搬运机械手及其控制系统设计
基于PLC的搬运机械手控制系统设计

基于PLC的搬运机械手控制系统设计搬运机械手是一种自动化设备,广泛应用于工业生产中的物料搬运、装卸、组装等工序。
为了实现搬运机械手的自动化控制,可以采用基于可编程逻辑控制器(PLC)的控制系统。
本文将介绍一个基于PLC的搬运机械手控制系统的设计。
搬运机械手控制系统的主要功能是对机械手的运动进行控制。
基于PLC的控制系统可以实现对机械手的运动、速度和位置等参数进行精确控制,从而提升机械手的工作效率和准确性。
首先,需要确定搬运机械手的运动方式和结构。
常见的机械手运动方式包括直线运动、旋转运动和联动运动等。
根据任务需求,可以选择合适的运动方式和结构。
然后,需要选择合适的PLC设备。
PLC是一种专门用于工业自动化控制的设备,具有高可靠性、灵活性和可扩展性等特点。
根据机械手的规模和工作要求,选择适当的PLC设备。
接下来,需要设计搬运机械手的控制电路。
控制电路是实现机械手运动控制的关键部分,包括传感器、电磁阀、继电器等元件的连接和控制逻辑的设计。
在设计控制逻辑时,可以使用PLC提供的编程软件进行编程。
根据机械手的工作要求和操作流程,编写PLC程序,实现对机械手的自动控制。
此外,还需要设计人机界面(HMI)用于操作和监控机械手的运行状态。
HMI通常使用触摸屏或按钮等输入设备,以及显示屏或指示灯等输出设备。
通过HMI,操作人员可以控制机械手的运动和监控运行状态。
最后,进行系统调试和测试。
在将系统投入使用之前,需要进行调试和测试,确保搬运机械手的运动控制正常,并满足工作要求。
总结起来,基于PLC的搬运机械手控制系统设计包括确定运动方式和结构、选择合适的PLC设备、设计控制电路、编写PLC程序、设计人机界面以及进行系统调试和测试等步骤。
通过PLC控制系统的应用,可以提高机械手的自动化程度,提升生产效率和产品质量。
小型搬运机械手的PLC控制系统设计

小型搬运机械手的PLC控制系统设计
小型搬运机械手的PLC控制系统设计包括以下几个方面:
1. 确定系统需求:首先需要明确机械手的工作任务和工作环境,包
括搬运物品的重量、尺寸和形状,以及工作空间的限制。
2. 选择适当的PLC:根据系统需求选择合适的PLC,考虑其输入输
出点数、通信接口、处理能力和可靠性等因素。
3. 确定传感器和执行器:根据机械手的工作任务选择合适的传感器
和执行器,例如光电传感器、接近开关、压力传感器、伺服电机等。
4. 确定控制策略:根据机械手的工作任务确定控制策略,包括运动
控制、路径规划、物体识别等。
5. 编写PLC程序:根据控制策略编写PLC程序,使用相应的编程语
言(如 ladder diagram、structured text 等),实现机械手的自
动化控制。
6. 连接传感器和执行器:根据PLC的输入输出点数,将传感器和执
行器与PLC连接起来,确保数据的准确传输和控制信号的可靠输出。
7. 调试和测试:完成PLC程序编写后,进行调试和测试,验证系统
的功能和性能是否满足需求,对程序进行优化和修正。
8. 系统集成和实施:将PLC控制系统与机械手进行集成,确保系统
的稳定运行和安全性。
9. 运维和维护:定期对PLC控制系统进行维护和保养,包括检查传
感器和执行器的工作状态,更新PLC程序,修复故障等。
需要注意的是,小型搬运机械手的PLC控制系统设计需要根据具体
的应用场景和要求进行定制,以上仅为一般性的设计步骤和考虑因素,具体设计还需根据实际情况进行调整和优化。
基于PLC的搬运机械手控制系统设计

基于PLC的搬运机械手控制系统设计搬运机械手是工业生产中常用的一种机器人,目的是为了将物品从一个地方搬到另一个地方,以实现生产线的自动化生产。
为了方便操作和控制机械手的运动,我们常使用PLC进行控制。
本文将详细介绍基于PLC的搬运机械手控制系统设计并分为以下几个部分:系统设计、硬件设计、软件设计和测试与优化。
系统设计在设计搬运机械手的控制系统前,需要明确其基本能力以及操作条件。
本文需要实现的是一个能够在工业生产上自动完成货物的移动,如从一个点到达另一个点,或从一个点将货物取下并放入另一个点的机械手控制系统。
硬件设计在硬件方面,机械手的结构以及体积会影响到设计的复杂度和控制的难度。
机械手的操作部分包括控制电路、执行器驱动电路、电源等。
现在,我们来介绍每个部分的主要内容。
控制电路部分包括PLC、IO模块等。
PLC是机械手控制的核心,负责读取传感器信号并控制执行器的动作。
IO模块则负责将信号转换为PLC能接受的信号进行处理。
执行器驱动电路部分主要负责控制电机动作。
电机的选择与应用需要根据机械手的具体要求而定,需要注意的是,电机的转矩和功率需要协调匹配,还需要注意电机的供电和控制电路之间的配合问题。
电源系统是机械手控制系统的基础之一,电源的大小和控制器的匹配与应用直接关系到系统的正常运行。
需要根据需要提供相应的电压以及功率供给系统。
软件设计在软件设计方面,我们借助PLC程序进行控制,根据机械手的执行需要编写相应的程序,实现机械手的移动、旋转、夹取或放置操作。
具体流程如下:1. 初始化- 设定初始位置和状态等参数;2. 等待操作信号- 根据设定的信号进行等待;3. 传感器检测- 检测对象的位置和状态;4. 判断操作- 根据传感器检测结果进行相应操作;5. 输出控制信号- 控制执行器动作,改变机械手所处的位置和状态。
测试与优化测试与优化是机械手控制系统设计的重要一步,目的是检查系统的稳定性和准确性。
在测试过程中,需要测试机械手的各种运动状态,比如加速度、负载、速度等参数,以确定机械手的质量和性能优化方向。
搬运机械手电气控制系统设计

目录第1章概述 (1)1.1 PLC简介 (1)1.2机械手概述 (1)1.3 机械手控制系统设计步骤 (2)第2章控制方案论证 (3)2.1 搬运机械手的设计原理 (3)2.2 PLC的选取 (4)第3章控制系统硬件电路设计 (7)3.1传送带A,B主电路图及传送带B的控制电路图 (7)3.2PLC控制面板及接口电路图 (8)第4章控制系统软件设计 (10)4.1控制系统的软件设计原理 (10)4.2梯形图 (12)第5章控制系统调试 (14)5.1 控制系统的调试过程 (14)总结 (15)参考文献 (16)附录 (17)第1章概述1.1PLC简介自二十世纪六十年代美国推出可编程逻辑控制器(Programmable Logic Controller,PLC)取代传统继电器控制装置以来,PLC得到了快速发展,在世界各地得到了广泛应用。
同时,PLC的功能也不断完善。
随着计算机技术、信号处理技术、控制技术网络技术的不断发展和用户需求的不断提高,PLC在开关量处理的基础上增加了模拟量处理和运动控制等功能。
今天的PLC 不再局限于逻辑控制,在运动控制、过程控制等领域也发挥着十分重要的作用。
通用PLC应用于专用设备时可以认为它就是一个嵌入式控制器,但PLC相对一般嵌入式控制器而方具有更高的可靠性和更好的稳定性。
实际工作中碰到的一些用户原来采用嵌入式控制器,现在正逐步用通用PLC或定制PLC取代嵌入式控制器。
1.2机械手概述工业机械手是近几十年发展起来的一种高科技自动化生产设备。
工业机械手是工业机器人的一个重要分支。
它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。
机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。
机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。
项目10 PLC控制搬运机械手设计

• 1.垂直气缸、水平气缸选择 • (1)类型选择。 • 现有的工作要求和条件如下: • 1)要求当气缸到达行程终端时无冲击现象和撞击噪声,因此选择缓冲
气缸; • 2)要求重量轻,因此选择轻型气缸; • 3)要求安装空间窄且行程短,因此可选择薄型气缸; • 4)若有横向负载,可选带导杆气缸; • 5)要求制动精度高,应选择锁紧气缸; • 6)若不需要活塞杆旋转,可选择杆不回转气缸。
上一页 下一页 返回
10. 1搬运机械手设计案例导入
• 10. 1. 3材料选择
• 机器人手臂的材料应根据手臂的工作状况来选择,并满足机器人的设 计及制作要求。从设计的思想出发,机器人的手臂要求完成各种运动。 因此,对材料的一个要求是作为运动的部件,它应是轻型材料。另一 方面,手臂在运动过程中往往会产生振动,这必然会大大降低它的运 动精度,所以在选择材料时,需要对质量、刚度、阻尼进行综合考虑, 以便有效地提高手臂的动态性能。此外,机器人手臂选用的材料与一 般的结构材料不同。机器人手臂是一种伺服机构,要受到控制,必须 考虑它的可控性。可控性还要与材料的可加工性、结构性、质量等性 质一起考虑。总之,在选择机器人手臂材料时,要考虑强度、刚度、 重量、弹性、抗振性、外观及价格等多方面因素,下面为几种常见机 器人手臂材料:
上一页 下一页 返回
10. 1搬运机械手设计案例导入
• (1)碳素结构钢和合金结构钢等高强度钢:这类材料强度好,尤其是合 金结构钢强度增加了4~ 5倍,弹性模量大、抗变形能力强,是应用最 为广泛的材料。
• (2)铝、铝合金及其他轻合金材料:其共同特点是重量轻,弹性模量不 大,但是材料密度小,其(E/P)之比仍可与钢材相比。
上一页 下一页 返回
简易物料搬运机械手的PLC控制系统设计

课程设计电气控制系统与PLC课程设计题目:简易物料搬运机械手的PLC控制系统设计系别:机械工程学院专业:机械设计制造及其自动化班级:机自081班时间:2011年12月1日指导教师:冯治国1.设计的目的1通过课程设计培养学生综合运用所学的基础理论、基础知识及基本技能进行分析和解决实际问题的能力。
2使学生受到PLC系统开发的综合训练,达到能够进行PLC系统设计和实施的目的。
3使学生掌握简易机械手的电器工作原理。
2设计内容1.目录2.原理介绍和分析部分3.根据要求选择系统方案4.PLC选择及I/O及其它PLC元器件分配5.程序框图和程序设计6.心得体会。
3.设计任务和要求1.提交报告一份(主要组成:功能阐述、流程图、I/O分配、电气原理图、梯形图)2.字数>30003.报告相似程度>80%,按不及格处理4.交作业时间:12.34器材简易物料搬运机械手5参考资料1宫淑贞徐世许主编《可编程控制器原理及应用》北京人民邮电出版社 2009.4一、机械手的控制及说明一、课题内容1.如图所示为一简易物料搬运机械手的工艺流程图。
该机械手是一个水平/垂直位移的机械设备,其操作是将工件从左工作台搬运到右工作台,由光耦合器VLC来检测工作台上有没有工件。
机械手通常位于原点,它的动作全部由气缸驱动,而气缸则由相应的电磁阀控制。
其中,上升/下降和左移/右移分别由双线圈二位电磁阀控制,放松/夹紧由一个单线圈二位电磁阀(称为夹紧电磁阀)控制。
机械手工作循环过程示意图如图2所示。
从图中可见,机械手工作循环过程主要有8个动作,即为:图1 机械手结构示意图二机械手的控制系统要求分析机械手动作示意图如图1所示。
其全部动作由汽缸驱动,而汽缸又由相应的电磁阀和继电器控制。
其中,上升/下降和左移/右移分别由双线圈两位继电器控制。
下降继电器线圈通电时,机械手下降;下降继电器线圈断电时,机械手下降停止。
只有上升继电器线圈通电时,机械手才上升;上升继电器线圈断电时,机械手上升停止。
基于PLC的搬运机械手控制系统设计

基于PLC的搬运机械手控制系统设计PLC(可编程逻辑控制器)是一种广泛应用于自动化领域中的控制设备,它拥有可编程的逻辑控制功能,具有高精度、高可靠性、动态稳定性好等特点。
在制造业中,搬运机械手广泛应用于对生产线上产品的搬运,包装和装载等操作。
基于PLC 的搬运机械手控制系统就是将PLC作为核心控制器,实现对搬运机械手的控制和调节,从而提高其工作效率和精度。
搬运机械手控制系统设计基于PLC的搬运机械手控制系统的设计由以下几个部分组成:1. 机械结构设计:机械结构是搬运机械手控制系统的基本构成部分,包括机械臂、传动机构和夹持机构等。
机械结构的设计需要考虑机械臂的长度、强度、重量、运动速度和角度等参数。
传动机构包括电机、减速器、传动轮等,其作用是将电机转换为机械臂的运动。
夹持机构用于夹持待处理的物品,实现搬运和装载等操作。
2. 电气设计:电气设计包括控制系统的电源、控制器、传感器和执行器等。
控制系统的电源是供电保障,必须保证输入电压稳定。
控制器根据输入信号实现对机械手的控制,包括控制信号的生成、控制程序的调试和PID调节等。
传感器用于实时获取机械手的位置、状态和运动方向等信息。
执行器执行机械手的运动和夹持等功能。
3. 软件设计:PLC控制器是基于程序的工作,程序的编写需要考虑搬运机械手的不同工作场景和判据,以实现自动化控制。
软件设计主要包括程序设计和逻辑控制等。
程序设计是根据搬运机械手的功能和运动方式编写程序,以实现对机械手的控制、调节和监测。
逻辑控制是根据具体工作场景进行逻辑判断,实现机械手的自动化控制动作。
基于PLC的搬运机械手控制系统的特点基于PLC的搬运机械手控制系统在制造业中得到广泛应用,其具有以下特点:1. 稳定性好:PLC控制器控制器稳定性好,能够长时间连续工作,不易出现故障。
2. 精度高:PLC控制器具有高精度的控制能力,能够控制搬运机械手的精度和速度,以及对物品的判别和定位等。
3. 可编程性强:PLC控制器采用可编程的逻辑控制,能够为不同的工作场景编写程序,实现自动化控制。
搬运机械手的控制系统设计

搬运机械手的控制系统设计简介搬运机械手是一种广泛应用于工业生产中的自动化设备,它可以替代人工完成重复性的搬运工作,提高生产效率和工作安全性。
对于搬运机械手的控制系统设计来说,可靠性和精确性是非常重要的考虑因素。
本文将介绍搬运机械手控制系统的设计要点和注意事项。
控制系统架构搬运机械手的控制系统一般包括硬件和软件两部分。
硬件部分主要包括传感器、执行器、电机驱动器等设备,软件部分主要包括控制算法和用户界面。
在设计控制系统时,需要充分考虑硬件和软件之间的协作和配合,以实现机械手的准确操控和高效运行。
传感器选择传感器在搬运机械手的控制系统中起着至关重要的作用,它们可以提供关键的位置、力量和速度信息,以便控制系统做出相应的调整和动作。
常用的传感器包括位置传感器、力传感器和速度传感器。
在选择传感器时,需要考虑其精度、稳定性和可靠性等因素,并确保其适应环境条件。
执行器设计执行器是机械手控制系统中的关键部件,它决定了机械手的动作能力和精确度。
在执行器的设计中,通常会考虑以下几个方面:•载荷能力:根据搬运物体的重量和尺寸确定执行器的最大载荷能力。
•动作速度:根据需要搬运的速度要求确定执行器的最大速度。
•精确度:采用高精度的执行器,以确保机械手可以精确地定位和操作。
•可靠性:执行器需要具备较高的可靠性,以保证机械手的稳定性和工作安全性。
控制算法设计控制算法是机械手控制系统中的核心部分,它决定了机械手的运动轨迹和动作方式。
常见的控制算法包括PID控制、模糊控制和神经网络控制等。
在选择和设计控制算法时,需根据机械手的应用需求和特点进行综合考虑,并进行系统的建模和仿真实验以验证算法的有效性和性能。
用户界面设计搬运机械手通常会配备用户界面,以便操作人员对机械手进行监控和控制。
界面设计应简洁明了,要能够清晰显示机械手的状态和参数信息,并提供灵活的操作和设置选项。
同时,需要保证用户界面的稳定性和可靠性,以确保操作人员能够正确和及时地控制机械手的运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
搬运机械手及其控制系统设计近20年来,气动技术的应用领域迅速拓宽,尤其是在各种自动化生产线上得到广泛应用。
电气可编程控制技术与气动技术相结合,使整个系统自动化程度更高,控制方式更灵活,性能更加可靠;气动机械手、柔性自动生产线的迅速发展,对气动技术提出了更多更高的要求。
本课题设计源于生产线中的搬运站,传动方式采用气压传动,即用各种气缸来控制机械手的动作,控制部分结合可编程控制技术编写程序进行控制来实现两站之间的搬运。
机械手主要由手部、运动机构和控制系统三大部分组成。
手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。
运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。
运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。
本课题中设计的搬运机械手主要有旋转、伸缩、升降、夹紧四个自由度组成。
课题从机械部分、气动部分和控制三部分对气动机械手进行设计,要求机械手实现上下站之间的搬运功能。
机械部分重点是总体结构的设计、各个气缸的选择和安装设计、各零部件的结构设计等,气动部分主要是给出了搬运机械手的气动原理图,而控制部分则主要是程序的设计和调试,论文采用西门子(S7-200)指令编程,给出了相应的梯形图、语句表和简单的流程图。
由于气动机械手有结构简单、易实现无级调速、易实现过载保护、易实现复杂的动作等诸多独特的优点,气动机械手正在向重复高精度,模块化,无给油化,机电气一体化方向发展。
可以预见,在不久的将来,气动机械手将越来越广泛地进人工业、军事、航空、医疗、生活等领域。
- IV -1.1 课题的背景和意义近20年来,气动技术的应用领域迅速拓宽,尤其是在各种自动化生产线上得到广泛应用。
电气可编程控制技术与气动技术相结合,使整个系统自动化程度更高,控制方式更灵活,性能更加可靠;气动机械手、柔性自动生产线的迅速发展,对气动技术提出了更多更高的要求。
自从机械手问世以来,相应的各种难题迎刃而解。
能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。
它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。
通用机械手因具有独立的控制系统、程序可变、可在空间抓、放、搬运物体,动作灵活多样,适用于可变换生产品种的中、小批量自动化生产,广泛应用于柔性自动线。
近年来随着气动技术的迅速发展,气动元件及气动自动化技术已越来越多地应用于机械手中,构成气动机械手。
气动机械手的全部动作由电磁阀控制的气缸驱动。
其中,上升、下降和左移、右移分别由双线圈两位电磁阀控制,机械手的放松、夹紧也由双线圈两位电磁阀(夹紧电磁阀)控制。
机械手一般由执行系统、驱动系统、控制系统和人工智能系统组成,主要完成移动、转动、抓取等动作。
本课题来源于实验课题,模拟生产线由六站组成,各站可独立,可容易的连接在一起组成一条自动加工生产线,。
该课题要求设计搬运站,搬运机械手将工件从上料检测站搬至加工站。
搬运过程中能实现抓取、提升、回转、下降、松开等动作,且动作顺序、动作速度可调。
用气动驱动,PLC控制。
包括总体设计,各执行机构设计,气动系统设计、计算,控制系统设计。
技术要求有以下几点:a.装卸、调整方便;b.结构简单,工作安全可靠;c.设计合理,尽量使用标准件,以降低制造成本;d.用PLC对机械手进行控制。
总体设计思路:a.确定总体结构的组成、框架及各部分的功能与工作目标。
b.根据设计任务书的要求,初步计算各工艺参数和结构参数。
c.设计机体分级部分的结构及主要零件结构。
d.主要分级结构部分的主要零件强度和刚度,检查其加工工艺性和装配工艺性。
e.保证与其它部分的接口合理。
f.根据设计结果,修正设计参数。
- V -1.2 课题国内外发展现状国外机器人领域发展近几年有如下几个趋势:a.工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的65万美元。
b.机械结构向模块化、可重构化发展。
例如关节模块中的伺服电机、减速机、检测系统三位一体化:由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。
c.工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构:大大提高了系统的可靠性、易操作性和可维修性。
d.机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中已有成熟应用。
e.虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制,如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。
f.当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。
美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最著名实例。
g.机器人化机械开始兴起。
从94年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。
我国的工业机器人从80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科技攻关,目前己基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;其中有130多台套喷漆机器人在二十余家企业的近30条自动喷漆生产线(站)上获得规模应用,弧焊机器人己应用在汽车制造厂的焊装线上。
但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如:可靠性低于国外产品:机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;在应用规模上,我国己安装的国产工- VI -业机器人约200台,约占全球已安装台数的万分之四。
以上原因主要是没有形成机器人产业,当前我国的机器人生产都是应用户的要求,“一客户,一次重新设计”,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。
因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模块化设计,积极推进产业化进程.我国的智能机器人和特种机器人在“863”计划的支持下,也取得了不少成果。
其中最为突出的是水下机器人,6000m水下无缆机器人的成果居世界领先水平,还开发出直接遥控机器人、双臂协调控制机器人、爬壁机器人、管道机器人等机种:在机器人视觉、力觉、触觉、声觉等基础技术的开发应用上开展了不少工作,有了一定的发展基础。
但是在多传感器信息融合控制技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发应用方面则刚刚起步,与国外先进水平差距较大,需要在原有成绩的基础上,有重点地系统攻关,才能形成系统配套可供实用的技术和产品,以期在“十五”后期立于世界先进行列之中。
第二章总体方案确定2.1 总体方案论证机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等所组成。
对气动机械手的基本要求是能快速、准确地拾一放和搬运物件,这就要求它们具有高精度、快速反应、一定的承载能力、足够的工作空间和灵活的自由度及在任意位置都能自动定位等特性。
设计气动机械手的原则是:充分分析作业对象(工件)的作业技术要求,拟定最合理的作业工序和工艺,并满足系统功能要求和环境条件;明确工件的结构形状和材料特性,定位精度要求,抓取、搬运时的受力特性、尺寸和质量参数等,从而进一步确定对机械手结构及运行控制的要求;尽量选用定型的标准件,简化设计制造过程,兼顾通用性和专用性,并能实现柔性转换和编程控制.本次设计的机械手是通用气动机械手,是一种适合于小批生产的、可以变动作程序的自动搬运或操作设备生产场合。
- VII -2.1.1 机械手手臂结构方案设计按照抓取工件的要求,本机械手的手臂有四个自由度,即手臂的夹紧、左右回转、左右伸缩和升降运动。
手臂的回转和升降运动是通过立柱来实现的,立柱的横向移动即为手臂的手臂的左右伸缩,手臂的各种运动由气缸来实现2.1.2 机械手驱动方案设计气压传动的优点:1.对于传动形式而言,气缸作为线性驱动器可在空间的任意位置组建它所需的运动轨迹,安装维护简单;2.工作介质是取之不尽、用之不竭的空气,空气本身不花钱。
排气处理简单,不污染环境,成本低。
压力等级低,使用安全;3.气缸动作速度一般为50~500mm/s,比液压和电气方式的动作速度快,其间,通过单向节流阀,可使气缸速度无级调节;4.可靠性高,使用寿命长。
电器元件的有效动作数约为数百万次,而进口的一般电磁阀的寿命大于3000万次,小型阀超过一亿次;5.利用空气的可压缩性,可储存能量,实现集中供气;6.全气动控制具有防火、防爆、耐潮的能力。
与液压方式相比,气动方式可在高温场合使用;7.由于空气损失小,压缩空气可集中供应,远距离输送。
根据以上优点可知道气压传动系统的动作迅速,反应灵敏,阻力损失和泄漏较小,成本低廉因此本机械手采用气压传动方式。
2.1.3 机械手控制方案设计综合分析机械手的动作要求,PLC在机械手中需要完成的控制功能较多,控制精度较高,运算速度较快且具有数据处理能力,并考虑整个系统的经济和技术指标,由于PLC的输出电流较小,需要用功率模块来控制比例液压阀,选用西门子公司的S7-200系CPU226型PLC,其I/O功能和指令系统都能满足对该机械手的控制要求。
控制按钮、各处的行程开关及压力继电器等开关量信号直接与PLC的输入端子相连,PLC的开关量输出端子直接与各个电磁阀相连,用PLC上所带的24V电源或外接24V电源驱动,采用编程软件(STEP 7-Micro/WIN V4.4版)进行编程和运行监控。
- VIII -2.1.4 机械手主要参数a.主参数机械手的最大抓重是其规格的主参数,本设计机械手最大抓重以1kg为数最多。
故该机械手主参数定为1kg。
b.基本参数运动速度是机械手主要的基本参数。
操作节拍对机械手速度提出了要求,设计速度过低限制了它的使用范围。
而影响机械手动作快慢的主要因素是手臂回转的速度。
该机械手最大升降速度设计为100mm/s,最大回转速度设计为450°/s。
平均升降速度为80m/s,平均回转速度为90°/s。