材料力学复习总结

合集下载

(完整版)材料力学重点总结

(完整版)材料力学重点总结

(完整版)材料力学重点总结材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。

2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。

均匀性:构件内各处的力学性能相同。

各向同性:物体内各方向力学性能相同。

3。

材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。

内力:附加内力。

应指明作用位置、作用截面、作用方向、和符号规定。

应力:正应力、剪应力、一点处的应力。

应了解作用截面、作用位置(点)、作用方向、和符号规定。

正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。

4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。

剪切虎克定律:两线段——拉伸或压缩。

拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。

5。

材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。

拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=126. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。

过小,使构件安全性下降;过大,浪费材料。

许用应力:极限应力除以安全系数.塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。

2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。

3) 截面法:将内力转化成“外力”。

材料力学性能总复习-知识归纳整理

材料力学性能总复习-知识归纳整理

知识归纳整理《材料力学性能》课程期末总复习一、名词解释刚度、形变强化、弹性极限、应力腐蚀开裂、韧性、等温强度、缺口效应、磨损、腐蚀疲劳、脆性断裂、等强温度、应力松弛、Bauschinger效应、粘着磨损、缺口敏感度、冲击韧度、滞弹性、韧脆转变温度、应力腐蚀、抗拉强度、蠕变、高温疲劳、低应力脆断、氢脆、弹性变形、应力状态软性系数、应力幅、应力场强度因子、变动载荷、抗热震性、弹性比功、残余应力、比强度、高周疲劳、约比温度、滑移、应变时效、内耗、断面收缩率、腐蚀磨损二、挑选题1、Bauschinger效应是指经过预先加载变形,然后再反向加载变形时材料的弹性极限()的现象。

A.升高B.降低C.不变D.无规律可循2、橡胶在室温下处于:()A.硬玻璃态B.软玻璃态C.高弹态D.粘流态3、下列金属中,拉伸曲线上有明显屈服平台的是:()A.低碳钢B.高碳钢C.白口铸铁D.陶瓷4、HBS所用压头为()。

A.硬质合金球B.淬火钢球C.正四棱金刚石锥D.金刚石圆锥体5、对称循环交变应力的应力比r为()。

A.-1 B.0 C.-∞D.+∞6、Griffith强度理论适用于()。

A.金属B.陶瓷C.有机高分子D.晶须7、疲劳裂纹最易在材料的什么部位产生()。

A.表面B.次表面C.内部D.不一定8、⊿Kth表示材料的()。

A.断裂韧性B.疲劳裂纹扩展门槛值求知若饥,虚心若愚。

C.应力腐蚀破碎门槛值D.应力场强度因子9、拉伸试样的直径一定,标距越长则测出的断面收缩率会()。

A.越高B.越低C.不变D.无规律可循10、下述断口哪一种是延性断口()。

A.穿晶断口B.沿晶断口C.河流花样D.韧窝断口11、与维氏硬度可以相互比较的是()。

A.布氏硬度B.洛氏硬度C.莫氏硬度D.肖氏硬度12、为提高材料的疲劳寿命可采取如下措施()。

A.引入表面拉应力B.引入表面压应力C.引入内部压应力D.引入内部拉应力13、材料的断裂韧性随板材厚度或构件截面尺寸的增加而()。

材料力学复习

材料力学复习

第一章 绪论1. 承载能力:强度:构件在外力作用下抵抗破坏的能力刚度:构件在外力作用下抵抗变形的能力稳定性:构件在外力作用下保持其原有平衡状态的能力2. 变形体的基本假设:连续性假设、均匀性假设、各向同性假设3. 求内力的方法:截面法4. 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲第二章 拉伸、压缩1. 轴力图必须会画:轴力N F 拉为正、压为负2. 横截面上应力:均匀分布 AF N =σ 3. 斜截面上既有正应力,又有切应力,且应力为均匀分布。

ασσα2cos =αστα2sin 21=σ为横截面上的应力。

横截面上的正应力为杆内正应力的最大值,而切应力为零。

与杆件成45°的斜截面上切应力达到最大值,而正应力不为零。

纵截面上的应力为零,因此在纵截面不会破坏。

4. 低碳钢、灰铸铁拉伸时的力学性能、压缩时的力学性能低碳钢拉伸在应力应变图:图的形状、四个极限、四个阶段、各阶段的特点、伸长率(脆性材料、塑性材料如何区分)5. 强度计算脆性材料、塑性材料的极限应力分别是 拉压时的强度条件:][max max σσ≤=AF N 强度条件可以解决三类问题:强度校核、确定许可载荷、确定截面尺寸 6.杆件轴向变形量的计算 EA l F l N =∆ EA :抗拉压刚度 7. 剪切和挤压:剪切面,挤压面的判断第三章 扭转1.外力偶矩的计算公式: 2.扭矩图T 必须会画:扭矩正负的规定3.切应力互等定理、剪切胡克定律4.圆轴扭转横截面的应力分布规律:切应力的大小、作用线、方向的确定sb σσ,min /::)(9549r n kW P m N n P M ⋅=5.横截面上任一点切应力的求解公式:ρI ρT τP ρ=——点到圆心的距离6. 扭转时的强度条件:][max max ττ≤=tW T 7.实心圆截面、空心圆截面的极惯性矩、抗扭截面模量的计算公式 实心圆截面:极惯性矩432D πI p =,抗扭截面模量316D πW t = 空心圆截面:极惯性矩)1(3244αD πI P -=,抗扭截面模量)1(1643αD πW t -==, 8.圆轴扭转时扭转角:pI G l T =ϕ p I G :抗扭刚度 第四章 弯曲内力1.纵向对称面、对称弯曲的概念2. 剪力图和弯矩图必须会画:剪力、弯矩正负的规定3.载荷集度、剪力和弯矩间的关系4. 平面曲杆的弯矩方程5.平面刚架的弯矩方程、弯矩图第五章 弯曲应力1. 纯弯曲、中性层、中性轴的概念2.弯曲时横截面上正应力的分布规律:正应力的大小、方向的确定3. 横截面上任一点正应力的计算公式:zI My =σ 4. 弯曲正应力的强度校核][max max σσ≤=zW M 或][max max max σI y M σz ≤= 对于抗拉压强度不同的材料,最大拉压应力都要校核5. 矩形截面、圆截面的惯性矩和抗弯截面模量的计算 矩形截面:惯性矩,1213bh I z =抗弯截面模量:261bh W z = 实心圆截面:惯性矩464D πI z =,抗弯截面模量:332D πW z = 空心圆截面:惯性矩)1(6444αD πI z -=,抗弯截面模量:)1(3243αD πW z -=, 第七章 应力和应变分析、强度理论1. 主应力、主平面、应力状态的概念及应力状态的分类2. 二向应力状态分析的解析法:应力正负的规定:正应力以拉应力为正,压应力为负;切应力对单元体内任意点的矩顺时针转向为正;α角以逆时针转向为正D d α=D d α=任意斜截面上的应力计算最大最小正应力的计算公式最大最小正应力平面位置的确定 最大切应力的计算公式主应力、主平面的确定3. 了解应力圆的做法,辅助判断主平面4. 广义胡克定律5.四种强度理论内容及适用范围第八章 组合变形1. 组合变形的判断2. 圆截面轴弯扭组合变形强度条件 第三强度理论:[]σσ≤+=WT M r 223 第四强度理论:[]σσ≤+=W T M r 22375.0 W ——抗弯截面模量323d W π=第九章 压杆稳定1. 压杆稳定校核的计算步骤(1)计算λ1和λ2(2)计算柔度λ,根据λ 选择公式计算临界应(压)力(3)根据稳定性条件,判断压杆的稳定性2. P 1σπλE = ba s 2σλ-= ⎪⎪⎩⎪⎪⎨⎧+-=--++=ατασστατασσσσσαα2cos 2sin 22sin 2cos 22xy y x xy y x y x 22min max 22xy y x y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+=⎭⎬⎫y x xy σστα--=22tan 0231max σστ-=柔度i lμλ= AI i = I ——惯性矩 μ——长度系数;两端铰支μ=1;一端铰支,一段固定μ=0.7;两端固定μ=0.5; 一端固定,一端自由μ=23. 大柔度杆1λλ≥ 22cr λπσE = 中柔度杆12λλλ<≤ λσb a -=cr小柔度杆 2λλ< s cr σσ=4. 稳定校核条件st cr n n FF ≥= F ——工作压力 cr F =cr σ A 第十章 动载荷1. 冲击动荷因数冲击物做自由落体 冲击开始瞬间冲击物与被冲击物接触时的速度为 v水平冲击时 Δst 是冲击点的静变形。

材料力学复习总结知识点

材料力学复习总结知识点

功能原理 卡氏定理 虚 功 原 理
导出
F F M M T T N N d x d x d x i EA F EI F GI F i i p i l l l
ห้องสมุดไป่ตู้单 位 载 荷 法
莫尔积分
(线弹性)
图乘法 其他
M
C xc
ω
(等刚度直杆)
M
非线弹性
MC
1 Δ F d Δl M d T d N
2 2 M T , r 3 W 2 2 M 0 . 75 T r 4 W
2
四、压杆稳定
1. 欧拉公式:
2. 压杆的柔度: 细长杆
2 EI Fcr 2 ( l)
(适用范围:细长杆)
况) 长度因数(反应约束情 l i 截面形状、大小 i l 杆长
正负号规定: FQ (+) M (+ )
一、基本变形(2)
基本变形 拉(压)
外力 应力
FN A
扭转
弯曲
圆轴

T IP
τ


My IZ
FQ S Z IZb
*
拉 (+ )
(平面假设) d4
IP 32
d Wt 16
3
平面假设
σ τ
3 2 bh bh 矩形: IZ , W Z 12 6
强度计算11强度理论依据材料性质外力结构条件确定应力状态计算相当应力主应力表达一般应力表达内力表达主应力表达一般应力表达内力表达如r31133223r4?????tm22??w3r??22内容强度校核内容核强度校核669例例886计载荷设计9915计计计截面设计例例995533形式简单形式组合变形形式简单形式形组合变形99557711构构21构组合结构66题移动载荷问题661121反问题9918194

材料力学性能复习重点汇总

材料力学性能复习重点汇总

第一章包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(OP)或屈服强度(OS)增加;反向加载时弹性极限(OP)或屈服强度(OS)降低的现象。

解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。

晶体学平面一一解理面,一般是低指数,表面能低的晶面。

解理面:在解理断裂中具有低指数,表面能低的晶体学平面。

韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。

静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。

是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。

可以从河流花样的反“河流”方向去寻找裂纹源。

解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。

5.影响屈服强度的因素与以下三个方面相联系的因素都会影响到屈服强度位错增值和运动晶粒、晶界、第二相等外界影响位错运动的因素主要从内因和外因两个方面考虑(一)影响屈服强度的内因素1.金属本性和晶格类型(结合键、晶体结构)单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力一一派拉力、位错运动交互作用产生的阻力)决定。

派拉力:2G加2G 罕位错交互作用力aGbQ是与晶体本性、位错结构分布相关的比例系数,L是位错间距。

)2.晶粒大小和亚结构晶粒小一晶界多(阻碍位错运动)一位错塞积〜提供应力一位错开动一产生宏观塑性变形。

晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。

屈服强度与晶粒大小的关系:霍尔一派奇(Hall-Petch)o s= o i+kvd-1/23.溶质元素加入溶质原子一(间隙或置换型)固溶体〜(溶质原子与溶剂原子半径不一样)产生晶格畸变一产生畸变应力场〜与位错应力场交互运动一使位错受阻一提高屈服强度(固溶强化)。

4.第二相(弥散强化,沉淀强化)不可变形第二相提高位错线张力一绕过第二相一留下位错环一两质点间距变小一流变应力增大。

材料力学期末复习总结刘鸿文版

材料力学期末复习总结刘鸿文版

V
T 2l 2GI P
线弹性范围 扭转
V
M 2l 2EI z
线弹性范围 平面弯曲
危险截面上任一





FN max
A
危险截面的圆周上
max
Tmax Wt
一般在 FS ,max 截面的中性 M max 截面的上、下边
轴上

max
F S* S , max z max Izb
max
第Ⅱ阶段──屈服阶段或流动阶段 第Ⅳ阶段──局部变形阶段
E
D F
AB C
b
s e
P
O
(1)反映强度特性的重要指标
比例极限 P
弹性极限 e
b
屈服极限或流动极限 ss
强度极限
(2)衡量材料塑性的重要指标
延伸率(或伸长率)
l1
l l
100 0 0
A A1 A
100 0 0
塑性材料:d≥5%的材料,
截面收缩率 脆性材料:d<5%的材料。
M max Wz
[ ]
max
My max Iz
[ ]
Wp
IP max
d 3 16
Wp
D 3 16
(1 4 )
刚 度 计
m ax
Tmax GI P
180

Wz
Iz y max
矩形
Wz
bh 2 6
圆形
Wz
d 3 32
Wz
D 3 32
(1 4 )
w [w]
w L
w L
弯矩、剪力与分布荷载集度间的微分关系
材料力学期末复习总结(刘鸿文 第五版)

材料力学性能复习总结

材料力学性能复习总结

材料力学性能复习总结材料力学性能是指材料在外力作用下所表现出的力学特性和性能。

在材料力学性能的学习中,不仅需要了解材料的基本力学性质,还需要掌握材料的破坏机制、变形行为以及材料的力学性能测试方法等方面的知识。

以下是对材料力学性能复习的总结。

1.材料的破坏机制和破坏形态材料的破坏机制是指材料在受力作用下发生破坏的方式和过程。

常见的破坏机制有拉伸破坏、压缩破坏、剪切破坏等。

拉伸破坏时,材料会发生断裂;压缩破坏时,材料会出现压缩变形和压碎现象;剪切破坏时,材料会出现剪切变形和断裂等。

材料的破坏形态是指材料在受力作用下发生的形态变化。

常见的破坏形态有脆性断裂、塑性变形和疲劳破坏等。

脆性断裂是指材料在受静态或低应力下发生迅速断裂的性质;塑性变形是指材料在受力作用下发生塑性流动,而不发生断裂;疲劳破坏是指材料在反复受力下产生裂纹并最终导致断裂。

2.材料的变形行为和变形机制材料的变形行为是指材料在受力作用下发生的形变现象。

常见的变形行为有弹性变形、塑性变形和粘弹性变形等。

弹性变形是指材料在受力作用下发生的可逆性变形。

材料在弹性变形时能够恢复到原始形状和尺寸。

弹性变形的机制是原子之间的键能发生弹性形变,即在受力作用下原子间的距离发生变化,但不改变原子间的相对位置。

塑性变形是指材料在受力作用下发生的不可逆性变形。

材料在塑性变形时会发生晶格的滑移和位错的运动。

塑性变形的机制是原子间的键能发生塑性形变,即原子间的相对位置发生改变。

粘弹性变形是指材料在受力作用下表现出介于弹性变形和塑性变形之间的性质。

材料在粘弹性变形时有一部分能量会被消耗掉,导致材料的不完全恢复。

粘弹性变形的机制是在外力作用下,分子间的键发生的弹性形变和分子间的长距离位移。

3.材料力学性能的测试方法拉伸试验是指将材料置于拉力下进行测试。

通过拉伸试验可以了解材料的弹性性能、破坏强度、延展性以及断裂形态等。

压缩试验是指将材料置于压力下进行测试。

通过压缩试验可以了解材料的强度和刚度等。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。

它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域的设计和分析具有重要意义。

以下是对材料力学主要知识点的总结。

一、基本概念1、外力与内力外力是指物体受到的来自外部的作用力,包括集中力、分布力等。

内力则是物体内部各部分之间的相互作用力,当物体受到外力作用时,内力会随之产生以抵抗外力。

2、应力与应变应力是单位面积上的内力,它反映了材料内部受力的强弱程度。

应变是物体在受力作用下形状和尺寸的相对变化,分为线应变和切应变。

3、杆件的基本变形杆件在受力作用下主要有四种基本变形形式:拉伸(压缩)、剪切、扭转和弯曲。

二、拉伸与压缩1、轴力与轴力图轴力是指杆件沿轴线方向的内力。

通过绘制轴力图,可以直观地表示出轴力沿杆件轴线的变化情况。

2、横截面上的应力在拉伸(压缩)情况下,横截面上的应力均匀分布,其大小等于轴力除以横截面面积。

3、材料在拉伸与压缩时的力学性能通过拉伸试验,可以得到材料的强度指标(屈服强度、抗拉强度)和塑性指标(伸长率、断面收缩率)。

不同材料具有不同的力学性能,如低碳钢的屈服和强化阶段,铸铁的脆性等。

4、胡克定律在弹性范围内,应力与应变成正比,即σ =Eε ,其中 E 为弹性模量。

5、拉伸(压缩)时的变形计算根据胡克定律,可以计算杆件在拉伸(压缩)时的变形量。

三、剪切1、剪切内力与剪切应力剪切内力通常用剪力表示,剪切应力则是单位面积上的剪力。

2、剪切实用计算在工程中,通常采用实用计算方法来确定剪切面上的平均应力。

四、扭转1、扭矩与扭矩图扭矩是指杆件在扭转时横截面上的内力偶矩。

扭矩图用于表示扭矩沿杆件轴线的变化。

2、圆轴扭转时的应力与变形圆轴扭转时,横截面上的应力分布呈线性规律,其最大应力发生在圆周处。

扭转角的计算与材料的剪切模量、扭矩和轴的长度等因素有关。

五、弯曲1、剪力与弯矩弯曲内力包括剪力和弯矩,它们的计算和绘制剪力图、弯矩图是弯曲分析的重要内容。

材料力学复习总结

材料力学复习总结

《材料力学》第五版刘鸿文 主编第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。

二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。

三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。

第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。

二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。

注意此规定只适用于轴力,轴力是内力,不适用于外力。

三、轴向拉压时横截面上正应力的计算公式:NF Aσ=注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。

四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。

五、轴向拉压时横截面上正应力的强度条件[],maxmax N F Aσσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F Aσσ=≤一定要有结论 2.设计截面[],maxN F A σ≥3.确定许可荷载[],max N F A σ≤七、线应变ll ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F ll EA∆=注意当杆件伸长时l ∆为正,缩短时l ∆为负。

八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。

会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

九、衡量材料塑性的两个指标:伸长率1100l l l δ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。

十、卸载定律及冷作硬化:课本第23页。

最新材料力学复习,知识点复习考点归纳总结专用

最新材料力学复习,知识点复习考点归纳总结专用

三一文库( )*电大考试*材料力学重点及其公式材料力学的任务(1)强度要求;(2)刚度要求;(3)稳定性要求。

变形固体的基本假设(1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。

外力分类:表面力、体积力;静载荷、动载荷。

内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。

(3)根据平衡条件,列平衡方程,求解截面上和内力。

应力:dAdPA P p A =∆∆=→∆lim正应力、切应力。

变形与应变:线应变、切应变。

杆件变形的基本形式(1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。

静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。

动载荷:载荷和速度随时间急剧变化的载荷为动载荷。

失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。

二者统称为极限应力理想情形。

塑性材料、脆性材料的许用应力分别为:[]3n s σσ=,[]b bn σσ=,强度条件:[]σσ≤⎪⎭⎫⎝⎛=max max A N ,等截面杆[]σ≤A N max轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=∆1,沿轴线方向的应变和横截面上的应力分别为:ll∆=ε,A P A N ==σ。

横向应变为:bb b b b -=∆=1'ε,横向应变与轴向应变的关系为:μεε-='。

胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即εσE =,这就是胡克定律。

E 为弹性模量。

将应力与应变的表达式带入得:EANll =∆ 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。

2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。

3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。

构4.件应当满足以下要求:强度要求、刚度要求、稳定性要求5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。

任何固体在外力作用下都会发生形状和尺寸的改变——即变形。

因此,这些材料统称为变形固体。

第二章:内力、截面法和应力概念1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。

按照外力作用方式的不同,外力又可分为分布力和集中力。

2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。

已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。

首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。

因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。

由平衡条件就可以确定内力。

例如在左段杆上由平衡方程N-F=0 可得N=F3.综上所述,截面法可归纳为以下三个步骤:1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。

2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。

3、平衡求力对留下部分建立平衡方程,求解内力。

4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是工程学科中的重要基础学科,它研究材料在外力作用下的力学性能和变形规律。

在工程实践中,对材料力学知识的掌握对于设计和制造具有重要意义的工程结构和材料具有重要的指导作用。

本文将对材料力学的一些重要知识点进行总结,以便于工程技术人员更好地掌握这一学科的核心内容。

1.应力和应变。

在材料力学中,应力和应变是两个最基本的概念。

应力是单位面积上的力,它描述了材料受力情况的强度。

而应变则是材料在受力作用下的形变程度,是长度、面积或体积的变化与原始长度、面积或体积的比值。

应力和应变是描述材料受力行为的重要物理量,对于材料的选取和设计具有重要的指导意义。

2.弹性力学。

弹性力学是研究材料在外力作用下的弹性变形规律的学科。

在弹性力学中,材料在受到外力作用后会发生弹性变形,而当外力消失时,材料会恢复到原始状态。

弹性力学研究材料的弹性模量、泊松比等重要参数,这些参数对于材料的选取和设计具有重要的指导作用。

3.塑性力学。

与弹性力学相对应的是塑性力学,它研究材料在受到外力作用后发生的塑性变形规律。

塑性变形是指材料在受到外力作用后发生的不可逆变形,这种变形会导致材料的形状和尺寸发生永久性的改变。

塑性力学研究材料的屈服强度、抗拉强度等重要参数,这些参数对于材料的加工和成形具有重要的指导作用。

4.断裂力学。

断裂力学是研究材料在受到外力作用下发生断裂的规律的学科。

材料的断裂是由于外力作用超过了其承受能力而导致的,断裂力学研究材料的断裂韧性、断裂强度等重要参数,这些参数对于材料的安全设计和使用具有重要的指导作用。

5.疲劳力学。

疲劳力学是研究材料在受到交变载荷作用下发生疲劳破坏的规律的学科。

在实际工程中,材料往往要经受交变载荷的作用,如果这种载荷作用时间足够长,就会导致材料的疲劳破坏。

疲劳力学研究材料的疲劳寿命、疲劳极限等重要参数,这些参数对于材料的使用寿命和安全具有重要的指导作用。

总之,材料力学是工程学科中的重要基础学科,它研究材料在外力作用下的力学性能和变形规律。

材料力学期末复习总结

材料力学期末复习总结

材料力学期末复习总结材料力学是研究材料在外力作用下的变形与破坏行为的学科。

它是工程力学的一个重要分支,是工程技术领域中不可或缺的一门专业课程。

期末考试作为对学生掌握教材知识的一次综合性评估,理解材料力学的基本原理和方法是非常重要的。

以下是材料力学期末复习的总结,希望对大家复习备考有所帮助。

第一部分:弹性力学1.弹性力学基本概念弹性力学是研究物体在外力作用下发生弹性变形的学问。

弹性变形是指物体在受力作用下会发生形变,但在去除外力后又能恢复到原来的形状和大小。

(比如弹簧的拉伸和恢复、弹性材料的压缩和回弹等)2.基本假设弹性力学的基本假设有两个:胡克定律和平面应力假设。

胡克定律:弹性变形与应力成正比,即应力应变具有直线关系。

胡克定律可以用Hooke's Law表示:σ=Eε,其中σ为应力,E为弹性模量,ε为应变。

平面应力假设:在材料中,只发生一个平面上的应力。

3.弹性常数弹性常数是用来描述材料对外力作用下的响应情况的参数。

弹性常数有三个:弹性模量(Young's modulus),剪切模量(Shear modulus)和泊松比(Poisson's ratio)。

弹性模量描述材料受拉伸或压缩力作用下的应力应变关系,即E=σ/ε。

剪切模量描述材料受剪切力作用下的应力应变关系,即G=τ/γ。

泊松比描述材料在拉伸或压缩时沿垂直方向的应变与沿拉伸或压缩方向的应变之比,即ν=-ε_z/ε_x。

4.弹性体力学方程弹性体力学方程包括平衡方程、应力-应变关系和互斥条件。

平衡方程:ΣFx=0,ΣFy=0,ΣFz=0,ΣMx=0,ΣMy=0,ΣMz=0。

应力-应变关系:σ_xx=E(ε_xx - νε_yy - νε_zz),σ_yy=E(ε_yy - νε_xx - νε_zz),σ_zz=E(ε_zz - νε_xx -νε_yy)。

互斥条件:γ_xy=Gγ_xy,γ_yx=Gγ_yx,γ_xz=Gγ_xz,γ_zx=Gγ_zx,γ_yz=Gγ_yz,γ_zy=Gγ_zy。

材料力学重点总结

材料力学重点总结

材料力学重点总结材料力学是研究材料在外力作用下的力学性能及其相互关系的学科。

它是工程力学的重要分支之一,对于了解材料的力学特性以及工程结构的设计和优化具有重要意义。

以下是材料力学的重点总结。

一、材料的应力和应变1.应力:指材料内部的内力,由外力作用引起,分为正应力和剪应力。

正应力指垂直于截面的力与截面面积的比值,剪应力指与截面平行的截面积的比值。

2.应变:指材料在外力作用下的变形程度,分为线性弹性应变和非线性塑性应变。

线性弹性应变指应力与应变呈线性关系,非线性塑性应变指应力与应变不呈线性关系。

3.弹性模量:指材料在弹性阶段内应力与应变之间的比值,用于衡量材料的刚度。

二、材料的弹性力学行为1.长度-应力关系:根据胡克定律,应力与应变成正比,比例系数为弹性模量。

2.应力-应变关系:应力与应变呈线性关系,斜率为弹性模量。

当材料处于线性弹性阶段时,可以使用胡克定律进行分析和计算。

3.杨氏模量:指材料在线性弹性阶段内应力与应变沿任意方向之比,衡量材料的各向同性。

三、材料的塑性力学行为1.屈服强度:指材料开始发生塑性变形的临界应力值。

在应力达到屈服强度后,材料开始发生塑性应变。

2.延伸率和断裂应变:延伸率是材料拉伸至破坏前的变形倍数,断裂应变是材料发生破坏时的应变。

3.曲线弹性模量:由于塑性变形引起曲线弹性阶段的模量发生变化,称为曲线弹性模量。

四、材料的断裂力学行为1.断裂韧性:指材料在断裂前吸收的能量。

韧性高的材料能够承受较大的变形和吸能。

2.断裂强度:指材料在断裂前所能承受的最大应力值。

断裂强度高的材料具有较好的抗拉强度。

3.断裂模式:材料断裂具有不同的模式,如拉断、剪断、脱层、断裂面韧裂等。

五、材料的疲劳力学行为1.疲劳强度:指材料在循环载荷下发生疲劳破坏的临界应力水平。

疲劳强度与材料的强度和韧性都有关。

2.疲劳寿命:指材料在特定应力水平下能够循环载荷的次数。

疲劳寿命与材料的疲劳强度和循环载荷有关。

3.疲劳断口特征:材料在发生疲劳破坏时产生的断裂面特征,如河床样貌、斜粒子形貌等。

(完整版)材料力学知识点总结

(完整版)材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

可打印总结材料力学复习总结

可打印总结材料力学复习总结

当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为m).(N 9549e nPM =当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为m).(N 7024e nPM =拉(压)杆横截面上的正应力拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N FAσ= (3-1)式中N F 为该横截面的轴力,A 为横截面面积。

正负号规定 拉应力为正,压应力为负。

公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; (4)截面连续变化的直杆,杆件两侧棱边的夹角020α≤时 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为全应力 cos p ασα= (3-2)正应力2cos ασσα=(3-3)切应力1sin 22ατα=(3-4) 式中σ为横截面上的应力。

正负号规定:α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。

ασ 拉应力为正,压应力为负。

ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。

两点结论:(1)当00α=时,即横截面上,ασ达到最大值,即()max ασσ=。

当α=090时,即纵截面上,ασ=090=0。

(2)当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αατ=1.2 拉(压)杆的应变和胡克定律 (1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。

如图3-2。

图3-2轴向变形 1l l l ∆=- 轴向线应变 llε∆= 横向变形 1b b b ∆=- 横向线应变 bbε∆'=正负号规定 伸长为正,缩短为负。

(2)胡克定律当应力不超过材料的比例极限时,应力与应变成正比。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科,它是工程力学的重要组成部分,对于机械、土木、航空航天等工程领域都有着至关重要的作用。

以下是对材料力学主要知识点的总结。

一、拉伸与压缩拉伸和压缩是材料力学中最基本的受力形式。

在拉伸或压缩时,杆件横截面上的内力称为轴力。

轴力的正负规定为:拉伸时轴力为正,压缩时轴力为负。

通过实验可以得到材料在拉伸和压缩时的应力应变曲线。

低碳钢的拉伸应力应变曲线具有明显的四个阶段:弹性阶段、屈服阶段、强化阶段和局部变形阶段。

弹性阶段内应力与应变成正比,遵循胡克定律;屈服阶段材料出现明显的塑性变形;强化阶段材料抵抗变形的能力增强;局部变形阶段试件在某一局部区域产生显著的收缩,直至断裂。

对于拉伸和压缩杆件,其横截面上的正应力计算公式为:$\sigma =\frac{N}{A}$,其中$N$为轴力,$A$为横截面面积。

而纵向变形量$\Delta L$可以通过公式$\Delta L =\frac{NL}{EA}$计算,其中$E$为材料的弹性模量,$L$为杆件长度。

二、剪切与挤压剪切是指在一对相距很近、大小相等、方向相反的横向外力作用下,杆件的横截面沿外力作用方向发生相对错动的变形。

在剪切面上的内力称为剪力。

剪切面上的平均切应力计算公式为:$\tau =\frac{Q}{A}$,其中$Q$为剪力,$A$为剪切面面积。

挤压是在连接件与被连接件之间,在接触面上相互压紧而产生的局部受压现象。

挤压面上的应力称为挤压应力,其计算公式为:$\sigma_{jy} =\frac{F_{jy}}{A_{jy}}$,其中$F_{jy}$为挤压力,$A_{jy}$为挤压面面积。

三、扭转扭转是指杆件受到一对大小相等、方向相反且作用面垂直于杆件轴线的力偶作用时,杆件的横截面将绕轴线产生相对转动。

圆轴扭转时,横截面上的内力是扭矩。

扭矩的正负规定:右手螺旋法则,拇指指向截面外法线方向为正,反之为负。

材料力学复习总结知识点

材料力学复习总结知识点

r1, r2, r3, r4
三、压杆稳定
1. 欧拉公式:
Fcr (2lE)I2
(适用范围:细长杆)
2. 压杆的柔度:
细长杆
P
cr
2E 2
中长杆
0 P
cr ab
长度因数(反应约况 束) 情
l
i
i l
截面形状、大小 杆长
σ σcr=σs
临界应力总图
σs
A
粗短杆
σcr=a−bλ
σP
B 中长
一、基本变形(2)
基本变形 拉(压)
扭转
弯曲
外力
应力
FN A
拉 (+)
圆轴
T IP
τ
(平面假设)
d4 I P 32
Wt
d3 16
My IZ
FQ S Z * IZb
平面假设
矩形:
IZ
b
h3 ,
12
WZ
bh2 6
圆形:
IZ
d4,
64
WZ 3d2 3
στ
一、基本变形(3)
基本变形 拉(压)
不同,因而两梁的剪力图和弯矩图不一定相同。
第2章 拉伸、压缩与剪切
6. 两根几何尺寸、支撑条件完全相同的静定梁,只要所受 的载荷相同,则两梁所对应的截面的挠度和转角相同,而 与梁的材料是否相同无关。 7. 若单元体的σx=σy=τxy=50Mpa,则该单元体必定处于二向 应力状态。
第2章 拉伸、压缩与剪切
《材料力学》课程总结
材料力学基本框架
基概本述概念
拉压 剪切 扭转
四种基本变形
弯曲-内力 弯曲-应力 弯曲-变形
应力状态 综组合合知变识形 压杆稳定

(完整版)材料力学知识点总结

(完整版)材料力学知识点总结

以家为家,以乡为乡,以国为国,以天下为天下。——《管子·牧民》
六、材料的力学性质
脆性材料 <5%
塑性材料 ≥5% 低碳钢四阶段: (1)弹性阶段
(2) 屈服阶段 (3) 强化阶段 (4) 局部收缩阶段
强度指标 s , b
e
塑性指标 ,


α
s
tg
b
E 扭
45



滑移线与轴线 45,剪
只有s,无b
( l)2
cr
2
cr p
p
柔度:
ul

i
E

0
a s b

柔度是一个与杆件长度、约束、截面尺寸、形 状有关的数据,λ↑Pcr↓σcr↓
>p——大柔度杆:
cr
2E
2
临界应力
o<<p——中柔度杆:cr=a-b
cr cr=s o
cr=a-b
2E
cr
2
P
<0——小柔度杆:cr=s
P 稳定校核:安全系数法: n cr n ,折减系数法:
材料疲劳极限:材料经无限次应力循环而不发生疲劳破坏的应力极限值——N=107:
1
条件疲劳极限:(有色金属)无水平渐近线:N=(5-7)107 对应的
1
构件疲劳极限:考虑各种因素 0
;
1
0 1
1 k
1 k
6
谋事在人,成事在天!——《增广贤文》
我尽一杯,与君发三愿:一愿世清平,二愿身强健,三愿临老头,数与君相见。——《白居易》
P
[]
P
w
A
I
提高杆件稳定性的措施有:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、应力 全应力正应力切应力线应变 外力偶矩当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为m).(N 9549e nPM =当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为m).(N 7024e nPM =拉(压)杆横截面上的正应力拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N FAσ= (3-1)式中N F 为该横截面的轴力,A 为横截面面积。

正负号规定 拉应力为正,压应力为负。

公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; (4)截面连续变化的直杆,杆件两侧棱边的夹角020α≤时 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为全应力cos p ασα= (3-2)正应力 2cos ασσα=(3-3)切应力1sin 22ατα=(3-4) 式中σ为横截面上的应力。

正负号规定:α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。

ασ 拉应力为正,压应力为负。

ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。

两点结论:(1)当00α=时,即横截面上,ασ达到最大值,即()max ασσ=。

当α=090时,即纵截面上,ασ=090=0。

(2)当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αατ=1.2 拉(压)杆的应变和胡克定律 (1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。

如图3-2。

图3-2轴向变形 1l l l ∆=- 轴向线应变 llε∆= 横向变形 1b b b ∆=- 横向线应变 bbε∆'=正负号规定 伸长为正,缩短为负。

(2)胡克定律当应力不超过材料的比例极限时,应力与应变成正比。

即 E σε= (3-5)或用轴力及杆件的变形量表示为 N F ll EA∆=(3-6) 式中EA 称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。

公式(3-6)的适用条件:(a)材料在线弹性范围内工作,即p σσ〈;(b)在计算l ∆时,l 长度内其N 、E 、A 均应为常量。

如杆件上各段不同,则应分段计算,求其代数和得总变形。

即1ni ii i iN l l E A =∆=∑(3-7) (3)泊松比 当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值。

即 ενε'=(3-8) 表1-1 低碳钢拉伸过程的四个阶段阶 段 图1-5中线段 特征点 说 明弹性阶段oab比例极限p σ 弹性极限e σp σ为应力与应变成正比的最高应力e σ为不产生残余变形的最高应力屈服阶段bc屈服极限s σs σ为应力变化不大而变形显着增加时的最低应力强化阶段 ce 抗拉强度b σ b σ为材料在断裂前所能承受的最大名义应力局部形变阶段 ef产生颈缩现象到试件断裂性能 性能指标 说明弹性性能 弹性模量E 当p E σσσε≤=时, 强度性能屈服极限s σ 材料出现显着的塑性变形 抗拉强度b σ材料的最大承载能力强度计算许用应力 材料正常工作容许采用的最高应力,由极限应力除以安全系数求得。

塑性材料 [σ]=s s n σ ; 脆性材料 [σ]=b bn σ 其中,s b n n 称为安全系数,且大于1。

强度条件:构件工作时的最大工作应力不得超过材料的许用应力。

对轴向拉伸(压缩)杆件[]NAσσ=≤ (3-9) 按式(1-4)可进行强度校核、截面设计、确定许克载荷等三类强度计算。

2.1 切应力互等定理受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小相等,方向同时垂直指向或者背离两截面交线,且与截面上存在正应力与否无关。

2.2纯剪切单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态。

2.3切应变切应力作用下,单元体两相互垂直边的直角改变量称为切应变或切应变,用τ表示。

2.4 剪切胡克定律在材料的比例极限范围内,切应力与切应变成正比,即 G τγ= (3-10)式中G 为材料的切变模量,为材料的又一弹性常数(另两个弹性常数为弹性模量E 及泊松比ν),其数值由实验决定。

对各向同性材料,E 、 ν、G 有下列关系 2(1)EG ν=+ (3-11)2.5.2切应力计算公式横截面上某一点切应力大小为 p pT I ρτ=(3-12) 式中p I 为该截面对圆心的极惯性矩,ρ为欲求的点至圆心的距离。

圆截面周边上的切应力为 max tTW τ=(3-13) 式中p t I W R=称为扭转截面系数,R 为圆截面半径。

2.5.3 切应力公式讨论(1) 切应力公式(3-12)和式(3-13)适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内。

(2) 极惯性矩p I 和扭转截面系数t W 是截面几何特征量,计算公式见表3-3。

在面积不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强。

因此,设计空心轴比实心轴更为合理。

表3-32.5.4强度条件圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏。

因此,强度条件为[]max maxt T W ττ⎛⎫=≤⎪⎝⎭ (3-14) 对等圆截面直杆 []maxmax tT W ττ=≤ (3-15)式中[]τ为材料的许用切应力。

3.1.1中性层的曲率与弯矩的关系1zMEI ρ=(3-16) 式中,ρ是变形后梁轴线的曲率半径;E 是材料的弹性模量;E I 是横截面对中性轴Z 轴的惯性矩。

3.1.2横截面上各点弯曲正应力计算公式 ZMy I σ=(3-17) 式中,M 是横截面上的弯矩;Z I 的意义同上;y 是欲求正应力的点到中性轴的距离最大正应力出现在距中性轴最远点处 max max max max z zM My I W σ=•= (3-18) 式中,max z z I W y =称为抗弯截面系数。

对于h b ⨯的矩形截面,216z W bh =;对于直径为D 的圆形截面,332z W D π=;对于内外径之比为d a D =的环形截面,34(1)32z W D a π=-。

若中性轴是横截面的对称轴,则最大拉应力与最大压应力数值相等,若不是对称轴,则最大拉应力与最大压应力数值不相等。

3.2梁的正应力强度条件梁的最大工作应力不得超过材料的容许应力,其表达式为 []maxmax zM W σσ=≤ (3-19) 对于由拉、压强度不等的材料制成的上下不对称截面梁(如T 字形截面、上下不等边的工字形截面等),其强度条件应表达为[]maxmax 1l t z M y I σσ=≤ (3-20a ) []maxmax 2y c zM y I σσ=≤ (3-20b ) 式中,[][],t c σσ分别是材料的容许拉应力和容许压应力;12,y y 分别是最大拉应力点和最大压应力点距中性轴的距离。

3.3梁的切应力 z z QS I bτ*= (3-21)式中,Q 是横截面上的剪力;z S *是距中性轴为y 的横线与外边界所围面积对中性轴的静矩;z I 是整个横截面对中性轴的惯性矩;b 是距中性轴为y 处的横截面宽度。

3.3.1矩形截面梁切应力方向与剪力平行,大小沿截面宽度不变,沿高度呈抛物线分布。

切应力计算公式 22364Q h y bh τ⎛⎫=- ⎪⎝⎭(3-22)3.3.2工字形截面梁切应力主要发生在腹板部分,其合力占总剪力的95~97%,因此截面上的剪力主要由腹板部分来承担。

切应力沿腹板高度的分布亦为二次曲线。

计算公式为 ()2222824z Q B b h H h y I b τ⎡⎤⎛⎫=-+-⎢⎥ ⎪⎝⎭⎣⎦(3-23)近似计算腹板上的最大切应力:dhFs 1max=τd 为腹板宽度 h 1为上下两翼缘内侧距3.3.3圆形截面梁横截面上同一高度各点的切应力汇交于一点,其竖直分量沿截面宽度相等,沿高度呈抛物线变化。

最大切应力发生在中性轴上,其大小为(3-25) 圆环形截面上的切应力分布与圆截面类似。

3.4切应力强度条件梁的最大工作切应力不得超过材料的许用切应力,即[]max max maxz z Q S I bττ*=≤ (3-26)式中,max Q 是梁上的最大切应力值;max z S *是中性轴一侧面积对中性轴的静矩;z I 是横截面对中性轴的惯性矩;b 是maxτ处截面的宽度。

对于等宽度截面,max τ发生在中性轴上,对于宽度变化的截面,max τ不一定发生在中性轴上。

4.2剪切的实用计算名义切应力:假设切应力沿剪切面是均匀分布的 ,则名义切应力为 AQ=τ (3-27) 剪切强度条件:剪切面上的工作切应力不得超过材料的 许用切应力[]τ,即 []ττ≤=AQ(3-28)5.2挤压的实用计算名义挤压应力 假设挤压应力在名义挤压面上是均匀分布的,则 []bsbs bs bsP A σσ=≤ (3-29) 式中,bs A 表示有效挤压面积,即挤压面面积在垂直于挤压力作用线平面上的投影。

当挤压面为平面时为接触面面积,当挤压面为曲面时为设计承压接触面面积在挤压力垂直面上的 投影面积。

挤压强度条件挤压面上的工作挤压应力不得超过材料的许用挤压应力 []bs bsbs A Pσσ≤=(3-30)1, 变形计算圆轴扭转时,任意两个横截面绕轴线相对转动而产生相对扭转角。

相距为l 的两个横截面的相对扭转角为dx GI TlP⎰=0ϕ (rad) (4.4) 若等截面圆轴两截面之间的扭矩为常数,则上式化为PGI Tl=ϕ (rad) (4.5) 图4.2式中P GI 称为圆轴的抗扭刚度。

显然,ϕ的正负号与扭矩正负号相同。

公式(4.4)的适用条件:(1) 材料在线弹性范围内的等截面圆轴,即P ττ≤;(2) 在长度l 内,T 、G 、P I 均为常量。

当以上参数沿轴线分段变化时,则应分段计算扭转角,然后求代数和得总扭转角。

即∑==ni P i ii iI G l T 1ϕ (rad) (4.6) 当T 、P I 沿轴线连续变化时,用式(4.4)计算ϕ。

2, 刚度条件扭转的刚度条件 圆轴最大的单位长度扭转角max 'ϕ不得超过许可的单位长度扭转角[]'ϕ,即[]''maxmax ϕϕ≤=PGI T (rad/m) (4.7) 式 []'180'max max ϕπϕ≤⨯=︒P GI T (m /︒) (4.8)2,挠曲线的近似微分方程及其积分在分析纯弯曲梁的正应力时,得到弯矩与曲率的关系EIM=ρ1对于跨度远大于截面高度的梁,略去剪力对弯曲变形的影响,由上式可得()()EIx M x =ρ1 利用平面曲线的曲率公式,并忽略高阶微量,得挠曲线的近似微分方程,即 ()EIx M =''ω (4.9) 将上式积分一次得转角方程为 ()C dx EIx M +==⎰'ωθ (4.10)再积分得挠曲线方程 ()D Cx dx dx EI x M ++⎥⎦⎤⎢⎣⎡=⎰⎰ω (4.11) 式中,C,D 为积分常数,它们可由梁的边界条件确定。

相关文档
最新文档