理论力学第七版答案_
理论力学(I)第七版答案
FN = (m+ m + m2 )g +α(−m r + m2r2 ) 1 11 (3) 研究 m ) 1
F 2 − m2 g = m2a2 = m2r2α T F 2 = m2 (g + r2α) T
3.动量矩守恒定律 . 常矢量; 若 ∑MO(F(e) ) ≡ 0,则 LO =常矢量; 常量。 若 ∑Mz (F (e) ) ≡ 0,则 Lz =常量。
J。
6. 查表法 物体 的形 状 细直 杆
均质物体的转动惯量 简 图 转动惯量 惯性半 径
m 2 JzC = l 12 m Jz = l 2 3
体积
ρz =
C
l 2 3
l ρz = 3
薄壁 圆筒
Jz = mR2
ρz = R
2R π lh
圆柱
1 JZ = mR2 2 Jx = Jy =
ρz =
R 2
2
(2) 均质细直杆对一端的 ) ml2 转动惯量
3
(3) 均质细直杆对中心轴 ) ml2 的转动惯量
12
4.组合法 . 例10:已知杆长为 质量为1 ,圆盘半径为 : l m d 质量为 m 。 2 求: JO。
解: JO = JO杆 + JO盘
1 2 JO杆 = ml 3
1 d 2 d 2 JO盘 = m ( ) + m (l + ) 2 2 2 2 2 3 2 2 = m2 ( d + l + ld) 8 1 2 3 2 2 JO = ml + m2 ( d +l +ld) 1 3 8
J z = J zC + md2
例11-9:均质细直杆,已知 :均质细直杆, 求:对过质心且垂直于杆的 解:对一端的 z 轴,有
理论力学第七版答案
理论力学第七版答案第一章粒子运动学1.1 基本概念•位矢、速度矢量和加速度矢量的定义和表示方法。
•直角坐标、柱坐标和球坐标系的转换关系。
•速度的瞬时和平均定义。
1.2 运动学基本定理•切线加速度与半径曲线关系。
•速度、加速度与位矢、速度矢量之间的运动学关系。
1.3 平面运动•直线运动:匀速直线运动和变速直线运动的运动学方程。
•曲线运动:实际问题中曲线运动的应用。
第二章力学基本定律2.1 牛顿第一定律•牛顿第一定律的定义和说明。
•惯性系和非惯性系的区别。
2.2 牛顿第二定律•牛顿第二定律的定义和表达式。
•质点和刚体受力的运动学关系。
2.3 牛顿第三定律•牛顿第三定律的定义和说明。
•物体之间相互作用力的特点。
2.4 小结•牛顿定律的应用场景和注意事项。
第三章力的合成与分解3.1 力的合成•力的合成的数学表达式。
•合力的性质和特点。
3.2 力的分解•力的分解的数学表达式。
•杠杆原理和力矩的概念。
3.3 直角坐标系内的力的合成与分解•直角坐标系下力的合成与分解的具体计算方法。
•应用场景和实例。
第四章力的作用点与力矩4.1 力的作用点•力的作用点的概念和性质。
•力的作用点变化对物体运动的影响。
4.2 力矩•力矩的定义和计算公式。
•力矩与力之间的关系。
4.3 平衡条件•平衡条件的定义和判断方法。
•平衡条件的应用。
第五章动力学基本定律5.1 作用力的性质•作用力的性质和判断方法。
•弹力、摩擦力和引力的特点。
5.2 动量定律•动量定律的定义和表达式。
•动量定律与力学问题的应用。
5.3 动能定理•动能定理的定义和表达式。
•动能定理与动力学问题的应用。
5.4 质心运动•质心的概念和运动特点。
•质心运动与动量守恒的关系。
第六章动力学问题6.1 动力学问题的解法思路•动力学问题解决的思路和方法。
•实例分析和解决步骤。
6.2 一维动力学问题•一维动力学问题的求解方法和关键步骤。
•速度-时间图和位移-时间图的应用。
6.3 二维动力学问题•二维动力学问题的求解方法和关键步骤。
理论力学[1](第七版)课后题答案哈工大.高等教育出版社
如图 2-4a 所示。 火箭的推力 2-4 火箭沿与水平面成 β = 25° 角的方向作匀速直线运动,
F1=100 kN,与运动方向成 θ = 5° 角。如火箭重 P=200 kN,求空气动力 F2 和它与飞行方向 的交角 γ 。
y
F2
ϕ
γ β
F1
(a) 图 2-4
θ
x
P
(b)
解
坐标及受力如图 2-4b 所示,由平衡理论得
∠( FR , F1 ) = arccos( F1 + F2 × 4 / 5 ) FR 100 N + 50 N × 4 / 5 = arccos( ) = 29.74 o = 29 o 44′ 161 N
(2)解析法 建立如图 2-1c 所示的直角坐标系 Axy。
∑ Fx = F1 + F2 × 3 / 5 == 50 N + 50 N × 3 / 5 = 80 N ∑ Fy = F1 + F2 × 4 / 5 = 100 N + 50 N × 4 / 5 = 140 N
B ′ FB
D
q
FN 2 FN 3
(n2)
F
B
D
F
FA
A
(o)
B
FC
C
(o1)
F
FE
E
FG
G
FB
A FA
(o2)
B ′ FB
D
D
F
F C C (o3)
图 1-2
FD
′ FD
FE FF E (o4)
8
理论力学(第七版)课后题答案 哈工大.高等教育出版社
第2章 平面汇交力系与平面力偶系
2-1 铆接薄板在孔心 A,B 和 C 处受 3 个力作用,如图 2-1a 所示。 F1 = 100 N ,沿铅 直方向; F3 = 50 N ,沿水平方向,并通过点 A; F2 = 50 N ,力的作用线也通过点 A,尺 寸如图。求此力系的合力。
理论力学第七版答案
3-4 在图示刚架中,已知q =3kN/m ,F 可=62kN ,M =10kN ⋅m ,不计刚架自重。
求固定端A 处的约束反力。
【知识要点】 平面的任意力系的平衡方程及应用,单个物体的平衡问题【解题分析】 本题应注意固定端A 处的受力分析,初学者很容易丢掉约束力偶。
【解答】 以刚架为研究对象,受力如图。
题3-4图∑=-⨯+=045cos 421,00F q F F Ax x ∑=-=045sin ,00F F F Ay y∑=⨯+⨯--⨯⨯-=0445cos 345sin 34421,0)(00F F M q M F M A A 解得 F A x =0, F A y =6kN, M A =m kN ⋅12 3-8 如图所示,行动式起重机不计平衡锤的重为P =500kN ,其重心在离右轨1.5m 处。
起重机的起重量为P 1=250kN ,突臂伸出离右轨10m 。
跑车本身重量略去不计,欲使跑车满载或空载时起重机均不致翻倒,求平衡锤的最小重量P 2以及平衡锤到左轨的最大距离x 。
题3-8图【知识要点】 平面平行力系的平衡方程及应用,单个物体的平衡问题。
【解题分析】 本题仍为翻倒问题,存在两种临界状态。
【解答】 以起重机为研究对象,受力如图。
若满载不翻倒0105.13)3(,0)(12=---+=∑P P F x P F MNA B 由 F NA ≥0,得P 2(x+3)≥3250 (1) 若空载不翻倒 05.43,0)(2∑=-+=P F x P F M NB A由 F NB ≥0得22502≤x P (2) 由式(1)、(2)得kN P P 3.3331000322≥≥即把kN P 3.3332=代入(2)得x ≤6.75m3-11 如图所示,组合梁由AC 和DC 两段铰接构成,起重机放在梁上。
已知起重机重P 1=50kN ,重心在铅直线EC 上,起重载荷P 2=10kN ,如不计梁重,求支座A 、B 和D 三处的约束反力。
理论力学(哈工第七版) 课后练习答案 第三部分
A
ϕ
O
r ϕ
M
W=
2π
∫ 4ϕ dϕ + (m
0
− mB ) g ⋅ 2π r
A B
A mAg
= 8π 2 + (mA − mB ) g ⋅ 2π r = 8π 2 + 1× 9.8 × 2π × 0.5 = 110 (J)
B
mBg
(a)
(b)
7
12-4 图示坦克的履带质量为 m,两个车轮的质量均为 m1。车轮被看成均质圆盘,半径为 R, 两车轮间的距离为 πR。设坦克前进速度为 v,计算此质点系的动能。 解:系统的动能为履带动能和车轮动能之和。将履带分为四部 分,如图b 所示。履带动能:
O
P2 P aB − 1 a A = FN − P 1−P 2 g g
其中, a A = a , aB = 解得
A
a 2 1 (2 P 1−P 2 )a 2g
B
(a)
FN = P 1+P 2 −
v FN
O
v P 1
A
v aA
v aB B
v P2
(b)
11-1 质量为 m 的点在平面 Oxy 内运动,其运动方程为
得
G1
320
B C
SB
S A = 170 mm S B = 90 mm
(b)
2
10-12 图示滑轮中,两重物 A 和 B 的重量分别为 P1 和 P2。如物体 A 以加速度 a 下降, 不计滑轮质量,求支座 O 的约束力。 解:对整体进行分析,两重物的加速度和支座 O 的约束力如图b 所示。由 动量定理知:
整体受力和运动分析如图b因为0xf所以x方向系统守恒有21cos0brbmvmvv??解得121cosbrmmvvm1所以该系统动能为设此时三棱柱a沿三棱柱b下滑的距离为s则其重力作的功为1sinwmgs??系统动能22b211221sin12cosmmtmmvm由系统动能定理tw即1sinwmgs??上式对时间求导并注意到rdsdtv整理后得22112121sinsincosbbrmmmmvamgvm?????得2b2a212b2b2r2122b21122
理论力学第七版答案、高等教育出版社出版
仅供个人学习参考哈工大理论力学(I )第7版部分习题答案1-2两个老师都有布置的题目2-3?2-6?2-14?2-?20?2-30?6-2?6-4?7-9??7-10?7-17?7-21?8-5?8-8?8-16?8-24?10-4?10-6?11-5?11-15?10-3以下题为老师布置必做题目1-1(i,j ),1-2(e,k)2-3,2-6,2-14,2-20,2-306-2,6-47-9,7-10,7-17,7-21,7-268-5,8-8(瞬心后留),8-16,8-2410-3,10-410-611-5,11-1512-10,12-15,综4,15,16,1813-11,13-15,13-166-2图6-2示为把工件送入干燥炉内的机构,叉杆OA=1.5m 在铅垂面内转动,杆AB=0.8m ,A 端为铰链,B 端有放置工件的框架。
在机构运动时,工件的速度恒为0.05m/s ,杆AB 始终铅垂。
设运动开始时,角0=?。
求运动过程中角?与时间的关系,以及点B 的轨迹方程。
10-3如图所示水平面上放1均质三棱柱A ,在其斜面上又放1均质三棱柱B 。
两三棱柱的横截面均为直角三角形。
三棱柱A 的质量为mA 三棱柱B 质量mB 的3倍,其尺寸如图所示。
设各处摩擦不计,初始时系统静止。
求当三棱柱B 沿三棱柱A 滑下接触到水平面时,三棱柱A 移动的距离。
11-4解取A 、B 两三棱柱组成1质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在棱柱A 左下角的初始位置。
由于在水平方向无外力作用,且开始时系统处于静止,故系统 质心位置在水平方向守恒。
设A 、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标分别为当棱柱B 接触水平面时,如图c 所示。
两棱柱质心坐标分别为系统初始时质心坐标棱柱B 接触水平面时系统质心坐标因并注意到得10-4如图所示,均质杆AB ,长l ,直立在光滑的水平面上。
求它从铅直位无初速地倒下时,端点A 相对图b 所示坐标系的轨迹。
哈尔滨工业大学 第七版 理论力学.13
1 2 T履 = ∑ mi vi = TI + TII + TIII + TIV 2
D II A
(a) 图 13-3
IV
2v
C
ω
v
III
Iv=0
(b)
B
由于 v1 = 0, vIV = 2v ,且由于每部分履带长度均为π R ,因此
mI = mII = mIII = mIV = TI =
m 4
1 2 mI vI = 0 2 1 1 m m 2 TIV = mIV v IV = × (2v) 2 = v 2 2 2 4 2 m m 2 II、III 段可合并看作 1 滚环,其质量为 ,转动惯量为 J = R ,质心速度为 v,角速度 2 2 v 为 ω = ,则 R 1 m 1 mv 2 1 m 2 v 2 m 2 TII + TIII = ⋅ v 2 + Jω 2 = + ⋅ R ⋅ 2 = v 2 2 2 4 2 2 2 R m m T履 = 0 + v 2 + v 2 = mv 2 2 2
理论力学(第七版)课后题答案 哈工大.高等教育出版社
第 13 章 动能定理
13-1 如图 13-1a 所示,圆盘的半径 r = 0.5 m,可绕水平轴 O 转动。在绕过圆盘的绳上 吊有两物块 A、B,质量分别为 mA = 3 kg,mB = 2 kg。绳与盘之间无相对滑动。在圆盘上作 用 1 力偶, 力偶矩按 M = 4ϕ 的规律变化 (M 以 N ⋅ m 计, ϕ 以 rad 计) 。 求由 ϕ = 0到ϕ = 2π 时,力偶 M 与物块 A,B 重力所作的功之总和。
第 2 阶段 :系统通过搁板继续运动 x2 距离后静止。由动能定理
理论力学第七版课后习题答案
理论力学第七版课后习题答案第一章: 引言习题1-11.问题描述:给定物体的质量m=2kg,加速度a=3m/s^2,求引力F。
2.解答:根据牛顿第二定律F=ma,其中m表示物体的质量,a表示物体的加速度。
代入已知值,可求得F=6N。
习题1-21.问题描述:给定物体的质量m=5kg,引力F=20N,求加速度a。
2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=4m/s^2。
第二章: 运动的描述习题2-11.问题描述:一个物体以恒定速度v=10m/s匀速直线运动,经过t=5s,求物体的位移。
2.解答:位移等于速度乘以时间,即s=vt。
代入已知值,可得s=50m。
习题2-21.问题描述:一个物体以初始速度v0=5m/s匀加速直线运动,加速度a=2m/s^2,经过t=3s,求物体的位移。
2.解答:由于物体是匀加速直线运动,位移可以通过公式s=v0t+0.5at^2计算。
代入已知值,可得s=(53)+(0.52*3^2)=45m。
第三章: 动力学基础习题3-11.问题描述:一个物体质量为m=4kg,受到的力F=10N,求物体的加速度。
2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2.5m/s^2。
习题3-21.问题描述:一个物体质量为m=3kg,受到的力F=6N,求物体的加速度。
2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2m/s^2。
第四章: 动力学基本定理习题4-11.问题描述:一个物体质量为m=8kg,受到的力F=16N,求物体的加速度。
2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2m/s^2。
习题4-21.问题描述:一个物体质量为m=6kg,受到的力F=12N,求物体的加速度。
2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2m/s^2。
以上是理论力学第七版课后习题的答案。
希望能对你的学习有所帮助!。
理论力学第七版答案
7-8 纸盘由厚度为a 的纸条卷成,令纸盘的中心不动,而以等速υ拉纸条。
求纸盘的角加速度(以半径r 的函数表示)。
【知识要点】 纸盘转速与边缘速度v 的关系。
【解题分析】 利用纸带的平移速度等于轮边缘的速度求解。
【解答】 令初始状态下纸盘的半径为r 0,则经过时间t 之后纸盘面积为
题7-8图
avt r R =-2
2ππ
上式对时间求导,得 r av dt dr av dt dr r
ππ222-== 由求导,得对t r
v =
ω dt dr r v dt d 2-=ωα= 把式(1)代入上式,得
32
2r
v a πα= 7-11 杆AB 在铅垂方向以恒速υ向下运动,并由B 端的小轮带着半径为R 的圆弧杆OC 绕
轴O 转动,如图所示。
设运动开始时,4π
ϕ=,求此后任意瞬时t ,OC 杆的角速度
ω和点C 的速度。
题7-11图
【知识要点】 刚体得定轴转动。
【解题分析】 由点B 的坐标与角ϕ的关系入手。
【解答】 点B 坐标y=2Rcos ϕ
上式时间t 式导得
ϕ
ωϕ
ωϕωsin 2sin 2sin 2v R v R v R y
v C -==-=-== 而 R
OB 2cos =ϕ 其中 vt R OB +=4cos 2π
则 2222221cos 1sin ⎪⎭
⎫ ⎝⎛--=-=R vt R vt ϕϕ
友情提示:部分文档来自网络整理,供您参考!文档可复制、编制,期待您的好评与关注!。
哈尔滨工业大学 第七版 理论力学 第7章 课后习题答案
tan θ =
r sin ϕ h − r cos ϕ
sin ω 0 t h − cos ω 0 t r ]
图 7-5
注意到 ϕ = ω 0 t ,得
θ = tan −1 [
(2)
自 B 作直线 BD 垂直相交 CO 于 D,则
tan θ =
r sin ω 0 t BD = DO h − r cos ω 0 t
80
理论力学(第七版)课后题答案 哈工大.高等教育出版社
7-6 如图 7-6 所示,摩擦传动机构的主动轴 I 的转速为 n = 600 r/min 。轴 I 的轮盘与轴Ⅱ的轮 盘接触,接触点按箭头 A 所示的方向移动。距离 d 的变化规律为 d = 100 − 5t ,其中 d 以 mm 计, t 以 s 计。已知 r = 50 mm , R = 150 mm 。求: (1)以距离 d 表示轴 II 的角加速度; (2)当 d = r 时,轮 B 边缘上 1 点的全加速度。 解 (1)两轮接触点的速度以及切向加速度相同
∠CBO =
π , x B = 2 R cos ϕ 2 & B = 2 R + vt (↓) x B (0) = 2 R , x
(2 R) 2 − x B
2
vt vt 1 2 − 2 2 − ( )2 R R 2R 2 v v , vC = 2 Rω = − ω =− 2 R sin ϕ sin ϕ sin ϕ = =
两边对时间 t 求导:
vt l
& sec 2 ϕ = , ϕ & = cos 2 ϕ , ϕ && = − ϕ
当ϕ =
v l
v l
2v & cos ϕ sin ϕ ⋅ ϕ l
理论力学(第七版)2
va =
得
va = 2 aω cos 30° aω 1 = 2 aω
ω=
ω1
2
= 1.5 rad/s (逆)
(b)套筒 A 为动点,动系固结于杆 O1 A ;绝对运动为绕 O2 圆周运动,相对运动为沿
va = O2 A ⋅ ω1 = 2aω cos 30° , ve = O1 Aω1 = aω 1 ve aω 1 由图 b1: v a = = cos30° cos30° aω 1 得 2aω cos 30° = cos 30° 2 ω = ω 1 = 2 rad/s (逆) 3 8-8 图 8-8a 所示曲柄滑道机构中,曲柄长 OA = r ,并以等角速度 ω 绕轴 O 转动。 装在水平杆上的滑槽 DE 与水平线成 60° 角。求当曲柄与水平线的交角分别为 ϕ = 0° , 30° , 60° 时,杆 BC 的速度。
y
如图 8-9a 所示,摇杆机构的滑杆 AB 以等速 v 向上运动,初瞬时摇杆 OC 水平。
摇杆长 OC = a ,距离 OD = l 。求当 ϕ =
va ve
C
vr
O
(a) 图 8-9
ϕ
l
(b)
A D
v
x
解 套筒 A 为动点,动系固结于杆 OC;绝对运动为上下直线,相对运动沿 OC 直线, 牵连运动为绕 O 定轴转动。速度分析如图 8-9b 所示,设杆 OC 角速度为 ω ,其转向逆时 针。由题意及几何关系可得 va = v (1)
ve1 − v r1 cos 30° = ve2 b b ω − ω ve1 − ve2 cos30° 1 cos30° 2 4b = = (ω 1 − ω 2 ) v r1 = cos30° cos30° 3 式(3)向 v r2 方向投影,得 1 2b (ω 1 − ω 2 ) = 0.4 m/s v r2 = v r1 = 2 3 0.1 ve2 = × 3 = 0.346 m/s 3 2 ⎧v = v 2 + v 2 = 0.529 m/s e2 r2 ⎪ a 所以 ⎨ ve2 0.346 = ,θ = 40.9° ⎪tan θ = 0 .4 v r2 ⎩
哈尔滨工业大学 第七版 理论力学.14
m2 g )l sin ϕ − FI l cos ϕ = 0 2
ω2 =
2m1 + m2 g tan ϕ 2m1 (a + l sin ϕ )
14-5 曲柄滑道机械如图 14-5a 所示,已知圆轮半径为 r,对转轴的转动惯量为 J,轮上 作用 1 不变的力偶 M,ABD 滑槽的质量为 m,不计摩擦。求圆轮的转动微分方程。
∑ M x = 0, M − 2 FI ⋅ l cos ϕ = 0
其中 代入前式得
FI = m ⋅ l sin ϕ ⋅ ω 2
209
理论力学(第七版)课后题答案 哈工大.高等教育出版社
k (ϕ − ϕ 0 ) − 2 ⋅ m ⋅ l sin ϕ ⋅ ω 2 ⋅ l cos ϕ = 0
ω=
k (ϕ − ϕ 0 ) ml 2 sin 2ϕ
y
m2 g 2
FAy
A FI
FAx
x
ϕ
m1 g
(a) 图 14-4
(b)
解
取调速器外壳为研究对象,由对称可知壳与圆盘接触处所受约束力为 FN = m2 g/2
取左圆盘为研究对象,受力如图 14-4b 所示,惯性力为
FI = m1 ⋅ (a + l sin ϕ )ω 2
由动静法
∑ M A = 0, (m1 g +
FI
a
FI
a
FS FN mg
(a) (b) 图 14-1
A FN mg
(c)
FS
解 取圆柱形零件为研究对象,作受力分析,并虚加上零件的惯性力 FI。 (1)零件不滑动时,受力如图 14-1b 所示,它满足以下条件: 摩擦定律
Fs ≤ f s FN
理论力学(第七版)思考题答案
理论力学思考题答案1-1 (1)若F 1=F 2表示力,则一般只说明两个力大小相等,方向相同。
(2)若F 1=F 2表示力,则一般只说明两个力大小相等,方向是否相同,难以判定。
(3)说明两个力大小、方向、作用效果均相同。
1-2 前者为两个矢量相加,后者为两个代数量相加。
1-3 (1)B 处应为拉力,A 处力的方向不对。
(2)C 、B 处力方向不对,A 处力的指向反了。
(3)A 处力的方向不对,本题不属于三力汇交问题。
(4)A 、B 处力的方向不对。
1-4 不能。
因为在B 点加和力F 等值反向的力会形成力偶。
1-5 不能平衡。
沿着AB 的方向。
1-7 提示:单独画销钉受力图,力F 作用在销钉上;若销钉属于AC ,则力F 作用在AC 上。
受力图略。
2-1 根据电线所受力的三角形可得结论。
2-2不同。
2-3(a )图和(b )图中B 处约束力相同,其余不同。
2-4(a )力偶由螺杆上的摩擦力和法向力的水平分力形成的力偶平衡,螺杆上的摩擦力与法向力的铅直方向的分力与N F 平衡。
(b )重力P 与O 处的约束力构成力偶与M 平衡。
2-5可能是一个力和平衡。
2-6可能是一个力;不可能是一个力偶;可能是一个力和一个力偶。
2-7一个力偶或平衡。
2-8(1)不可能;(2)可能;(3)可能;(4)可能;(5)不可能;(6)不可能。
2-9主矢:''RC RA F F =,平行于BO ;主矩:'2C RA M aF =,顺时针。
2-10正确:B ;不正确:A ,C ,D 。
2-11提示:OA 部分相当一个二力构件,A 处约束力应沿OA ,从右段可以判别B 处约束力应平行于DE 。
3-13-2 (1)能;(2)不能;(3)不能;(4)不能;(5)不能;(6)能。
3-3 (1)不等;(2)相等。
3-4 (1)'()B Fa =-M j k ;(2)'RC F =-F i ,C Fa =-M k 。
理论力学(哈工第七版) 课后练习答案 第二部分
5-1 图示曲线规尺的各杆, 长为OA =AB =200 mm ,CD = DE = AC = AE = 50mm 。
如杆 OA 以等角速度 rad/s 5πω=绕 O 轴转动,并且当运动开始时,杆 OA 水平向右,求尺上点 D 的运动方程和轨迹。
解:如图所示 ∠AOB =ωt ,则点 D 坐标为cos D x OA t ω=⋅sin 2sin D y OA t AC t ωω=⋅−⋅代入已知数据,得到点 D 的运动方程为200cos 5D x t π=× 200sin250sin 55100sin 5D y t t tπππ=×−××=×把以上两式消去 t 得点 D 轨迹方程22221200100x y += 即,D 点轨迹为中心在(0, 0),长半轴为0.2 m ,短半轴为0.1 m 的椭圆。
6-4 机构如图所示,假定杆AB 以匀速v 运动,开始时0ϕ=。
求当4πϕ=时,摇杆OC 的角速度和角加速度。
解:依题意,在0ϕ=时,A 在D 处。
由几何关系得tan vt l ϕ=杆OC 的运动方程为arctanvt lϕ= 角速度222vll v tωϕ==+& 角加速度322222()v lt l v t αϕ==+&&当4πϕ=时,vt l =。
将vt l =代入上二式得 2v lω=222v lα=另解:几何关系 tan vtlϕ=两边对t 求导,可得 2sec v l ϕϕ=& 即 2cos v l ϕϕ=& ;再求导,得 2cos sin v l ϕϕϕϕ=−⋅&&& ,将4πϕ=时,vt l=代入上二式得2vlωϕ==& 222v lαϕ==&&6-5 如图所示,曲柄 CB 以等角速度0ω绕轴 C 转动,其转动方程为0t ϕω=。
滑块 B 带动摇杆 OA 绕轴 O 转动。
哈尔滨工业大学 第七版 理论力学 第7章 课后习题答案
解
设轮缘上任 1 点 M 的全加速度为 a,切向加速度 a t = rα ,法向加速度 a n = ω r ,如图
2
7-11b 所示。
tan θ =
把
α=
dω , θ = 60° 代入上式,得 dt
at α = 2 an ω
dω tan 60° = dt2
ω
分离变量后,两边积分:
∫ω
得
ω
0
dω
ω
2
=∫
⎤ ⎡ ⎥ ⎢ sin ω t 0 θ = tan −1 ⎢ ⎥ ⎢ h − cos ω 0 t ⎥ ⎥ ⎢ ⎦ ⎣r
故
50 π ⋅ 600 100π r ω1 = rad/s ⋅ = 100 − 5t 30 10 − 0.5t d dω 5 000 π d ⎛ 1 000π ⎞ α2 = 2 = ⎜ ⎟= dt dt ⎝ 100 − 5t ⎠ (100 − 5π )2
故得
h1 =
h4 = 2 mm 6
图 7-7
7-8 如图 7-8 所示,纸盘由厚度为 a 的纸条卷成,令纸盘的中心不动,而以等速 v 拉纸条。求 纸盘的角加速度(以半径 r 的函数表示) 。 解 纸盘作定轴转动,当纸盘转过 2π rad 时半径减小 a。设纸盘转过 dθ 角时半径增加 dr ,则
dθ =
y
B
t aB
α j
O
vA x
ω
(a) 图 7-12
aC
(b)
i 45° A n
C
t aC
解
由图 7-12b 得出
84
理论力学(第七版)课后题答案 哈工大.高等教育出版社
v A = 0.2 j m/s , v A = ω × Ri , ω × 0.1i = 0.200 j , ω = 2k ,
哈尔滨工业大学 第七版 理论力学11
上式代入式(4)得
FN = 4mB g − mB
11-10 如图 11-10a 所示,质量为 m 的滑块 A,可以在水平光滑槽中运动,具有刚性系 数为 k 的弹簧 1 端与滑块相连接,另 1 端固定。杆 AB 长度为 l,质量忽略不计,A 端与滑 块 A 铰接,B 端装有质量 m1,在铅直平面内可绕点 A 旋转。设在力偶 M 作用下转动角速度 ω 为常数。求滑块 A 的运动微分方程。
质量为 m2 的小车 D,由绞车拖动,相对于平台的运动规律为 s = 不计绞车的质量,求平台的加速度。
1 2 bt ,其中 b 为已知常数。 2
m2 g
y
S D
A
vr
m1 g FN
B
ω
v
(a) 图 11-8
x
(b)
解
受力和运动分析如图 11-8b 所示
& = bt vr = & s ar = & s& = b a Da = a e + a r = a AB + a r a Da = ar − a AB m2 (a r − a AB ) − m1a AB = F F = f (m1 + m2 ) g
1
(
)
开伞后,他受重力 mg 和阻力 F 作用,如图 11-2 所示。取铅直轴 y 向下为正, 根据动量定理有
mg y
图 11-2
mv 2 − mv1 = I y = (mg − F )t
由题知:当 t=5 s 时,有 v2=4.3 m/s 即
60 × (4.3 − 44.3) = (60 × 9.8 − F ) × 5
棱柱 B 接触水平面时系统质心坐标
a b ⎤ ⎡ m A (l − ) + m B ⎢l − (a − )⎥ 3 3 ⎦ 3(m A + m B )l − a (m A + 3m B ) + m B b ⎣ ′ = xC = m A + mB 3(m A + m B )
哈尔滨工业大学 第七版 理论力学12
求飞轮的转动惯量和轴承的摩擦力矩。
Mf
ω
FAx
A
FAy
m1 g
(a)
(b)
图 12-8
解 取飞轮 A 及重物为质点系,设摩阻力偶矩为 Mf,飞轮转动惯量为 JA,如图 12-8b
所示。根据对轴 A 的投影式动量矩定理有
dLA dt
=
−M f
+ m1gR , LA
=
J Aω
+ m1ωR2
两边积分得
(J A + m1R2 )dω = (M f +m1gR)dt
LO = m ⋅ vA ⋅ 2R + J Aωa
=
m ⋅ 2RωO
⋅ 2R +
1 mR2 2
⋅ (ωO
+ ωr )
= 5ωOmR2
=
20
kgm 2 /s
156
理论力学(第七版)课后题答案 哈工大.高等教育出版社
(3)在图 12-2c1 中,轮 A 绕 O 作圆周曲线平移
LO = m ⋅ 2RωO ⋅ 2R + J Aωa
12-10 如图 12-10 所示离心式空气压缩机的转速 n = 8 600 r/min,体积流量 qV = 370 m3/min,第 1 级叶轮气道进口直径为 D1 = 0.355 m,出口直径为 D2 = 0.6 m。气流进口绝对
速度 v1 = 109 m/s,与切线成角θ1 = 90° ;气流出口绝对速度 v2 = 183 m/s,与切线成角
(a)
(b)
图 12-4
解 以人和圆盘为质点系,由于作用于系统的外力(重力和轴 O 的约束力)对轴 O 的
矩均为零,所以人和圆盘组成的系统对轴 O 的动量矩守恒。设人在盘上绕轴 O 顺时针走圆
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈工大理论力学(I)第7版部分习题答案
1-2
两个老师都有布置的题目
2-3 2-6 2-14 2- 20 2-30 6-2 6-4 7-9 7-10 7-17 7-21 8-5 8-8 8-16 8-24 10-4 10-6 11-5 11-15 10-3
以下题为老师布置必做题目
1-1(i,j), 1-2(e,k)
2-3, 2-6, 2-14,2-20, 2-30 6-2, 6-4
7-9, 7-10, 7-17, 7-21, 7-26
8-5, 8-8(瞬心后留), 8-16, 8-24 10-3, 10-4 10-6
11-5, 11-15
12-10, 12-15, 综4,15,16,18 13-11,13-15,13-16
6-2 图6-2示为把工件送入干燥炉内的机构,叉杆OA=1.5 m在铅垂面内转动,杆AB=0.8 m,A端为铰链,B端有放置工件的框架。
在机构运动时,工件的速度恒为0.05 m/s,杆AB始终铅垂。
设运动开始时,角0=?。
求运动过程中角?与时间的关系,以及点B的轨迹方程。
10-3 如图所示水平面上放 1 均质三棱柱 A ,在其斜面上又放 1 均质三棱柱 B 。
两三棱柱的横截面均为直角三角形。
三棱柱 A 的质量为 mA 三棱柱 B 质量 mB 的 3 倍,其尺寸如图所示。
设各处摩擦不计,初始时系统静止。
求当三棱柱 B 沿三棱柱 A 滑下接触到水平面时,三棱柱 A 移动的距离。
11-4
解取A、B 两三棱柱组成 1 质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在
棱柱A 左下角的初始位置。
由于在水平方向无外力作用,且开始时系统处于静止,故系统
质心位置在水平方向守恒。
设A、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标
分别为
当棱柱B 接触水平面时,如图c所示。
两棱柱质心坐标分别为
系统初始时质心坐标
棱柱B 接触水平面时系统质心坐标
因并注意到得
10-4 如图所示,均质杆AB,长l,直立在光滑的水平面上。
求它从铅直位无
初速地倒下时,端点A相对图b所示坐标系的轨迹。
解取均质杆AB 为研究对象,建立图11-6b 所示坐标系Oxy,原点O
与杆AB 运动初始时的点B 重合,因为杆只受铅垂方向的重力W 和地
面约束反力N F 作用,且系统开始时静止,所以杆AB 的质心沿轴x 坐
标恒为零,即
设任意时刻杆AB 与水平x 轴夹角为θ,则点A坐标
从点A 坐标中消去角度θ,得点A 轨迹方程
10-5 质量为m1 的平台AB,放于水平面上,平台与水平面间的动滑动摩擦因数为f。
质量为m2 的小车D,由绞车拖动,相对于平台的运动规律为,其中b 为已知常数。
不计绞车的质量,求平台的加速度。
解受力和运动分析如图b 所示
式(1)、(4)代入式(3),得
10-6 如图所示,质量为m的滑块A,可以在水平光滑槽中运动,具有刚性系
数为k 的弹簧1 端与滑块相连接,另 1 端固定。
杆AB 长度为l,质量忽略不计,A 端与滑块A 铰接,B 端装有质量m1,在铅直平面内可绕点A 旋转。
设在力偶M 作用下转动角速度ω为常数。
求滑块A 的运动微分方程。
解取滑块A 和小球B组成的系统为研究对象,建立向右坐标x,原点取在
运动开始时滑块A 的质心上,则质心之x 坐标为
系统质心运动定理:
此即滑块A的运动微分方程。
讨论:设,则由上述方程得滑块A 的稳态运动规律(特解)
原题力矩M只起保证ω=常数的作用,实际上M 是随ϕ变化的。
11-15如图所示均质杆AB 长为l,放在铅直平面内,杆的1 端A 靠在光滑铅直墙上,另1端B 放在光滑的水平地板上,并与水平面成0 ϕ角。
此后,令杆由静止状态倒下。
求(1)杆在任意位置时的角加速度和角速度;(2)当杆脱离墙时,此杆与水平面所夹的角。
解(1)取均质杆为研究对象,受力及坐标系Oxy 如图12-17b 所示,杆AB 作平面运
动,质心在点C。
刚体平面运动微分方程为
由于
将其对间t求2 次导数,且注意到
本答案由各班代表负责编排(答案源来自网络),在此感谢为这次编排做出贡献的各位同学。
由于各方面原因,可能个别题目解答不妥甚至有误,或者在编排上有漏洞,希望大家能够指出并共享正确的结果。
——福州大学至诚学院机械系09级
配套 理论力学(I )第七版 课后习题答案 福州大学至诚学院09机械整理
31
本答案由各班代表负责编排(答案源来自网络),在此感谢为这次编排做出贡献的各位同学。
由于各方面原因,可能个别题目解答不妥甚至有误,或者在编排上有漏洞,希望大家能够指出并共享正确的结果。
——福州大学至诚学院机械系09级。