高一数学必修一知识点汇总

合集下载

高一数学必修一课程知识梳理

高一数学必修一课程知识梳理

高一数学必修一课程知识梳理1. 数的性质与集合
- 自然数、整数、有理数、无理数的概念、性质及相互关系- 数轴上的数、绝对值的概念和性质
- 集合的概念、表示方法、集合间的关系和运算
2. 一次函数与方程
- 一次函数的概念、性质、图像和表示方法
- 一次方程的概念、解集及解的性质
- 一次方程的应用:问题的建立、方程的解法和解的验证3. 二次函数与方程
- 二次函数的概念、性质、图像和表示方法
- 二次方程的概念、求解方法及解的性质
- 二次方程的应用:问题的建立、方程的解法和解的验证
4. 平面直角坐标系与图形
- 平面直角坐标系的概念、性质和用途
- 点、线、线段、射线、角、多边形的概念和性质
- 常见图形的特征和性质:平行、垂直、相等、全等等
5. 几何变换
- 平移、旋转、翻折、对称等基本几何变换的概念和性质
- 几何变换的作用和应用:图形的位置关系、对称图形的性质等
6. 数据的收集整理与统计
- 数据的收集方法和整理方式:频数表、条形图、折线图等
- 数据的统计指标:平均数、中位数、众数等
- 数据的分析和应用:数据的比较、推断和预测
7. 概率与统计
- 随机事件的概念和性质
- 概率的计算方法和性质
- 统计实际问题中的概率计算应用
以上是高一数学必修一课程的主要知识点梳理,通过研究这些知识,可以建立起数学的基本概念和方法,为后续的研究打下坚实的基础。

希望同学们能够认真研究,掌握这些知识,提高数学素养和解题能力。

高中一年级数学必修一知识点总结

高中一年级数学必修一知识点总结

高中一年级数学必修一知识点总结
高中一年级数学必修一主要包括以下知识点:
1. 平面直角坐标系:了解平面直角坐标系,熟悉坐标系中点、坐标轴、坐标等概念。

2. 函数与方程:理解函数的概念及性质,熟悉一次函数、二次函数、三次函数等常见函数类型,了解方程的概念及解方程的方法。

3. 直线与圆:了解直线的性质,熟悉直线的方程及直线间的关系。

了解圆的性质,了解如何确定一个圆。

4. 不等式与线性规划:掌握不等式的基本性质及解不等式的方法。

熟悉线性规划的基本概念及求解线性规划问题的方法。

5. 平面向量:了解平面向量的概念及性质,掌握平面向量的运算法则,包括向量的加法、减法、数乘及点积等。

6. 数列与数列的表示方法:了解数列的概念及性质,熟悉等差数列、等比数列等常见数列。

掌握递推公式及通项公式的推导与应用。

7. 三角函数:熟悉正弦函数、余弦函数、正切函数等三角函数的基本性质及图像。

了解解三角函数方程的方法。

8. 解直角三角形:了解三角函数的定义及基本关系,熟悉解直角三角形的方法。

9. 数据的收集与处理:掌握数据的收集方法、数据的整理及数据的分析方法,熟练运用统计学知识进行数据分析。

10. 概率与统计:了解概率的基本概念及性质,熟悉概率计算方法及概率的应用。

熟悉统计学中的基本术语和统计图表的理解与应用。

以上是高中一年级数学必修一的主要知识点总结,掌握这些知识点对于高中一年级的数学学习非常重要。

高一必修一数学知识点总结归纳

高一必修一数学知识点总结归纳

高一必修一数学知识点总结归纳高一必修一数学知识点1一、集合有关概念1.集合的含义:将一些指定的对象集合在一起形成一个集合,每个对象称为一个元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性描述:(1)对于给定的集合,集合中的元素是确定的,任何对象要么是给定集合的元素,要么不是。

(2)在任何给定的集合中,任何两个元素都是不同的对象。

当同一对象包含在一个集合中时,它只是一个元素。

(3)集合中的元素相等,没有顺序。

所以判断两个集合是否相同,只需要比较它们的元素是否相同,而不需要考察排列顺序是否相同。

(4)集合元素的三个特征使得集合本身具有确定性和整体性。

3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}2.集合的表示方法:枚举和描述。

注意啊:常用数集及其记法:非负整数集(即自然数集)记作:n正整数集n_或n+整数集z有理数集q实数集r关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合a 的元素,就说a属于集合a记作a∈a,相反,a不属于集合a 记作a?a枚举:逐个枚举集合中的元素,然后用大括号括起来。

描述:描述集合中元素的公共属性并将它们写在大括号中以表示集合的方法。

在一定条件下表明某些对象是否属于该集合的一种方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?r|x-3>2}或{x|x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}高一必修一数学知识点2i.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,iai还可以决定开口大小,iai越大开口就越小,iai越小开口就越大.)则称y为x的二次函数。

高一必修一数学全册知识点

高一必修一数学全册知识点

高一必修一数学全册知识点一、集合1. 集合的基本概念1.1 集合的定义和表示方法1.2 集合的元素与集合的关系二、数字与代数1. 实数与数轴2.1 实数的概念及表示2.2 数轴的绘制与实数的表示2.3 实数的比较与加减法运算2.4 实数的乘除法运算及其性质2. 同底数幂与科学计数法2.1 指数与幂的概念2.2 同底数幂的乘除法运算2.3 科学计数法的表示与运算3. 整式的基本概念3.1 代数式与整式的定义3.2 项、次数及系数的概念3.3 同类项与合并同类项3.4 整式的加减法运算4. 一元一次方程及其应用4.1 一元一次方程的定义及基本性质4.2 解一元一次方程的基本方法4.3 应用题中的一元一次方程5. 分式及其运算5.1 分式的定义及分式运算的基本性质5.2 分式的化简5.3 分式方程的解法及应用三、函数与图像1. 函数的概念与表示6.1 函数的定义及函数的表示方法6.2 函数的自变量、因变量与定义域、值域的关系2. 幂函数与分段函数6.2.1 幂函数的概念及其性质6.2.2 分段函数的定义及分段函数的画法3. 一次函数与斜率6.3.1 一次函数的定义及一次函数的性质6.3.2 斜率的概念及其计算方法4. 二次函数及其图像6.4.1 二次函数的定义及二次函数的图像特点6.4.2 二次函数的变换与最值四、三角函数1. 三角函数及其基本性质7.1.1 弧度制与角度制的转换7.1.2 正弦、余弦、正切函数的定义及其基本性质2. 三角函数图像的性质与变换7.2.1 三角函数图像的对称性与奇偶性7.2.2 三角函数图像的平移与伸缩7.2.3 三角函数图像的组合与分解3. 三角函数的简单应用7.3.1 三角函数在实际问题中的应用7.3.2 直角三角形的解题方法五、平面几何1. 直线与圆的性质8.1.1 直线的定义及其性质8.1.2 圆的定义及其性质2. 三角形的基本性质8.2.1 三角形分类及其特性8.2.2 三角形的成立条件3. 三角形的相似8.3.1 相似三角形的定义及判定条件 8.3.2 相似三角形的性质及应用4. 圆的切线与割线8.4.1 切线的定义及性质8.4.2 相交弦的性质及切割定理六、统计与概率1. 统计图与数据的分析9.1.1 统计图的绘制及其分析9.1.2 数据的分析与统计规律2. 事件的概率9.2.1 随机事件与概率的定义 9.2.2 事件的计算与概率的性质3. 排列与组合9.3.1 排列的定义及排列的计算 9.3.2 组合的定义及组合的计算。

高一必修一数学知识点考点

高一必修一数学知识点考点

高一必修一数学知识点考点第一章:集合与常用逻辑1. 集合及其表示方法- 集合的定义和基本概念- 集合的表示方法:列举法、描述法和定语从句法- 包含关系与相等关系2. 集合的运算- 交集、并集和差集的含义与计算- 互斥事件与对立事件的关系- 集合的运算律:交换律、结合律、分配律3. 常用逻辑符号与命题- 命题的概念与性质- 非、与、或、异或等逻辑运算符号的意义与运算规则 - 命题的合取范式与析取范式第二章:函数与方程1. 函数的概念与性质- 函数的定义及其基本性质- 定义域、值域和象集的概念- 函数的分类:一次函数、二次函数、指数函数、对数函数等2. 初等函数的图像与性质- 一次函数、二次函数、指数函数、对数函数等常用函数的图像特征- 函数的单调性、奇偶性和周期性等性质- 函数与方程的关系:函数方程、隐函数、显函数等3. 方程与不等式- 方程与等式的概念及其解的求解方法和性质- 一元一次方程和一元二次方程的解法- 不等式的概念和性质,不等式的解集表示方法第三章:平面几何1. 平面内的基本图形与性质- 点、线、线段、射线和角的概念与基本性质- 直线的分类:平行线、垂直线、相交线等- 三角形的分类:等边三角形、等腰三角形、直角三角形等2. 三角形的面积和周长- 三角形的面积公式及其推导- 三角形的周长计算方法- 与三角形相关的重要定理:海伦公式、正弦定理、余弦定理等3. 圆的性质与圆的应用- 圆的定义及其基本性质- 弧的概念与弧长、弦长的计算方法- 圆的切线与切点的概念及其性质第四章:立体几何1. 空间几何体的基本概念- 简单体与复合体的概念与区别- 空间直线、平面、立体角等的定义和性质- 空间几何体的分类与性质:球体、柱体、锥体等2. 直线与平面的位置关系- 平行关系、垂直关系和斜率关系的概念- 平面与平面的位置关系:相交、平行、垂直等- 平面与直线的交点的分类:内交点、外交点等3. 空间几何体的表面积和体积- 立体几何体的表面积计算方法- 立体几何体的体积计算方法- 相似立体几何体的表面积和体积的比较第五章:数据统计与概率1. 数据的收集与整理- 数据的概念与数据的收集方法- 数据的整理与分析方法:频数分布表、频率分布直方图等- 分类数据与数值数据的概念和处理方法2. 数据的图表表示与分析- 数据的图表表示方法及其选择技巧- 直方图、折线图、饼图等常用图表的绘制和分析- 统计指标(平均数、中位数、众数、四分位数等)的计算和比较3. 概率与统计- 随机事件与样本空间的概念- 概率的定义和性质- 古典概型、几何概型和统计概型的应用以上是高一必修一数学知识点的考点概述,希望能对你有所帮助。

必修一数学知识点归纳

必修一数学知识点归纳

必修一数学知识点归纳一、集合与函数的概念1. 集合的定义与表示- 集合是具有某种特定性质的事物的全体。

- 常用符号表示集合,如 A = {x | x 是偶数}。

2. 集合之间的关系- 子集:集合 A 的所有元素都属于集合 B,则 A 是 B 的子集。

- 真子集:若 A 是 B 的子集且 A 不等于 B,则 A 是 B 的真子集。

- 并集与交集:集合 A 和集合 B 的所有元素组成的集合称为并集,两集合共同元素组成的集合称为交集。

3. 函数的定义与性质- 函数是将一个集合中的元素映射到另一个集合中的元素的规则。

- 函数的表示方法:y = f(x)。

- 函数的域与值域:定义域是函数中所有可能的 x 值的集合,值域是函数中所有可能的 y 值的集合。

4. 函数的运算- 加法、减法、乘法、除法:(f ± g)(x) = f(x) ± g(x),(f * g)(x) = f(x) * g(x),(f / g)(x) = f(x) / g(x)。

- 复合函数:(f * g)(x) = f(g(x))。

二、基本初等函数1. 幂函数- 定义:y = x^n,其中 n 是实数。

- 性质:当 n > 0 时,x 轴是幂函数的一条渐近线。

2. 指数函数- 定义:y = a^x,其中 a > 0 且a ≠ 1。

- 性质:指数函数的图像总是通过点 (0, 1)。

3. 对数函数- 定义:y = log_a(x),其中 a > 0 且a ≠ 1。

- 性质:对数函数的图像总是通过点 (1, 0)。

4. 三角函数- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)- 性质:周期性、奇偶性、单调性。

三、函数的极限与连续性1. 极限的概念- 极限描述了函数在某一点附近的行为。

- 极限的表示方法:lim (x→a) f(x) = L。

2. 极限的性质- 唯一性、局部有界性、保号性。

高一数学必修第一册知识点

高一数学必修第一册知识点

高一数学必修第一册知识点一、集合与简单逻辑1. 集合的概念与表示方法·集合的定义:集合是由一些确定的事物组成的整体。

·集合的表示方法:列举法、描述法和符号法。

2. 集合的运算·交集运算:集合A与集合B的交集,记作A∩B,表示属于A且属于B的元素的集合。

·并集运算:集合A与集合B的并集,记作A∪B,表示属于A或属于B的元素的集合。

·差集运算:集合A与集合B的差集,记作A-B,表示属于A但不属于B的元素的集合。

·互斥:两个集合没有交集,即两个集合的交集为空集。

3. 子集与包含关系·子集:集合A中所有的元素都是集合B的元素,则称集合A为集合B的子集,记作A⊆B。

·真子集:集合A是集合B的子集且A≠B,则称集合A为集合B的真子集,记作A⊂B。

·包含关系:若A⊆B且B⊆A,则称集合A与集合B相等,记作A=B。

4. 简单逻辑·命题:陈述句,可以判断真假的陈述。

·命题的连接词:与(∧)、或(∨)、非(¬)。

·合取范式:由若干命题使用与、或、非连接而成的式子。

二、函数与方程1. 函数的定义与性质·函数:对于集合A和B,如果对于A中的每个元素都有唯一确定的B中的元素与之对应,则称该对应关系为函数。

·定义域与值域:定义域是指函数中自变量的取值范围,值域是指函数中因变量的取值范围。

2. 函数的表示与求值·函数的表示方法:用解析式、图像、数据表等形式表示函数。

·函数的求值:将自变量的值代入函数中,计算出对应的因变量的值。

3. 一次函数与二次函数·一次函数:函数表达式为y=ax+b,其中a和b为常数,a≠0。

·二次函数:函数表达式为y=ax²+bx+c,其中a、b、c为常数,a≠0。

4. 方程的解与解法·方程的解:能够使方程成立的未知数的值。

高一数学必修1知识点大全

高一数学必修1知识点大全

高一数学必修1知识点大全一、集合。

1. 集合的概念。

- 集合是由一些确定的、不同的对象所组成的整体。

这些对象称为集合的元素。

例如,全体自然数组成一个集合,每个自然数就是这个集合的元素。

- 集合通常用大写字母表示,如A、B、C等,元素用小写字母表示,如a、b、c等。

- 元素与集合的关系:如果a是集合A的元素,就说a∈ A(读作“a属于A”);如果a不是集合A的元素,就说a∉ A(读作“a不属于A”)。

2. 集合的表示方法。

- 列举法:把集合中的元素一一列举出来,写在大括号内。

例如,集合A = {1,2,3}。

- 描述法:用确定的条件表示某些对象是否属于这个集合。

一般形式为{xp(x)},其中x是集合中的代表元素,p(x)是元素x所满足的条件。

例如,{xx是大于2的整数}。

- 区间表示法:对于数集,还可以用区间表示。

- 开区间(a,b)={xa < x < b};- 闭区间[a,b]={xa≤slant x≤slant b};- 半开半闭区间(a,b]= {xa < x≤slant b},[a,b)={xa≤slant x < b};- 无穷区间(-∞,+∞)=R,(a,+∞)={xx > a},[a,+∞)={xx≥slant a},(-∞,b)={xx < b},(-∞,b]={xx≤slant b}。

3. 集合间的基本关系。

- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(读作“A包含于B”)或B⊇ A(读作“B包含A”)。

如果A⊆ B且B⊆ A,那么A = B。

- 真子集:如果A⊆ B,且存在元素x∈ B,x∉ A,那么集合A是集合B的真子集,记作A⊂neqq B。

- 空集:不含任何元素的集合叫做空集,记作varnothing。

空集是任何集合的子集,是任何非空集合的真子集。

4. 集合的基本运算。

- 交集:由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A 与B的交集,记作A∩ B={xx∈ A且x∈ B}。

高一数学必修一知识点归纳总结

高一数学必修一知识点归纳总结

高一数学必修一知识点归纳总结集合与函数概念- 集合:包括集合的基本概念、元素与集合的关系、集合的表示方法、子集、并集、交集、补集等。

- 函数:函数的概念、定义域、值域、函数的表示方法、单调性、奇偶性、复合函数、反函数等。

不等式与不等式解法- 不等式的基本性质:包括不等式的基本性质、不等式的传递性、不等式的可加性等。

- 不等式的解法:包括一元一次不等式的解法、一元二次不等式的解法、绝对值不等式的解法、分式不等式的解法等。

函数的性质- 函数的单调性:包括函数单调性的定义、单调区间的确定、复合函数的单调性等。

- 函数的奇偶性:包括奇函数和偶函数的定义、性质、图像特征等。

- 函数的周期性:包括周期函数的定义、周期的计算、三角函数的周期性等。

三角函数- 三角函数的定义:包括正弦、余弦、正切等基本三角函数的定义。

- 三角函数的基本性质:包括三角函数的周期性、奇偶性、单调性等。

- 三角恒等式:包括和差化积、积化和差、倍角公式、半角公式等。

指数与对数- 指数函数:包括指数函数的定义、性质、图像、运算法则等。

- 对数函数:包括对数函数的定义、性质、图像、运算法则等。

- 指数与对数的运算:包括指数与对数的转换、对数运算法则等。

几何与坐标- 空间几何:包括空间直线、平面、空间向量等基本概念。

- 坐标系:包括直角坐标系、极坐标系、参数方程等。

解析几何- 直线与圆的方程:包括直线方程的一般式、斜截式、点斜式、圆的标准方程等。

- 椭圆、双曲线、抛物线:包括这些圆锥曲线的定义、标准方程、性质等。

函数的应用- 函数模型:包括函数在实际问题中的应用,如经济模型、物理模型等。

- 函数的最值问题:包括函数最值的求法、实际应用等。

这些知识点是高一数学必修一课程中的核心内容,掌握这些知识点对于后续数学学习至关重要。

在实际学习中,不仅要理解概念和性质,还要通过大量的练习来提高解题能力。

高一数学必修一知识点

高一数学必修一知识点

高一数学必修第一册知识点第一章集合与常用逻辑用语1元素:研究的对象统称为元素,用小写拉丁字母 ,,,c b a 表示,元素三大性质:互异性,确定性,无序性.2集合:一些元素组成的总体叫做集合,简称集,用大写拉丁字母 ,,,C B A 表示.3集合相等:两个集合B A ,的元素一样,记作B A .4元素与集合的关系:①属于:A a ;②不属于:A a .5常用的数集及其记法:自然数集N ;正整数集 N N 或*;整数集Z ;有理数集Q ;实数集R .6集合的表示方法:①列举法:把集合中的所有元素一一列举出来,并用花括号括起来表示集合的方法;②描述法:把集合中所有具有共同特征)(x P 的元素x 所组成的集合表示为})(|{x P A x 的方法;③图示法(Ve nn 图):用平面上封闭曲线的内部代表集合的方法.7集合间的基本关系:子集:对于两个集合B A ,,如果集合A 中任意一个元素都是集合B 中的元素,就称集合A 为集合A 的子集,记作,读作A 包含于B ;真子集:如果B A ,但存在元素B x ,且A x ,就称集合A 是集合B 的真子集,记作A B ,读作A 真包含于B .8空集:不含任何元素的集合,用 表示,空集的性质,空集是任何集合的子集,是任何集合的真子集.9集合的基本运算:并集},|{B x A x x B A 或 ;交集},|{B x A x x B A 且 ;补集},|{A x U x x A C U且(U 为全集,全集是含有所研究问题中涉及的所有元素).运算性质:B A B B A ;B A A B A ;A A ; A ;U C U C A A C C U U U U ,,)(,)()()(),()()(B A C B C A C B A C B C A C UU U U U U .10充分条件与必要条件:一般地,“若p ,则q ”为真命题,p 可以推出q ,记作q p ,称p 是q 的充分条件,q 是p 的必要条件;p 是q 的条件的四种类型:若q q p , p ,则p 是q 的充分不必要条件;若p p q , q ,则p 是q 的必要充分不条件;若q p ,则p 是q 的充要条件;若p q ,q p ,则p 是q 的既不充分也不必要条件.11全称量词及全称量词命题:短语“所有的”,“任意一个”在逻辑中叫做全称量词,并用符号 表示,含有全称量词的命题成为全称量词命题.12存在量词及存在量词命题:短语“存在一个”,“至少有一个”在逻辑中叫做存在量词,并用符号 表示,含有存在量词的命题成为存在量词命题.13全称量词命题与存在量词命题的否定:全称量词命题的否定是存在量词命题;存在量词命题的否定是全称量词命题.第二章一元二次函数、方程不等式1不等式的性质不等式的性质:①对称性a b b a ;②传递性,a b b c a c ;③可加性a b a c b c ;④可乘性,0a b c ac bc ,,0a b c ac bc ;⑤同向可加性,a b c d a c b d ;⑥同向可乘性0,0a b c d ac bd ;⑦可乘方性 0,1nna b a b n n ;⑧可开方性 0,1nna b ab n n.⑨可倒数性bab a 11.2重要不等式:若R b a ,,则ab b a 222,当且仅当b a 时等号成立.3基本不等式:若0a ,0b ,则2a b ab,即2abab,当且仅当b a 时等号成立.4不等式链:若0a ,0b ,则baabbab a1122222,当且仅当b a 时等号成立;一正二定三相等.5一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.6一元二次不等式的解法:二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac0 0 0 二次函数2y a x b x c0a的图象一元二次方程2a xb x 0c0a的根有两个相异实数根1,22b x a12x x 有两个相等实数根122bx x a没有实数根一元二次不等式的解集20a x b x c 0a 12x xx x x 或2bx xaR2a xb x c0a12x x x x第三章函数的概念与性质1函数的概念:一般地,设B A ,是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 与它对应,那么就称B A f :为从集合A 到集合B 的一个函数,记作A x x f y ),(,其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合}|)({A x x f 叫做函数的值域,值域是集合B 的子集.2函数的三要素:定义域、对应关系、值域.求函数定义域的原则:(1)若 f x 为整式,则其定义域是R ;(2)若 f x 为分式,则其定义域是使分母不为0的实数集合;(3)若 f x 是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合;(4)若 0f x x ,则其定义域是 0x x ;(5)若 0,1xf x aaa ,则其定义域是R ;(6)若 lo g 0,1af x x aa ,则其定义域是 0xx;(7)若x x f t a n )( ,则其定义域是},2|{Z k k x x;求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数.6函数的单调性:(1)单调递增:设任意D x x 21,(I D ,I 是 f x 的定义域),当12x x 时,有12()()f x f x .特别的,当函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意D x x 21,(I D ,I 是 f x 的定义域),当12x x 时,有12()()f x f x.特别的,当函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间.8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数)(x f y 的定义域为I ,如果存在实数M 满足:I x ,都有))(()(M x f M x f ;I x 0使得M x f )(0,那么称M 是函数的最大(小)值.10函数的奇偶性:偶函数:一般地,设函数)(x f y 的定义域为I ,如果I x ,都有I x ,且)()(x f x f ,那么函数叫做偶函数;偶函数的图象关于y 轴对称;偶函数)(x f y 满足|)(|)()(x f x f x f ;奇函数:一般地,设函数)(x f y 的定义域为I ,如果I x ,都有I x ,且)()(x f x f ,那么函数叫做奇函数;奇函数的图象关于原点对称;若奇函数)(x f y 的定义域中有零,则其函数图象必过原点,即(0)0f .11幂函数:一般地,函数 x y 叫做幂函数,其中x 是自变量, 是常数.12幂函数 f x x 的性质:①所有的幂函数在 0, 都有定义,并且图象都通过点 1,1;②如果0 ,则幂函数的图象过原点,并且在区间 0, 上是增函数;③如果0 ,则幂函数的图象在区间 0, 上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 趋向于 时,图象在x 轴上方无限地逼近x 轴;④在直线1 x 的右侧,幂函数图象“指大图高”;⑤幂函数图象不出现于第四象限.第四章指数函数与对数函数1、n 次方根与分数指数幂、指数幂运算性质(1)若nx a ,则 n na n xa n为奇数为偶数;(2)n n a n a n a为奇数为偶数;(3)()nna a ;(4)*(0,,,1)mnmn a a am n N n 且;(5)*1(0,,1)m nnmaam n N n a,且;(6)0的正分数指数幂为0,0的负分数指数幂没有意义.(7) 0,,r s r s a a a a r s R ;(8) ()0,,r s r s a a a r s R ;(9) ()0,0,,r r r ab a b a b r s R .2、对数、对数运算性质(1) lo g 0,1x a a N x N a a ;(2) lo g 100,1aa a ;(3) lo g 10,1aaa a ;(4); lo g 0,1a NaNaa ;(5) lo g 0,1maam a a ;(6) lo g ()lo g lo g 0,1,0,0aaaM N MN aa ;(7) lo g lo g lo g 0,1,0,0aaaM MN aa N;(8) lo glo g 0,1,0naaMn M aa ;(9)换底公式 lo g lo g 0,1,0,0,1lo g c a c b b aa b c c a;(10)l o g l o g 0,1,,*mna a n bb aa n m Nm;(11) 1lo g lo g 0,1,0,naa MM aa M n R n;(12) lo g lo g lo g 10,1,0,1,0,1a b c b c a a a b b c c .3、指数函数)1,0( a a a y x且及其性质:①定义域为 , ;②值域为 0, ;③过定点 0,1;④单调性:当1a 时,函数 f x 在R 上是增函数;当01a 时,函数 f x 在R 上是减函数;⑤在y 轴右侧,指数函数的图象“底大图高”.4、对数函数)1,0(lo ga ax y a且及其性质:①定义域为 0, ;②值域为 , ;③过定点 1,0;④单调性:当1a 时,函数f x 在 0, 上是增函数;当01a 时,函数 f x 在 0, 上是减函数;⑤在直线1 x 的右侧,对数函数的图象“底大图低”.5指数函数xa y 与对数函数)1,0(lo g a a x y a且互为反函数,它们的图象关于直线x y 对称.6不同函数增长的差异:线性函数模型)0( k b kx y 的增长特点是直线上升,其增长速度不变;指数函数模型)1( a a y x的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸”状态;对数函数模型)1(lo g a x y a的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长速度平缓;幂函数模型)0( n x y n的增长速度介于指数函数和对数函数之间.7函数的零点:在函数)(x f y 的定义域内,使得0)( x f 的实数x 叫做函数的零点.8零点存在性定理:如果函数 f x 在区间 ,a b 上的图象是连续不断的一条曲线,且有0f a f b ,那么函数y f x在区间 ,a b 内至少有一个零点,即存在 ,c a b ,使得0f c ,这个c 也就是方程 0f x 的根.9二分法:对于区间],[b a 上图象连续不断且 0f a f b 的函数)(x f y,通过不断把它的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,进而得到零点近似值的方法.10给定精确度 ,用二分法求函数)(x f y 零点0x 近似值的步骤:⑴确定零点0x 的初始区间 ,a b ,验证 0f a f b ;⑵求区间 ,a b 的中点c ;⑶计算)(c f ,并进一步确定零点所在的区间;①若0)( c f ,则c 就是函数的零点;②若0)()( c f a f (此时),(0c a x ),则令c b ;③若0)()( b f c f (此时),(0b c x ),则令c a ;⑷判断是否达到精确度 :若a b ,则得到零点的近似值a (或b );否则重复上面的⑵至⑷.第五章三角函数1任意角的分类:按终边的旋转方向分:正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2象限角:角 的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的集合为 36036090,k k k ;第二象限角的集合为 36090360180,k k k ;第三象限角的集合为 360180360270,k k k ;第四象限角的集合为360270360360,k k k 角 的终边不在任何一个象限,就称这个角不属于任何一个象限终边在x 轴非负半轴的角的集合},2|{Z k k ;终边在x 轴非正半轴的角的集合},2|{Z k k ;终边在y 轴非负半轴的角的集合},22|{Z k k;终边在y 轴非正半轴的角的集合},22|{Z k k;终边在x 轴的角的集合},|{Z k k ;终边在y 轴的角的集合},2|{Z k k;终边在坐标轴的角的集合},2|{Z kk;2终边相同的角:与角 终边相同的角的集合为 360,k k .3弧度制:长度等于半径长的弧所对的圆心角叫做1弧度.4角度与弧度互化公式:2360 ,1180 ,180157.3.5扇形公式:半径为r 的圆的圆心角 所对弧的长为l ,则角 的弧度数的绝对值是lr .若扇形的圆心角为 为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r ,2Cr l ,21122S l rr.6三角函数的概念:设 是一个任意大小的角, 的终边上任意一点P 的坐标是 ,x y ,它与原点的距离是 220r r xy,则si n y r,c os x r, t a n 0y xx.7三角函数的符号:一全正二正弦三正切四余弦.8记忆特殊角的三角函数值:15 30 45 60759012013515018027036012643125 232 43 65232 sin 426212223426123222101c os4262322214260212223101t a n 321332不存在3133不存在9同角三角函数的基本关系:221si n c os 1 , 2222si n 1c os ,c os 1si n ;si n 2t a n c ossi n sinta n c os ,c os t a n.10诱导公式口诀:奇变偶不变,符号看象限.1si n 2si n k , c os 2c os k , t a n 2t a n k k .2si n si n, c os c os , t a n t a n . 3si n si n , c os c os , t a n t a n . 4si n si n, c os c os , t a n t a n .5si n c os 2,c os si n 2 . 6si n c os 2 ,c os si n 2.11三角函数的图象与性质:si n yxc os yxt a n yx图象定义域RR,2x xk k值域1,11,1 R函数性质12两角和差的正弦、余弦、正切公式:(1) c os c os c os si n si n ;(2) c os c os c os si n si n ;(3) si n si n c os c os si n ;(4) si n si n c os c os si n ;(5) t a n t a n t a n 1t a n t a n( t a n t a n t a n 1t a n t a n );(6) t a n t a n t a n 1t a n t a n( t a n t a n t a n 1t a n t a n ).13二倍角公式:(1)si n 22si n c os ;(2)2222c os 2c os si n 2c os 112si n ;(2c os 21c os 2 ,21c os 2si n 2);(3)22t a n t a n 21t a n ;14半角公式:(1)2c os 12sin ;(2)2c os12c os;(3)c os 1c os12t a n;(4)c os 1sin sin c os 12t a n15辅助角公式:的终边上在角点其中 ),(,t a n ),sin (c ossin 22b a ab xb axb xa.最值当22x kk时,m a x1y ;当22x kk时,m i n 1y .当 2x k k 时,m a x1y ;当2x kk时,m i n 1y .既无最大值也无最小值周期性22奇偶性奇函数偶函数奇函数单调性在2,222k kk上是增函数;在32,222k kk上是减函数.在2,2k k k上是增函数;在2,2k k k上是减函数.在,22k kk上是增函数.对称性对称中心 ,0k k 对称轴2x k k对称中心 ,02k k对称轴x k k 对称中心 ,02k k无对称轴16函数b x A y )sin ( 的图象与性质:图象变换:(1)先平移后伸缩:函数si n y x 的图象上所有点向左(右)平移 个单位长度,得到函数 si n yx 的图象;再将函数 si n y x 的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数 si n y x 的图象;再将函数 si n y x 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 si n y x 的图象.(2)先伸缩后平移:函数si n y x 的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数si n y x 的图象;再将函数si n y x 的图象上所有点向左(右)平移个单位长度,得到函数 si n y x 的图象;再将函数 si n y x 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 si n y x 的图象.五点法画图函数 si n 0,0y x 的性质:①定义域为R ;②值域为],[A A ;③单调性:根据函数x y sin 的单调区间求函数的单调区间;④奇偶性:当Z k k , 时,函数 si n y x 是奇函数;当Z k k ,2时,函数si n yx 是偶函数;⑤周期:2T ;⑥对称性:根据函数x y sin 的对称性研究函数的对称性1217函数B x A y )sin ( 的应用①振幅:A ;②周期:2 ;③频率:12f;④相位:x ;⑤初相: .⑥最值:函数B x A y )sin ( ,当1x x 时,取得最小值为m i n y ;当2x x 时,取得最大值为m a xy,则 m a xm i n 12y y, m a xm i n 12y y,21122x x x x.。

高中必修一数学知识点总结(14篇)

高中必修一数学知识点总结(14篇)

高中必修一数学知识点总结一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性,(2)元素的互异性,(3)元素的无序性,(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}注意:常用数集及其记法:非负整数集(即自然数集)记作:N1)列举法:{a,b,c……}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)即:①任何一个集合是它本身的子集。

AA②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)③如果AB,BC,那么AC④如果AB同时BA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交集并集补集定B}).设S是一个集合,A是S的一个子集,由S中所有不属于A 的元素组成的集合,叫做S中子集A的补集(或余集)记作,即CSA=韦恩图示性质AA=AAΦ=ΦAB=BAABAABBAA=AAΦ=AAB=BAABAABB(CuA)(CuB)=Cu(AB)(CuA)(CuB)=Cu(AB)A(CuA)=UA(CuA)=Φ.例题:1.下列四组对象,能构成集合的是(____)A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数2.集合{a,b,c}的真子集共有个4.设集合A=,B=,若AB,则的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人。

高一必修一数学全章知识点

高一必修一数学全章知识点

高一必修一数学全章知识点一、集合与函数1. 集合的概念和表示方法2. 集合的基本运算3. 集合的关系和判定方法4. 函数的概念和表示方法5. 函数的性质和基本类型二、数与式1. 实数的概念和性质2. 整式与分式的概念和性质3. 代数式的运算规则和性质4. 同类项与合并同类项5. 因式分解的方法和应用6. 分式的运算和应用三、方程与不等式1. 方程的概念和解的概念2. 一元一次方程的解法和应用3. 一元二次方程的解法和应用4. 一元一次不等式的解法和应用5. 一元二次不等式的解法和应用6. 绝对值方程与不等式的解法和应用四、平面几何与立体几何1. 点、线、面的基本概念与性质2. 直线与线段的性质3. 角的概念与性质4. 三角形的分类与性质5. 四边形的分类与性质6. 圆的性质与定理7. 三维图形的基本概念与性质五、函数与图像1. 二次函数的图像与性质2. 一次函数的图像与性质3. 反比例函数的图像与性质4. 幂函数的图像与性质5. 指数函数的图像与性质6. 对数函数的图像与性质六、实数与三角函数1. 整式的值域与最值问题2. 三角函数的概念与性质3. 三角函数的图像与变化规律4. 三角函数的同角关系5. 三角函数的基本公式与应用七、数列与数学归纳法1. 数列的概念与表示2. 等差数列与等差数列的性质3. 等比数列与等比数列的性质4. 递推数列与递推数列的性质5. 数学归纳法的原理与应用八、概率与统计1. 随机事件与概率的概念2. 概率的运算与应用3. 组合与排列的概念与性质4. 统计图表的制作与分析5. 平均数与波动范围的计算以上是高一必修一数学全章的知识点,希望对你的学习有所帮助。

高一数学(必修一)知识点总结

高一数学(必修一)知识点总结

高一数学(必修一)知识点总结
以下是高一数学(必修一)的知识点总结:
1. 平面直角坐标系:原点、坐标轴、象限、直线方程的一般式和斜率
2. 直线与圆的交点问题:直线方程和圆方程的联立求解,以及交点的判别式
3. 二次函数:二次函数的定义、图像、性质和求解相关问题
4. 不等式:一元一次不等式、一元二次不等式的求解
5. 数列与数列的通项:数列的概念、公式、前n项和、等差数列、等比数列
6. 概率:随机事件的概念、频率与概率的关系、基本事件与复合事件、用排列组合计算概率
7. 几何:平面几何的基本概念、线段、角、三角形的性质和判定、相似三角形、勾股定理
8. 三角函数:弧度、三角函数的正弦、余弦、正切、余切等概念和性质
9. 函数与导数:函数的定义、性质、定义域、值域、反函数、导数的概念和计算
10. 三角函数的图像和变换:正弦函数、余弦函数、正切函数的图像、函数的平移、伸缩和反转
11. 平面向量:向量的概念、向量的表示、向量的线性运算、向量的模、单位向量、平行四边形法则
12. 数量关系:方程的解、实数的性质、线性方程组的解法、二元一次方程的解、图象与方程的关系
这些是基本的知识点,希望对你有所帮助。

高一数学必修一知识点整理大全

高一数学必修一知识点整理大全

高一数学必修一知识点整理大全
一、数集与复数
1、数集:实数集、整数集、有理数集、自然数集、负数集和无理数集等
2、复数:复数由实数部分和虚数部分组成,表示形式为a+bi,其中a 为实数部分,b为虚数部分;以及其实部和虚部计算方法,共轭数,复数的乘法和除法等
二、方程与不等式
1、一元一次方程的解法:唯一解法、无解法,以及利用求根公式求解等
2、不等式:不等式的解法、绝对值不等式、二次不等式和向量不等式
三、集合与函数
1、集合:一个集合由若干元素组成,可用于天空符号来表示,以及运算符号的应用;
2、函数:体景函数的定义、反函数的概念、一元函数的性质、复合函数和函数的变换
四、直线与圆
1、直线:斜率的概念,相交点的求解、两条直线的垂直关系、直线的标准方程和点斜式;
2、圆:圆的性质,圆的中点、半径和圆心的关系,同心圆的特点,圆的标准方程,圆上一点到圆心的弧长。

五、三角函数
1、三角函数的定义:余弦函数、正切函数,以及三角函数的四象性理论;
2、三角函数的应用:三角形的基本概念、余弦定理、正弦定理,以及用于解三角形的其他定理。

六、分数与比例
1、分数:基本分数的概念,真分数、假分数,特殊分数及其转换,带分数的基本运算等;
2、比例:比例具有多重性,比例的初始情况和分级表,比例的连续变化、列比较法求不确定比例等。

高一必修1数学知识点总结3篇

高一必修1数学知识点总结3篇

高一必修1数学知识点总结一、集合与命题1. 集合的概念、表示方法、基本运算2. 命题的概念、复合命题的构成、命题的等价与否定3. 推理法则:直接证明法、间接证明法、归谬法、反证法二、函数与方程1. 函数的概念与表示方法,像素函数、奇偶性、周期性等特殊函数2. 基本初等函数,包括幂函数、指数函数、对数函数、三角函数及其应用3. 一次、二次函数及其图象性质,函数 y=f(ax+b)+c 的图象、平移、伸缩性质4. 方程的根的概念,一元一次方程组和一元二次方程三、平面向量1. 向量及其表示方法、基本运算、数量积和向量积的概念、性质及其应用2. 平面向量共线、异向、垂直的判定,平面内直线上的向量及其应用问题3. 向量和坐标几何的关系,向量的数量积与坐标几何的应用4. 平面内的向量方程、直线方程四、解析几何初步1. 坐标系、平面直角坐标系、向量表示的直线方程、两点间距离公式2. 圆的方程:标准方程、一般方程、增广方程、切线公式等3. 空间坐标系及其使用、空间向量的坐标表示、坐标三元组、基本运算4. 点与直线、平面的位置关系,平面的一般方程,三棱锥的体积公式、四面体的体积公式五、立体几何初步1. 空间图形的正投影及其应用,空间角的概念、度量,角的平分线,三角形和平面的性质及其证明2. 空间直线和平面的位置关系及其判定,面面角,直线直线角等3. 空间角的二面角和全等体,四面体的性质和判定,正四面体、正八面体、正十二面体的性质及其应用4. 球面坐标系及其使用,球面坐标系中的距离公式,空间曲线坐标方程的确定六、三角函数及其应用1. 两角和、差的正弦、余弦、正切公式,万能公式和半角公式2. 方向角、极角,三角函数的定义和基本性质,简单的三角方程解法,三角函数模型的建立和解法3. 恒等式的化简,函数关系式的建立和讨论,三角函数的和差化积公式,乘法公式的应用4. 三角函数包络、变化规律,证明三角函数性质及其应用,三角函数在连续性、可导性、周期等方面的应用七、数列和数学归纳法1. 数列的概念,常数数列、等差数列、等比数列、斐波那契数列,数列的极限、中项、前 n 项和等知识2. 等比数列的性质,通项公式的推导,等差数列前 n 项和公式的应用3. 常用数列求和公式,特殊数列如完全平方数数列等的一些性质4. 数学归纳法的概念、方法、用途和基本步骤,递推关系及其应用。

高中数学必修一最全知识点汇总

高中数学必修一最全知识点汇总

高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。

常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。

集合与元素之间的关系可以表示为a∈M或a∉M。

集合的表示法有自然语言法、列举法、描述法和图示法。

集合可以分为有限集、无限集和空集(∅)。

1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。

子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。

已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。

1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。

交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。

补集的性质为A∪A的补集=全集,A∩A的补集=空集。

2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。

一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。

1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。

2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。

3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。

数学高一必修一知识点

数学高一必修一知识点

数学高一必修一知识点1. 集合的概念与运算- 集合的定义:集合是由一些确定的、互不相同的元素所组成的整体。

- 元素与集合的关系:属于(∈)和不属于(∉)。

- 集合的表示法:列举法和描述法。

- 集合的分类:有限集合和无限集合,空集。

- 集合的运算:并集(∪)、交集(∩)、差集(-)、补集(C)、子集(⊆)和真子集(⊂)。

2. 函数的概念与性质- 函数的定义:函数是定义域到值域的映射关系。

- 函数的三要素:定义域、值域和对应法则。

- 函数的表示法:解析式、图象和列表。

- 函数的性质:单调性、奇偶性、周期性和有界性。

- 函数的运算:函数的四则运算和复合函数。

3. 指数与对数- 指数的定义:a^n表示a的n次方。

- 指数的性质:指数的乘法法则、指数的幂的乘方、指数的加减法。

- 对数的定义:如果a^x=b,则x是b的以a为底的对数,记作x=log_a(b)。

- 对数的性质:对数的换底公式、对数的四则运算。

- 指数函数和对数函数:指数函数y=a^x和对数函数y=log_a(x)的性质和图象。

4. 三角函数- 三角函数的定义:正弦、余弦、正切、余切、正割、余割。

- 三角函数的性质:周期性、奇偶性、单调性。

- 三角函数的图象:正弦函数、余弦函数的图象。

- 三角恒等式:和差公式、倍角公式、半角公式、和差化积、积化和差。

- 解三角形:正弦定理、余弦定理、三角形的面积公式。

5. 不等式- 不等式的概念:表示不等关系的式子。

- 不等式的性质:不等式的基本性质。

- 不等式的解法:一元一次不等式、一元二次不等式、绝对值不等式。

- 一元二次不等式的解集:数轴上的表示法。

- 基本不等式:算术平均数-几何平均数不等式。

6. 数列- 数列的概念:按照一定规律排列的一列数。

- 数列的表示法:通项公式和递推关系式。

- 数列的分类:等差数列、等比数列、递推数列。

- 数列的求和:等差数列求和公式、等比数列求和公式、分组求和法、错位相减法。

数学必修一知识点

数学必修一知识点

数学必修一知识点
一、函数与方程
1.函数的概念及性质
2.一次函数
3.二次函数
4.绝对值函数
5.无理函数
6.指数函数
7.对数函数
8.三角函数
9.反函数
二、平面解析几何
1.直线的方程
2.圆的方程
3.曲线的方程
4.空间解析几何
三、不等式与不等式组
1.不等式的性质及解法
2.一元一次不等式
3.一元二次不等式
4.一元有理不等式
5.一元无理不等式
6.一元绝对值不等式
7.不等式组的概念及求解
四、数列与数列的应用
1.数列的概念及性质
2.等差数列
3.等比数列
4.通项公式与前n项和公式
5.数列的应用
五、平面向量
1.平面向量的概念及性质
2.平面向量的运算
3.平面向量的坐标表示及相互关系
4.平面向量的应用
六、排列组合与概率
1.排列组合的基本概念及应用
2.概率的基本概念及性质
3.事件的概念及运算
4.条件概率与独立事件
5.排列组合与概率的应用
七、三角函数与立体几何
1.三角函数的基本概念及性质
2.三角函数的基本关系式
3.三角函数的图像与性质
4.三角函数的解析式与换元法
5.立体几何的基本概念及性质
6.立体几何中的空间图形
八、数学推理与证明
1.数学推理的基本方法及技巧
2.数学证明的基本方法及思路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修一知识点汇总当我第一遍读一本好书的时候,我仿佛觉得找到了一个朋友;当我再一次读这本书的时候,仿佛又和老朋友重逢。

我们要把读书当作一种乐趣,并自觉把读书和学习结合起来,做到博览、精思、熟读,更好地指导自己的学习,让自己不断成长。

让我们一起到一起学习吧!高一数学必修一知识点【第一章:集合与函数概念】一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集:N*或N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xR|x-32},{x|x-32}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.包含关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.相等关系:A=B(55,且55,则5=5) 实例:设A={x|x2-1=0}B={-1,1}元素相同则两集合相等即:①任何一个集合是它本身的子集。

AA②真子集:如果AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AB,BC,那么AC④如果AB同时BA那么A=B3.不含任何元素的集合叫做空集,记为规定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作A交B),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B 的并集.记作:AB(读作A并B),即AB={x|xA,或xB}).【第二章:基本初等函数】一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成(0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质【第三章:第三章函数的应用】1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:(1)(代数法)求方程的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.3.2.1几类不同增长的函数模型【课型】新授课【教学目标】结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性.【教学重点、难点】1. 教学重点将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.2.教学难点选择合适的数学模型分析解决实际问题.【学法与教学用具】1. 学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索.2.教学用具:多媒体.【教学过程】(一)引入实例,创设情景.教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导.(二)互动交流,探求新知.1. 观察数据,体会模型.教师引导学生观察例1表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流.2. 作出图象,描述特点.教师引导学生借助计算器作出三个方案的函数图象,分析三种方案的不同变化趋势,并进行描述,为方案选择提供依据.(三)实例运用,巩固提高.1. 教师引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益.学生通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本例的完整解答,然后全班进行交流.2. 教师引导学生分析例2中三种函数的不同增长情况对于奖励模型的影响,使学生明确问题的实质就是比较三个函数的增长情况,进一步体会三种基本函数模型在实际中广泛应用,体会它们的增长差异.3.教师引导学生分析得出:要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择,学会对数据的特点与作用进行分析、判断。

4.教师引导学生利用解析式,结合图象,对例2的三个模型的增长情况进行分析比较,写出完整的解答过程.进一步认识三个函数模型的增长差异,并掌握解答的规范要求.5.教师引导学生通过以上具体函数进行比较分析,探究幂函数(0)、指数函数(1)、对数函数(1)在区间(0,+)上的增长差异,并从函数的性质上进行研究、论证,同学之间进行交流总结,形成结论性报告.教师对学生的结论进行评析,借助信息技术手段进行验证演示.6. 课堂练习教材P98练习1、2,并由学生演示,进行讲评。

(四)归纳总结,提升认识.教师通过计算机作图进行总结,使学生认识直线上升、指数爆炸、对数增长等不同函数模型的含义及其差异,认识数学与现实生活、与其他学科的密切联系,从而体会数学的实用价值和内在变化规律.(五)布置作业教材P107练习第2题收集一些社会生活中普遍使用的递增的一次函数、指数函数、对数函数的实例,对它们的增长速度进行比较,了解函数模型的广泛应用,并思考。

有时同一个实际问题可以建立多个函数模型,在具体应用函数模型时,应该怎样选用合理的函数模型.3.2.2 函数模型的应用实例(Ⅰ)【课型】新授课【教学目标】能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.【教学重点与难点】1.教学重点:运用一次函数、二次函数模型解决一些实际问题.2. 教学难点:将实际问题转变为数学模型.【学法与教学用具】1. 学法:学生自主阅读教材,采用尝试、讨论方式进行探究.2. 教学用具:多媒体【教学过程】(一)创设情景,揭示课题引例:大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?这四句的意思就是:有若干只有几只鸡和兔?你知道孙子是如何解答这个鸡兔同笼问题的吗?你有什么更好的方法?老师介绍孙子的大胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了独脚鸡和双脚兔.这样,独脚鸡和双脚兔脚的数量与它们头的数量之差,就是兔子数,即:47-35=12;鸡数就是:35-12=23.比例激发学生学习兴趣,增强其求知欲望.可引导学生运用方程的思想解答鸡兔同笼问题.(二)结合实例,探求新知例1. 某列火车众北京西站开往石家庄,全程277km,火车出发10min开出13km后,以120km/h匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程.探索:1)本例所涉及的变量有哪些?它们的取值范围怎样;2)所涉及的变量的关系如何?3)写出本例的解答过程.老师提示:路程S和自变量t的取值范围(即函数的定义域),注意t的实际意义.学生独立思考,完成解答,并相互讨论、交流、评析.例2.某商店出售茶壶和茶杯,茶壶每只定价20元,茶杯每只定价5元,该商店制定了两种优惠办法:1)本例所涉及的变量之间的关系可用何种函数模型来描述?2)本例涉及到几个函数模型?3)如何理解更省钱?;4)写出具体的解答过程.在学生自主思考,相互讨论完成本例题解答之后,老师小结:通过以上两例,数学模型是用数学语言模拟现实的一种模型,它把实际问题中某些事物的主要特征和关系抽象出来,并用数学语言来表达,这一过程称为建模,是解应用题的关键。

数学模型可采用各种形式,如方程(组),函数解析式,图形与网络等.。

相关文档
最新文档