第8讲单因素方差分析与多重比较

合集下载

第08章+单因素方差分析

第08章+单因素方差分析
t检验判断两组数据平均数间的差异显著性;方差分 析可同时判断多组数据平均数间的差异显著性。
方差分析的基本原理
在一个多处理试验中,可以得出一系列不同的观测值。 造成观测值不同的原因是多方面的,有的是处理不同引起 的,处理效应或条件变异,有的是试验过程中偶然性因素 的干扰和测量误差所致,既试验误差。方差分析的基本思 想是将测量数据的总变异按照变异原因不同分解为处理效 应和试验误差,并作出其数量估计。 通过方差比较以确 定各种原因在总变异中所占的重要程度,即用处理效应和 试验误差在一定意义下进行比较,如二者相差不大,说明 试验处理对指标影响不大,如二者相差较大,处理效应比 试验误差大得多,说明试验处理影响是很大的,不可忽视。 从而作为统计推断。
变差na来源5 5 平方和 自由度
均方每一个xij都F减去65
SST
处= 理a
误差i=1
n j =1
xi2j 13C1.7=4277 .28 4129 .96
25.58
20
=3124.794.32
0.78
42.23**
S*S*A
总1和 a = α=n0.i0=11
xi2.
1C47=.312308 5
计之前就要明确关于模型的基本假设。对于单因素方差分析 来说,两种模型无多大区别。
第八章 单因素方差分析
三、单因素方差分析的检验及例题验算
(得样一本固)的定方方效差式应分不模同型析,与的致随检使机验所效程得应结模序论型不方同差。分随析机的效程应序模完型全适一用样于,水但平由的于总获 体1,、而正固规定检效验应模程型序只适用于所选定的α个水平。也就是说,随机效应 模2型、Ⅰ可单推因方断素差总方齐体状差性况分检,析验而的固实定效战应检模验型程不序能推断总体状况。

生物统计-8第八章单因素方差分析

生物统计-8第八章单因素方差分析

01
确定因子和水平
确定要分析的因子(独立变量) 和因子水平(因子的不同类别或 条件)。
建立模型
02
03
模型假设
根据因子和水平,建立方差分析 模型。模型通常包括组间差异和 组内误差两部分。
确保满足方差分析的假设条件, 包括独立性、正态性和同方差性。
方差分析的统计检验
01
F检验
进行F检验,以评估组间差异是否 显著。F检验的结果将决定是否拒
生物统计-8第八章单因素方差分析
目录
• 引言 • 方差分析的原理 • 单因素方差分析的步骤 • 单因素方差分析的应用 • 单因素方差分析的局限性 • 单因素方差分析的软件实现
01
引言
目的和背景
目的
单因素方差分析是用来比较一个分类变量与一个连续变量的关系的统计分析方法。通过此分析,我们可以确定分 类变量对连续变量的影响是否显著。
VS
多元性
单因素方差分析适用于单一因素引起的变 异,如果存在多个因素引起的变异,单因 素方差分析可能无法准确反映实际情况。 此时需要考虑使用其他统计方法,如多元 方差分析或协方差分析等。
06
单因素方差分析的软件 实现
使用Excel进行单因素方差分析
打开Excel,输入数据。
点击“确定”,即可得到单因素方差分析 的结果。
输出结果,并进行解释和 解读。
谢谢观看
背景
在生物学、医学、农业等领域,经常需要研究一个分类变量对一个或多个连续变量的影响。例如,研究不同品种 的玉米对产量的影响,或者不同治疗方式对疾病治愈率的影响。
方差分析的定义
定义
方差分析(ANOVA)是一种统计技术,用于比较两个或更多组数据的平均值 是否存在显著差异。在单因素方差分析中,我们只有一个分类变量。

方差分析及多重比较

方差分析及多重比较

第六章 方差分析第五章所介绍的t 检验法适用于样本平均数与总体平均数及两样本平均数间的差异显著性检验,但在生产和科学研究中经常会遇到比较多个处理优劣的问题,即需进行多个平均数间的差异显著性检验。

这时,若仍采用t 检验法就不适宜了。

这是因为:1、检验过程烦琐 例如,一试验包含5个处理,采用t 检验法要进行25C =10次两两平均数的差异显著性检验;若有k 个处理,则要作k (k-1)/2次类似的检验。

2、无统一的试验误差,误差估计的精确性和检验的灵敏性低 对同一试验的多个处理进行比较时,应该有一个统一的试验误差的估计值。

若用t 检验法作两两比较,由于每次比较需计算一个21x x S ,故使得各次比较误差的估计不统一,同时没有充分利用资料所提供的信息而使误差估计的精确性降低,从而降低检验的灵敏性。

例如,试验有5个处理,每个处理重复6次,共有30个观测值。

进行t 检验时,每次只能利用两个处理共12个观测值估计试验误差,误差自由度为2(6-1)=10;若利用整个试验的30个观测值估计试验误差,显然估计的精确性高,且误差自由度为5(6-1)=25。

可见,在用t 检法进行检验时,由于估计误差的精确性低,误差自由度小,使检验的灵敏性降低,容易掩盖差异的显著性。

3、推断的可靠性低,检验的I 型错误率大 即使利用资料所提供的全部信息估计了试验误差,若用t 检验法进行多个处理平均数间的差异显著性检验,由于没有考虑相互比较的两个平均数的秩次问题,因而会增大犯I 型错误的概率,降低推断的可靠性。

由于上述原因,多个平均数的差异显著性检验不宜用t 检验,须采用方差分析法。

方差分析(analysis of variance)是由英国统计学家,把观测值总变异的平方和及自由度分解为相应于不同变异来源的平方和及自由度,进而获得不同变异来源总体方差估计值;通过计算这些总体方差的估计值的适当比值,就能检验各样本所属总体平均数是否相等。

第八章 单因素方差分析

第八章  单因素方差分析

V 4.2 3.2 4.8
4
5
1.0
0.8 1.5
-1.3
-1.1 -0.3
1.8
3.5 11.5
4.1
6.0 29.0
3.3
2.5 18.0 总和 57.0
xi
n
xi2
j 1 2 ij
2.25
1.93
9.00
3.4
132.25
29.43
841.00 324.00
174.46 68.06
1308.50
sx MS e n
品系号





平均数
70.8
68.6
67.3
65.3
64.4
顺序号
1
2
3
4
5
df
k
R0.05
Rk
R0.01
Rk
2
2.95
1.165
4.02
1.588
3 20 4
3.10
1.225
4.22
1.667
3.18
1.256
4.33
1.710
5
3.25
1.284
4.40
1.738
5
单因素固定效应模型方差分析表
变异来源
处理间
平方和
自由度
均方
F
F MS A MS e
SSA
a-1
MSA
误差或处理内
总和
SSe
SST
na-a
na-1
MSe
4、平方和的简易计算方法
株号 1 2 3 I -0.4 0.3 -0.2
品 II

单因素方差分析与多重比较

单因素方差分析与多重比较

单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。

One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measure过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表5-1所示。

表5-1 不同水稻品种百丛中稻纵卷叶螟幼虫数从复水稻品种1 2 3 4 51 41 33 38 37 312 39 37 35 39 343 40 35 35 38 34 数据保存在“DATA5-1.SAV”文件中,变量格式如图5-1。

图5-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图5-1所示。

或者打开已存在的数据文件“DATA5-1.SAV”。

2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图5-2。

图5-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量:选择一个因素变量进入“Factor”框中。

本例选择“品种”。

4)设置多项式比较单击“Contrasts”按钮,将打开如图5-3所示的对话框。

该对话框用于设置均值的多项式比较。

图5-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图5-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。

单因素方差分析与多重比较

单因素方差分析与多重比较

方差分析方差分析(analysis of variance ), 简称ANOV A,由英国统计学家,后人为纪念Fisher ,以F命名方差分析的统计量,故方差分析又称F 检验。

样本均数的差异,可能有两种原因所致。

首先可能由随机误差所致随机误差包括两种成分:个体间的变异和测量误差两部分;其次可能是由于各组所接受的处理不同,不同的处理引起不同的作用和效果,导致各处理组之间均数不同。

一般来说,个体之间各不相同,是繁杂的生物界的特点;测量误差也是不可避免的,因此第一种原因肯定存在。

而第二种原因是否存在,这正是假设检验要回答的问题。

方差分析的基本思想是将所有观察值之间的变异(称总变异)按设计和需要分解成几部分。

如完全随机设计资料的方差分析,将总变异分解为处理间变异和组内变异两部分,后者常称为误差。

将各部分变异除以误差部分,得到统计量F值,并根据F值确定P值作推断。

由于方差分析是根据实验设计将总变异分成若干部分,因此设计时考虑的因素越多,变异划分的越精细,各部分变异的涵义越清晰明确,结论的解释也越容易,同时由于变异划分的精细,误差部分减小,提高了检验的灵敏度和结论的准确性。

方差分析可用于:(1)两个或多个样本均数间的比较(2)分析两个或多个因素的交互作用(3)回归方程的假设检验(4)方差齐性检验多个样本均数间比较的方差分析应用条件为:(1)各样本必须是相互独立的随机样本(独立性)(2)各样本均来自正态总体(正态性)(3)相互比较的各样本的总体方差相等(方差齐性)一、完全随机设计的方差分析医学实验中,根据某一实验因素,用随机的方法,将受试对象分配到各组,各组分别接受不同的处理后,观察各种处理的效果,比较各组均数之间有无差别。

临床研究中,还可能遇到:比较几种不同疗法治疗某种疾病后某指标的变化,以评价它们的疗效;或比较某种疾病不同类型之间某一指标有无差别等。

这些都是一个因素不同水平(或状态)间几个样本均数的比较,可用单因素的方差分析(one-way ANOV A)来处理此类资料。

单因素方差分析与多重比较课件

单因素方差分析与多重比较课件
通过比较组间方差和组内方差,可以 判断各组平均值是否存在显著差异。
方差分析的步骤
1. 收集数据
收集每个组的观测值,并确保数据满足独立性、正态性和 同方差性。
2. 数据整理
整理数据,将观测值按照组别进行分类和汇总。
3. 计算离差平方和
计算每个组的离差平方和,即每个组内观测值与组平均值 的差的平方和。
详细描述
Duncan法是一种非参数检验方法,它不需要假设数据服从正态分布,因此适用范围更广。该方法通 过多级分类的方式,将各组均值进行排序和比较,能够更全面地了解各组之间的差异情况。Duncan 法的优点在于简单易行,但缺点是对于极端值的敏感度较高。
S-N-K法
总结词
基于秩和的方法
详细描述
S-N-K法(Studentized Range Distribution)是一种基于秩和的方法,它通过对各组秩次进行统计分析,判 断各组均值是否存在显著差异。该方法能够避免极端值对结果的影响,并且对于非正态分布的数据也有较好的 适用性。S-N-K法的优点在于稳健性和可靠性较高,但缺点是计算较为复杂。
否存在显著差异。
随着数据量的增长,单因素方 差分析与多重比较在数据分析 和科学研究中具有越来越重要
的地位。
课程目标
1
掌握单因素方差分析的基本原理和计算方法。
2
理解多重比较的意义和作用,掌握常用的多重比 较方法。
3
学会在实际问题中应用单因素方差分析与多重比 较,提高数据分析能力。
02
单因素方差分析基本概念
单因素方差分析与多重比 较课件
目录
• 引言 • 单因素方差分析基本概念 • 单因素方差分析的数学模型 • 多重比较方法 • 单因素方差分析的应用实例 • 课程总结与展望

单因素方差分析与多重比较

单因素方差分析与多重比较
2. 系统误差
▪ 因素的不同水平(不同总体)下,各观察值之间的差异 ▪ 比如,不同行业之间的被投诉次数之间的差异 ▪ 这种差异可能是由于抽样的随机性所造成的,也可能
是由于行业本身所造成的,后者所形成的误差是由系
统性因素造成的,称为系统误差
方差分析的基本思想和原理
(两类方差)
1. 数据的误差用平方和(sum of squares)表示,称 为方差
单因素方差分析与 多重比较
§3.1 方差分析引论
一. 方差分析及其有关术语 二. 方差分析的基本思想和原理 三. 方差分析的基本假定 四. 问题的一般提法
什么是方差分析(ANOVA)?
(analysis of variance)
1. 检验多个总体均值是否相等
▪ 通过分析观察数据的误差判断各总体均值是否
=115.9295
构造检验的统计量
(计算水平项平方和 SSA)
1. 各组平均值 xi (i 1,2,, k)
平均值 的离差平方和
x 与总
2. 反映各总体的样本均值之间的差异程度,又称组
间平方和
3. 该平方和既包括随机误差,也包括系统误差
4. 计算公式为
k
SSA
ni
k
xi x 2 ni xi x 2
统计量F
2. 当H0为真时,二者的比值服从分子自由度为
这种差异也可能是由于抽样的随机性所造成的
2. 需要有更准确的方法来检验这种差异是否显著, 也就是进行方差分析
所以叫方差分析,因为虽然我们感兴趣的是均值, 但在判断均值之间是否有差异时则需要借助于方差
这个名字也表示:它是通过对数据误差来源的分析 判断不同总体的均值是否相等。因此,进行方差分 析时,需要考察数据误差的来源。

第三章_单因素方差分析与多重比较精品

第三章_单因素方差分析与多重比较精品

第三章_单因素方差分析与多重比较精品单因素方差分析是统计学中用于比较不同组之间差异的一种方法。

通过对多个组进行方差分析,可以确定是否有统计上显著的差异存在。

然而,在进行多组比较时,会面临多个比较中出现误差增加的问题。

因此,多重比较技术被提出,用于解决这个问题。

首先,我们来了解单因素方差分析。

单因素方差分析是通过比较不同组之间的方差差异来确定是否存在显著的组间差异。

在进行单因素方差分析时,我们需要计算组内的平均平方差(MSW)和组间的平均平方差(MSB),然后计算F值,再通过比较F值与临界F值来确定差异是否显著。

然而,当进行多组比较时,会遇到一种被称为多重比较问题的情况。

多重比较问题是指在进行多次比较时,由于进行多个比较而增加了整体犯错的可能性。

举例来说,如果我们进行了十次不同组的比较,每次比较的显著性水平设定为0.05,那么整体犯错的概率就会增加到0.50,即有一半的可能性会发生错误。

为了解决多重比较问题,研究人员引入了多重比较技术。

多重比较技术有多种方法,其中一种常用的方法是泰基法(Tukey's method)。

泰基法通过比较不同组之间的均值差异来确定哪些组之间存在显著差异。

具体而言,泰基法计算了每对组之间的均值差异,并利用一个修正的显著水平来设置显著性门限。

只有当两组之间的均值差异超过这个门限时,才被认为是显著的。

除了泰基法外,还有其他多重比较方法,例如邓肯多重范围检验(Duncan's multiple range test)和奥内尔法(Bonferroni method)。

这些方法各有优点和局限性,研究人员可以根据实际情况选择最适合的方法。

在使用多重比较技术时,需要注意以下几点。

首先,选择适当的显著性水平是非常重要的。

不同的显著性水平会对结果产生不同的影响。

其次,在进行多次比较时,应该考虑调整显著性水平,以控制整体的犯错率。

此外,还需要根据实际问题选择合适的多重比较方法,以便获得可靠的结果。

单因素的方差分析和LSR法多重比较Excel表格计算

单因素的方差分析和LSR法多重比较Excel表格计算

1、划分变异原因总变异=处理间变异+区组间变异+误差变异2、列出试验结果并初步计算,求处理和T,区组和T ,和总和T。

3、分解并计算各项平方和、自由度(1)求平方和n (区组)=4k (处理)=6矫正数39609.37501257.631099.3855.46102.79(2)求各项自由度235使用说明:①使用前请详细阅读文档为娱乐学习之用,处理及区组均为10个,作中的蓝字为使用者填入,其他如工作表、格式及果给予重视,如为“不能反映处理间效应”或“一、单因素随机化完全区组设计的方差分析2=nkT C =k 2i i=11n A SS C T ∙==∑-==∑=C SS T B -n 1j 2j .k 1=--=SS SS SS SS B A T e ==1-nk T f =-=1f k A =-=1n f B --=)1)(1(n k f e n n 2ij i=1j=1x T SS C ==∑∑-3155、进行F检验64(2)求F值32.092.70(3)查F表(4)检验由表中F值和F临界值相比较得知:①否定H01,差异极显著2②接受H02,区组间差异不显著1结论:该项试验结果能极显著反映处理间的效应。

已知k=65种 , n=41.30893 3.16 4.351.3089 4.14 5.69②4 3.25 4.461.3089 4.25 5.84③5 3.31 4.551.3089 4.33 5.95④6 3.36 4.611.3089 4.40 6.03⑤0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑥二、邓肯(Duncan)多重极差法(LSR法),a有2、3……等(1)求LSR(1)H 01:α1=α2=…=αH 02;β1=β2=…=β=1-nk T f =-=1f k A =-=1n f B =--=)1)(1(n k f e ==22/e A A S S F 22e /=B B F S S =X S =0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑦0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑧细阅读统计学有关资料,按照相关要求进行完善,同时建议按照统计学示例进行验算;②本之用,处理及区组均为10个,作者不承担由使用该文档而产生的法律责任,如不赞同,请删除;③文者填入,其他如工作表、格式及公式等内容请勿非专业改动或删除;④在输入数据后请对方差分析结为“不能反映处理间效应”或“不能接受”,多重比较已无意义,请核对原始数据。

第三章_单因素方差分析与多重比较

第三章_单因素方差分析与多重比较

第三章_单因素方差分析与多重比较1.引言在统计学中,方差分析是一种用于比较不同组之间差异的方法。

它可以帮助我们确定不同因素之间是否存在显著差异,以及哪些因素对结果有重要影响。

在实际应用中,我们常常需要使用单因素方差分析,即只考虑一种因素对结果的影响。

本章将介绍单因素方差分析的基本原理和方法,以及如何进行多重比较来进一步分析不同组之间的差异。

2.单因素方差分析的基本原理在单因素方差分析中,我们假设只有一个因素对结果有影响,而其他因素对结果没有影响。

我们通过计算组内变异和组间变异来判断不同组之间是否存在显著差异。

组内变异表示同一组内部个体之间的差异,而组间变异表示不同组之间的差异。

如果组间变异显著大于组内变异,则可以认为不同组之间存在显著差异。

为了进行单因素方差分析,我们需要满足以下几个前提条件:1)样本来自正态分布总体;2)各个组的方差相等;3)各个组的观测值之间相互独立。

3.单因素方差分析的步骤单因素方差分析的步骤通常包括以下几个步骤:1)建立假设:根据实际问题,我们需要建立相应的零假设和备择假设。

零假设通常表示不同组之间没有显著差异,而备择假设表示不同组之间存在显著差异。

2)计算统计量:根据计算公式,计算组内平方和和组间平方和,进而计算F值。

3)判断显著性:根据给定的显著性水平,查表或计算P值,判断F 值是否显著。

4)做出结论:根据显著性检验的结果,决定是否接受零假设,进而得到结论。

4.多重比较在单因素方差分析中,如果我们得到了显著的F值,说明不同组之间存在差异,但是并不能告诉我们具体是哪些组之间存在差异。

这时候,我们可以进行多重比较来进一步分析不同组之间的差异。

多重比较可以帮助我们确定哪些组之间存在显著差异,以及差异的大小。

常用的多重比较方法包括Bonferroni法、Tukey法和Duncan法等。

这些方法都可以通过计算置信区间来确定差异的显著性。

多重比较的步骤通常包括以下几个步骤:1)计算均值差异:首先计算不同组之间的均值差异,可以通过计算置信区间来确定差异的显著性。

方差分析与多重比较

方差分析与多重比较

方差分析与多重比较方差分析(Analysis of Variance,简称ANOVA)是一种统计方法,用于比较两个或多个组之间的均值差异是否显著。

它被广泛应用于实验研究、社会调查、医学研究等领域,可以帮助我们确定组间的差异是否由于随机因素引起。

而多重比较则是方差分析的扩展,用于比较多个组间的均值差异。

一、方差分析方差分析是一种通过分解总体总体差异来检验组间均值是否有显著差异的方法。

在进行方差分析之前,我们需要先提出假设,即原假设和备择假设。

原假设(H0):所有组的均值相等。

备择假设(H1):至少有一个组的均值与其他组有显著差异。

方差分析通常采用F检验来检验组间均值是否存在显著差异。

F统计量的计算依赖于组内均方(Mean Square Within,MSW)和组间均方(Mean Square Between,MSB)。

若F值大于临界F值,则拒绝原假设,即组间均值存在显著差异。

二、多重比较多重比较是对方差分析中拒绝原假设的组进行进一步比较的方法。

当我们发现组间均值存在显著差异时,我们希望进一步了解哪些组之间存在差异。

常用的多重比较方法包括:1. LSD法(最小显著差异法):对所有可能的组合进行两两比较,判断均值差异是否显著。

这种方法简单,但容易产生错误的正差异判断。

2. Bonferroni校正法:将显著性水平除以组合数量来校正,保证整体错误率不超过显著性水平。

这种方法控制了错误率,但可能导致过度保守。

3. Tukey HSD法(Tukey Honestly Significant Difference):相较于LSD法,Tukey HSD法更为保守,适合进行大样本比较。

4. Duncan多重比较法:根据多重比较,将组间均值划分成若干个不同类型。

在进行多重比较时,我们需要注意研究目的、数据类型和样本容量的差异,选择适合的方法进行比较。

三、实际应用方差分析与多重比较方法广泛应用于各个领域的研究中。

以医学研究为例,研究人员可能会针对不同药物进行实验,比较各个药物对患者的疗效是否存在显著差异。

统计学第八章 单因素方差分析(1)

统计学第八章 单因素方差分析(1)

称为处理平方 处理平方 和,记为 SSA
总平方和SST=处理平方和SSA+误差平方和SSe
即, ( y ij − y •• ) = n∑ ( y i • − y •• ) + ∑∑ ( y ij − y i• ) 2 ∑∑
2 i =1 j =1 i =1 i =1 j =1 a n 2 a a n
i =1 j =1
a
n
= n∑ ( y i• − y •• ) + 2∑ [( y i• − y •• )∑ ( y ij − y i• )] + ∑∑ ( y ij − y i • )
2 i =1 i =1 j =1 i =1 j =1
a
a
n
a
n
j =1
∑ ( y ij − y i • ) = 0
换句话说,采用两两t检验法,要进行45次t检验,程序太繁琐。
原因(2):检验的I 型错误增大,从而检验的 可靠性低
a = 2 时, H 0 只有一个,即
µ 1= µ 2
a = 3 时, H 0 有 3 个,即 µ 1= µ 2, µ 2= µ 3, µ 1= µ 3
a = 5时,H 0 有10个,即µ1=µ 2,µ 2=µ3, , µ 4=µ5 L
二、方差分析的几个概念
1、方差分析(analysis of variance):将试验数据的总变异分 解成不同来源的变异,从而评定不同来源的变异相对重要性 的一种统计方法。 2、试验指标(experiment index):为衡量试验结果的好坏或 处理效应的高低,在试验中具体测定的性状或观测的项目。 3、试验因素(experiment factor):试验中所研究的影响试验 指标的因素:单因素、双因素或多因素试验。 4、因素水平(level of factor):因素的具体表现或数量等级。

方差分析与多重比较

方差分析与多重比较

方差分析与多重比较方差分析是一种统计分析方法,用于比较多个个体、组或处理之间的平均数差异。

它的主要目的是确定因素对于所观察到的变量是否具有显著影响。

在进行方差分析之后,如果发现了显著差异,那么就需要进行多重比较来确定哪些组或处理之间存在着实质性的差异。

1. 方差分析方差分析可以分为单因素和多因素方差分析。

单因素方差分析用于比较一个因素对于变量的影响,而多因素方差分析则考虑了多个因素的影响。

方差分析的原假设是各组或处理的均值相等,备择假设是各组或处理的均值不相等。

方差分析模型的基本假设是各组或处理的观测值是来自于正态分布总体。

在进行方差分析之前,需要检验各组或处理的观测值是否满足方差齐性的假设。

如果方差齐性假设成立,则可以使用方差分析方法进行推断;如果方差齐性假设不成立,则需要采取相应的修正方法,如Welch方法。

方差分析的结果通常以F统计量的形式呈现,根据F统计量的显著性水平,可以判断各组或处理之间是否存在显著差异。

2. 多重比较在进行方差分析后,如果发现了显著差异,则需要进行多重比较来确定具体是哪些组或处理之间存在着实质性的差异。

多重比较可以采用多种方法,常用的方法包括两两比较法、多重t 检验法和Tukey HSD法等。

在进行多重比较时,需要对比较结果进行适当的校正,以控制错误发现率。

两两比较法是最直观的方法,它通过对所有可能的组合进行t检验或其他适当的检验来确定差异的组合。

然而,当组数较多时,两两比较会导致多个假设检验,从而增加了错误发现的可能性。

多重t检验法是通过对多个均值进行比较来确定差异的组合。

不同于两两比较,多重t检验可以同时比较多个组之间的差异,从而减少错误发现的机会。

然而,多重t检验法需要进行适当的校正,以控制错误发现率。

Tukey HSD(Honestly Significant Difference)法是一种经典的多重比较方法,它通过估计多个均值之间的差异来确定差异的组合。

Tukey HSD法可以提供一个整体的比较结果,并以置信区间的形式表示差异的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方差分析
方差分析(analysis of variance ), 简称ANOV A,由英国统计学家R.A.Fisher首先提出,后人为纪念Fisher ,以F命名方差分析的统计量,故方差分析又称F检验。

样本均数的差异,可能有两种原因所致。

首先可能由随机误差所致随机误差包括两种成分:个体间的变异和测量误差两部分;其次可能是由于各组所接受的处理不同,不同的处理引起不同的作用和效果,导致各处理组之间均数不同。

一般来说,个体之间各不相同,是繁杂的生物界的特点;测量误差也是不可避免的,因此第一种原因肯定存在。

而第二种原因是否存在,这正是假设检验要回答的问题。

方差分析的基本思想是将所有观察值之间的变异(称总变异)按设计和需要分解成几部分。

如完全随机设计资料的方差分析,将总变异分解为处理间变异和组内变异两部分,后者常称为误差。

将各部分变异除以误差部分,得到统计量F值,并根据F值确定P值作推断。

由于方差分析是根据实验设计将总变异分成若干部分,因此设计时考虑的因素越多,变异划分的越精细,各部分变异的涵义越清晰明确,结论的解释也越容易,同时由于变异划分的精细,误差部分减小,提高了检验的灵敏度和结论的准确性。

方差分析可用于:
(1)两个或多个样本均数间的比较
(2)分析两个或多个因素的交互作用
(3)回归方程的假设检验
(4)方差齐性检验
多个样本均数间比较的方差分析应用条件为:
(1)各样本必须是相互独立的随机样本(独立性)
(2)各样本均来自正态总体(正态性)
(3)相互比较的各样本的总体方差相等(方差齐性)
一、完全随机设计的方差分析
医学实验中,根据某一实验因素,用随机的方法,将受试对象分配到各组,各组分别接受不同的处理后,观察各种处理的效果,比较各组均数之间有无差别。

临床研究中,还可能遇到:比较几种不同疗法治疗某种疾病后某指标的变化,以评价它们的疗效;或比较某种疾病不同类型之间某一指标有无差别等。

这些都是一个因素不同水平(或状态)间几个样本均数的比较,可用单因素的方差分析(one-way ANOV A)来处理此类资料。

例题:某职业病防治院对31名石棉矿工中的石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,结果见下表:问三组石棉矿工的肺活量有无差别?
表三组石棉矿工的用力肺活量(L)
石棉肺患者可疑患者非患者
1.8
2.3 2.9
1.4
2.1
3.2
1.5
2.1 2.7
2.1 2.1 2.8
X I j 1.9 2.6 2.7
1.7
2.5
3.0
1.8
2.3
3.4
1.9
2.4
3.0
1.8
2.4
3.4
1.8 3.3
2.0
3.5
合计(∑X ij) 19.1 20.8 33.9 74.4(∑X)
n j 11 9 11 31(N)
均数X j 1.79 2.31 3.08 2.4(X)
( ∑X2ij) 35.69 48.34 105.33 189.36(∑X2)
从表中的测量结果可以看出,三个组31名矿工的用力肺活量测定值大小不等,这是总变异。

将其分为两个比分:一是组内变异,它反映矿工用力肺活量测定值的随机误差;另一个是组间变异,它反映
随机误差和石棉肺对用力肺活量的影响。

计算步骤:
(1) 建立假设和和确定检验水准
H 0 :三组矿工用力肺活量的总体均数相等,μ1 = μ2 = μ3 H 1 :三组总体均数不等或不全相等 α=0.05
(2) 计算检验统计量F 值
本例: C=(74.4)2 / 31=178.560
SS 总= ∑X 2 —C = 189.36 – 178.56= 10.800 df 总 = N-1 = 31-1 =30 SS 组间
266
.956.17811
)9.33(9)89.20(11)7.19()
X (222ij =-++=-=∑
∑C
n
df 组间 = k-1 =3-1 =2
SS 组内= SS 总- SS 组间 = 10.8-9.266=1.534
df 组内= N-k = 31 – 3=28 M S 组间 = SS 组间 / df 组间 = 9.266 / 2 = 4.633 M S 组内 = SS 组内 / df 组间 = 1.534 / 28 =0.0548
F= M S 组间 / M S 组内 = 4.633 /0.054 = 84.544
方差分析结果表
变异来源 SS Df MS F P 总 10.800 30 组间 9.266 2 4.6330 84.544 <0.01 组内 1.534
28
0.0548
(3) 、确定P 值和作出推断结论 查表得P<0.01, 按α=0.05水准拒绝H 0 ,接受H 1,故可以认为三组矿工用力肺活量不同。

(4)、结论表明,总的说来三组矿工用力肺活量有差别,但并不表明任何两组矿工的用力肺活量均有差别,只能说至少有两组矿工的用力肺活量有差别,需进一步作两两比较。

多个样本均数的两两比较
方差分析能够推断多个样本所来自的正态总体其总体均数是否相
等,但不能推断哪些总体均数之间有差别,若用两样本均数比较t 检验(或u 检验)对多个样本均数进行两两检验,则会增大第一类错误,特别是两两比较的次数较多时。

例如六个样本均数做两两比较时,若用t 检验两两比较按排列组合原理:
[]x )!-(n !!
x n C x
n = 则需比较
[]2)!-(6 !2!
626=C 次,若检验水准α每次均取0.05,则每次比较不犯第
一类错误的概率为(1-0.05),15次比较都不犯第一类错误的概率为(1-0.05)15=0.4633,而此时犯第一类错误的概率不再是0.05, 而是
1-(1-0.05)15=0.5367 了。

因此多个样本均数的比较不宜用t 检验。

以下介绍q 检验
1、 多个样本均数间每两个均数之间的比较常用q 检验,也称SNK
(Student-New-man-Keuls)法。

统计量q 值的计算公式为:
S X X q B A x x B A --=
),1
1(2)(n a B
A w X
X b w
X X n n MS S n n n
MS S A A +=
===-- ( n A ≠n B 时)
例:试对四组人群的血清唾液酸含量作两两比较, 计算统计量q 值 (1) 首先将各样本均数按由大到小顺序排列,并编上组次: 组次 1 2 3 4 组别 胃癌组 慢性胃炎组 溃疡病组 正常人组 均数 65.28 46.62 46.18 41.91 由于需反复做两两比较,为避免叙述的重复,列q 检验表
四个样本均数两两比较的q 检验 A 与B (1) B A X X - (2) B
A X X S -
(3) a (4) q 值 (5) q 界值 (6) P (8) 1-4
23.37
0.574
4
40.71
3.85
<0.05
1-3 19.10 0.588 3 32.48 3.49 <0.05 1-2 18.66 0.588 2 31.73 2.89 <0.05 2-4 4.71 0.556 3 8.47 3.49 <0.05 2-3 0.44 0.571 2 0.77 2.89 >0.05 3-4 4.27
0.556
2
7.68
2.89
0.05
(3) 为两对比组样本均数差值的标准误,如第1与第4组样本均数差值的标准误为
574.0)10
1
81(293.2)1
1(24
1=+=+=
-n n MS S wc X X B A
余类推:
2、 多个实验组与一个对照组均数间的比较
医学科研中,有时设若干个实验组和一个对照组,在进行多个样本均数比较时,主要关心各实验组与对照组间有无差别,至于各实验组均数两两之间有无差别并不关心,或留以后研究,可用q ’ 检验(亦称Dunnett t 检验)。

q ’ 检验与q 检验类似,计算统计量q ’ 值的公式为:
c
r X X c
r S X X q --=
),11()(n 2a B
w b w
n
n MS S n n n
MS S c X r X c
X r X +====--。

相关文档
最新文档