高中数学优秀讲义微专题63 立体几何中的建系设点问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微专题63 立体几何解答题的建系设点问题

在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。 一、基础知识:

(一)建立直角坐标系的原则:如何选取坐标轴

1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点

2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:

(1)尽可能的让底面上更多的点位于,x y 轴上

(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件

(3)找对称关系:寻找底面上的点能否存在轴对称特点 3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。

4、同一个几何体可以有不同的建系方法,其坐标也会对应

不同。但是通过坐标所得到的结论(位置关系,角)是一致的。

5、解答题中,在建立空间直角坐标系之前,要先证明所用

坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。

6、与垂直相关的定理与结论: (1)线面垂直:

① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直

② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直): ① 正方形,矩形,直角梯形

② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直

④ 勾股定理逆定理:若2

2

2

AB AC BC +=,则AB AC ⊥

(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点

(1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:

x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z

规律:在哪个轴上,那个位置就有坐标,其余均为0

(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例: 则可快速写出,H I 点的坐标,位置关系清晰明了

111,,0,,1,022H I ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭

2、空间中在底面投影为特殊位置的点:

如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么

1212,x x y y ==(即点与投影点的横纵坐标相同)

由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。如果可以则直接确定了横纵坐标,而竖坐标为该点到底面的距离。例如:正方体中的'B 点,其投影为B ,而()1,1,0B 所以()'

1,1,B z ,而其到底面的距离为1,故坐标为()'

1,1,1B

以上两个类型已经可以囊括大多数几何体中的点,但总还有一些特殊点,那么就要用到第三个方法:

3、需要计算的点

① 中点坐标公式:()()111222,,,,,A x y z B x y z ,则AB 中点121212,,2

22x x y y z z M +++⎛⎫

⎪⎝⎭,

图中的,,,H I E F 等中点坐标均可计算

② 利用向量关系进行计算(先设再求):向量坐标化后,向量的关系也可转化为坐标的关系,进而可以求出一些位置不好的点的坐标,方法通常是先设出所求点的坐标,再选取向量,利用向量关系解出变量的值,例如:求'

A 点的坐标,如果使用向量计算,则设()'

,,A x y z ,可

直接写出()()()'

1,0,0,1,1,0,1,1,1A B B ,观察向量''

AB A B =u u u u r u u u r ,而()0,1,0AB =u u u r ,

()''1,1,1A B x y z =---u u u u r 101110101x x y y z z -==⎧⎧⎪⎪

∴-=⇒=⎨⎨⎪⎪-==⎩⎩

()'1,0,1A ∴

二、典型例题:

例1:在三棱锥P ABC -中,PA ⊥平面ABC ,

90BAC ∠=o

,,,D E F 分别是棱,,AB BC CD 的中点,1,2AB AC PA ===,试建立适当的空间直角坐标系并确定各点坐标 解:PA ⊥Q 平面ABC ,PA AB PA AC ∴⊥⊥

90BAC ∠=o Q ,,PA AB AC ∴两两垂直

以,,AP AB AC 为轴建立直角坐标系

坐标轴上的点:()()()()0,0,0,1,0,0,0,1,0,0,0,2A B C P

中点::D AB 中点1,0,02⎛⎫

⎪⎝⎭

:E BC 中点11,,022⎛⎫

⎪⎝⎭

:F PC 中点10,,12

⎛⎫ ⎪⎝⎭

综上所述:()()()11111,0,0,0,1,0,0,0,2,,0,0,,,0,0,,12

22

2B C P D E F ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭

⎝⎭⎝

小炼有话说:本讲中为了体现某些点坐标的来历,在例题的过程中进行详细书写。这些过程在解答题中可以省略。

例2:在长方体1111ABCD A B C D -中,,E F 分别是棱1,BC CC 上的点,2CF AB CE ==,

1::1:2:4AB AD AA =,建立适当的直角坐标系并写出点的坐标

思路:建系方式显而易见,长方体1,,AA AB AD 两两垂直,本题所给的是线段的比例,如果设

1,2,4AB a AD a AA a ===等,则点的坐标都含有a ,不

便于计算。对待此类问题可以通过设单位长度,从而使得坐标都为具体的数。

解:因为长方体1111ABCD A B C D -

1,,AB AD AA ∴两两垂直

∴以1,,AB AD AA 为轴如图建系,设AB 为单位长度

112,4,1,2

AD AA CF CE ∴====

()()()()()()()11111,0,0,1,2,0,0,2,0,1,0,4,0,0,4,1,2,4,0,2,4B C D B A C D

()31,,0,1,2,12E F ⎛⎫

⎪⎝⎭

例3:如图,在等腰梯形ABCD 中,AB CD ∥,1,60AD DC CB ABC ===∠=o

,CF ⊥ 平面ABCD ,且1CF =,建立适当的直角坐标系并确定各点坐标。

思路:本题直接有一个线面垂直,所以只需在平面ABCD 找过C 的相互垂直的直线即可。由题意,BCD ∠不是直角。所

D

相关文档
最新文档