切线的性质及判定

合集下载

切线的性质与判定

切线的性质与判定

P 图1切线的性质与判定直线与圆相切是直线与圆的特殊位置关系,有关的性质与判定也是圆中重点知识,现举例说明,供大家参考.一、切线性质的应用例1如图1,AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连BC .若∠P=30º,求∠B 的度数.分析:要求∠B 周角的2倍”,因此∠AOC=2∠B ,所以只要求出∠AOC 的度数,而PA 是⊙O 切线,根据圆的切线性质知△PAO 是直角三角形,而∠P 知,这样根据“直角三角形两锐角互余”即可求出∠B 的度数. 解:因为PA 切⊙O 于A ,AB 是⊙O 的直径,所以OA ⊥PA ,即∠PAO=90º.因为∠P=30º,所以∠AOC =90º-∠P=90º-30º=60º.又因为∠AOC=2∠B ,所以∠B=30º.点评:“圆的切线垂直于经过切点的半径”,这一性质在求角的度数和线段长度中有着广泛的应用.二、切线的判定例2(兴义)如图2,AB 是⊙O 的直径,点P 在BA ∠BPC=30°.求证:PC 是⊙O 的切线.分析:由于题目中没有明确直线PC 与⊙O 因为∠BPC=30°,所以OD=12OP .因为AP=12AB AP=OA=12OP .所以OD= OA ,即圆心O 到直线PC O 的切线.点评:圆的切线的判定常见方法有两种类型:一当已知条件中已明确给出直线与圆的公共点时,常采用连接这点和圆心这条辅助线,去证明这个半径垂直于已知直线.这种方法简称“连半径,证垂直”.二当已知条件中没有明确给出直线与圆的公共点时,常采用过圆心作直线的垂线段这条辅助线,去证明垂线段的长度等于圆的半径长.这种方法简称“作垂直,证半径”.本例属于第二种类型.。

切线的定义和判定定理

切线的定义和判定定理

切线的定义和判定定理切线的定义和判定定理是数学中关于圆的切线的重要知识点。

以下是关于这个主题的详细解释。

一、切线的定义切线与圆的定义是几何学中的基本概念,对于每一个圆来说,其切线是指与圆只有一个公共点的直线。

这个公共点被称为切点,切线与圆的切点是唯一的。

在二维平面上,如果一条直线与圆有且仅有一个交点,则这条直线被称为圆的切线。

切线的性质:切线与圆只有一个交点,即切点。

切线与经过切点的半径垂直。

切线的斜率等于经过切点的半径的斜率。

二、切线的判定定理判定定理一:定义判定法,如果直线上的每一个点都位于圆外,则直线为切线。

这是最直接的判定方法,也是最常用的。

判定定理二:半径垂直法,如果直线经过半径的外端并且垂直于该半径,则直线为切线。

这个判定方法通常用于证明过程中,尤其是在解题时,可以根据已知条件证明某直线满足这个判定定理。

判定定理三:角平分线法,如果直线平分圆的任意一条弦(非直径),并且垂直于该弦,则直线为切线。

这个判定方法在一些特殊情况下非常有用,可以通过证明某直线满足这个判定定理来证明某直线为切线。

在具体的应用中,可以根据题目的条件和要求选择合适的判定方法来确定切线的位置和性质。

同时,也要注意切线与半径、弦之间的关系,以及切线与其他几何元素之间的联系,以便更好地理解和掌握切线的性质和判定定理。

在实际应用中,了解和掌握切线的性质和判定定理是非常重要的。

在解析几何、平面几何、圆和圆锥曲线等学科中,都需要用到这些知识点来解决相关问题。

通过深入理解切线的定义和判定定理,我们可以更好地理解和应用几何学的其他概念和定理,从而更好地解决各种数学问题。

此外,切线的性质和判定定理也在其他领域有着广泛的应用。

例如,在物理学中,切线性质可以用于研究物体运动轨迹的变化;在工程学中,判定定理可以用于确定机械零件的尺寸和位置;在经济学中,可以用于研究供需关系和市场均衡等等。

因此,深入理解切线的定义和判定定理不仅可以提高数学素养,也可以为其他学科的学习和研究提供有益的帮助。

圆的切线性质与判定

圆的切线性质与判定

圆的切线性质与判定圆是平面上具有特殊性质的图形,它有着多种有趣的性质与判定方法。

其中,圆的切线性质是一项重要的研究内容,具有广泛的应用价值。

本文将从圆的切线的定义开始,逐步介绍圆的切线的性质与判定方法。

一、圆的切线定义切线是一条直线,与圆的某一点相切,且与圆在该点处的切点处于圆的内部。

切点即为切线与圆的交点,切线与半径的夹角为直角。

圆的切线是圆与切点处切线共线的直线。

二、圆的切线性质1. 切线与半径的关系在圆上,以切点为顶点的切线与半径垂直。

2. 切线长度圆的切线长度等于切点到圆心的距离的两倍。

3. 切线的唯一性一个圆上的切线最多只能有两条,并且与该圆在切点处共线。

4. 外切线与内切线若一条直线与圆有且仅有一个公共切点,则称该直线为圆的外切线;若一条直线与圆有两个公共切点,则称该直线为圆的内切线。

5. 切线相交性质若两条切线与圆的切点不同,则这两条切线相交于圆的外部;若两条切线与圆的切点相同,则这两条切线相交于圆的内部。

三、圆的切线判定方法1. 分析法根据切线的定义,通过分析问题中的圆与切点的位置关系,可以判断出切线的存在与否。

2. 考察斜率法假设切点的坐标为(x1, y1),圆心的坐标为(a, b),可以根据斜率公式计算切线的斜率,若斜率存在且符合条件,则该直线为圆的切线。

3. 使用代数方程法对于已知的圆方程和直线方程,可以通过联立方程求解的方式来得到切线方程。

通过判断解的情况,可以判定直线与圆的关系。

四、应用举例1. 圆的切线应用于建筑设计中,可以帮助确定柱体或钟表的刚性支撑结构。

2. 在地理测量学中,圆的切线可以用于研究山脉的坡度和高度。

3. 圆的切线应用于计算机图形学中,用于控制曲线与圆弧的形状和运动轨迹。

总结:圆的切线性质与判定是一个重要且有趣的数学问题,它具有广泛的应用领域。

通过切线的定义和性质,我们可以了解切线在圆上的位置关系和特点。

掌握圆的切线判定方法,可以应用于实际问题的求解和分析中。

圆的切线性质与判定

圆的切线性质与判定
小试牛刀
例2:如图,已知:AB=AC,点O在AB上,⊙O过点B,分别与边BC、AB交于D、E两点,过D点作DF⊥AC于F, (1)求证:DF是⊙O的切线;
证明:连结OD, ∵OB=OD,∴∠ODB=∠B 又∵AB=AC,∴∠C=∠B ∴∠ODB=∠C ∴OD∥AC 又∵DF⊥AC ∴∠DFC=90° ∴∠ODF=∠DFC=90° ∴DF⊥OD ∴DF为⊙O的切线
注意:确定唯一公共点,可证明直线和圆相切
例1:直线l和⊙O的公共点的个数为m,且m满足方程 m2+2m- 3=0, 试判断直线l和⊙ O的位置关系,并 说明理由.
例3.如图,直线y=- x+4与y轴交于点A,与x轴交于 点B,以点C( ,0)为圆心,OC的长为半径作⊙C, 证明:AB是⊙C的切线。 M 分析:由于不知AB和⊙C是否有公共点,故考虑过C作CM⊥AB于M,再证CM为⊙C的半径即可
小结一
确定唯一公共点,证切线
无交点,作垂直,证半径
有交点,连半径,证垂直
证明切线的一般方法简单表述为:
小试牛刀
例3:如图,已知:AB=AC,点O在AB上,⊙O过点B,分别与边BC、AB交于D、E两点,过D点作DF⊥AC于F,
(2)连结OP ∵AC与⊙O相切于点P,∴OP⊥AC 由(1)可知OD∥AC,且DF⊥AC, 故四边形ODFP为正方形 ∴PF=OD=OB=3 设AC=x,则在Rt△APO中有 AP2+OP2=OA2 即(x-4)2+32=(x-3)2 解得x=8 ∴AC=8
是圆的切线
是圆的切线
是圆的切线
3、圆的切线性质定理:圆的切线垂直于经过切点的半径。 辅助线作法:连接圆心与切点可得半径与切线垂直。 即“连半径,得垂直”。

切线的判定和性质

切线的判定和性质

切线的判定和性质
切线的性质与判定
1.主要性质
(1)切线和圆只有一个公共点;
(2)切线和圆心的距离等于圆的半径;
(3)切线垂直于经过切点的半径;
(4)经过圆心垂直于切线的直线必过切点;
(5)经过切点垂直于切线的直线必过圆心;
(6)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

其中(1)是由切线的定义得到的,(2)是由直线和圆的位置关系定理得到的,(6)是由相似三角形推得的,也就是切割线定理。

2.判定
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

圆的切线垂直于这个圆过切点的半径。

《切线的判定》课件

《切线的判定》课件

在求解切点弦问题中的应用
切点弦方程
通过切点可以求出过该点的弦的方程,进而求出弦长或与弦 有关的量。
切点弦与切线的关系
利用切点弦与切线的关系,可以求解与切点弦有关的问题。
04 切线定理的证明
切线的判定定理的证明
切线的判定定理
如果一条直线与圆只有一个交点,则 这条直线是圆的切线。
证明方法
反证法。假设直线与圆有两个交点, 则直线与圆相交而非相切,与题目条 件矛盾。
利用切线的性质判定
切线的性质
切线与半径垂直,因此可以利用 这一性质判定切线。
判定方法
若直线与圆的半径垂直,则该直 线为圆的切线。
利用辅助线判定
辅助线的作法
在圆上任取一点,连接这点与圆心, 将连线与待判断的直线相交于一点, 然后过该点作直线的垂线,与圆相交 于另一点,连接圆心与该点。
判定方法
若所作的辅助线与待判断的直线重合 ,则该直线为圆的切线。
切线的判定定理
若直线与圆有交点,且连接交点和圆心的线段垂直于交点所连的直线,则该直线为圆的 切线。
证明过程
利用反证法,假设直线不是切线,则它与圆有两个交点,形成两个弦,由垂径定理可知 ,过圆心作弦的垂线,则这条垂线平分弦,但由题意知这条垂线同时也是连接圆心和切
点的线段,因此弦也被这条线平分,这与题意矛盾,因此假设不成立,直线为切线。
在三角函数中,切线定理可以用来求 解三角函数的值,或者用来证明某个 三角函数表达式等于零。
切线定理也可以用来求解三角函数的 单调性、周期性和最值等问题。
感谢您的观看
THANKS
如果一条直线与圆相交于两点,且 这两点与圆心构成的角平分线与该 直线垂直,则该直线是圆的切线。
切线定理在解析几何中的应用

圆的切线:切线的定义、性质和求解方法

圆的切线:切线的定义、性质和求解方法

圆的切线:切线的定义、性质和求解方法切线是与圆相切于一点且只与圆的该点相交一次的直线。

切线与半径垂直,也就是与半径所在的直径形成直角。

切线的定义给定一个圆,如果通过圆上的一点作两条直线,其中一条与半径垂直且只与该点相交一次,那么称这条直线为这个圆的一条切线。

切线的性质1. 切线与圆相切于一点,且只与圆的该点相交一次。

2. 切线与半径垂直,即与半径所在的直径形成直角。

3. 以切点为端点的切线被称为切线段。

4. 圆心到切点的线段被称为切线的斜率。

切线的求解方法求解圆的切线可以根据以下步骤进行:1. 给定一个圆和切点P,连接圆心O与切点P,得到半径OP。

2. 利用切线性质,使切线与半径OP垂直,得到直角三角形。

3. 根据已知条件,计算切线的长度。

切线的长度可以通过利用勾股定理或几何构造法进行计算。

勾股定理法求切线长度1. 已知圆的半径r和切点与圆心的连线OP的长度d。

2. 根据勾股定理,有切线长度s的平方等于d的平方减去圆的半径r的平方,即s^2 = d^2 - r^2。

3. 取根号可以得到切线的长度s。

几何构造法求切线长度1. 已知圆的半径r和切点与圆心的连线OP的长度d。

2. 以切点为圆心,作一条半径为r的圆。

3. 连接圆心与新圆上与切点P相对应的点Q,得到直角三角形OPQ。

4. 根据直角三角形OPQ中的三边关系,可以计算出切线的长度s。

这是圆的切线的定义、性质和求解方法的简要介绍。

掌握这些基本概念和求解方法,可以帮助我们更好地理解和应用切线在几何学中的重要性。

切线的性质

切线的性质
O l A
切线必须同时满足两条:①经过半径 外端;②垂直于这条半径.
如图,如果直线l是⊙O的切线,切点为A, 那么半径OA与直线l是不是一定垂直呢?
∵ l是⊙O的切线,切点为A
O
l A
∴ l ⊥OA
切线的性质定理:圆的
切线垂直于过切点的半径。
数学语言:
O l A
∵ l是⊙O的切线,切点为A
∴ l ⊥OA
A P
C B
O
如图,已知:在△ABC中,∠B=90°,O是AB上一 点,以O为圆心,OB为半径的圆交AB于点E,切AC 与点D。求证:DE∥OC
C 证明:连接BD. ∵∠ABC=90°,OB为⊙O的半径 ∴CB是⊙O的切线 ∵AC是⊙O的切线,D是切点 ∴CD=CB,∠1=∠2 ∴OC⊥BD ∵BE是⊙O的直径 ∴∠BDE=90°,即DE⊥BD ∴DE∥OC A E D O
勾股(逆)定理 切 线 判 定
∴C(-2,0), P(0,-4) 数据“放入”图中。猜想直线 又∵ D(0,1) OC=2, OP=4 ,OD=1, DP=5 PC 与⊙ D∴ 相切。怎么证?联 又∵在Rt△COD中, CD2=OC2+OD2=4+1=5 想证明切线的两种方法。点 在Rt△COP中, CP2=OC2+OP2=4+16=20 C 在圆上,即证:∠ DCP=90° 在△ CPD中, CD2+CP2=5+20=25, DP2=25 2 2 2 ∴ CD +CP =DP 利用勾股及逆定理可得。
即:△CDP为直角三角形,且∠DCP=90° ∴PC为⊙D的切线.
已知,如图,D(0,1),⊙D交y轴于A、B两点,交x轴负 半轴于C点,过C点的直线:y=-2x-4与y轴交于P. ⑵判断在直线PC上是否存在点E,使得S△EOC= 4S△CDO,若存在,求出点E的坐标;若不存在, 请说明理由.

初中数学切线的性质和判定

初中数学切线的性质和判定

图29-3
线的性质和判定
解 析 (1)由切线的性质,即可得OA⊥PA,OB⊥PB,又由圆周角 定理,求得∠AOB的度数,继而求得∠APB的大小; (2)由切线长定理,可求得∠APO的度数,继而求得∠AOP的度数,易得 PO是AB的垂直平分线,然后利用三角函数的性质,求得AD与OD的长.
┃ 切线的性质和判定
切线的性质和判定
中考预测
如图 29-6,△ABC 内接于⊙O,∠B=60°,
CD 是⊙O 的直径,点 P 是 CD 延长线上的一点,
且 AP=AC.
(1)求证:PA 是⊙O 的切线;
(2)若 PD= 3,求⊙O 的直径.
图29-6
切线的性质和判定

(1)证明:连接 OA, ∵∠B=60°,
∴∠AOC=2∠B=120°.
切线的性质和判定
[方法点析] 解三角形内切圆问题,主要是切线长定理的运 用.解决此类问题,常转化到直角三角形中,利用勾股定理或 直角三角形的性质及三角函数等解决.
┃ 切线的性质和判定
回归教材
切线问题中必需的半径
教材母题
如图 29-5,设 AB 是⊙O 的直径,如 果圆上点 D 恰使∠ADC=∠B,那么直线 CD 与⊙O 相切吗?若相切,请给出证明.
∴S△AOB=12×AB×OD=12×10 3×5=25 3(cm2).
切线的性质和判定
[方法点析] (1)利用过圆外一点作圆的两条切线,这两条切 线的长相等,是解题的基本方法.(2)利用方程思想求切线长常 与勾股定理,切线长定理,圆的半径相等紧密相连.
切线的性质和判定
探究四 三角形的内切圆
命题角度: 1. 三角形的内切圆的定义; 2. 求三角形的内切圆的半径.

《切线的性质和判定》PPT课件

《切线的性质和判定》PPT课件
常添辅助线
连接圆心和切点
垂直于
切点
圆心
惟一
半径
垂直于
┃考点聚焦
考点2 切线长及切线长定理
切线长
在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长
切线长定理
从圆外一点引圆的两条切线,它们的切线长________,圆心和这一点的连线________两条切线的夹角
基本图形
如图所示,点P是⊙O外一点,PA、PB切⊙O于点A、B,AB交PO于点C,则有如下结论:(1)PA=PB;(2)∠APO=∠BPO=∠OAC=∠OBC,∠AOP=∠BOP=∠CAP=∠CBP
切线的性质和判定
- .
考点1 圆的切线
切线的性质
圆的切线________过切点的半径
推论
(1)经过圆心且垂直于切线的直线必过________;(2)经过切点且垂直于切线的直线必过________
切线的判定
(1)和圆有________公共点的直线是圆的切线;(2)如果圆心到一条直线的距离等于圆的________,那么这条直线是圆的切线;(3)经过半径的外端并且________这条半径的直线是圆的切线
探究一、圆的切线的性质
┃归类探究
┃归类探究
┃归类探究
命题角度:1.利用圆心到一条直线的距离等于圆的半径,判定这条直线是圆的切线;2.利用一条直线经过半径的外端,且垂直于这条半径,判定这条直线是圆的切线.
探究二、圆的切线的判定方法
┃归类探究
┃归类探究
┃归类探究
┃归类探究
命题角度:1.利用切线长定理计算;2.利用切线长定理证明.
相等
平分
┃考点聚焦
考点3 三角形的内切圆

切线的判定与性质

切线的判定与性质

解:连接OC
∵ CB切⊙O于C ∴ OC ⊥ BC
O D
B
在Rt△BOC中∠B=30°OB=6
C
∴ OC=3
3 3 ∴ BC= OB2 OC2 = 注:在已知圆的切线时常 连接过切点的半径
挑战自我
如图在直角梯形ABCD中∠B=90°AD∥BC ∠C= 30° AD=1AB=2. 试猜想在BC是否存在一点P使得⊙P与 线段CD、AB都相切如存在请确定⊙P的半径;如不存在 请说明理由
小结
例1与例2的证法有何不同
D
B
O
连接OC A
O 过O作OE⊥AC
交点C已给出
A
B
C
E
于E交点E未给出
C
1如果已知直线与圆有公共点则连接这点和圆心得
到辅助半径再证所作半径与这直线垂直简记为:有
交点连半径证垂直用判定定理证
2如果已知条件中不知直线与圆是否有公共点则过圆 心作直线的垂线段为辅助线再证垂线段长等于半径 长简记为:无交点作垂直证半径用数量法d=r证
垂直于这条半径的的外直端线点是A 圆的切线
条件二:直线l 垂直于半径OA
切线的判定定理 经过半径的外端并且 垂直于这条半径的直线是圆的切线
几何符号表达:
∵ OA是半径 OA⊥l 于A ∴ l是⊙O的切线
O l
A
判断
1. 过半径的外端的直线是圆的切线 × 2. 与半径垂直的的直线是圆的切线 × 3. 过半径的端点与半径垂直的直线是圆的切线 ×
2、数量法d=r : 圆心到 直线的距离等于半径的 直线是圆的切线
相切 d=r
切线具有什么性质
1、切线和圆只有一个 公共点 2、圆心到切线的距离 等于半径

切线的性质和判定最新课件

切线的性质和判定最新课件

段,再证明这条垂线段等于圆旳半径。(作垂直,证半径)
3. 圆旳切线性质定理:圆旳切线垂直于圆旳半径。
辅助线作法:连接圆心与切点可得半径与切线垂直。 即“连半径,得垂直”。
总结:
1.切线和圆只有一种公共点. 2.切线和圆心旳距离等于半径. 3.切线垂直于过切点旳半径. 4.经过圆心垂直于切线旳直线必过切点. 5.经过切点垂直于切线旳直线必过圆心.
∴AC与⊙O相切
课堂小结
1. 鉴定切线旳措施有哪些?
与圆有唯一公共点
l是圆旳切线
直线l 与圆心旳距离等于圆旳半径 经过半径外端且垂直这条半径
l是圆旳切线 l是圆旳切线
2. 常用旳添辅助线措施?
⑴直线与圆旳公共点已知时,作出过公共点旳半径,
再证半径垂直于该直线。(连半径,证垂直)
⑵直线与圆旳公共点不拟定时,过圆心作直线旳垂线
A
O
E C
小结
例1与例2旳证法有何不同?
O A
D
B
O
A
C
B
E C
(1)假如已知直线经过圆上一点,则连结这点和圆 心,得到辅助半径,再证所作半径与这直线垂直。简 记为:连半径,证垂直。
(2)假如已知条件中不知直线与圆是否有公共点, 则过圆心作直线旳垂线段为辅助线,再证垂线段长 等于半径长。简记为:作垂直,证半径。
∵ AB为直径
A
∴ OB=OA, ∵BP=PC, ∴OP∥AC。
O
E B PC
又∵ PE⊥AC,
∴PE⊥OP。
∴PE为⊙0旳切线。
例2:已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为
半径作⊙O。 求证:⊙O与AC相切。
D
B

切线的性质及运用

切线的性质及运用

例1.在Rt△ABC中,∠B=90°,点D为BC上一点,以D 为圆心,DB长为半径作⊙D,AC恰好与⊙D相切. 求证: AD平分∠BAC.
独立作业
挑战自我
驶向胜利 的彼岸
• P102:习题24.2 第12题 •祝你成功!
当要证明某直线是圆的切线时: (1)如果已知直线过圆上一点,则作出过这一 点的半径,证明直线垂直于半径即可; (2)如果直线与圆的公共点没有确定,则应过 圆心作直线的垂线,证明圆心到直线的距离等于 半径即可。
二、切线的性质:
O l A
性质1:切线与圆有且只有一个公共点。
性质2:圆心到切线的距离等于圆的半径。
切线的性质
数学组——谭友书
Hale Waihona Puke 一、复习1、切线的判定方法:
判定1:直线和圆有且只有一个公共点时, 直线是圆的切线。 判定2:圆心到直线的距离等于半径时,直 线是圆的切线。 判定3:经过半径的外端并且垂直于这条半 径的直线是圆的切线。
2、切线的判定的运用
提示:在运用切线的判定和性质时,往往需要
添加辅助线。
性质3:圆的切线垂直于过切点的半径。 性质4: 经过圆心且垂直于切线的直线必过切点。 性质5:经过切点且垂直于切线的直线必过圆心。
三、切线的性质的运用
提示:在运用切线性质时,往往需要添加辅助
线。 1、当已知一条直线是某圆的切线时,切点的位 置是确定的,辅助线常常是连接圆心和切点,得 到半径,那么半径垂直于切线。

24.2.2切线的判定、性质和切线长定理

24.2.2切线的判定、性质和切线长定理

例2.已知:O为∠BAC平分线上一点,OD⊥AB 于D,以O为圆心,OD为半径作⊙O。 求证:⊙O与AC相切。 证明:过O作OE⊥AC于E。 ∵ AO平分∠BAC,OD⊥AB ∴ OE=OD A ∵ OD是⊙O的半径 ∴ AC是⊙O的切线。
D O E
B
C
例1与例2的证法有何不同?
D O A E A C O B
2. 常用的添辅助线方法? ⑴直线与圆的公共点已知时,作出过公共点的半 径,再证半径垂直于该直线。(连半径,证垂直) ⑵直线与圆的公共点不确定时,过圆心作直线的 垂线段,再证明这条垂线段等于圆的半径。(作垂 直,证半径)
3.切线长和切线长定理。 4.三角形的内切圆,三角形的内心
作业: 1.《书本》P101 第4、5、6题 2.《优化设计》P52~53
切线的判定和切线长定理
观察与思考
问题2:砂轮转动时,火花 问题1:下雨天,转动的雨伞 是沿着砂轮的什么方向 上的水滴是顺着伞的什么方 飞出去的? 向飞出去的?
想一想 过圆0内一点作直线,这条直线与圆有什 么位置关系?过半径OA上一点(A除外)能 作圆O的切线吗?过点A呢?
切线的判定定理 经过半径的外端并且垂直 于这条半径的直线是圆的切线。
A
O
B
如图,P是 ⊙O外一点, PA,PB是 ⊙O的两条 切线,我们 P 把线段PA, PB叫做点P 到⊙O的切 线长。
经过圆外一点作圆的切线,这点和切点之间 的线段的长,叫做这点到圆的切线长。
A
O
P
B
切线和切线长是两个不同的概念, 切线是直线,不能度量; 切线长是线段的长,这条线段的两个端点 分别是圆外一点和切点,可以度量。
A 3.以I为圆心,ID为半径作⊙I。

切线的性质和判定

切线的性质和判定
老师寄语
知识改变命运,努力成就未来
29.3切线的性质
O
A
TBΒιβλιοθήκη 问题:1、当你在下雨天快速转动雨伞时水珠飞出的方向是什 么方向?
2、砂轮打磨工件飞出火星的方向是什么方向?
下雨天当你快速转动雨伞飞出的水珠,在砂轮上打磨
工件飞出的火星,都是沿着圆的切线的方向飞出的.
反证法的步骤:
第一步:假设结论不成立 第二步:推导,一般情况是推
导过程中出 现矛盾,或者和 已知问题的条件矛盾 第三步:下结论
反证法证明切线性质
证明:假设OT与AB不垂直, 过点O作OM⊥AB,垂足为M,
∴OM<OT,即d<r,因此,AB
与⊙O相交.这与已知条
件“直线AB与⊙O相切”
相矛盾.
A
∴OT与AB垂直.
O TM B
一、切线的性质:
1、圆的切线与圆只有一个交点。 2、切线与圆心的距离等于半径。 3、圆的切线垂直于过切点的半径。

切线的判定与性质课件

切线的判定与性质课件
学习目标
1.会判定一条直线是否是圆的切线并会过圆上一点作 圆的切线. 2.理解并掌握圆的切线的判定定理及性质定理.(重点) 3.能运用圆的切线的判定定理和性质定理解决问题. (难点)
切线的判定与性质
1
导入新课
情境引入
生活中常看到切线的实例,如何判断一条直线是 否为切线呢?学完这节课,你就都会明白.
可以通过解直角三角形求出半径OA的长.
切线的判定与性质
19
(1)求证:△ACB≌△APO;
(1)证明:∵PA为⊙O的切线,A为切点, A
∴∠OAP=90°.
又∵∠P=30°,∴∠AOB=60°,C
O
又OA=OB,∴△AOB为等边三角形.
B
P
∴AB=AO,∠ABO=60°.
又∵BC为⊙O的直径,∴∠BAC=90°. 在△ACB和△APO中,
则PA与☉O的位置关系是相切 .
A
D C
P
O
PA O
B
第2题
第3题
3.如图,在☉O的内接四边形ABCD中,AB是直径,
∠BCD=120°,过D点的切线PD与直线AB交于点P,
则∠ADP的度数为( C )
A.40° B.35° C.30° D.45°
切线的判定与性质
23
4.如图, ⊙O切PB于点B,PB=4,PA=2,则⊙O的半径多少?
证明:连接OC(如图).
∵ OA=OB,CA=CB,
A
∴ OC是等腰三角形OAB底边AB上的中线.
∴ AB⊥OC.
∵ OC是⊙O的半径,
∴ AB是⊙O的切线.
切线的判定与性质
O
C
B
8
例3 如图,△ABC 中,AB =AC ,O 是BC的中点, ⊙O 与AB 相切于E.求证:AC 是⊙O 的切线.

切线的判定与性质

切线的判定与性质

切线的判定定理:
经过半径的外端并且垂直
这条半径的直线是圆的切线。
对定理的理解:
O l
A
切线必须同时满足两条:①经过 半径外端;②垂直于这条半径.
定理的数学语言表达:
01
O
02
r
03
l
04
A
05
∵ OA是半径, l ⊥OA于A ∴ l是⊙O的切线
下雨天转动雨伞时飞出的水,以及在砂轮上打磨工件飞出的火星, 均沿着圆的切线的方向飞出.
二.方法:判定一条直线是圆的切线的三种方法:
1. 根据切线定义判定.即与圆有唯一公共点的直线是圆的切线. 2. 根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆
的切线. 3. 根据切线的判定定理来判定.
① 其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中 之一.
切线的性质定理:圆的切线垂直于过切 点的半径。 小结: O A l
⊙O。
求证:⊙O与AC相切。
DB
A
O
EC
例1与例2的证法有何不同?
D
B
O
A
O
A
C
B
E C
(1)如果已知直线经过圆上一点,则连结这点和圆心,得到
辅助半径,再证所作半径与这直线垂直.简记为:有交点, 连半径,证垂直.
(2)如果已知条件中不知直线与圆是否有公共点,则过圆 心作直线的垂线段,再证垂线段长等于半径长.简记为:
24.2.2
人教版九年级上册
切 线 的 判 定 定 理
目 直线与录圆的
位置关系
相交
相切
相离
图 壹形
公共点个数
交 公共点名点称
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习与反思报告
OA=r.
的直线是圆的切线.
()()
解决问题
已知一个圆和圆上的一点,如何过这个点画出圆的切线?
O上的点C,并且OA=OB,CA=CB.
上的点C,所以连接OC,只要证明
O A
B C D O B A C
OA=r.
的直线是圆的切线.
()()
解决问题
已知一个圆和圆上的一点,如何过这个点画出圆的切线?
O上的点C,并且OA=OB,CA=CB.
上的点C,所以连接OC,只要证明
为圆心,
O A
B C D O B A C
课后反思(第三轮)
本课例以“教师为引导,学生为主体”的理念出发,通过学生自我活动、教师适当引导得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对知识有一个本质的、有效的理解。

本节课切实反映了平时的教学情况,为前来听课的教师提供了真实的样本。

反思本节课,有以下几个成功与不足之处:
成功之处:
本节课做得成功之处有以下几点:
一、提出问题,注重联系
在新课引入上,打破以往单纯复习旧知的惯例,而是抓住新旧知识之间的联系,提出“目标性”问题,创设了问题情境,既抓住了学生的注意力,为学习新知做好了铺垫,又使教学从“定义”过渡到“判定定理”,显得自然合理。

二、动手实践,主体参与
本节课多处设计了观察探究、分组讨论等学生活动内容,如动手操作“切线的判定定理的发现过程”,以及讲解例题时学生的参与,课堂练习的设计都体现了以教师为主导,学生为主体的教学原则。

三、合理设计课堂结构和问题
新课程理念提倡“把课堂还给学生,让课堂充满活力”,让学生真正“动起来”,我认为“动”不应当是表面的、外在的,而应当
使学生的思维处于活跃状态,积极思考问题,这种内在的、深层的动,才是数学课堂需要的动。

动得有序,动而不乱。

课堂教学要的不是热闹场面,而是对问题的深入研究和思考。

因此,根据这节课的教学内容,我设计了三个活动:(一)、在动手操作发现判定定理的过程中,经历动脑思考、归纳、总结的过程。

得到“经过半径外端且垂直于这条半径的直线是圆的切线”的结论。

(二)、分析结论。

应用好命题的前提是理解好命题。

为了能让学生更好的理解命题我设置了三个问题,并且通过画图举反例帮助学生理解,利用文字、几何语言的相互转化熟悉定理的使用条件。

(三)、应用命题。

根据活动二的结论,我设计了两个不同类型的例题,得到证明一条直线是圆的切线的两个思路“连半径,证垂直和作垂直,证半径”。

因为有活动二做铺垫,所以例题解决的很顺利。

四、丰富内容,序列深化
由于本节课是“切线的判定和性质”的第一节课,主要教学目的是掌握切线的判定定理,并能应用判定定理证明有关问题。

因此,在安排完切线的判定定理和例1的教学内容后,我针对义务教育教材弹性化特点和学生的实际情况,引导学生进行例2的探究,与例1结合起来,构成了有关切线证明问题中常见的两种类型,以及证明这类问题时常见的两种辅助线作法。

在安排本课例题之前,我设计了一组判断题,目的是检查学生对判定定理的掌握情况。

这样从例题到练习的设计体现了教学内容的循序
渐进原则和教学活动的开放性,又突出了本节课的重点和难点。

五、注意培养学生的解题能力。

根据学生的数学学习情况和明年就面临中考的现实,教学中我注意引导学生认真分析每个已知条件,由每个条件可以得到哪些信息,结合要证明的结论及信息之间的联系,分析哪些信息有用,哪些没用。

再理清思路,然后整理出来。

六、注意多种评价手段的运用。

教学中面向大多数学生,并且给予及时的鼓励和评价。

一个会心的微笑、学生的掌声、真诚的语言…让学生时刻感觉到被认可,从而更有动力投入到下面的学习中。

不足之处:
1、在具体的教学中没有很好的体现教学设计,过多的干涉学生的思考,导致学生对问题的思考不充分。

2、课堂上师生的互动还不够充分,只是小组讨论、个别提问和全班齐答的形式。

针对各个环节不同的教学目标,应该采用学生板演、小组展示、互改纠错等多种形式激发学生的积极性和参与性,体现学生主体地位。

3、在变式训练中,没有把握好时间,灵活分组完成练习,使得练习时间稍显仓促。

4、在举“切线在生活中的实例”时,仅仅是以语言表达的方式进行,没有把所举例子制作成幻灯片,给学生美的享受。

相关文档
最新文档