因式分解的教材分析

合集下载

因式分解教案【借鉴8篇】

因式分解教案【借鉴8篇】

因式分解教案【优秀8篇】作为一位不辞辛劳的人民教师,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。

我们应该怎么写教案呢?读书破万卷下笔如有神,下面本文为您精心整理了8篇《因式分解教案》,如果能帮助到您,本文将不胜荣幸。

因式分解教案篇一课型复习课教法讲练结合教学目标(知识、能力、教育)1、了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数)。

2、通过乘法公式,的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力教学重点掌握用提取公因式法、公式法分解因式教学难点根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。

教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1、分解因式:把一个多项式化成的形式,这种变形叫做把这个多项式分解因式。

2、分解困式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

⑴运用公式法:平方差公式: ;完全平方公式: ;3、分解因式的步骤:(1)分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解。

(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。

4、分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准。

若有一项被全部提出,括号内的项1易漏掉。

分解不彻底,如保留中括号形式,还能继续分解等(二):【课前练习】1、下列各组多项式中没有公因式的是( )A.3x-2与6x2-4xB.3(a-b)2与11(b-a)3C.mxmy与nynxD.aba c与abbc2、下列各题中,分解因式错误的是( )3、列多项式能用平方差公式分解因式的是()4、分解因式:x2+2xy+y2-4 =_____5、分解因式:(1) ;(2);(3) ;(4);(5)以上三题用了公式二:【经典考题剖析】1、分解因式:(1);(2) ;(3) ;(4)分析:①因式分解时,无论有几项,首先考虑提取公因式。

因式分解教材分析

因式分解教材分析

第一章《因式分解》教材分析一、教材的地位和作用初中数学中,因式分解是最常用最重要的恒等变形之一,它被广泛地应用于初等数学之中.《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为二种,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。

在第二章的《分式》学习中,处处有因式分解的存在, 不论是在约分、通分以及分式的各种运算,都需要进行因式分解才能解答.学生如果不能正确地进行多项式的因式分解,那将在分式学习中举步维艰,无从下手.在解一元二次或高次方程、方程组、不等式中,因式分解是一种重要的解法;在研究代数式、三角式的恒等变形中,分解因式是主要手段之一;在数的计算中,因式分解也是进行简便计算的一种常用技巧。

因此因式分解是我们解决许多数学问题的有力工具。

因式分解的方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用,也是发展学生智能、培养能力、深化学生逆向思维的良好载体.二、《新课程标准》的要求能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数)。

三、本章学习目标1. 通过探索因式分解的过程,比较和整式乘法的联系与区别,体会逆向思维方法和转化的数学思想。

2. 了解因式分解的意义,会判别各项的公因式,能用提取公因式法分解因式。

3. 会用平方差公式、完全平方公式(直接用公式不超过两次)分解因式(指数是正整数)。

4. 通过对平方差公式、完全平方公式的逆向变形及将一个整式看做“元”进行分解,发展学生的观察、类比、归纳、猜想等能力,进一步体会换元思想,提高处理数学问题的技能。

四、本章编写特点及教学建议本章共有三节内容第一节《因式分解》,利用993-99例子突出与因数分解的类比,体会因式分解的必要性;帮助学生理解a3-a的分解,在这一活动过程中学生可以进一步体会字母表示数,我们要给学生足够的时间进行观察、思考,引导学生运用类比的方法进行思考。

因式分解教材分析

因式分解教材分析

因式分解教材分析第一篇:因式分解教材分析八年级下第四章《因式分解》教材分析一.教学目标:1.经历将一个多项式分解成几个整式乘积的形式的过程,体会因式分解的意义,发展运算能力.2.能用提公因式法和公式法分解因式.3.认识整式乘法与因式分解的关系,体会数学知识之间的相互联系.4.进一步发展观察、归纳、类比、概括等能力二.设计思路:因式分解是整式的一种重要的恒等变形,它和整式乘法运算有着密切的联系,是后续学习分式化简与运算、解一元二次方程的重要基础.学生已有的因数分解、整式乘法运算的学习经验是本章学习的基础.本章在知识与技能方面主要解决两个问题:什么是因式分解?怎样进行因式分解?对于第二个问题,只学习提公因式法与公式法(平方差公式与完全平方公式)这两种方法.本章教科书尽可能帮助学生从几何角度理解代数的含义,发展学生的类比思想以及从特殊到一般的思考问题的方法,帮助学生体会数学知识之间的联系.具体地,本章设计了3节内容.第1节“因式分解”,先利用993-99的例子突出与因数分解的类比,体会因式分解的必要性,然后用几何图形的拼图解释因式分解,在了解因式分解概念的基础上,体会因式分解与整式乘法的关系.第2节“提公因式法”,它的依据是乘法分配律或者单项式乘多项式的法则.对于学生来说,难点是怎样在多项式的各项中发现公因式,为此,教科书让学生从简单的多项式ab+bc 的各项中发现相同因式入手,由浅入深地体会如何寻找公因式,并以例题示范的形式学习用提公因式法进行因式分解及其注意事项,形成基本技能.第3节“公式法”,其关键是熟悉平方差公式、完全平方公式的式子及其特点.学生初学时的一个难点是如何根据一个多项式的形式与特点选择运用恰当的公式.为此,教科书将这两个公式编成两课时,分开教学.需要说明的是,根据《标准》的要求,本章教科书介绍了最基本的因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式).教学中应把握好这一要求,不要刻意提高要求、增加难度,另外,教科书通过设置恰当的、有一定梯度的题目,关注了学生知识技能的掌握和不同层次学生的需求.【重点1.探索分解因式的方法.2.会用提公因式法把多项式分解因式.3.会用公式法把多项式分解因式.【难点】1.因式分解的概念的理解.2.确定多项式的公因式.3.确定合适的方法分解因式.教学建议:1.要引导学生多角度理解因式分解的意义.(1)类比因数分解理解因式分解.通过类比数式993-99的分解过程,帮助学生认识多项式a3-a的分解.(2)通过拼图帮助理解因式分解.通过拼图前后图形的面积不变,可以形象地解释多项式x2+2x+1变形为(x+1)2的合理性,以直观形象的方式,促进学生对因式分解的理解.教师要引导学生用自己的语言说明变形过程.(3)对比整式乘法加深理解因式分解.通过对整式乘法运算与因式分解的对比,充分感受两者之间互为逆过程的关系.2.要注重发展学生的观察、发现、归纳、概括等能力.对于因式分解概念的教学,要让学生通过观察、对比整式乘法运算与因式分解,归纳概括出整式乘法运算与因式分解互为逆过程的关系.在学生经历探索因式分解方法的过程中,更要注重发展学生的观察、发现、归纳、概括等能力.探索因式分解的方法,事实上是对整式乘法运算的再认识.在教学?,教师要借助学生已有的整式乘法运算的基础,给学生提供丰富的问题情境,留有充分探索与交流的时间和空间,让他们经历从整式乘法运算到因式分解的转换过程,并能用符号合理地表示出因式分解的方法.第二篇:因式分解教材分析第1章因式分解一、背景介绍因式分解的教学是在整式四则运算的基础上进行的,因式分解方法的理论依据就是多项式乘法的逆变形。

人教版八年级数学上册教学设计14.3 因式分解

人教版八年级数学上册教学设计14.3  因式分解

人教版八年级数学上册教学设计14.3 因式分解一. 教材分析因式分解是八年级数学上册的教学内容,主要目的是让学生掌握因式分解的基本方法和技巧。

教材通过引入多项式的乘法,让学生理解因式分解的实质,进而学习提公因式法、公式法等因式分解方法。

本节课的内容在数学知识体系中具有重要的地位,为学生深入学习代数运算和方程求解打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算,具备一定的代数基础。

但因式分解作为一种独立的解题方法,对学生来说较为抽象,需要通过实例分析、动手操作、小组讨论等方式,让学生逐步理解和掌握。

三. 教学目标1.知识与技能:使学生掌握因式分解的基本方法,能够运用提公因式法、公式法等进行因式分解。

2.过程与方法:培养学生观察、分析、归纳的能力,提高学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学的内在美。

四. 教学重难点1.重点:因式分解的方法和技巧。

2.难点:如何引导学生发现和运用提公因式法、公式法等进行因式分解。

五. 教学方法采用问题驱动法、实例分析法、小组合作法、引导发现法等,以学生为主体,教师为主导,充分调动学生的积极性,提高学生的学习兴趣。

六. 教学准备1.准备相关教学PPT和教学素材。

2.设计好教学问题和练习题。

3.准备好黑板和粉笔。

七. 教学过程1.导入(5分钟)通过一个实际问题引出因式分解的必要性,激发学生的学习兴趣。

例如:已知二次函数的图像,求其解析式。

2.呈现(10分钟)呈现因式分解的定义和基本方法,引导学生观察、分析、归纳因式分解的规律。

通过PPT展示提公因式法、公式法等具体的因式分解方法。

3.操练(10分钟)让学生动手操作,尝试运用所学的因式分解方法解决实际问题。

教师巡回指导,解答学生遇到的问题。

4.巩固(10分钟)设计一些练习题,让学生运用所学的因式分解方法进行解答。

教师选取部分学生的答案进行讲解和评价,及时巩固所学知识。

初中数学_4.1 因式分解教学设计学情分析教材分析课后反思

初中数学_4.1 因式分解教学设计学情分析教材分析课后反思

4.1 因式分解一.教材分析:因式分解是代数的重要内容,它与整式和它在分式有密切联系,因式分解是在学习有理数和整式四则运算上进行的,它为今后学习分式运算,解方程及方程组及代数式和三角函数式恒等变形提供必要的基础。

因此学好因式分解对于代数知识的后继学习具有相当重要的意义.本节是因式分解的第1小节,它主要让学生经历从分解因数到分解因式的过程,让学生体会数学思想——类比思想,分解的思想,逆向思考的作用,体会数学思维之间的整体联系。

二.学情分析:学生的技能基础:学生已经熟悉乘法的分配律及其逆运算,并且学习了整式的乘法运算,因此,对于因式分解的引入,学生不会感到陌生,它为今天学习分解因式打下了良好基础.学生活动经验基础:由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受起来还有一定的困难,再者本节还没有涉及因式分解的具体方法,所以对于学生来说,寻求因式分解的方法是一个难点。

三.教学目标:1.使学生了解因式分解的意义,理解因式分解的概念。

2.认识因式分解与整式乘法的相互关系——互逆关系(即相反变形)。

3.通过对分解因式与整式的乘法的观察与比较,培养变形与化归的能力。

4.培养学生认识矛盾的对立统一,勇于探索的精神和实事求是的学习态度。

四.教学重点:因式分解的概念。

教学难点:难点是理解因式分解与整式乘法的相互关系。

五.教学过程:本节课设计了五个教学环节:复习回顾(整式乘法),自主探究概念,小组合作学习,检测巩固,小结。

(一)复习回顾1.整式乘法有几种形式?(1)单项式乘以单项式:3aˑ4ab=(2)单项式乘以多项式:a(b+c)=_______(3)多项式乘以多项式: (m+1)(m-1)=_____________2.乘法公式有哪些?(1)平方差公式: (a+b)(a-b)=_______(2)完全平方公式: (x-1)2=___________(二)自主探究:1、用简便方法计算)1(⨯⨯1+314982314)2(2-992、类比迁移:(1)、993 -99能被100整除吗?(2)、你能尝试把a 3–a转化成几个整式的积的形式吗?3、拼图游戏(1)将下列四个图形拼成一个大长方形,并通过计算拼接前后图形的面积列一个等式。

沪科版数学七年级下册8.4《因式分解》教学设计3

沪科版数学七年级下册8.4《因式分解》教学设计3

沪科版数学七年级下册8.4《因式分解》教学设计3一. 教材分析《因式分解》是沪科版数学七年级下册8.4节的内容,本节课主要让学生掌握因式分解的基本方法和技巧。

教材通过实例引导学生探索、发现并总结因式分解的规律,使学生能够灵活运用各种方法进行因式分解。

教材内容由浅入深,循序渐进,让学生在解决实际问题的过程中,体会因式分解的意义和价值。

二. 学情分析学生在七年级上学期已经学习了整式的乘法,对基本的代数运算有一定的了解。

但因式分解较为抽象,需要学生具有一定的逻辑思维能力和探索精神。

通过前面的学习,大部分学生能掌握简单的因式分解,但遇到一些较复杂的题目时,可能会感到困惑。

因此,在教学过程中,要关注学生的学习需求,针对性地进行辅导。

三. 教学目标1.知识与技能:使学生掌握因式分解的基本方法,能够熟练地进行因式分解。

2.过程与方法:通过探索、发现和总结,培养学生逻辑思维能力和解决问题的能力。

3.情感态度与价值观:让学生体验到数学的乐趣,培养学生的自信心,激发学生学习数学的兴趣。

四. 教学重难点1.重点:因式分解的基本方法和技巧。

2.难点:如何引导学生发现并总结因式分解的规律,以及如何运用各种方法解决实际问题。

五. 教学方法1.情境教学法:通过设置实际问题,激发学生的学习兴趣,引导学生主动探索。

2.启发式教学法:在教学过程中,引导学生积极思考,发现并总结因式分解的规律。

3.小组合作学习:学生进行小组讨论,培养学生的团队协作能力和沟通能力。

六. 教学准备1.课件:制作精美的课件,展示因式分解的实例和规律。

2.练习题:准备一定数量的练习题,以便在课堂上进行操练和巩固。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用生活中的实际问题,引出因式分解的概念,激发学生的学习兴趣。

2.呈现(10分钟)通过多媒体课件,展示因式分解的实例,引导学生观察、分析并总结因式分解的规律。

3.操练(10分钟)让学生在课堂上进行练习,运用所学的因式分解方法解决实际问题。

教学设计—因式分解

教学设计—因式分解

《因式分解》教学设计一、课标解读根据《标准》的要求,本章教材介绍了最基本的分解因式的方法:提公因式法和公式法,本章的设计多以问题串的形式创设问题情境,让学生经历观察、发现、类比、归纳、总结、反思的过程,感受整式乘法与因式分解之间的互逆变形关系,发展学生有条理的思考及语言表达能力。

整个设计贯穿了“三会”素养的提升,掌握基础知识的同时,提高学生发现问题、提出问题、分析问题、解决问题的能力,从而形成质疑问难,自我反思的探索精神。

二、教材分析《因式分解》是湘教版七年级下册第一章第一节的内容,是“数与代数”领域中的重要部分。

学习因式分解一是为解高次方程作准备,二是学习代数式变形的能力,从中体会分解的思想、逆向思考的作用。

它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。

本章教材是在学生学习了整式运算的基础上进行的,事实上,它是整式乘法的逆向运用,与整式乘法有密切的联系。

分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径,分解因式这一章在整个教材中起到了承上启下的作用。

三、学情分析学科教学是基于学前的教学,因此我们的教学需围绕着学生已有的知识经验和心理特征展开。

从已有知识和经验上,七年级学生已经学习了整式乘法、乘法公式等知识,并且学生已有了代数学习的基本意识,具备了主动参与、合作交流的意识和初步的观察、分析、归纳、猜想和解决问题的能力,他们的思维方式也从形象思维逐步过渡到逻辑思维,并且不断向前推进,但是思维的严谨性和逻辑的严密性还有待加强。

在心理上,七年级学生的独立性和表现性较强,紧紧抓住这一心理特征,巧妙引导,积极鼓励,定会增强学生学习的主动性。

四、教学目标知识与技能:了解因式分解的意义,会判别哪些等式是因式分解。

过程与方法:经历探索整式整法与因式分解互逆变形的过程,进一步了解因式分解的意义,并渗透化归的思想方法。

《因式分解》说课稿(通用5篇)

《因式分解》说课稿(通用5篇)

•••••••••••••••••《因式分解》说课稿(通用5篇)《因式分解》说课稿(通用5篇)作为一名人民教师,常常要根据教学需要编写说课稿,说课稿有助于顺利而有效地开展教学活动。

那要怎么写好说课稿呢?以下是小编整理的《因式分解》说课稿(通用5篇),欢迎阅读与收藏。

《因式分解》说课稿篇1各位评委老师,上午好!我是最后一号,非常不好意思,因为我让大家痛苦而充实的等到现在。

我今天说课的课题是因式分解。

我将主要从教材分析,教法分析,学法指导,教学过程及补充说明等五个方面来具体阐述这节课。

下面开始我的说课。

一、教材分析(一)教材的地位与作用本节课是初中数学人教北师大版八年级下册第四章第一节的内容。

在此之前,学生已经学习了整式乘法的相关知识,这为过渡到本节的学习起了铺垫作用。

同时本节课也为后续知识一元二次方程求解方法的学习奠定一定的作用,因此在教材中本节课起着承上启下的过渡作用,而且本节课镶嵌着深刻的数形结合思想、类比思想,有利于学生思维的深化。

(二)教学目标根据以上对教材的认识分析和学生的实际情况,结合数学新课标,我制定如下教学目标:1、知识与技能(1)了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系。

(3)培养和提高学生分析、解决问题的能力2、过程与方法通过因式分解的学习,让学生经历因式分解概念的探索过程,感知、了解数学概念形成的方法,培养学生发现问题,分析问题,解决问题的能力。

3、情感态度与价值观鼓励学生积极主动的参与教学的整个过程,激发其求知的欲望;让学生体会数形结合的数学思想;领会数学的应用价值,培养学生善于观察、勇于质疑的优良品质。

(三)教学重点、难点根据新课程标准,在吃透教材的基础上,我将本节课的重难点确立为因式分解的概念,通过多层次展示,多角度分析,多方面练习,以达到突出重点,突破难点的目的。

二、教法分析数学是思维的体操,是一门以培养人的思维,发展人的思维为目的的重要学科,因此,在教学中,教师不仅要使学生“知其然”,更要使学生“知其所以然”。

浙教版七年级数学下册《因式分解》说课稿

浙教版七年级数学下册《因式分解》说课稿

浙教版七年级数学下册《因式分解》说课稿一、教材分析1.1 教材背景介绍本说课稿是针对浙教版七年级数学下册的教材内容《因式分解》进行讲解。

该教材是根据新课程标准编写的,旨在培养学生的逻辑思维能力和数学解决问题的能力。

1.2 教学目标通过本节课的学习,学生应能够:1.熟练掌握因式分解的概念和基本方法;2.能够正确应用因式分解解决实际问题;3.培养学生的逻辑思维能力和数学解决问题的能力。

1.3 教学重点掌握因式分解的基本概念和方法。

1.4 教学难点能够正确应用因式分解解决实际问题。

二、教学内容分析2.1 教学内容概述本节课主要内容是因式分解。

因式分解是指将一个多项式表达式,按照因式的乘积形式进行拆解的过程。

因式分解是解多项式方程和求整式的最大公因式的基本方法。

2.2 教学内容分解本节课分为以下几个部分进行教学:2.2.1. 知识点一:因式分解的基本概念•解释什么是因式分解;•介绍因式分解的作用;•分析因式分解的基本思路。

2.2.2. 知识点二:因式分解的基本方法•分解整式的常见方法:公因式法、配方法;•讲解公因式法和配方法的步骤;•运用公因式法和配方法进行因式分解的实例。

2.2.3. 知识点三:因式分解的应用•介绍因式分解在方程求解中的应用;•演示如何应用因式分解解决实际问题。

三、教学设计3.1 教学方法本节课采用讲授结合实例演算的教学方法。

通过讲解和实例,引导学生掌握因式分解的基本概念和方法,并能够应用于实际问题的求解过程。

3.2 教学流程本节课的教学流程如下:3.2.1. 知识点一:因式分解的基本概念•引入因式分解的概念,解释其作用;•分析因式分解的基本思路。

3.2.2. 知识点二:因式分解的基本方法•讲解公因式法和配方法的步骤;•运用公因式法和配方法进行因式分解的实例讲解。

3.2.3. 知识点三:因式分解的应用•介绍因式分解在方程求解中的应用;•演示如何应用因式分解解决实际问题。

3.3 教学示例教师通过具体的示例进行演示,如:例题:将 2x + 4 进行因式分解。

第十四章 整式的乘除与因式分解教材分析

第十四章  整式的乘除与因式分解教材分析

第十四章整式的乘除与因式分解教材分析1、教学内容及地位本章属于《课程标准》中的“数与代数”领域,其核心知识是:整式的乘除运算和因式分解。

这些知识是在学习了有理数的运算、列代数式、整式加减和解一元一次方程及不等式的基础引入的。

也是进一步学习分式和根式运算、一元二次方程以及函数等知识的基础,同时又是学习物理、化学等学科及其他科学技术不可缺少的数学工具,因此,本章在初中学段占有重要地位。

2、本章教学内容在学习上各部分知识之间的联系如下:从上面可以看出,本章内容的突出的特点是:内容联系紧密、以运算为主。

全章紧紧围绕整式的乘除运算,分层递进,层层深入。

在整式的乘除中,单项式的乘除是关键,这是因为其他乘除都要转化为单项式除法。

实际上,单项式的乘除进行的是幂的运算与有理数的运算,因此幂的运算是学好整式乘除的基础。

3、教学目标《课程标准》目标人教材具体目标目标1:了解整数指数幂的意义和基本性质,会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)目标1:掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行计算.掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行计算.目标2:会推导乘法公式:(a+b)(a-b)=a2-b2;(a+b)2=a2+2ab+b2,了解公式的几何背景,并能进行简单目标2:会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算.⑴解析每个目标①目标1中《课标》对整式乘法运算的要求——其中的多项式相乘仅指一次式相乘,是对多项式与多项式相乘的难度作一个要求。

②目标2中对乘法公式的要求不仅是能利用公式进行(简单)的乘法运算,更要引起老师们注意的是,目标要求会“推导”乘法公式,因此在教学中要从代数、几何多个角度出发推导公式。

③目标3中,《课标》要求:会用提公因式法、公式法(直接用公式不超过二次)分解因式(指数是正整数)。

沪科版数学七年级下册8.4《因式分解》教学设计2

沪科版数学七年级下册8.4《因式分解》教学设计2

沪科版数学七年级下册8.4《因式分解》教学设计2一. 教材分析《因式分解》是沪科版数学七年级下册8.4节的内容,本节课主要让学生掌握因式分解的方法和技巧,能够将多项式分解为几个整式的乘积形式。

教材通过例题和练习题,让学生逐步理解和掌握因式分解的方法,提高解决实际问题的能力。

二. 学情分析学生在七年级上学期已经学习了整式的乘法,对多项式有一定的了解。

但因式分解相对较为抽象,需要学生具有一定的逻辑思维能力和转化能力。

在实际教学中,我发现部分学生对因式分解的概念和方法理解不深,容易混淆,需要通过大量的练习来巩固。

三. 教学目标1.让学生掌握因式分解的概念和方法,能够正确进行因式分解。

2.培养学生观察、分析、归纳的能力,提高解决问题的能力。

3.培养学生的团队合作精神,提高学生的表达能力和沟通能力。

四. 教学重难点1.因式分解的方法和技巧。

2.如何在实际问题中应用因式分解。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生主动探究,合作解决问题。

通过具体的例题和练习题,让学生在实践中掌握因式分解的方法和技巧。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备因式分解的练习题,难度适中,以便进行课堂练习和课后作业。

七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生对因式分解的思考。

例如:已知二次函数的图像是一个开口向上的抛物线,顶点坐标为(1,2),求该二次函数的解析式。

让学生尝试解决该问题,从而引出因式分解的概念。

2.呈现(10分钟)呈现因式分解的定义和基本方法,通过PPT和相关的教学素材,让学生对因式分解有一个直观的认识。

同时,给出一些例题,让学生观察和分析,归纳出因式分解的方法和技巧。

3.操练(10分钟)让学生进行因式分解的练习,教师巡回指导,解答学生的疑问。

可以设置一些小组合作的活动,让学生互相讨论和交流,共同解决问题。

4.巩固(10分钟)通过一些巩固性的练习题,让学生进一步理解和掌握因式分解的方法。

七年级数学下册12.4用公式法进行因式分解说课稿

七年级数学下册12.4用公式法进行因式分解说课稿

七年级数学下册12.4用公式法进行因式分解说课稿一. 教材分析《七年级数学下册》第12.4节“用公式法进行因式分解”是初中数学的重要内容,是学生掌握因式分解方法的转折点。

这一节的内容是在学生已经掌握了多项式的基本概念、运算法则和提公因式法等知识的基础上进行学习的。

教材中通过公式法来进行因式分解,让学生感受数学的规律性和美感,培养学生对数学的兴趣和探究精神。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对数学的学习有了一定的基础。

但是,学生对于新知识的学习还是以形象思维为主,对于抽象的数学公式和定理的理解和运用还需要通过具体的例子和实际操作来进行。

在因式分解的学习中,学生可能会对于公式的推导和运用存在困难,需要通过多次的练习和教师的引导来逐步掌握。

三. 说教学目标1.知识与技能:学生会掌握公式法进行因式分解的方法,能够运用公式法解决一些实际问题。

2.过程与方法:学生会通过观察、猜想、验证、总结等过程,体验数学的探究过程,培养学生的探究能力和思维能力。

3.情感态度价值观:学生会感受数学的规律性和美感,培养对数学的兴趣和探究精神。

四. 说教学重难点1.教学重点:学生能够掌握公式法进行因式分解的方法,并能够运用公式法解决一些实际问题。

2.教学难点:学生对于公式的推导和运用,以及对于因式分解的理解。

五. 说教学方法与手段在这一节课中,我会采用问题驱动的教学方法,通过提问和引导,让学生主动去探究和发现公式法进行因式分解的方法。

同时,我会运用多媒体教学手段,通过动画和图形的展示,帮助学生直观地理解因式分解的过程。

六. 说教学过程1.导入:通过复习多项式的基本概念和运算法则,引导学生进入新课。

2.探究:通过具体的例子,引导学生观察和猜想公式法进行因式分解的方法,然后进行验证和总结。

3.讲解:通过讲解和示范,让学生理解和掌握公式法进行因式分解的方法。

4.练习:通过布置一些实际的练习题,让学生运用公式法进行因式分解,巩固所学知识。

华东师大版八年级上册数学教学设计《因式分解》

华东师大版八年级上册数学教学设计《因式分解》

华东师大版八年级上册数学教学设计《因式分解》一. 教材分析华东师大版八年级上册数学《因式分解》是学生在学习了整式的乘法、方程的解法等知识后,对多项式进行的一种分解。

本节课的内容是因式分解的定义、方法和应用。

因式分解是初中学段数学的重要知识点,也是后续学习高中数学的基础。

教材从实际问题出发,引导学生探究因式分解的方法,培养学生解决问题的能力。

二. 学情分析八年级的学生已经掌握了整式的乘法、方程的解法等知识,具备了一定的数学基础。

但学生在学习因式分解时,容易与多项式乘法混淆,对因式分解的方法理解不深。

因此,在教学过程中,需要帮助学生明确因式分解的意义,指导学生掌握因式分解的方法,提高学生解决问题的能力。

三. 教学目标1.理解因式分解的定义,掌握因式分解的方法。

2.能够运用因式分解解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.因式分解的定义和方法的掌握。

2.因式分解在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。

六. 教学准备1.准备相关的教学案例和实际问题。

2.制作多媒体课件,辅助教学。

七. 教学过程1.导入(5分钟)通过一个实际问题引出因式分解的概念,激发学生的学习兴趣。

例:已知一个二次方程的解为x1=3,x2=4,求该方程。

2.呈现(10分钟)呈现因式分解的定义和方法,引导学生理解因式分解的意义。

定义:将一个多项式表达为两个或两个以上多项式的乘积的形式,称为因式分解。

方法:试错法、分解法、换元法等。

3.操练(10分钟)让学生通过具体的例子,运用因式分解的方法解决问题,加深对因式分解的理解。

例1:因式分解x^2 - 5x + 6。

例2:因式分解a^2 + 2ab + b^2。

4.巩固(10分钟)通过一些练习题,巩固学生对因式分解的掌握。

练习1:因式分解x^2 - 4x + 3。

华东师大版八年级上册数学说课稿《12.5因式分解(1)》

华东师大版八年级上册数学说课稿《12.5因式分解(1)》

华东师大版八年级上册数学说课稿《12.5因式分解(1)》一. 教材分析《12.5因式分解(1)》这一节的内容是华东师大版八年级上册数学的重要内容,主要让学生掌握因式分解的方法和应用。

因式分解是初中学过的最复杂的整式乘法,是解决许多数学问题的基础。

本节课的内容是在学生已经掌握了整式的乘法、幂的运算、方程的解法等知识的基础上进行学习的。

教材通过丰富的例题和练习题,引导学生探索、总结因式分解的方法,进而解决实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对整式的乘法和幂的运算有一定的了解。

但是,因式分解作为一种独立的解题方法,对学生来说还是有一定难度的。

因此,在教学过程中,我需要关注学生的学习情况,及时进行引导和帮助。

三. 说教学目标1.知识与技能目标:使学生掌握因式分解的方法,能够正确地进行因式分解。

2.过程与方法目标:通过探索、总结因式分解的方法,培养学生的逻辑思维能力和创新能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 说教学重难点1.教学重点:使学生掌握因式分解的方法,能够正确地进行因式分解。

2.教学难点:如何引导学生探索、总结因式分解的方法,以及如何运用因式分解解决实际问题。

五. 说教学方法与手段在本节课的教学中,我将采用引导发现法、实例演示法、小组合作学习法等教学方法。

同时,利用多媒体教学手段,如PPT、网络资源等,为学生提供丰富的学习材料,帮助学生更好地理解和掌握因式分解的方法。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何将一个多项式转化为几个整式的乘积,从而引出因式分解的概念。

2.探究:让学生通过小组合作,探讨如何进行因式分解,并总结出因式分解的方法。

3.讲解:根据学生的探究结果,进行讲解,明确因式分解的方法和步骤。

4.练习:让学生通过练习题,巩固所学的内容,并及时进行反馈和讲解。

5.应用:让学生解决一些实际问题,运用因式分解的方法进行解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解的教材分析塘沽十五中王守娟一、知识结构梳理提公因式法两项式平方差公式完全平方公式公式法三项式十字相乘法分组分解法一“提”二“套”三“分”四“查”二、本章在代数中的地位和作用因式分解是代数中又一种重要的恒等变形,而本章的因式分解的内容是多项式因式分解中一部分最基本的知识和基本方法,它包括因式分解的概念,整式乘法与因式分解的区别和联系;因式分解的四种基本方法,即提公因式法、运用公式法、分组分解法和十字相乘法(本书中只介绍了二次项系数为1的二次三项式的十字相乘法)多项式的因式分解是代数中一部分重要内容,它是在学完有理数和整式乘法之后给出的,它与前一章整式乘除和后一章分式联系极为密切。

这部分内容在将分式通分和约分时有着直接应用,在解方程以及将三角函数进行恒等变形等方面也经常涉及到它的应用,因此本章内容对进一步学习数学有重要的作用。

三、教学目标1、通过学习因式分解的概念及其与整式乘法的区别和联系,提高对代数式的辨别能力。

2、学习提公因式法,了解提公因式法分解因式是乘法对加法的分配律的逆用;学习了公式法,进一步明确公式法分解因式是乘法公式的逆用。

从而提高代数式的恒等变形能力。

3、在小学数学中学习分解质因数是为分数运算打基础,进而计算算术应用题。

同样道理,在代数中学习因式分解是为后面学习分式运算打基础,进而可以列方程解应用题,从而提高分析问题和解决问题的能力。

4、通过分组分解法提高学生观察问题、分析问题、解决问题的能力。

注意观察式子的结构特点,提高合理选择式子变形的方法,注意提高综合处理因式分解的能力。

5、加强把一个式子看作一个字母的换元思想的练习,在因式分解时对于比较复杂的问题能够通过变形整理使之转化为所熟悉的因式分解的基本形式或把某一部分式子看作一个整体以适应某种基本方法,从而了解等价转化的思想和方法。

6、寻求因式分解的方法具有探索性,要有猜想、试探、思辨的过程,所以要培养学生的探索精神和探索能力,提高解题的灵活性和创造性。

四、教学重点:多项式的因式分解的四种方法。

五、教学难点:多项式因式分解方法灵活多变,分组方案的筛选技巧六、教学建议1、对因式分解这一概念本人认为不宜要求学生一次了解彻底,可以通过举例及后面的几节课的因式分解过程逐步加深理解。

特别是讲授四个因式分解的基本方法时,结合具体例题的分析过程、分解结果,说明因式分解的概念,以达到明确这个概念的目的。

2、提公因式法是因式分解的最基本的方法,也是最常用的方法,它的理论依据是乘法分配律。

在讲解时可以先复习单项式乘以多项式,再把它逆转过来运算就是提公因式法。

用这个方法,首先对要分解的多项式认真观察,确定公因式是至关重要的。

3、运用公式法的关键是熟悉各公式的形式和特点。

对初学者来说,如何根据要分解的多项式的形式特点(项数、系数、指数)来选择用什么公式,往往不是很容易,这也是运用公式的难点。

因此在教学中应注意分析实例,指明思路、交待方法,以便克服难点。

4、分组分解法是前两种方法的综合。

教材中分两类:一类是分组后能直接提公因式的;一类是分组后能运用公式的。

由于多项式的形式各异,分组的方法也比较灵活,要具体问题具体分析,并且要预见到分组后是否能将整个多项式继续分解,相对来说分组分解法比前两种方法难,教学时要根据教材的层次,先易后难,最后讲综合性的因式分解。

5、运用公式))(()(2b x a x ab x b a x ++=+++进行因式分解,让学生注意观察该二次三项式的特征:①二次项系数为1;②常数项能分解成ab ;③b a +恰好为一次项系数,则一定能分解为))((b x a x ++的形式,只有满足这样特征的二次三项式才能用它进行正确的因式分解。

6、综合运用以上四种方法进行多项式的因式分解安排在本章的最后,对这部分内容的教学要根据不同的题目,进行具体分析,灵活地运用各种方法来分解因式。

通过这部分内容可综合地培养学生观察问题、分析问题、解决问题的能力。

这部分内容又是教学的难点,要从教学要求学生水平出发安排这部分的例题和练习。

7、因式分解的一般步骤是总结各种分解方法后讲述的,教学时要强调结合题目的形式和特点来选择,确定采用哪种方法分解。

四种方法是彼此联系的,并不是一种类型的多项式只能用一种方法来分解因式,教学时要让学生学会具体问题具体分析的方法。

8、先分组分解,再最后完成整个分解的方法,既依赖于解题能力的提高,也是解题能力的培养。

要认真组织学生讨论,发挥实验探索精神,养成探索习惯,以寻求分组途径,所以这种解法应在学生的研讨中产生,而不宜简单地“传授”给学生,让学生不仅享受正确分组的成功,也要经历错误分组的失败,然后从失败中走向成功。

七、课时安排:§8.1 提公因式法(5课时)§8.2 运用公式法(8课时) §8.3 分组分解法(8课时)八、具体安排:§8.1 提公因式法 (第一课时)引出因式分解这一概念的方法很多。

本人在课前先让学生完成如下的题目(课本第7页练习)①abc abc c b a =-33( )②x m xy m x m x m 222232=-+( )③b a b a x b a b a 22222239312=--( )④22232424343222142z y x z y x z y x z y x =+-( )更能体会整式乘法与因式分解互为逆变形,同时也为提公因式法作准备。

提公因式法分解因式的关键是确定多项式各项的公因式,即当多项式各项系数为整数时,应取各项系数的最大公约数与各项相同因式的最低次幂的积。

此种方法分解的步骤是:①确定公因式,把它放在括号前。

②确定另一个公因式(用提出的公因式去除原多项式,把所得的商作为另一个因式,并把它写在括号里)。

安排例1、y x x 3236+(含一个字母)例2、c ab b a 323128-(含两个字母)例3、32222642abc c ab bc a +-(含三个字母)显然例题是由易到难,这样安排符合学生的认知规律,也使学生易于掌握。

(第二课时)讲解课本上的例3、x xy x +-632(易出现漏“1”的问题,此时可用整式乘法来检验)。

补充:已知6-=-a b ,7=ab ,求22ab b a -的值。

分析:学生先阶段还不能从已知中求出a 、b 的值,因此就需要学生探索求解的方法,即先把多项式22ab b a -分解因式得)(b a ab -,再把7,6=-=-ab a b 代入。

(第三课时)添括号法则及例5(将多项式的后两项添括号) 例6、将多项式m m m 2616423-+-分解因式(在这里又一次应用了添括号法则,即多项式的最高次项系数为负,在分解之前应先提出“-”号,再对对括号内的多项式分解因式,这样比较简单)补充:按要求对多项式2332325b ab ab b a -+-添括号① 将多项式的中间两项放到前面带有“-”的括号里;② 将多项式的四次项放到前面带有“+”的括号里,二次项放到前面带有“-”的括号里。

(例5之后练习) (第四课时)公因式是多项式(这里渗透换元思想) 例7、把)(3)(2c b c b a +-+分解因式例8、把32)(12)(18b a b a b ---分解因式(课本例9) (两个例题中括号内的多项式是相同的) (第五课时)公因式仍是多项式,但需在分解前变形,这也是学生容易错的地方。

基于这样在讲例题之前让学生先完成P 12的练习第1题,并通过此题的练习让学生归纳出n y x )(-与n x y )(-的关系:① 当n 为偶数时n y x )(-=n x y )(-② 当n 为奇数时n y x )(-=n x y )(--从而为例9、把)3()2(6x x x -+-分解因式例10、把23)(10)(5x y y x -+-分解因式作了铺垫。

(在这里尽量让学生用不同的方法来分解)§8.2运用公式法(这种方法的关键是弄清公式的形式和特点,熟练地掌握公式)平方差公式的特点:左边:①多项式为二项式;②两项的符号相反;③每项都可化为某数(或某式)的平方形式。

右边:这两个数(或式)的和与这两个数(或式)的差的积。

即:(△)2-(□)2=(△+□)(△-□) (第一课时)应充分重视引例162-x 与2249n m -的因式分解过程的分析。

在讲解例题之前先完成课后练习1、练习4(判断能否用平方差公式分解,从而加深对公式的理解,同时也有助于学生逻辑思维能力的培养)。

例1、 把下列各多项式分解因式:(1) 2251b - (2)4122-y x (3)6201.094n m - 通过例题的讲解归纳步骤①先判断能否用此公式,并确定a 、b ;②再套用公式分解;③化简。

(第二课时)相当于公式中的a 、b 是多项式,又一次体现了换元的思想,分析时就可以采用换元法。

例2、 把下列多项式分解因式:①22)()(q x p x +-- ②22)(9)(16b a b a +--(分解时让学生注意系数、指数的变化)。

(第三课时)综合运用提公因式法和公式法分解多项式(有助于培养学生分析问题能力)初次让学生体会到因式分解方法的考虑顺序是一“提”二“套”。

例3、 分解下列多项式:①35x x - ②44y x -(两次运用公式,强调分解要彻底。

这里又一次体现换元的思想) (第四课时)完全平方公式:公式特点:(左边)a 、多项式为三项式;b 、有两个平方项且同号,又能写成两数(或式)的平方形式;c 、另一项是这两数(或式)的积的二倍,符号可正可负。

(右边)这两数(或式)的和或差的平方形式。

运用此公式的关键是会判断一个三项式是否为完全平方式 即:(△)2±2*△*□+(□)2补充下面的练习:1、下列各式是否为完全平方式:① 222y xy x -- ②22244b ab a ++-③222y xy x +- ④442+-x x2、填空:①()()2224=+-n m ②()()222=+-a a③()()222=+-y xy完成以上练习后再讲例1把多项式1102524++x x 分解因式及引例962++x x 和252042+-x x 的分解因式。

(第五课时)例5、(首项系数为负,先提出“-”,使字母的平方项系数为正)(xy y x 4422+--) 例6、(含公因式的)22363ay axy ax ++(又一次体现一“提”二“套”的步骤) (第六课时)例7、把50)(20)(22++++b a b a 分解因式(此题中既含有公因式2,又把b a +看作整体,进一步渗透换元思想)补充:分解 ①222224)(y x y x -+ ②31++-n n x x (第七课时)补充因式分解的一些应用(如①简便计算:161962- ②证明数的整除:n 为整数,则22)12()12(--+n n )能被8整除等问题) (第八课时)公式法的小结课,综合运用两个公式和提公因式法。

相关文档
最新文档