过齿轮的啮合来实现转动传动功 能。

机械原理-第02章-平面连杆机构及其设计---平面连杆机构的力分析精选全文完整版

机械原理-第02章-平面连杆机构及其设计---平面连杆机构的力分析精选全文完整版

将构件的质量假想地集中在某几个预定的点上,使其产生的 力学效应保持不变,这种方法称为质量代换法,假想的质量称 为代换质量,预定点称为代换点。
(1) 质量代换的等效条件
m1 s
m2
n
a. 代换前后构件的质量不变;Σi=m1 i= m
n
b. 代换前后构件的总质心位置不变;
Σi=m1 i xi = 0
n
Σi=m1 i yi = 0
n
c. 代换前后构件对质心轴的转动惯量不变。 Σi=m1 i ( x2i + y2i ) = 0
质量代换法主要用于绕不通过质心轴转动的构件或平面复杂运 动构件的惯性力(力偶矩)计算。
2024年10月16日星期三
10
§2-5 平面连杆机构的力分析
a. 动代换。同时满足上述三 个代换条件的质量代换。对 连杆有:
机构力分析常用方法:图解法和解析法。
2024年10月16日星期三
6
§2-5 平面连杆机构的力分析
WHUT
二、构件惯性力的确定
一般力学法和质量代换法。
1、一般力学法
h s Mi
由理论力学知:惯性力可以最终简化为一个加 Pi′
Pi
于构件质心S处的惯性力Pi和一个惯性力矩Mi,
即:
Pi = -mas
Mi = - Jsε
结论:
(1) 摩擦角与摩擦系数一一对应, j = arctgf;
(2) 总支反力永远与运动方向成90°+ j 角。
2024年10月16日星期三
14
§2-5 平面连杆机构的力分析
WHUT
(2) 楔形面摩擦
θ
θ
以滑块作为受力
体,有
1

机械原理 第四章 平面机构的力分析

机械原理 第四章 平面机构的力分析

FN 21 FN 21dq
1
0
设: FN 21 g(G)
FN 21 FN 21dq g(G) dq kG
0
0
(k ≈1~1.57)
Ff 21 fFN 21 kfG
q
2
FN21
G
令kf fv Ff 21 fvG
4)标准式
不论两运动副元素的几何形状如何,两元素间产生的滑动摩 擦力均可用通式:
❖拧紧——螺母在力矩M作用下逆着G力等速向上运动,相当于在滑块2上加
一水平力F,使滑块2沿着斜面等速向上滑动。
F G tg( ) M F d2 d2 G tg( )
22
❖ 放 松 —— 螺 母
G/2
G/2
顺着G力的方向等
1
速向下运动,相 当于滑块 2 沿着
2
G
F G
斜面等速向下滑。
i 1
2)代换前后构件的质心位置不变;

❖以原构件的质心为坐标原点时,应满足: 代
n
mi xi
i 1 n
0
mi
i 1
yi
0
3)代换前后构件对质心的转动惯量不变。

动 代 换
n
mi
x
2 i
y i2
Js
i 1
动代换:
用集中在通过构件质心S B
的直线上的B、K 两点的代换
S
b
c
C
质量mB 和 mK 来代换作平面
F G tg( )
M F d2 d2 G tg( ) 22
时,M ' 0 阻力矩(与运动方向相 反)
当 时,M ' 0
时,M ' 0 驱动力(与运动方向相 同)

机械原理习题与答案解析

机械原理习题与答案解析

第1章平面机构的结构分析1.1解释下列概念1.运动副;2.机构自由度;3.机构运动简图;4.机构结构分析;5.高副低代。

1.2验算下列机构能否运动,如果能运动,看运动是否具有确定性,并给出具有确定运动的修改办法。

题1.2图题1.3图1.3 绘出下列机构的运动简图,并计算其自由度(其中构件9为机架)。

1.4 计算下列机构自由度,并说明注意事项。

1.5计算下列机构的自由度,并确定杆组及机构的级别(图a所示机构分别以构件2、4、8为原动件)。

题1.4图题1.5图第2章平面机构的运动分析2.1试求图示各机构在图示位置时全部瞬心。

题2.1图2.2在图示机构中,已知各构件尺寸为l AB=180mm , l BC=280mm , l BD=450mm ,l CD=250mm ,l AE=120mm ,φ=30º, 构件AB上点E的速度为v E=150 mm /s ,试求该位置时C、D两点的速度及连杆2的角速度ω2。

2.3 在图示的摆动导杆机构中,已知l AB=30mm , l AC=100mm , l BD=50mm ,l DE=40mm ,φ1=45º,曲柄1以等角速度ω1=10 rad/s沿逆时针方向回转。

求D点和E点的速度和加速度及构件3的角速度和角加速度(用相对运动图解法)。

题2.2图题2.3图2.4 在图示机构中,已知l AB =50mm , l BC =200mm , x D =120mm , 原动件的位置φ1=30º, 角速度ω1=10 rad/s ,角加速度α1=0,试求机构在该位置时构件5的速度和加速度,以及构件2的角速度和角加速度。

题2.4图2.5 图示为机构的运动简图及相应的速度图和加速度图。

(1)在图示的速度、加速度多边形中注明各矢量所表示的相应的速度、加速度矢量。

(2)以给出的速度和加速度矢量为已知条件,用相对运动矢量法写出求构件上D 点的速度和加速度矢量方程。

机械原理 第8章 平面机构的受力分析

机械原理 第8章  平面机构的受力分析

式中, 为摩擦系数,当运动副元素是平面时,不同材料组 合测得的摩擦系数参数见表8.1。 由于 f 21 是一个常数,在计入摩擦的受力分析时,为了简化 N 21 分析过程,通常不单独分析 f 21 和 N 21 ,而研究它们的合力 F 21 , 称为构件2对构件1的总反力。从图8.4中可以看到: F 21 与 N 21 之间 f arctan , 称为构件的摩擦角。因为 F 21 与 的夹角 arctan N 之 v12 间夹角为 90° ,F 21故是运动的总反力。引入摩擦角的概 念对分析构件的运动十分方便。如图8.4(b)所示,当与滑移副导轨 的垂直方向夹角为 的驱动力 F 的作用线作用在摩擦角以内时 (即 时),无论驱动力 F 加到多大,其水平分力永远小于 摩擦力 f 21 ,滑块原来不动将永远不会运动;如果滑块原来在运 动,则将作减速运动,直至运动停止。当 时,滑块将加速运 动;当 时滑块原来不动仍然不动,原来在运动,则将继续 保持原方向匀速运动。
● 8.4
● 8.4.1
运动副中摩擦力的确定
低副中摩擦力的确定 1. 移动副中的摩擦力和总反力 图8.4(a)所示移动副,滑块1为示力体,当载荷为 Q 的滑块1在 驱动力 F 水平作用下相对构件2以匀速 v12 水平移动时,根据库 仑定理,构件2作用在滑块1上的法向反力 N 21 与摩擦力 f 21 有以下 关系: f 21 N 21 Q (8.8)
两种。
① 有效阻力,即工作阻力。它是机械在生产过程中为了改变 工作物的外形、位置或状态等所受到的阻力,克服了这些阻力就 完成了有效的工作。如机床中工件作用于刀具上的切削阻力,起 重机所起吊重物的重力等均为有效阻力。克服有效阻力所完成的 功称为有效功或输出功。 ② 有害阻力,即机械在运转过程中所受到的非生产阻力。机 械为了克服这类阻力所做的功是一种纯粹的浪费。如摩擦力、介 质阻力等,一般常为有害阻力。克服有害阻力所做的功称为损失 功。 当然,摩擦力和介质阻力在某些情况下也可能是有效阻力,甚 至是驱动力。例如磨床砂轮受到工件给予的摩擦力,搅拌机叶轮 所受到的被搅拌物质的阻力等均为有效阻力。而在带传动中,从 动轮所受到的带的摩擦力则是一种驱动力。 此外,作用于构件重心上的重力,是一种大小和方向均不变化 的力。当重心上升时为阻抗力,而当重心下降时则为驱动力。

机械原理 受力分析

机械原理 受力分析

机械原理受力分析
机械原理受力分析是研究物体受力情况、力的平衡与不平衡、力的作用点等问题的一种方法。

通过受力分析,可以揭示物体受力的性质和效果,为研究和设计机械系统提供基础。

在进行机械原理受力分析时,首先需要确定物体所受外力和内力的大小、方向和作用点。

外力包括重力、弹力、摩擦力、正压力、拉力等,内力有合力和力偶等。

力的大小用力的大小表示,力的方向则用矢量表示,力的作用点是指力作用的具体位置。

在求解受力分析问题时,可以采用平衡方程或力的三角形法。

平衡方程是根据牛顿第一定律建立的力的平衡条件,即合外力和合内力的合力为零。

通过列出平衡方程,可以解得未知力的大小和方向。

在力的三角形法中,可以根据力的大小和方向用矢量图形表示,通过矢量的几何运算求解力的合力和合力的方向。

受力分析在机械设计、结构分析、材料力学等领域具有广泛应用。

通过受力分析,可以预测和评估物体受力情况,为机械系统的设计和优化提供依据。

同时,受力分析也是研究物体变形、疲劳、断裂等问题的基础,为材料的力学性能和结构的稳定性提供理论支持。

机械原理答案解析

机械原理答案解析
试绘制其机构运动简图和计算其自由度,并作出大腿弯曲90度时的机构运动简图。
解:1)取比例尺,绘制机构运动简图。大腿弯曲90度时的机构运动简图如虚线所示。(如图2-5所示)
2)
题2-6试计算如图所示各机构的自由度。图a、d为齿轮-连杆组合机构;图b为凸轮-连杆组合机构(图中在D处为铰接在一起的两个滑块);图c为一精压机机构。并问在图d所示机构中,齿轮3与5和齿条7与齿轮5的啮合高副所提供的约束数目是否相同?为什么?
利用瞬心多边形,如图3-9(e)由构件1、3、5组成的三角形中,瞬心P15、P13、P35必在一条直线上,由构件1、5、6组成的三角形中,瞬心P56、P16、P15也必在一条直线上,二直线的交点即为瞬心P15。
如图3-9 (a) P15为构件1、5的瞬时等速重合点
题3-10在图示的齿轮-连杆组合机构中,MM为固定齿条,齿轮3的齿数为齿轮4的2倍,设已知原动件1以等角速度ω1顺时针方向回转,试以图解法求机构在图示位置时,E点的速度VE以及齿轮3、4的速度影像。
解:1) 高副低代,以选定比例尺,绘制机构运动简图。(图3-8 )
2) 速度分析:图3-6(b)
取B4、、B2
为重合点。
速度方程:
速度多边形如图3-8(b)
转向逆时针
3)加速度分析:图3-8(c)
转向顺时针。
题3-9在图a所示的牛头刨床机构中,h=800mm,h1=360mm,h2=120mm,lAB=200mm,lCD=960mm,lDE=160mm,设曲柄以等角速度ω1=5rad/s逆时针方向回转,试用图解法求机构在φ1=135°位置时,刨头上点C的速度Vc。
解:1)取比例尺,绘制机构运动简图。(如图2-7(b)所示)
2) 此机构由1个凸轮、4个滚子、4个连杆、4个活塞和机架组成。凸轮与4个滚子组成高副,4个连杆、4个滚子和4个活塞分别在A、B、C、D处组成三副复合铰链。4个活塞与4个缸(机架)均组成移动副。

机械原理-机构动态静力分析解析法

机械原理-机构动态静力分析解析法
f(ns1,1) fr(n3,2) k2 n2 ti(k2) fr(n2,1)
fi(ns2,2)
fi(ns2,1)
ns2 fnn2,2)
k1 fr(n1,2)
n3
fr(n3,1)
nn2
f(nn2,1)
n1
fr(n1,1)
六杆机构动态静力分析例
7
3 y 1 1
构件号 质心位置点号 质量(kg) 转动惯量(kg-m2) 1 1 50 1.3
5 2
9 6
4
5
6
k1 k2 p vp ap t e fr
虚 n1 n2 n3 ns1 ns2 nn1 nn2 nexf 实
5 10 6 9 6
0
6
6
4 5
p vp ap t e fr
虚 n1 n2 n3 ns1 ns2 nn1 nn2 nexf
k1 k2 p
vp ap t
e fr

3 2 4
7 8
0
5
0
2 3 p vp ap t e fr
7
3 2
4 3 8
5
2
主程序及结果

3
1
虚 n1 ns1 nn1 k1 p ap e fr tb

1
1
3
1
p ap
e
fr
tb
平衡力的简易求法
根据虚位移原理
(F
dsi Ti d i ) 0 i
d i i dt
i i i
Tb 1
dsi vi dt
i
(F v T )
i i i i ix ix
1
(F v T ) 0

精品课件!《机械原理》_第四章 平面机构的力分析

精品课件!《机械原理》_第四章 平面机构的力分析
力计算的通式: 摩擦力计算的通式 Ff21 = f FN21 = fv Q 其中, 称为当量摩擦系数, 其取值为: 其中 fv 称为当量摩擦系数 其取值为 平面接触: 平面接触 fv = f ; 槽面接触: fv = f /sinθ ; 槽面接触 半圆柱面接触: ,(k 半圆柱面接触 fv = k f ,( = 1~π/2)。 )。 说明 引入当量摩擦系数后, 引入当量摩擦系数后 使不同接触形状的移动副中的摩擦力 大小的计算大为简化。 大小的计算大为简化。因而也是工程中简化处理问题的一种 重要方法。 重要方法。
G 1 M Mf
ω

ω
r
2
2r 2R
轴端接触面
R
ρ
运动副中摩檫力的确定
上的压强p为常数 为常数, 设 ds 上的压强 为常数, 则其正压力dF 则其正压力 N = pds , 摩擦力dF 摩擦力 f = fdFN = f pds, , 故其摩擦力矩 dMf为 : dMf = ρdFf = ρf pds 总摩擦力矩M 总摩擦力矩 f为 Mf =∫ρ f pds = 2π f ∫pρ2dρ
构件惯性力的确定
3)质量静代换 ) 只满足前两个条件的质量代换称为静代换。 只满足前两个条件的质量代换称为静代换。 如连杆BC的分布质量可用 如连杆 的分布质量可用 B、C两点集中质量 、 两点集中质量 两点集中质量mB、mC代换,则 代换, 、 代换 mB=m2c/(b+c) mC=m2b/(b+c) 优缺点: 优缺点:构件的惯性力偶 会产生一定的误差, 会产生一定的误差,但计 算简便, 算简便,一般工程是可接 A 受的。 受的。
运动副中摩檫力的确定
3.平面高副中摩擦力的确定 . 平面高副两元素之间的相对运动通常是滚动兼滑动, 平面高副两元素之间的相对运动通常是滚动兼滑动,故有滚动 摩擦力和滑动摩擦力;因滚动摩擦力一般较小, 摩擦力和滑动摩擦力;因滚动摩擦力一般较小,机构力分析时 通常只考虑滑动摩擦力。 通常只考虑滑动摩擦力。 平面高副中摩擦力的确定, 平面高副中摩擦力的确定,通常是将摩擦力和法向反力合成一 总反力来研究。 总反力来研究。 1)其总反力方向的确定为: )其总反力方向的确定为: 总反力FR21的方向与法向反力 的方向与法向反力 总反力 偏斜一摩擦角; 偏斜一摩擦角; 2)偏斜方向应与构件1相对构件 的 )偏斜方向应与构件 相对构件 相对构件2的 相对速度v12的方向相反 的方向相反 相对速度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FI 2
2
2
3
A φ S2
S2
C
FI2
B 1
A φ S2
2 S2
3 C
FI 3
2 质量代换法
质量代换法的目的 质量代换法的实质是为了简化构件惯性力的计算。
用一般力学方法须同时求得构件的惯性力FI和惯性力矩MI 。而 采用质量代换法可省去惯性力矩MI的计算,使问题得到简化。 质量代换法的方法
把构件的质量用集中作用在构件的几个选定点的假想集中
48.6 5 103.4rad / s2 2.35
c c
p
aCt B aS 2
b
s2
c b
3 求惯性力和惯性力矩
(1)活塞 3 的惯性力
FI 3 m3 aC
m3 pc a
6 495 (2)连杆 2 上的惯性力和惯性力矩 c b
FI 2 m2aS 2 19 290 5510N
FI
aS
aS
S
a
n S
A ω=C
ε
a
n S
MI
A
3) 作平面运动构件惯性力的确定
FI maS 0 MI JS 0
也可将上述 惯性力。
aS
FI , M合成I 为距质心S为距离h的总
h MI
FI
FI
ε
MI S
aS
, FI ε S
例 1 在图示的凸轮机构中,已知凸轮的半径R=200mm,LOA=100mm
平衡力
驱动力―根据机构的阻力大小选择适当的驱动力来平衡 生产阻力―根据机构的驱动力大小选择适当的阻力来平衡
平衡力即可以是驱动力又可以是阻力
机构力分析的目的
1) 为现有机械工作性能的评价、鉴定提供参数; 2) 为新机械的强度计算、结构设计提供重要依据。
机构力分析的方法
图解法 解析法
驱动力
作用在机械上的力
活塞及其附件的质量 S2 16.9kgm2 ,曲柄转
速 n1 300r / min , 45, 求图示位置时活塞3的的惯性力和
连杆2的总惯性力。
解:1.运动分析
B
aS 2 ps2 a
1 Aφ
aS 2
S2
2
2
aCt B
3 C
585 290m/ s2
2
aCt B lBC
cc a BC l
p
匀速直线移动构件的惯性力: FI ma s 0
加速直线移动构件的惯性力: FI ma s 0
aS ―质心的加速度
V=
FI 0
C
S
aS
FI
S
2) 定轴转动构件惯性力的确定
① 构件的质心在转轴
匀角速度ω转动 FI maS 0
MI JS 0 角加速度ε转动 FI maS 0
MI JS 0
从动件的质量为m2=20kg,凸轮的角速度ω1=20rad/s。当OA线 在水平的位置时,求从动件2的惯性力。
解:1. 高副低代
2.运动分析(过程略)
aB2
o(b)
C
3
b
C
3
2
B R
FI 2 2
B
aB2
p
p
o
oA
1
1
O
A aB2 pb a
1
3.受力分析 FI 2 m2aB2 m2 pb a 2023.4 468N
质量来代替。 B
FI ε
1
2
A aS
S2 m2
MI C3
质量代换法的方法
把构件的质量用集中作用在构件的几个选定点的假想集中 质量来代替,这些假想的集中质量被称作代换质量。 B、K为所选定的代换点 mB 、 mk为代换质量
mB B
1
2
A
mk
S2
k
C3
应用质量代换法应满足的条件
1) 代换前后构件的质量不变; 2) 代换前后构件的质心位置不变;
同时满足三个条件 的叫做动质量代换
3) 代换前后构件对质心轴的转动惯量不变;
mB mk m2
mBb mk k mBb2 mK k 2 J S2
第四章 平面机构的力分析
§4—1机构力分析的任务、目的和方法 §4—2 构件惯性力的确定 §4—3 机构力分析的任务、目的和方法 §4—4 不考虑摩擦时机构的力分析
§4—1机构力分析的任务、目的和方法
机构力分析的任务 1)确定运动副中的反力 运动副反力指运动副处作用的正压力和摩擦力的合力 2)确定机械中的平衡力 平衡力是指机械在已知外力的作用下,为了使该机械能按 给定运动规律运动,还须加于机械上的未知外力
0
VS 0 aS 0
0
VS 0 aS 0
ω S
ε
MI
S
构件的质心不在转轴
匀角速度ω转动 FI maSn 0 MI JS 0
角加速度ε转动 FI maS 0
MI JS 0
FI
S
aSn lAS 2 0
aS lAS 0
aSn lAS 2 0 aS lAS 0
2.受力分析
M I 3 J33
b1(b2 )
b2 (b3)
0.2231
46N m
p(b3 )
A
4
C p
1 1aB3
2
B
3 MI3
3
例3 在图示发动机曲柄滑块机构中,已知曲柄长度 lAB 0.35m,
连杆长度 lBC 2.35m,连杆重心 S2 至曲柄销轴B的距离
l BS 2 m3
0.83m,连杆的质量 m2 19kg , 6kg, 连杆对其重心的转动惯量 J
例2 在图示的摆动导杆机构中,已知LAC=200mm, LAB=100mm,
φ=90°,导杆的重心在C点,导杆对重心C的转动惯量J3=0.2kg·m2 曲柄的等角速度ω1=20rad/s。求导杆3的惯性力矩。
解:1 运动分析(过程略)
3
aB3 lBC
pb3 a BC l
231rad / s2
件的外形、位置或状态时所受到的阻力,克服这些阻力 就完成了工作。如机床中作用在刀具上的切削阻力,起 重机提升重物的重力等都是有效阻力。
有害阻力―为非工作阻力,克服这些阻力所做的功纯粹
是一种浪费,故称为损失功。摩擦力、介质阻力等 一般为有害阻力。
§4—2 构件惯性力的确定
1 构件惯性力的确定 1) 直线移动构件惯性力的确定
阻抗力
有效阻力 有害阻力
驱动力―驱使机械运动的力。驱动力与其作用点的速度
方向相同或成锐角,其所作的功为正功。
阻抗力―阻止机械运动的力。阻抗力与其作用点的速度方向相
反或成钝角,其所作的功为负功。
驱动力
F
1
V12
<90
2 2
阻抗力
F
1
V12
>90
阻抗力又可分为
有效阻力―即工作阻力,它是机械在生产过程中为了改变工
M I 2 JS 2 2 16.9 103.4 1768N m
B 1 Aφ
MI2
S2
aS 2
FI 2
2 2
3 C
FI 3
(3)连杆 2 的总惯性力和作用线的位置:
H M I 2 1748 0.317m FI 2 5510
h
H2
l
0.317 0.03
10.56mmM
MI2
F
A
B
B 1
相关文档
最新文档