现代鲁棒控制(吴敏)完整课件
鲁棒控制课件
.
• 结构奇异值 实际的被控对象可以看作是对象模型 集合 G 中一个元素。结构不确定性Δ 描 述系统模型与标称模型的偏离程度。为 了评价闭环系统的稳定性和性能,可以 将闭环系统分为两部分:广义标称对象 M ( s )和不确定性Δ ,得到如图 所示的M −Δ 结构。
传递函数矩阵 M ( s )包含对象的标称模型、控制器和不确定性的加 权函数。摄动块Δ 是块 对角矩阵,它包含各种类型的不确定性摄动。Δ 结构是根据实际问 题的不确定性和系统所需要 的性能指标来确定的,它属于矩阵集 Δ ( s)。这个集合包含三部分的 块对角结构: (1)摄动块的个数 (2)每个摄动子块得类型 (3)每个摄动子块的维数 本文考虑两类摄动块:重复标量摄动块和不确定性全块。前者表示 对象参数不确定性,后 者表示对象动态不确定性。 定义块结构 Δ ( s)为 {}
实际应用
非线性系统设计的基本问题是我们仅知道被 控对象的部分动态信息,无法获得被控对象的精 确模型,所建立的模型要反映实际的被控对象,就 必然存在未知项和不确定项;如果在控制器设 计阶段没有恰当地处理这些不确定项,可能会使 得被控系统的性能明显地恱化,甚至造成整个闭 环系统不稳定。控制器必须能够处理这些未知 项戒不确定项,因而估计和鲁棒是设计一个成功 的控制器的关键。自适应控制和鲁棒控制及其 相结合的控制器是能够处理这些未知项戒不确 定项,以获得期望的暂态性能和稳态跟踪精度行 之有效的方法。
研究问题:
• 鲁棒控制器问题是控制系统 设计中鱼待解决的问题之一, 它是在所描述的被控对象不 确定性允许范围内,综合其控 制律,使系统保持稳定和性能 鲁棒. • 鲁棒控制理论包括鲁棒性分 析和鲁棒设计两大类问题. • 由于系统中的不确定性对系 统的性能能否保持有决定性 的影响,且高性能指标的保持 要求高精度的标称模型.
鲁棒控制理论及应用课程吴敏
∂xT
4γ 2 ∂xT
∂x
•
x
=
f
(x) +
1 2γ 2
gg T
∂φ ∂x
(x)
d)在x=0附近,存在光滑正定函数 φ (x)和正常数ε,使哈密顿-
9
雅可比不等式
∂φ ∂xT
f
成立 + 1 ∂φ gg T ∂φ + hTh + ε xT x ≤ 0
4γ 2 ∂xT
∂x
2015年10月25日
鲁棒控制理论及应用课程
•
x=
f
(x) +
1 2γ 2
g1 g1T
∂φ ∂x
−
1 2
g2
g2T
∂ϕ ∂x
+
g1
γ 2
g1T
∂φ ∂x
+
~
z
是渐进稳定的,而且是局部L2稳定的
b)在x=0附近,存在光滑正定函数 φ (x)和正常数ε,使哈密顿-
雅可比不等式 成立,而且 ∂φ ∂xT
f
+
1 4
∂φ ∂xT
⎛ ⎜ ⎝
给定一个常数γ>0,下述条件是等价的。
a)非线性系统Szw是指数稳定的,而且 γ S < zw Lc2 b)近似线性系统 S%zw 是稳定的,而且 S%zw ∞ < γ
c)在x=0附近,存在光滑正定函数 φ (x),使哈密顿-雅可比方程
成立,而且 是指数稳定的 ∂φ f + 1 ∂φ ggT ∂φ + hTh = 0
∂xT
4γ 2 ∂xT
∂x
7
成立,而且
1 gT ∂φ 2
lim 2 ∂x < ∞
鲁棒控制 chapter7
⇒
τ =T −t
t = T −τ
τ =T −t
LFT(7.2.3) F FI w FI
ˆ ˆ ˆ p(τ ) = AT (τ ) p(τ ) − LT (τ ) w (τ ) + C T (τ ) u(τ ), p(τ ) |τ =0 = 0
−Q (t )(C T (t )C (t ) − γ −2 LT (t ) L(t ))Q (t ), Q (0) = 0 [0, T]
Q (0) = Q0
足满 因, 知可即立式上由
阵矩差方差误态状而 于由。 中其
E{ x (0)} = m
(7.2.14)
ˆ xe = x − x
E{ xe } = 0 ( T Q (t ) = E{ xe xe }
⎦ ⎥ ⎤
⎣ ⎦ ⎢⎤ ⎡
x(0)
xe = ( A − QC T C ) xe + − B QC T D
Q = QAT + AQ − Q (C T C − γ −2 LT L)Q + BB T , Q (0) = 0 (7.2.13) [0, T] (7.2.10)
ˆ x (0) = m
)
(7.2.16)
⎦ ⎥ ⎥ ⎥ ⎤
⎣⎦ ⎢⎥ ⎢⎥ ⎢⎥ ⎡⎤
⎣ ⎢ ⎢ ⎢ ⎡
⎦ ⎥ ⎥ ⎥ ⎤
d dτ
U <γ (7.2.5) [0,T ] LFT ˆ ˆ ( AT − C T CQ )(τ ) − LT (τ ) C T (τ ) p(τ ) p
t
0
R:d
ˆ z − Lx
LFT
0 0
I
0
u=F w
∼
∞
•
FI
现代控制理论(II)-讲稿课件ppt
03
通过具体例子说明最小值原理在最优控制问题中的应
用方法。
06 现代控制理论应用案例
倒立摆系统稳定控制
倒立摆系统模型建立
分析倒立摆系统的物理特性,建立数学模型,包括运动方程和状态 空间表达式。
控制器设计
基于现代控制理论,设计状态反馈控制器,使倒立摆系统实现稳定 控制。
系统仿真与实验
利用MATLAB/Simulink等工具进行系统仿真,验证控制器的有效性; 搭建实际实验平台,进行实时控制实验。
最优控制方法分类
根据性能指标的类型和求解方法, 最优控制可分为线性二次型最优控 制、最小时间控制、最小能量控制 等。
最优控制应用举例
介绍最优控制在航空航天、机器人、 经济管理等领域的应用实例。
05 最优控制理论与方法
最优控制问题描述
控制系统的性能指标
定义控制系统的性能评价标准,如时间最短、能量最小等。
随着网络技术的发展,分布式控制系统逐渐 成为现代控制理论的研究热点,如多智能体 系统、协同控制等。
下一步学习建议
01
02
03
04
深入学习现代控制理论相关知 识,掌握更多先进的控制方法
和技术。
关注现代控制理论在实际系统 中的应用,了解不同领域控制
系统的设计和实现方法。
加强实践环节,通过仿真或实 验验证所学理论知识的正确性
机器人运动学建模
分析机器人的运动学特性, 建立机器人运动学模型, 描述机器人末端执行器的 位置和姿态。
运动规划算法设计
基于现代控制理论,设计 运动规划算法,生成机器 人从起始点到目标点的平 滑运动轨迹。
控制器设计与实现
设计机器人运动控制器, 实现机器人对规划轨迹的 精确跟踪;在实际机器人 平台上进行实验验证。
现代控制理论鲁棒控制资料课件
鲁棒优化算法的应用
01
02
03
鲁棒优化算法是一种在不确定环 境下优化系统性能的方法。
鲁棒优化算法的主要思想是在不 确定环境下寻找最优解,使得系 统的性能达到最优,同时保证系 统在不确定因素影响下仍能保持 稳定。
鲁棒优化算法的主要应用领域包 括航空航天、机器人、能源系统 、化工过程等。
05
现代控制理论鲁棒控制实 验及案例分析
现代控制理论鲁棒控制的成就与不足
• 广泛应用在工业、航空航天、医疗等领域
现代控制理论鲁棒控制的成就与不足
01
02
不足
控制系统的复杂度较高,难以设 计和优化
对某些不确定性和干扰的鲁棒性 仍需改进
03
实际应用中可能存在实现难度和 成本问题
04
未来研究方向与挑战
研究方向
深化理论研究,提高鲁棒控制器 的设计和优化能力
线性鲁棒控制实验
线性鲁棒控制的基本原理
01
介绍线性鲁棒控制的概念、模型和控制问题。
线性鲁棒控制实验设计
02 说明如何设计线性鲁棒控制实验,包括系统模型的建
立、鲁棒控制器的设计和实验步骤。
线性鲁棒控制实验结果分析
03
对实验结果进行分析,包括稳定性、性能和鲁棒性能
等。
非线性鲁棒控制实验
非线性鲁棒控制的基本原理
03
线性系统的分析与设计:极点配置、最优控制和最优
估计等。
非线性控制系统
1
非线性系统的基本性质:非线性、不稳定性和复 杂性。
2
非线性系统的状态空间表示:非线性状态方程和 输出方程。
3
非线性系统的分析与设计:反馈线性化、滑模控 制和自适应控制等。
离散控制系统
《鲁棒控制系统》课件
在工业自动化生产线上,各种设备、传感器和执行器需要精 确控制和协调工作。鲁棒控制系统能够有效地处理各种不确 定性,如设备故障、传感器漂移等,保证整个生产过程的稳 定性和效率。
航空航天
总结词
在航空航天领域,鲁棒控制系统用于 确保飞行器的安全和稳定运行。
详细描述
航空航天领域的飞行器面临着复杂的 环境和严苛的飞行条件,鲁棒控制系 统能够有效地处理各种不确定性和干 扰,保证飞行器的安全和稳定运行。
05
鲁棒控制系统的发展趋势 与展望
人工智能与鲁棒控制
人工智能在鲁棒控制中的应用
利用人工智能算法优化控制策略,提高系统的鲁棒性和 自适应性。
深度学习在鲁棒控制中的潜力
通过训练深度神经网络,实现对不确定性和干扰的高效 处理,提升系统的鲁棒性能。
网络化与鲁棒控制
网络控制系统的发展
随着网络技术的进步,网络化控制系统成为研究的热点,对鲁棒控制提出了新的挑战和 机遇。
鲁棒优化控制
总结词
通过优化方法来设计鲁棒控制律,以实现系统在不确定性和干扰下的最优性能 。
详细描述
鲁棒优化控制是一种基于优化方法的控制策略,通过考虑系统的不确定性和干 扰,来设计最优的控制律。这种方法能够保证系统在各种工况下的最优性能, 提高系统的鲁棒性和适应性。
自适应控制
总结词
通过在线调整控制律参数来适应系统参数的 变化和外部干扰。
要点二
详细描述
电力系统的稳定运行对于整个社会的正常运转至关重要。 鲁棒控制系统能够有效地处理电力系统中的各种不确定性 和干扰,保证电力供应的稳定和可靠。
04
鲁棒控制系统的挑战与解 决方案
系统不确定性
系统不确定性描述
01
鲁棒控制理论基础章PPT课件
41
第41页/共42页
感谢您的观看!
Fang Hua-Jing , HUST 2010
42
第42页/共42页
6
第6页/共42页
Fang Hua-Jing , HUST 2010
7
第7页/共42页
2. 信号的范数
Fang Hua-Jing , HUST 2010
8
第8页/共42页
4
Fang Hua-Jing , HUST 2010
9
第9页/共42页
Fang Hua-Jing , HUST 2010
10
18
第18页/共42页
Fang Hua-Jing , HUST 2010
19
第19页/共42页
Fang Hua-Jing , HUST 2010
20
第20页/共42页
稳定的单输入但输出系统 g(s) 若输入信号为
则输出信号为
Fang Hua-Jing , HUST 2010
21
第21页/共42页
3.系统对一般信号的增益和系统范数
系统的输入/输出关系:
u
y
G
图 2-1 系统的输入/输出映射
y(t) G(t) u(t) G(t )u( )d
对于因果的系统,有
t
y(t) G(t) u(t) G(t )u( )d 0
Fang Hua-Jing , HUST 2010
26
第26页/共42页
14
第14页/共42页
奇异值分解定理:
Fang Hua-Jing , HUST 2010
15
第15页/共42页
Fang Hua-Jing , HUST 2010
现代鲁棒控制(吴敏)完整课件
中南大学信息科学与工程学院 吴 敏
鲁棒控制研究的基本问题
6
2007年10月9日
鲁棒控制理论及应用
基本的反馈控制系统
中南大学信息科学与工程学院 吴 敏
d
r
控控制制器器
u
控控制制对对象象
y
v 传感器
n
r -目标输入,y -控制对象输出,u -控制输入 v -传感器输出,n -传感器噪声,d -外部扰动
2007年10月9日
鲁棒控制理论及应用
模型不确定性的描述
中南大学信息科学与工程学院 吴 敏
• 公称模型 • 表示不确定性的摄动及其与公称模型的关系 • 摄动的最大值
PA(s) = P(s) (s)
( j ) W ( j ) , R
{ } UA = P(s) (s) : ( j ) W( j ) , R
=
B1
C 2
A 1
BD 1
2
29
D1C 2 C 1 DD1 2 2007年10月9日
鲁棒控制理论及应用
下线性分式变换
中南大学信息科学与工程学院 吴 敏
w
z
G(s) = G11(s) G12(s)
u
G((s)s)
y
G21(s) G21(s)
Gij(s) = Ci(sI A)Bj Dij
K((s)s)
B1 D1
A2 G2 (s) =
B2
C2 D2
A
C 1
B1
D1
A2
B2 D2C=2
A1 0 C1
0 B1
A2 B2 C2 D1 D 2
A1
C 1
B1 D1
×
A2 C
鲁棒控制讲义-第1-2章
第一章概述§1.1 不确定系统和鲁棒控制(Uncertain System and Robust Control)1.1.1 名义系统和实际系统(nominal system)控制系统设计过程中,常常要先获得被控制对象的数学模型。
在建立数学模型的过程中,往往要忽略许多因素:比如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中,不考虑高阶模态的影响,等等。
这样处理后得到的数学模型仍嫌太复杂,于是要经过降阶处理,有时还要把非线性环节进行线性化处理,时变参数进行定常化处理,最后得到一个适合控制系统设计使用的数学模型。
经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似,因此称这样的数学模型为“名义系统”,而称真实的物理系统为“实际系统”,而名义系统与实际系统的差别称为模型误差。
1.1.2不确定性和摄动(Uncertainty and Perturbation)如立足于名义系统,可认为名义系统经摄动后,变成实际系统,这时模型误差可视为对名义系统的摄动。
如果立足于实际系统,那么可视实际系统由两部分组成:即已知的模型和未知的模型(模型误差),如果模型的未知部分并非完全不知道,而是不确切地知道,比如只知道某种形式的界限(如:范数或模界限等),则称这部分模型为实际模型的不确定部分,也说实际系统中存在着不确定性,称含有不确定部分的系统为不确定系统。
模型不确定性包括:参数、结构及干扰不确定性等。
1.1.3 不确定系统的控制经典的控制系统设计方法要求有一个确定的数学模型(可能是常规的,也可能是统计的)。
以往,由于对一般的控制系统要求不太高,所以系统中普遍存在的不确定性问题往往被忽略。
事实上,对许多要求不高的系统,在名义系统的基础上进行分析与设计已经能够满足工程要求,而对一些精度和可靠性要求较高的系统,也只是在名义系统基础上进行分析和设计,然后考虑模型的误差,用仿真的方法来检验实际系统的性能(如稳定性、暂态性能等)。
鲁棒控制理论及应用--
维纳滤波器方法的基本思想
r
e
C
u
d
P
y
d: 可以用某种随机过程来表示的外界扰动
把反馈控制问题变成数学上的某些优化问题 卡尔曼-布西滤波器 (Kalman-Bucy Filter)理论
现代控制理论
LQG控制器
e
C
u
d
P
y
Байду номын сангаас
卡尔曼-布西滤 波器
控制问题的解 (分离原理): ·设计卡尔曼-布西滤波器,获得x的估计值; ·设计基于x的估计值的状态反馈增益矩阵K。
涉及课程及其参考书
涉及课程: • 线性系统理论(Linear System Theory) • 最优控制(Optimal Control) 参考书: • 吴敏,桂卫华,何勇:《现代鲁棒控制》(第2版) • 中南大学出版社,2006 • Zhou K, Doyle J C and Glover K.Robust and Optimal Control.Prentice Hall,1996
第一讲:
鲁棒控制研究的基本问题
基本的反馈控制系统
d
r
u
控制器 控制对象
y
v
传感器
n
r-目标输入,y-控制对象输出,u-控制输入
v-传感器输出,n-传感器噪声,d-外部扰动
控制系统设计与不确定性
控 制 理 论 模 设计方法 型 实际 控制 对象
扰来 动自 信控 号制 。系 统 本 身 外 部 的
系统不确定性
非结构不确定性 (Unstructured Uncertainty)
P0
P0 P
结构不确定性 (Structured Uncertainty)
智能控制技术第十三课鲁棒优化完美版PPT
生活中的多目标优化问题
例子: 买衣服:希望质量好,价格低
投资理财:希望收益高,风险小
淘宝买商品:同样的商品,在一定的情况下买最廉价的。价格廉 价,购置风险小。
f1为商品质量;f2为商品价格
质量差
在此根底上开始新一轮的选择,交叉和变异,形成新的子代种群。
一种基于maximin的多目标优化算法 c〕需要指定共享半径 在处理高维数、多模态、非线性等复杂问题上存在许多缺乏。
智能控制技术第十三课鲁棒优化
什么是多目标优化
普通的优化问题可以视为单目标优化问题
多目标优化问题可以描述为:
Minimize/Maximize yf(x)(f1(x),f2(x),...,fK(x)) Subjectto c(x)(c1(x),c2(x),...,cm(x))0 x(x1,x2,...,xD)X y(y1,y2,...,yk)Y
设p和q是Pop中的任意二个个体,我们称p支配
〔dominated〕q,那么必须满足以下条件:
〔1〕对所有的子目标,p不比q差。
即
,其中r为子目标的数量〔求极小值〕 。
此时称fpk 为(p 非f ) k 支 (配p f) k 的( ,q ) qf ( 为k k ( 被 q 支) 1 ( ,配k 2 ,的 。1 ,,r 2 ) , ,r )
NSGA
非支配排序遗传算法NSGA〔Non-dominated Sorting Genetic Algorithm〕是由Srinivas和Deb提出的,这是一种基于Pareto最优 概念的遗传算法。
优点:优化目标个数任选,非劣最优解分布均匀,并允许存在多个 不同的等价解。
缺点:
a〕计算复杂度较高,算法复杂度是O MN(其3 中N为种群大小,M为
第7章鲁棒控制简介
灵敏度函数
e( s) S ( s)r ( s)
6.2 控制性能的鲁棒性
公称性能
d
e
r
K (s)
u
P( s )
y
1 T 1 PK 1 y d : 对外部干扰的灵敏度 1 PK 1 e r : (指令响应) 1 PK
图 反馈控制系统 P : 对特性变动的灵敏度
(目标值r 0 )
d
e
K (s ( s ) d ( s ) P( s ) K ( s ) y ( s ) (1 P( s) K ( s)) y( s) d ( s)
1 y( s) d ( s) 1 P( s ) K ( s )
灵敏度函数
y ( s) S ( s)d ( s)
| G( j ) |
对外部干扰的灵敏度
d
1 y d 1 PK
1 z W1 d 1 PK
r0
e
K (s)
u
P( s )
y
使用频域权 W1
d
W1 (s)
z
z W1Sd
d
K (s)
u
P( s )
y
G (s)
P( s )
W1 (s)
z
K (s)
u
y
K (s)
对偏差的灵敏度
1 P ( s) T ( s ) 1 P( s) K ( s)
1 是开环系统的变动影响闭环 1 P( s) K ( s) 倍
K ( s ) 的增益大
灵敏度函数
灵敏度低
鲁棒控制与鲁棒控制器设计ppt课件.ppt
28
对叠加型不确定性 对乘积型的不确定性
2024/9/30
29
3.2 灵敏度问题的鲁棒控制器设计
一般情况下,受控对象 G 的 D 矩阵为非满秩矩阵时, 不能得出精确的成型控制器,这时回路奇异值的上下限 满足式子
当
时,控制器作用下实际回路奇异值介于
之间。
2024/9/30
30
【例7】
2024/9/30
20
【例3】对【例1】中的增广的系统模型,分别 设计
2024/9/30
21
绘制在控制器作用下系统的开环 Bode 图和 闭环阶跃响应曲线
2024/9/30
22
【例4】
加权矩阵
并设置 设计最优 控制器,并绘制出该控制器作用下的 阶跃响应曲线和开环系统的奇异值曲线。
2024/9/30
23
2024/9/30
2024/9/30
15
变换出系统矩阵 P
2024/9/30
16
【例2】用【例1】中的对象模型和加权函数, 得出其系统矩阵模型 P
2024/9/30
17
2、 鲁棒控制器的 计算机辅助设计
鲁棒控制工具箱的设计方法
2024/9/30
18
2.1 鲁棒控制工具箱的 设计方法
鲁棒控制器的状态方程表示
其中
31
绘制在此控制器下的回路奇异值及闭环 系统的阶跃响应曲线
2024/9/30
32
3.3 混合灵敏度问题的鲁棒 控制器设计
2024/9/30
33
【例8】
2024/9/30
34
假设系统的不确定部分为乘积型的,且已知 ,并已知不确定参数的变化范围为 ,设计固定的 控制器
鲁棒控制理论及应用课程吴敏
∂xT
4γ 2 ∂xT
∂x
•
x
=
f
(x) +
1 2γ 2
gg T
∂φ ∂x
(x)
d)在x=0附近,存在光滑正定函数 φ (x)和正常数ε,使哈密顿-
9
雅可比不等式
∂φ ∂xT
f
成立 + 1 ∂φ gg T ∂φ + hTh + ε xT x ≤ 0
4γ 2 ∂xT
∂x
2015年10月25日
鲁棒控制理论及应用课程
γ s ≤ zw Lc2
z
2
S = Sup w zw Lc2
w∈L2 {0}ILc∞
2
4
2015年10月25日
鲁棒控制理论及应用课程
吴敏
耗散性与局部L2稳定性
对于系统Szw,当 x0 = x(0),x(t) = x 时,如果存在满足
V
( x0
)
+
∫t 0
⎡⎣γ
2 wT
(τ
) w(τ
)
−
zT
(τ
)
z (τ
现代的方法:微分几何方法、逆系统方法、变结构控制、 基于Volterra级数的方法、非线性H∞控制
2
2015年10月25日
鲁棒控制理论及应用课程
吴敏
L2增益的概念
线性系统H∞控制
非线性系统H∞控制
在时域: H∞范数由零初始条件下从输入到输出的L2诱导范数来代替
L2增益: 非线性系统H∞控制的实质
1
10
2015年10月25日
鲁棒控制理论及应用课程
吴敏
状态反馈非线性H∞控制的可解性条件
ppt11第十一章鲁棒与最优控制
20世纪60年代,出现了现代控制理论,提出了 许多新的控制理论与方法。这些方法在实际控制系 统的设计中并未得到广泛的应用,主要原因是应用 这些方法时忽略了对象的不确定性,并对存在的干 扰信号作出了苛刻的要求。 如LQG设计方法中要求干扰为高斯分布的白噪声, 而在很多实际问题中,干扰的统计特性很难确定; 此外,它还要求对象有精确的数学模型。这样,用 LQG设计的系统,当有模型扰动时,就不能保证系 统的鲁棒性。
G = sup
u ≠0
G
可定义
Gu u
= sup Gu
u =1
由该定义可知,系统的范数实际上是单变量增 益(信号放大倍数)概念在多变量系统中的推广。 有了算子范数的概念,就可以把 L∞ 和 H ∞扩展 为有理函数矩阵空间,相应的实有理函数矩阵空间 仍分别记为 RL∞ 和 RH ∞ 。
11.2 LQR、LQG问题与 H 2 最优控制问题 、 问题与
∫ u ( jω )
∞
+∞
p
dω < +∞
的空间,称 L p 空间。
常用的 L p 空间有
L2
L∞
∫ u ( jω )
∞
+∞
2
dω < +∞
ess sup u ( jω ) < +∞
ω∈R
对于频域信号 u ( jω ) ,常用范数有 2-范数: u ∞-范数: u
2
1 = 2π
∫
+∞
∞
u ( jω )
υ1 (t )
1 Sυ 2
R1 2
u1 (t )
ω1 (t )
u (t )
1 Bω Sω 2
Q x(t )
鲁棒控制理论第三章1
输入信号一
考虑任意幅值不大于1的正弦信号
r (t ) ∈ {a sin ωt ∀a ∈ (0,1], ∀ω ∈
+
}
⎫ ⎪ +⎬ ⎪ ⎪ ⎭
由 e (t ) = a s ( jω ) sin (ωt + arg ( s ( jω ))) ˆ 则 sup e (t ) = e
t ∞
⎧ aω ⎪ ˆ r (s) ∈ ⎨ 2 ∀a ∈ (0,1], ∀ω ∈ 2 ⎪s +ω ⎪ ⎩
ˆ ˆ T = 1− S 称为系统的补敏感函数
定理3
ˆ 系统渐近跟踪阶跃和斜坡的能力取决于敏感函数 S 在原点 s=0处的零点数。
定理3 假定反馈系统是内稳定的,且n=d=0
ˆ (1) 对于r1(阶跃),系统渐近跟踪(t→∞,e(t)→0),当且仅当 S 至少由一个零点在原点。 ˆ (2) 对于r2(斜坡),系统渐近跟踪,当且仅当 S 至少由两个 个零点在原点。
ˆ 由于系统是内稳定的,则 S 是一稳定的传递函数。根据终
值定理,
c ˆ e (∞) = lim s S ( s ) = cS (0) s→0 s
ˆ 则 e (∞) = 0 ⇔ s (0) = 0
r2 ( s ) = c s2
ˆ ,即 S 至少有一零点在原点。
(2)
证明类似。
例
ˆ (s) = 1 , P s
例 在图3.2中
s −1 C (s) = , s +1 1 P (s) = 2 , s −1 F =1
检验从r到y的传递函数是稳定的,但从d到y是不稳定的。因 此反馈系统不是内稳定的。
y PC 1 = = 2 r 1 + PCF s + 2 s + 2
鲁棒控制理论第一章
60—70年代,控制理论中关于状态空间的结构性理论得 到了突破性的进展
建立了线性系统的能控、能观性理论
提出了反馈镇定的一整套严密的理论和方法
这些理论和方法却依赖于受控对象的精确的数学模型
由于实际的系统往往都是运行在不断变化的环境中,各种 因素(如温度、原料、负荷、设备等)都是随时间变化的, 一般说来,这种变化是无法精确掌握的。 又由于受理论和方法的限制,在实际系统的建模过程中经 常要做—些简化处理,如降阶、时变参数的定常化处理、 非线性方程的线性化等 使得实际系统和我们赖以做分析和设计的数学模型之间存 在一定的差别。
Doyle等人提出可根据范数界限扰动有效地描述模型不
确定性,由此他发展了判别鲁棒稳定性和鲁棒性能的 强有力工具——结构奇异值。
Vidyasagar等人于1982年提出了同时镇定化问题:给
定 r 个被控对象P1,P2 ,…,Pr ,能否找到一个控制 器,镇定所有被控对象。这里,被控对象由多个模型 描述,主要是由故障或非线性系统在多个工作点线性 化造成的。
鲁棒性定义
从某种抽象的意义上来谈鲁棒性本身,而不局限于控制系 统的鲁棒性。 首先,鲁棒性是一种性质,它应该与某种事物相关联。如 控制系统、矩阵等。因而我们通常所说的控制系统的鲁棒 性即是与控制系统相关的某种意义下的抗扰能力。 其次,鲁棒性所言及的对象并不是事物本身,而是事物的 某种性质,如控制系统的稳定性、矩阵的可逆性或正定性 等等。 因而通常的“控制系统的鲁棒性”这种说法并不确切。是 一种很笼统的说法。如若确切地表述,则需指明“某事物 的某种性质”的鲁棒性,如控制系统的稳定性的鲁棒性, 简称控制系统的稳定鲁棒性;控制系统的某种性能的鲁棒 性,简称控制系统的性能鲁棒性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要 考 虑 的 不 确 定 性 :
2007年10月9日
鲁棒控制理论及应用
中南大学信息科学与工程学院 吴 敏
控制系统设计的基本要求
d
e
u
r
C
P
y
• 稳定性 (Stability)
• 动态特性 (Dynamic Performance) • 静态特性 (Static Performance): lim e(t) = 0
7
2007年10月9日
鲁棒控制理论及应用
中南大学信息科学与工程学院 吴 敏
控制系统设计与不确定性
控控 制制 理理 论论
设计方法
模模 建模 型型
制制实实 对对际际 象象控控
控控 实施 制制 器器
8
需
动 信 号 。
• •
来 自 控 制 系 统 本 身 和 外 部 的 扰
来 自 控 制 对 象
的 模 型 化 误 差 ;
中南大学信息科学与工程学院 吴 敏
鲁棒控制研究的基本问题
6
2007年10月9日
鲁棒控制理论及应用
基本的反馈控制系统
中南大学信息科学与工程学院 吴 敏
d
r
控控制制器器
u
控控制制对对象象
y
v 传感器
n
r -目标输入,y -控制对象输出,u -控制输入 v -传感器输出,n -传感器噪声,d -外部扰动
• 吴敏, 桂卫华, 何勇:《现代鲁棒控制》(第2版). 中南大学出版社, 2006
• Zhou K, Doyle J C and Glover K. Robust and Optimal Control. Prentice Hall, 1996
3
2007年10月9日
鲁棒控制理论及应用
中南大学信息科学与工程学院 吴 敏
( 1, j0)
14
=0
=∞
Re
在保持稳定性的前提下, 改善中频段的特性,从而 提高系统的性能。
鲁棒控制理论
2007年10月9日
鲁棒控制理论及应用
中南大学信息科学与工程学院 吴 敏
维纳滤波器方法的基本思想
d
e
u
r
C
Pபைடு நூலகம்
y
d: 可以用某种随机过程来表示的外界扰动 把反馈控制问题变成数学上的某些优化问题
e
u
r
C
P
y
de(t)
u(t) = KPe(t) KI e(t)dt KD 0
dt
U(s) = (KP KI 1 KDs)E(s) s
C(s) = KP KI 1 KDs
13
s
2007年10月9日
鲁棒控制理论及应用
中南大学信息科学与工程学院 吴 敏
基于奈魁斯特稳定性设计思想
开环频率特性: 是否围绕 ( 1, j0) 点 Im
鲁棒控制理论及应用
(研究生课程)
吴敏
中南大学信息科学与工程学院,长沙,410083
1
鲁棒控制理论及应用
课程的目标
中南大学信息科学与工程学院 吴 敏
• 了解鲁棒控制研究的基本问题; • 掌握鲁棒控制的基础知识和基本概念; • 明确鲁棒控制问题及其形式化描述; • 掌握几种鲁棒稳定性分析与设计方法; • 掌握状态空间H∞控制理论;
课程名称、授课形式和考试方式
课程名称: • 鲁棒控制理论及应用
Robust Control Theory and Applications 授课方式:
• 集中授课,主要是采取讲授方式,可适当针对某一 问题进行讨论。 考试方式:
• 考试的目的 • 笔试。
4
2007年10月9日
鲁棒控制理论及应用
课程的主要内容
上述均是基于黎卡提方程的解进行设计。
16
2007年10月9日
鲁棒控制理论及应用
中南大学信息科学与工程学院 吴 敏
鲁棒控制研究的基本问题
• 不确定系统的鲁棒控制 d
e
u
r
C
P0+P
y
0
• 不确定性系统的描述方法;
• 鲁棒性分析和设计方法; • 鲁棒控制的应用领域。
特性和稳态特性保持不变的特性,即这一反馈控制系 统具有承受这一类不确定性影响的能力。
鲁棒性(Robustness):
• 鲁棒稳定性——在一组不确定性的作用下仍然能够保
证反馈控制系统的稳定性。
• 鲁棒动态特性——通常称为灵敏度特性,即要求动态
特性不受不确定性的影响。
• 鲁棒稳态特性——在一组不确定性的影响下仍然可以
卡尔曼-布西滤波器 (Kalman-Bucy Filter)理论 现代控制理论
15
2007年10月9日
鲁棒控制理论及应用
LQG 控制器
K
u P
中南大学信息科学与工程学院 吴 敏
d y
xˆ 卡尔曼--布西
滤滤波波器器
控制问题的解 (分离原理): • 设计卡尔曼-布西滤波器,获得x的估计值; • 设计基于x的估计值的状态反馈增益矩阵K。
t
• 鲁棒性 (Robustness)
9
2007年10月9日
鲁棒控制理论及应用
控制系统的动态特性
中南大学信息科学与工程学院 吴 敏
10
2007年10月9日
鲁棒控制理论及应用
控制系统的鲁棒性
中南大学信息科学与工程学院 吴 敏
鲁棒控制系统(Robust Control System):
在某一类特定的不确定性条件下具有使稳定性、动态
• 了解鲁棒控制系统的 分析与 综合方法;
• 初步了解非线性系统鲁棒控制方法。
2
2007年10月9日
鲁棒控制理论及应用
中南大学信息科学与工程学院 吴 敏
涉及课程及参考书
涉及课程:
• 线性系统理论 (Linear System Theory) • 最优控制 (Optimal Control)
参考书:
中南大学信息科学与工程学院 吴 敏
共分为七讲:
第一讲——鲁棒控制研究的基本问题 第二讲——基本知识与基本概念 第三讲——鲁棒控制问题 第四讲——鲁棒稳定性理论 第五讲——状态空间H∞控制理论
第六讲——鲁棒控制系统的 分析与 综合
第七讲——非线性系统鲁棒控制
5
2007年10月9日
鲁棒控制理论及应用
第一讲:
先进控制(Advanced Control)——鲁棒控制: • 频域法+时域法 • 传递函数+状态空间模型 • H∞最优控制, 分析与 综合
12
2007年10月9日
鲁棒控制理论及应用
中南大学信息科学与工程学院 吴 敏
PID控制
• PID (Proportion-Integration-Differentiation) 控制
实现反馈控制系统的渐近调节功能。
11
2007年10月9日
鲁棒控制理论及应用
中南大学信息科学与工程学院 吴 敏
反馈控制理论的发展阶段
经典控制(Classical Control): • 频域法,传递函数,PID控制
现代控制(Modern Control): • 时域法,状态空间模型,能控能观概念,LQG控制