数字图像处理第三章空间域图像增强
数字图像处理实验报告(空间域图像增强)
实验报告实验名称空间域图像增强课程名称数字图像处理姓名成绩班级学号日期地点1.实验目的(1)了解空间域图像增强的各种方法(点处理、掩模处理);(2)通过编写程序掌握采用直方图均衡化进行图像增强的方法;(3)使用邻域平均法编写程序实现图像增强,进一步掌握掩模法及其改进(加门限法)消除噪声的原理;(4)总结实验过程(实验报告,左侧装订):方案、编程、调试、结果、分析、结论。
2.实验环境(软件、硬件及条件)Windws7MATLAB 6.x or above3.实验方法对如图4.1所示的两幅128×128、256级灰度的数字图像fing_128.img和cell_128.img进行如下处理:(1)对原图像进行直方图均衡化处理,同屏显示处理前后图像及其直方图,比较异同,并回答为什么数字图像均衡化后其直方图并非完全均匀分布。
(2)对原图像加入点噪声,用4-邻域平均法平滑加噪声图像(图像四周边界不处理,下同),同屏显示原图像、加噪声图像和处理后的图像。
①不加门限;②加门限T=(1/2)*avg(f(m,n)), 其中avg(f(m,n)=(1/N^2)*f(i,j))本次实验中的第一题,是对图像进行直方图统计和均衡化,在Matlab中有imhist()函数和histeq()函数直接调即可获得相应结果,代码如下:close all;clear all;fid=fopen('cell_128.img','r');image1=fread(fid,[128,128],'uint8');image1=uint8(image1);fclose(fid);subplot(2,2,1);%显示原图像imshow(image1,[]);title('原图像');subplot(2,2,2);%统计图像直方图imhist(image1);title('原图像直方图');%直方图均衡化ima=histeq(image1);subplot(2,2,3);%显示均衡化后的图像imshow(ima);title('直方图均衡化后图像');subplot(2,2,4);%显示直方图均衡化后的图像直方图imhist(ima);title('直方图均衡化后的直方图');本次实验的第二题,是对图像进行加噪后平滑,噪声为点噪声,分别采用不加门限的四邻域平均法和加门限的四邻域平均法进行平滑。
第3章 空间域图像增强第2讲.ppt
y) (x,
y)
f
(x,
y)
2 g ( x, y)
1 k
2 (
x,
y
)
图像的信噪比SNR提高
图像的信噪比等于信号与噪声的功率谱之比,但通常功率谱难以计算, 有一种方法可以近似估计图像信噪比,即信号与噪声的方差之比。
K
K=8
K=16
标 准 方 差 变 小
增 大 , 差 值 图
像
n=3器平滑结果。 图像细节和滤波器 掩模近似相同,图 像中的一些细节 (颗粒)受到较大影 响,图像中有轻微 模糊(小字母)。
(1)与、或: 可用于从一幅图像中提取子图像。
(2)非 可以实现图像取反。
(3)异或 练习:用第二幅图像对第一图像进行两次异或
运算,并写出两次异或运算的结果。(4比特图像)
25
12
73
34
思考题:从这个例子中,我们可以的得到什么启示? 异或操作可以实现图像的加密和解密。
3.4 用算术/逻辑操作增强
2 算术操作 (1)加法操作 C(x,y) = A(x,y) + B(x,y)
A、图像叠加(特技处理)
B、图像平均处理(去除噪声)
g(x, y) f (x, y) (x, y)
g ( x,
y)
1 k
k i 1
gi (x,
y)
Eg ( x,
y)
E 1k
k
f
i1
(x,
3.3.3 局部增强
前面讨论的两种直方图处理方法是全局性的⇒像 素是基于整幅图像灰度满意度的变换函数修改的。 这种方法可能不适合增强小范围内的细节(当 这些像素对设计全局转换函数没有重要影响时)
第三章 空间域图像增强
第三章 图像增强燕山大学电气工程学院 赵彦涛3.1图像增强的概念对于一般可理解的图像增强,是指使经过增强处理后的图像其视觉效果更好,如对于某些图像看起来比较灰暗,增强处理后使其亮度增强,人眼看起来更舒服;也就是说,改善曝光不足或曝光过度对图像的影响。
淡化背景,强化前景;广义的图像增强指处理后的图像比原始图像更适合于特定应用,更有利于后续图像处理,消除噪声干扰,强化有用信息等都可认为为后续的计算机处理、分析更有利。
根据其处理数据所进行空间不同,图像增强的方法可分为空域(空间域)图像增强方法和变换域(频域)增强方法。
空域图像增强方法是直接处理构成图像的像素点的灰度值,而变换域图像增强方法是经过图像变换后,增强方法在其变换域中间接进行。
图像增强是与具体问题紧密相联系的,增强的目的不同,图像类型不同,采用的方法也不同,没有一种增强算法能适用于所有的应用场合。
3.2图像增强的点运算所谓点运算就是输出图像上的每个像素的灰度值仅由相应输入像素点的值确定。
空域方法是指直接对图像的像素点的灰度值进行操作,空域处理可定义为)),((),(y x f T y x g = (1)式中,),(y x f 是输入图像,),(y x g 是处理后的图像,T 是一种操作方法。
3.2.1 直接灰度变换直接进行灰度变换是图像增强最简单的一类方法,设处理前后的图像的像素点的灰度值分别为r 和s ,变换方式为)(r T s = (2)式中,T 是把灰度值r 变换为s 的映射。
由于处理的是数字量,变换函数的值通常存储在一个一维向量中,通过函数或者查表将灰度值r 映射为s 。
对于8比特的灰度值,一个包含这种映射的查找表要有256个记录。
3.2.1.1 图像的直方图图像的直方图表示图像中各种灰度级的个数(或概率),反映了一幅图像中灰度级与出现这种灰度级的概率之间的关系。
对于一个8 bit (有256个灰度等级)的图像,直方图就是Nn r p k k =)( (4) 式中,k r 是第k 个灰度等级, k n 为图像中灰度等级为k r 的像素点的个数,N 是该图像中所有像素点的个数,这里]255,0[ k ,)(k r p 代表原始图像第k 个灰度级出现的概率。
第3章 空间域图像增强1——点、直方图处理
(a) (b) (c) (d)
图3.8 图像灰度切割
数字图像处理
色彩直方图
• 色彩直方图是高维直方图的特例,它统计色彩的出现频 率,即色彩的概率分布信息。 • 一般不直接在RGB色彩空间中统计,而是在将亮度分离 出来后,对代表色彩部分的信息进行统计,如在HSI空 间的HS子空间、YUV空间的UV子空间,以及其它反映 人类视觉特点的彩色空间表示中进行。 • 下图是统计肤色分布情况的例子。
j 0 j 0 k k
nj n
0 rk 1, k 0,1,...,l 1
• 均衡化后各像素的灰度值可直接由原图像的直方图算 出。
数字图像处理
直方图均衡化的计算步骤及实例
• 设64×64的灰度图像,共8个灰度级,其灰度 级分布见下表,现要求对其进行均衡化处理。
原始直方图数据
rk r0=0 r1=1/7 r2=2/7 r3=3/7 r4=4/7 nk 790 1023 850 656 329 nk / n 0.19 0.25 0.21 0.16 0.08 rk r0=0 r1=1/7 r2=2/7 r3=3/7 r4=4/7
– 依此类推可计算得:s2=0.65;s3=0.81;s4=0.89; s5=0.95;s6=0.98;s7=1。
• 对sk 进行舍入处理。
– 由于原图像的灰度级只有8级,因此上述各需用 1/7为量化单位进行舍入运算,得到如下结果: s0舍入=1/7 s1舍入=3/7 s2舍入=5/7 s3舍入=6/7 s4舍入=6/7 s5舍入=1 s6舍入=1 s7舍入=1
第3章-图像增强(空间域)
ps(s)
面积 1
面积 2
1
1
0r
r 1
原图像的直方图
0
s
s 1
均衡后图像的直方图
问题归结为: 在 “面积 1 = 面积 2 ” 的前提下,给定 r ,求 s 应该是多少。 由于 ps(s)=1, 有:
s
r
r
1 ds 0
0
pr (r)dr
s 0 pr (r)dr
3.2
这就是我们需要的变换关系式
其中: k b a , c a k a ba
若 k >1,对比度拉伸,若 k <1,对比度压缩。 b’
注意: if ( g ( x, y)<0) g(x,y)=0;
0
a
if ( g ( x, y)>255) g(x,y)=255;
f b
例:线性变换举例
原图像及直方图,灰度范围约为 0 ~ 30, 取a=0, b=30
部分频率,以达到增强图像的目的。运算较复杂。
两种方法各有特点,都是图像处理与分析中的重要方法。本章将讨 论空间域增强法。频率域增强法将在下一章详细讨论。
此外,还有彩色增强、代数运算等方法。主要用于标示特定的目标, 引起注意。本课程不作讨论。
图像在空间域上的表示
像素的值是空间坐标的函数。在直角坐标系中,一幅图像可表示为: f ( x , y ) , 0≤x<M, 0≤y<N
s
r
0 ps (s)ds 0 pr (r)dr
3.1
上式表明,对于原直方图上的任一点 r ,要求在新直方图上找到一点 s ,使: pr(r) 在[ 0, r ]区间的面积 = ps(s) 在[ 0, s ]区间的面积
3.1 式的几何解释:
(空间域图像增强)
38
离散灰度级情况: 由(1)、(2)计算得两张表, 从中选取一对vk, sj, 使vk≈sj,并从 两张表中查得对应的rj,zk。于是, 原始图象中灰度级为rj 的所有象素均 映射成灰度级zk。最终得到所期望的 图象。
39
40
指定的图像均值和方差
E( f ) m1 D( f ) 12
nk 790 1023 850 656 329 245 122 81
p(rk) 0.19 0.25 0.21 0.16 0.08 0.06 0.03 0.02
sk计算 0.19 0.44 0.65 0.81 0.89 0.95 0.98 1.00
sk舍入 1/7 3/7 5/7 6/7 6/7 1 1 1
第三章 空间域图像增强
背景知识 基本灰度变换 直方图处理 算术/逻辑操作增强 空间域滤波基础 平滑空域滤波 锐化空域滤波
1
Noise
+
=
image
noise
‘grainy’ image
2
3
Blur
4
Blurred
Enhanced
5
Light conditions
6
7
2.1 背景知识
26
直方图均衡化
27
首先假定连续灰度级的情况,推导直 方图均衡化变换公式,令r代表灰度级, P(r)为概率密度函数。其中r值已归一化, 最大灰度值为1。 要找到一种变换 s=T(r)使直方图变平 直,为使变换后的灰度仍保持从黑到白的 单一变化顺序,且变换范围与原先一致,以 避免整体变亮或变暗。规定: (a)在0≤r≤1中,T(r)是单调递增函数, (b)当0≤r≤1时,0≤T(r)≤1;
cf ( x, y) cm
第三章-数字图像处理--空域图像增强
(2) 变换后图像的灰度动态范围应与变换 前的图像的灰度值动态范围保持一致。
3.3 直方图修正
2、直方图的应用——直方图均衡化
满足上述2个条件并能将f中的原始分布转换 为g中的均匀分布的函数关系可由原始图像f(x, y) 的累积直方图得到,从 f 到 g 的变换为:
则线性变换可表示为 :
g(x, y) d c [ f (x, y) a] c ba
2、分段灰度线性变换
对灰度区间 [0, a]和[b, Mf]加以压缩,对灰度 区间[a, b]进行扩展。通过调整折线拐点的位置及控制
分段直线的斜率,可对任一灰度区间进行扩展或压缩。这 种变换适用于在黑色或白色附近有噪声干扰的情况。
不同图像对应相同的直方图
a) 图像的直方图 b) 对应的几种不同的图像
(a)
(b )
(c)
灰度直方图的用途举例1
用于判断图像量化是否恰当:直方图给出 了一个简单可见的指示,用来判断一幅图象是否 合理的利用了全部被允许的灰度级范围。一般一 幅图应该利用全部或几乎全部可能的灰度级,否 则等于增加了量化间隔。丢失的信息将不能恢复。
主要应用举例
合并子图像
=
3.2.1 图象运算:逻辑运算
与运算的定义
g(x,y) = f(x,y) h(x,y)
主要应用举例
求两个子图像的相交子图
=
3.3 直方图修正---直方图定义
如果将图像中像素亮度(灰度级别)看成是一 个随机变量, 则其分布情况就反映了图像的统计 特 性 , 这 可 用 Probability Density Function (PDF) 来 刻 画 和 描 述 , 表 现 为 灰 度 直 方 图 (Histogram)。灰度直方图是灰度级的函数,它 表示图像中具有某种灰度级的像素的个数,反映了 图像中每种灰度出现的频率。灰度直方图的横坐标 是灰度级,纵坐标是该灰度级出现的频度,它是图 像最基本的统计特征。
数字图像处理(冈萨雷斯)-3空间域图像增强105页PPT
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
Chapter 3 空间域图象增强
的输出,正如图3.7(d)所示。
• 如果涉及在计算机屏幕上精确显示图像,伽马校正是很重 要的。不恰当的图像修正会被漂白或变得更暗。试图精确 再现颜色也需要伽马校正的一些知识,这是因为改变伽马 校正值不仅可改变亮度,还可改变红、绿、蓝的比率。随 着数字图像在因特网上商业应用的增多,在过去几年里,伽 马校正逐渐变得越来越重要。对于成百上千万的网民(这 些人的绝大多数都有不同的监视器或监视器设置)浏览的 流行网站,为其创作图像是经常的事。有些计算机系统甚 至配有部分伽马校正。同时,目前的图像标准没有包括创 作图像的伽马校正值,因此,问题更加复杂化了。由于这些 限制,当在网站中存储图像时,一个可能的方法就是用伽马 值对图像进行预处理,此伽马值表示了在开放的市场中,在 任意给定时间点,各种型号的监视器和计算机系统所被期 望的"平均值"。
• 用于图像获取、打印和显示的各种装置根据幂次 规律进行响应。习惯上, 幂次等式中的指数指伽马 值。用于修正幂次响应现象的过程称做伽马校 正。例如,阴极射线管(CRT)装置有一个电压-强度 响应,这是一个指数变化范围为1.8-2.5的幂函数。 在图3.6中,用γ=2.5的参考曲线,我们看到这样的 显示系统倾向于产生比希望的效果更暗的图像。 这个结果可由图3.7进行说明。图3.7(a)显示一个 简单的灰度线性形输入到CRT监视器。如预期的 那样,CRT显示器的输出比输入暗,如图3.7(b)所 示。在这种情况下伽马校正很简单,需要做的只是 将图像输入到监视器前进行预处理,即进行s=r0.4的 变换,其结果如图3.7(c)所示。当输入同样的监视 器时,这一伽马校正的输入将产生接近于原图像
3.2某些基本灰度变换
• 属于所有图像增强技术中最简单的一类。处理前 后的像素值用r和s分别定义。这些值与s=T(r)表达 式的形式有关,这里的T是把像素值r映射到值s的 一种变换。由于处理的是数字量,变换函数的值通 常储存在一个一维阵列中,并且从r到s的映射通过 查表得到。对于8比特环境,一个包含T值的可查阅 的表需要有256个记录。正如对灰度变换介绍的 那样,考虑图3.3,它显示了图像增强常用的三个基 本类型函数:线性的(正比和反比)、对数的(对数和 反对数变换)、幂次的(n次幂和n次方根变换)。正 比函数是最一般的,其输出亮度与输入亮度可互换, 惟有它完全包括在图形中。
数字图像处理及应用(MATLAB)第3章
程序运行结果如图(c)所示。
4.灰度非线性变换 当用某些非线性函数,例如平方、对数、指数函数等作为 映射函数时,可实现图像灰度的非线性变换。灰度的非线性 变换简称非线性变换,是指由这样一个非线性单值函数所确 定的灰度变换。 (1)对数变换 对数变换常用来扩展低值灰度,压缩高值灰度,这样可以使低值灰 度的图像细节更容易看清,从而达到增强的效果。对数非线性变换
[例] 假设一个图像由一个4×4大小的二维数值矩阵构成,如图(a)
所示,试写出图像的灰度分布,并画出图像的直方图。
灰度直方图计算示意图
经过统计图像中灰度值为0的像素有1个,灰度值为1的 像素有1个,…,灰度值为6的像素有1个。由此得到图像的 灰度分布如表所示,由表可得灰度直方图如图(b)所示。 图像的灰度分布
3.1.2 (rk)代表概 率密度函数,并且有下式成立:
nk Pr (rk ) 0 rk 1 n k 0,1,2,l 1
式中nk为图像中出现rk这种灰度的像素数,n是图像中像素 总数,nk/n就是概率论中的频数,l是灰度级的总数目。在直 角坐标系中作出rk与P(rk)的关系图形,就得到直方图
图 不同的图像其直方图却是相同的
图 直方图的叠加性质
由以上可知,尽管直方图不能表示出某灰度级的像素在什么位
置,更不能直接反映出图像内容,但是却能描述该图像的灰度分布
特性,使人们从中得到诸如图像的明亮程度、对比度等,成为一些 处理方法的重要依据。通常一幅均匀量化的自然图像由于其灰度直
方图分布集中在较窄的低值灰度区间,引起图像的细节看不清楚,
(a)反变换关系
(b) 原图 图像反转的效果
(c)变换后的图像
由直线方程截斜式可知当k =-1,b=L-1时,其表达式为:
数字图象处理:三 空间域图像增强
●图b是相减图像
3.4.2 图像平均处理(加法处理)
●利用多幅图像相加,然后取平均的办法,其目的主要是为了降低图像的噪声。
平均 8次
平均 16 次
平均 64 次
平均 128次
平均图像和真实图像的差
●不同平均次数的
的差值图像和直方 图。
平 均8 次
平均 16次
平均 64次
平均 128次
●
●
改用直方图匹配来处理
3.3.3 局部直方图均衡
●
在小区域内进行直方图均衡
●
局部直方图均衡可增强图像的细节。
3.3.4 利用图像统计参数来增强图像
图像的均值: m ri p(ri )
i 0 L 1 i 0 L 1
(3.3.19) (3.3.18)
n 图像的n 阶矩: n (r ) (ri m) p(ri )
图像微分实例
3.7.2 二阶微分的图像增强—拉普拉斯算子
●
Laplacian算子:
2 f 2 f f 2 x y 2
2
(3.7.1)
● 对数字图像,二阶微分为:
2 f =f ( x 1 y )+f ( x- , y )-2 f ( x, y ) , 1 2 x
(3.7.2)
说明:1。“好”和“有用” 没有统一的标准。 2。图像增强并不以图像保真为准则
图像增强分为“空间域图像增强”和“频率域图像增 强”。
●
3.1 背景知识
●
定义空间域的图像处理为:
g ( x, y) T [ f ( x, y)]
●
图像的操作分为两大类: 单点操作: 邻域操作:
●
对比度增强的灰度变换
第3章 空间域图像增强(第1讲)
Mg d
照明不足; c 成像传感器动态范围小; O 图像获取过程中透镜光圈设置错误; „ “压缩两端的背景的动态范围,扩展中 段的目标的动态范围”
c f ( x, y ) a d c g ( x, y ) [ f ( x, y ) a ] c ba M g d [ f ( x, y ) b ] d M f b 0 f ( x, y ) a a f ( x, y ) b b f ( x, y ) M f
s cr
幂次变换示例(1) ——伽马校正
阴极射线管(CRT)设备的电压—亮度响应曲线,是一个 指数变化范围为1.8~2.5 的幂函数,取γ=2.5。 因γ>1,没有进行γ校正的输出图像比输入图像暗 进行γ校正s = r1/2.5 = r0.4,得到近似等于输入的输出。 不同设备,γ取值不同。
(2)直方图的作用
四种典型灰度图像的直方图特征: (a)暗图像;(b)亮图像;(c)低对比度图像;(d)高对比度图像
3 直方图的用途
直方图的计算
对数字图像,必须引入离散形式。在离散形 式下,用 rk 代表离散灰度级,用 pr( rk) 代替 rk pr( r) ,用频数近似代替概率值,即
nk Pr (rk ) 0 rk 1 n k 0, 1, 2,, l 1
傅立叶频谱
a. 原始傅里叶频谱
b. 对数变换后频谱图
s=log(1+r) c=1
3.2.3 幂次变换 基本变换公式为
右图 c=1 根据拉伸或压缩的 需要,选择不同的 γ和c值。 图像获取、打印和 显示的各种装置是 按幂次规律响应的。 幂次等式中的指数 是伽玛值,用于修 正幂次相应现象的 过程称为伽玛校正。
图像处理第三章空间域图象增强
灰度级的分层
灰度级分层变换关系
灰度级的分层
灰度切割
(a)加亮[A,B]范围,其 他灰度减小为一恒定 值 (b)加亮[A,B]范围,其 他灰度级不变 (c)原图像 (d)使用(a)变换的结 果
(a)
(a)
(b) (b)
(c) (c)
(d) (d)
灰度非线性变换
用某些非线性函数,例如平方、对 数、指数函数等作为映射函数时,可 实现图像灰度的非线性变换。灰度的 非线性变换简称非线性变换,是指由 这样一个非线性单值函数所确定的灰 度变换。
8 3 4 5 0
1 2
h
3 4 5 6 7 8
注:这里为了描述方便起见,设 灰度级的分布范围为[0,9]。
9
计算灰度分布概率
1 求出图像f的总体像素个数 Nf = m*n (m,n分别为图像的长和宽) 2 计算每个灰度级的像素个数在整个 图像中所占的百分比。 hs(i)=h(i)/Nf (i=0,1,„,255)
一幅与它对应的直方图,但不同的 图像,可能有相同的直方图。也就 说,图像与直方图之间是一种多对 一的映射关系。
直方图的性质
图像与直方图之间是一种多对一的映 射关系
直方图的性质
(3)由于直方图是对具有相同灰度值的像 素统计计数得到的,因此,一幅图像 各子区的直方图之和就等于该图全图 的直方图。
灰度直方图的定义
8 3 4 5 0
L' ( I / 3.8)1/ 0.4
6 2
CCD的输出信息I
γ校正后的信息
原始信息
• 校正后的误差为计算误差,是不得已的,可忽略的误差
灰度切分 将某个灰度范围变得较突出
位图切割
位面图切割
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n次方根 n次幂
s
正比
反对数
输入灰度级,r
图像反转
灰度级范围为[0,L-1]的图像反转可 定义为:
s= L – 1 - r
原图
反转变换结果图
图像反转
原图
反转变换结果图
图像反转
用这种方式倒转图像的强度,可以产生 图像反转的对等图像。
反转变换适用于增强嵌入于图像暗色区域 的白色或灰色细节,特别是当黑色面积占主 导地位时
当 γ <1 时,把输入高值映射为宽带
对于各种γ值时的曲线
输 出
L-1
灰
度
级
s
=0.04 =0.1 =0.4
L/2
=1
=2.5 =10.0
=25.0
0
L/2
L-1
输入灰度级r
图6-23 不同的s=cr曲线及图像变换结果
=1.5 =0.66
(a)人的 脊椎骨的 MR图像 (b)~(d) 应用于幂次 变换并且 c=1,γ分别 为
任一幅图像,都能惟一地确定出一幅与它对应的 直方图, 但不同的图像,可能有相同的直方图。
由于直方图是对具有相同灰度值的像素统计得到
的, 因此,一幅图像各子区的直方图之和就等于
该图(a)像(全a) 图的直方图 (b)
(b) (c)
直方图的计算
为了有利于数字图像处理,必须引入离散形式。
用rk代表离散灰度级,并且有下式成立:
P(rk)
0r1
在灰度级中,r=0 代表黑,1/6 2/6 3/6 4/6 5/6 6/6 r
r=1 代表白。
灰度直方图
直方图处理
对于一幅给定的图像来说,每一个像素取得 [0,1]区间内的灰度级是随机的,也就是说 r 是 一个随机变量。假定对每一瞬间它们是连续的随 机变量,那么,就可以用概率密度函数 p (rk) 来表示原始图像的灰度分布。
直方图均衡化
满足这两个条件的变换函数的一个例子如图所示。
灰度变换函数
直方图均衡化
从 s 到 r 的反变换可用式下表示
r T1(s) 0s1
直方图均衡化
一副图像的灰度级可被视为区间[0,1]的随 机变量。
随机变量变量的一个最重要的基本描述是 其概率密度函数(PDF)
0.6,0.4,0.3 时的变换结 果。
直方图处理
图像 Lena 的直 方图
Lena图像
反映图像灰度级与出现该灰度概率之间的关系的图形
横坐标:灰度级r 纵坐标:为某一灰度值ri的像素个数ni或是灰度出现概率P(r)
直方图处理
在数字图像处理中,灰度直方图是最 简单且最有用的工具,可以说,对图像的 分析与观察直到形成一个有效的处理方法, 都离不开直方图。
❖尚无统一的质量评价标准,无法定量衡量处 理效果的优劣
空间域图像增强技术
指在空间域中,通过线性或非线性变换来增强 构成图像的像素。
增强的方法主要分为点处理和模板处理两大类
➢ 点处理是作用于单个像素的空间域处理方法,包括 图像灰度变换、直方图处理、伪彩色处理等技术;
➢ 模板处理是作用于像素邻域的处理方法,包括空域 平滑、空域锐化等技术。
直方图处理
n
12 345 6 r
灰度直方图
直方图处理
灰度直方图的定义: ➢是灰度级的函数,描述的是图像中该灰度级的像素 个数。即:横坐标表示灰度级,纵坐标表示图像中 该灰度级出现的个数。
➢指图像中各种不同灰度级像素出现的相对频率
➢反映一幅图像中的灰度级与出现这种灰度的概率之间 的关系的图形。
直方图处理
直方图处理
P如r(r)果用直角坐标系的横轴Pr(代r) 表灰度级 r ,用 纵轴代表灰度级的概率密度函数 p (rk) ,这样 就可以针对一幅图像在这个坐标系中作一曲线来。
这条0 曲线在概率论1中r就是分0布密度曲线.
(a)
(b)
1r
图像灰度分布概率密度函数
直方图处理
只反映该图像中不同灰度值出现的次数(或频 数),而未反映某一灰度值像素所在位置。
灰度直方图的定义:
➢是用来表达一幅图像灰度级分布情况的统计表,也 称图像中像素灰度分布的概率密度函数。
➢灰度直方图是灰度级的函数,它表示图像中具有某 种灰度级的像素的个数,反映了图像中每种灰度出 现的频率,它是图像最基本的统计特征。
直方图处理
设变量 r 代表图像中像素灰度级。在图像中, 像素的灰度级可作归一化处理,这样,r 的值将限定 在下述范围之内
Pr(rk)
nk n
0rk 1
k 0,1,2,,l 1
直方图的计算
灰度级的直方图
直方图均衡化
一幅给定的图像的灰度级分布在0≤ r ≤1范围内。可以 对[0, 1]区间内的任一个 r 值进行如下变换
s T(r)
通过上述变换,每个原始图像的像素灰度值r都
对应产生一个s值。
直方图均衡化
变换函数T(r)应满足下列条件: (1)在0≤r≤1区间内,T(r)单值单调增加; (2)对于0≤r≤1,有0≤T(r)≤1。
空间域图像增强技术
空间域方法是直接对这些像素进行操作的 过程。
定义: g x ,y T fx ,y
空间域图像增强技术
为简便起见,令r 和s所定义的变量,分别 是f(x,y)和g(x,y)在任意点(x,y)的灰度级
则T操作成为灰度级变换函数,形式为:
s T(r)
某些基本变换
反比
输 出
对数
灰
度
级
对数变换
对数变换的一般表达式为:
sclo1g(r)
c是一个常数,假设r≥0
对数变换时一窄带低灰度输入图像值映射为一宽 带输出值
对数变换原图Fra bibliotek对数变换后结果图
幂次变换
幂次变换的基本形式为:
s cr
其中c和γ为正常数
幂次变换通过幂次曲线中的γ值把输入的窄带 值映射到宽带输出值。
当 γ >1 时,把输入的窄带暗值映射到宽带输出亮值;
图像增强的概念和分类
➢图像增强技术的目的:
改善图像视觉效果,便于观察和分析 便于人工或机器对图像的进一步处理
➢图像增强的分类:
空间域法:点处理(图象灰度变换、直方图均 衡、伪彩色处理等) 频率域法:高、低通滤波、同态滤波等
图像增强技术的特点
❖人为地突出图像中的部分细节,压制另外一 部分信号
❖在不考虑图像降质原因的条件下,用经验和 试探的方法进行加工
第三章 空间域图像增强
本章要点: ➢基本灰度变换; ➢直方图处理; ➢空间滤波; ➢混合空间增强法;
图像增强的概念和分类
➢图像增强技术不需要考虑图像降质的原因, 只将图像中感兴趣的特征有选择地突出,将 不需要的特征进行衰减。
➢没有一个图像增强的统一理论,如何评 价图像增强的结果好坏也没有统一的标准。