天津理工大学线性代数习题大题答案第四章线性方程组

合集下载

线性代数练习册第四章习题及答案

线性代数练习册第四章习题及答案

线性代数练习册第四章习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(线性代数练习册第四章习题及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为线性代数练习册第四章习题及答案的全部内容。

第四章 线性方程组§4—1 克拉默法则一、选择题1.下列说法正确的是( C )A 。

元齐次线性方程组必有组解;B 。

元齐次线性方程组必有组解; C.元齐次线性方程组至少有一组解,即零解; D 。

元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B )A.当时,非齐次线性方程组只有唯一解; B 。

当时,非齐次线性方程组有无穷多解;C.若非齐次线性方程组至少有两个不同的解,则;D.若非齐次线性方程组有无解,则. 二、填空题1.已知齐次线性方程组有非零解, 则 1 , 0 。

2.由克拉默法则可知,如果非齐次线性方程组的系数行列式,则方程组有唯一解 .1. 解:,所以,2.解:n nn 1n -n n 0D ≠0D ≠0D =0D =1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩λ=μ=0D ≠i x =832623x y x y +=⎧⎨+=⎩832062D ==-≠123532D ==-2821263D ==-125,62D D x y D D ====-123123123222310x x x x x x x x x -+=-⎧⎪+-=⎨⎪-+-=⎩2131121121221303550111010r r D r r ---=--=-≠+---, ,所以,3.解: , ,所以,4.解:11222100511321135011011D r r ---=-+-=---212121505213221310101101D r r --=-+-=-----31212250021122115110110D r r --=+=---3121231,2,1D D D x x x D D D ======21241832x z x y z x y z -=⎧⎪+-=⎨⎪-++=⎩132010012412041200183583D c c --=-+-=≠-13110110014114020283285D c c -=-+=2322112102112100123125D c c -=-+=--313201001241204120182582D c c =-=--3121,0,1D D Dx y z D D D ======12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩所以,§4—2 齐次线性方程组一、选择题 1.已知矩阵的秩为,是齐次线性方程组 的两个不同的解, 为任意常数,则方程组的通解为( D )。

(完整版)线性代数第四章线性方程组试题及答案

(完整版)线性代数第四章线性方程组试题及答案

第四章 线性方程组1.线性方程组的基本概念(1)线性方程组的一般形式为:其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足当每个方程中的未知数x 用k i 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解. b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只有零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. (2) 线性方程组的其他形式 线性方程组除了通常的写法外,还常用两种简化形式: 向量式 x 1α1+x 2α2+…+n x n α= β, (齐次方程组x 1α1+x 2α2+…+n x n α=0).即[]n a a ,,a 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21=β 全部按列分块,其中β,,21n a a a 如下⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=121111m a a a α ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=222122m a a a α,………,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n n a a a 21α, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β 显然方程组有解的充要条件是向量β可由向量组n ααα,,21 线性表示。

矩阵式 AX =β,(齐次方程组AX =0).⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β其中A 为m n ⨯矩阵,则:① m 与方程的个数相同,即方程组AX =β有m 个方程; ② n 与方程组的未知数个数相同,方程组AX =β为n 元方程。

线性代数 课后习题详解 第四章

线性代数 课后习题详解 第四章

第四章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320;(3) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311 )5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022100343112423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102021 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶 子式?解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等 于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样? 解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(- 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x 故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫⎝⎛-------815073131223123⎪⎪⎪⎭⎫ ⎝⎛---------152********117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫ ⎝⎛-----r r .二阶子式71223-=-.(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------023010********071210 131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000010*******002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x (3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x xx x故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201~ 即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1) 0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2) )()(B R A R < ⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ, 得1=λ时,方程组有无穷多个解.9.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解时求解.解 ⎪⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ 当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解.当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解.当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解.此时,增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛-000000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)11.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1) ⎪⎪⎪⎭⎫⎝⎛323513123; (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023. 解 (1)⎪⎪⎪⎭⎫ ⎝⎛100010001323513123⎪⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----10121121023200010023~⎪⎪⎪⎪⎪⎭⎫⎝⎛----2102121129227100010003~⎪⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267100010001~故逆矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267(2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010000100001~ 故逆矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------1061263111010421112.(1) 设⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=132231,113122214B A ,求X 使B AX =;(2) 设⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛---=132321,433312120B A ,求X 使B XA =. 解 (1) ()⎪⎪⎪⎭⎫ ⎝⎛----=132231113122214B A 初等行变换~⎪⎪⎪⎭⎫ ⎝⎛--412315210100010001 ⎪⎪⎪⎭⎫ ⎝⎛--==∴-4123152101B A X (2) ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛132321433312120B A 初等列变换~⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---474112100010001 ⎪⎪⎭⎫ ⎝⎛---==∴-4741121BA X .。

线性代数第四章练习题答案

线性代数第四章练习题答案

线性代数第四章练习题答案第一篇:线性代数第四章练习题答案第四章二次型练习4、11、写出下列二次型的矩阵2(1)f(x1,x2,x3)=2x12-x2+4x1x3-2x2x3;(2)f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4。

解:(1)因为⎛2f(x1,x2,x3)=(x1,x2,x3) 0 2⎝⎛2 所以二次型f(x1,x2,x3)的矩阵为: 0 2⎝0-1-10-1-12⎫⎪-1⎪0⎪⎭⎛x1 x2 x⎝3⎫⎪⎪, ⎪⎭2⎫⎪-1⎪。

0⎪⎭(2)因为⎛0 f(x1,x2,x3,x4)=(x1,x2,x3,x4) 1 1⎝⎛0 1所以二次型f(x1,x2,x3,x4)的矩阵为: 1 1⎝***11⎫⎪0⎪1⎪⎪0⎪⎭⎛x1 x2 x 3 x⎝4⎫⎪⎪⎪,⎪⎪⎭1⎫⎪0⎪。

⎪1⎪0⎪⎭2、写出下列对称矩阵所对应的二次型:⎛1 1(1) -2 1 ⎝212⎛01⎫⎪2⎪1 -2⎪;(2)2 ⎪-1⎪2⎪⎭0⎝12-11212-112012⎫0⎪⎪1⎪2⎪。

1⎪⎪2⎪1⎪⎪⎭-0-2T解:(1)设X=(x1,x2,x3),则⎛1 f(x1,x2,x3)=XTAX=(x1,x2,x3) -2 1 ⎝2-120-21⎫⎪2⎪-2⎪⎪⎪2⎪⎭⎛x1 x2 x⎝3⎫⎪⎪⎪⎭=x12+2x32-x1x2+x1x3-4x2x3。

(2)设X=(x1,x2,x3,x4)T,则⎛0 1f(x1,x2,x3,x4)=XTAX=(x1,x2,x3,x4)2 -1 0⎝12-11212-11201 2⎫0⎪⎪1⎪2⎪1⎪⎪2⎪1⎪⎪⎭⎛x1 x2 x 3 x⎝4⎫⎪⎪⎪⎪⎪⎭2=-x2+x4+x1x2-2x1x3+x2x3+x2x4+x3x4。

练习4、21、用正交替换法将下列二次型化为标准形,并写出所作的线性替换。

22(1)f(x1,x2,x3)=2x1+x2-4x1x2-4x2x3;(2)f(x1,x2,x3)=2x1x2-2x2x3;222(3)f(x1,x2,x3)=x1+2x2+3x3-4x1x2-4x2x3。

线代第4章习题答案

线代第4章习题答案

第4章1.(1)是;(2)是;(3)是;(4)否.2. 证:(1)假设零向量不唯一,即存在两个零向量120,0,但1200≠,则由10αα+=和20αα+=推出1200=,这与假设矛盾. (2)类似(1)中证明. (3)0()0k k k k αααα=-=-=, (1)(01)01ααααα-=-=-=-, 0()0k k k k αααα=-=-=. 3.(1)是;(2)是;(3)否;(4)否. 4. 证:设11223344k A k A k A k A O +++=,则有12341234123412340,0,0,0,k k k k k k k k k k k k k k k k ++-=⎧⎪-++=⎪⎨+-+=⎪⎪---=⎩系数矩阵11111111111101011111001111110001A --⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥--⎢⎥⎢⎥----⎣⎦⎣⎦,则()4r A =, 故12340k k k k ====,即1234,,,A A A A 线性无关.又对任意一个11122122a a A a a ⎡⎤=⎢⎥⎣⎦,若11223344k A k A k A k A A +++=, 则可得123411123412123421123422,,,,k k k k a k k k k a k k k k a k k k k a ++-=⎧⎪-++=⎪⎨+-+=⎪⎪---=⎩解得唯一一组解为:()()()()1111221222111221223111221224111221221,41,41,41,4k a a a a k a a a a k a a a a k a a a a ⎧=+++⎪⎪⎪=-+-⎪⎨⎪=+--⎪⎪⎪=-++-⎩即任意一个A 都可以由这组矩阵线性表出,且表达式唯一,则22dim()4R ⨯=,且1234,,,A A A A 构成22R ⨯的一组基.5. 解:令123110100,,000011A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则由112233k A k A k A O ++=可解得1230k k k ===,即123,,A A A 线性无关. 又对任意一个A V ∈,a ab Ac c +⎡⎤=⎢⎥⎣⎦,若112233k A k A k A A ++=,可解得唯一一组解为: 123,,k a k b k c ===,即任意一个A 都可以由123,,A A A 线性表出,且表达式唯一,则dim()3V =,且123,,A A A 构成V 的一组基. 6. 解:2()65f x x x =-+,故在这组基下的坐标为[]6,5,1T-.7. 解:(1)根据过渡矩阵C 的3个列向量分别是21,1,(1)x x ++在基21,,x x 下的坐标,可得111012001C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. (2)新的基为:21,1,2x x x -+-+. 8. 解:(1)显然对加法和数乘封闭.(2)令1100A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,2010A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,…,001n A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ . 若1122n n k A k A k A O ++= ,显然可推出120n k k k ==== ,即12,,,n A A A 线性无关.又对任意一矩阵12A n ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,若 1122n n k A k A k A A ++= ,可解得唯一一组解为:121,2,,n k k k n === .即任意一个A W ∈都可以由12,,,n A A A 线性表出,且表达式唯一,则dim()W n =,且12,,,n A A A 构成W 的一组基. 9. 解:11211121211101111103001301170000A --⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则()3r A =,故由1234,,,αααα 生成的子空间维数是3,一组基为123,,ααα(或124,,ααα).11.解:过渡矩阵为:205133113C ⎡⎤⎢⎥=⎢⎥⎢⎥---⎣⎦,若有一非零向量[],,T w x y z =,满足w Cw =,则可得方程组25,33,3,x x z y x y z z x y z =+⎧⎪=++⎨⎪=---⎩对系数矩阵经初等行变换后得阶梯形方程组50,0,x z y z +=⎧⎨-=⎩ 可解得一般解为: [5,,]w c c c =-,c 为任一非零常数.12. 证:已知()()()()112112212211,,313b a a b a a b a a b αβ-⎛⎫⎛⎫==-+-+ ⎪ ⎪-⎝⎭⎝⎭, (1)()()()()112212,3,b a a b a a αββα=-+-+=;(2)()()()()()1112221122,33,,c a b a b c a b a b αβγαγβγ+=+--+--++=+; (3)()()()()112212,3,k kb a a kb a a k αβαβ=-+-+=;(4)()()()()22112212122,320a a a a a a a a a αα=-+-+=-+≥,若(),0αα=,当且仅当1220,0,a a a -=⎧⎨=⎩ 故120a a ==,即0α=.由于(),αβ满足定义4.6中的4个性质,故是2R 的内积.13. 解:(1)1||α=2||α=,3||α=.因为()2323,cos ||||10ααθαα==-,故arccos 10θ⎛⎫=- ⎪ ⎪⎝⎭. (2)设与123,,ααα都正交的向量为()1234,,,b b b b β=,则可得12341234123420,230,220,b b b b b b b b b b b b +-+=⎧⎪++-=⎨⎪---+=⎩ 经过初等行变换可得阶梯形矩阵:123423420,330,b b b b b b b +-+=⎧⎨-+-=⎩ 解得一般解为()34343455,33,,Tb b b b b b β=-+-,其中34,b b 为自由变量,或者通解表达式为1255331001k k β-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦.14. 解:()111,0,1,1Tβα==,)1111,0,1,1||Tβγβ==. ()22211121,,1,,333Tβααγγ⎛⎫=-=-- ⎪⎝⎭,)2221,3,2,1||Tβγβ==--. ()()333113223112,,,,,5555Tβααγγαγγ⎛⎫=--=-- ⎪⎝⎭,)3333,1,1,2||Tβγβ==--. 15. 解:()110,0,1Tβα==,()10,0,1Tγ=. ()()22211,0,1,0T βααγγ=-=,()20,1,0Tγ=.()()()33311322,,1,0,0T βααγγαγγ=--=,()31,0,0Tγ=. 16. 证:(1)()()T T T T T AB AB B A AB B EB B B E ====.(2)A 正交,则||1A =±,*1*||A A A A -==±,则**1111()()()T T T A A A A A A E E ----====. 17. 解:已知1T X X =,则(2)(2)(2)(2)T T T T T T Q Q E XX E XX E XX E XX =--=-- 44()44T T T T T E XX X X X X E XX XX E =-+=-+=, 即Q 为正交矩阵.若T X =,则122122123221T Q E XX --⎡⎤⎢⎥=-=--⎢⎥⎢⎥--⎣⎦. 18. 解:73217737326a Q b c -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,通过T Q Q E =得 214960,1421180,621120,a bc abc -+-=⎧⎪-+=⎨⎪---=⎩解得626,,777a b c =-==-.19. 证:因为T Q Q E =,故对任意n X R ∈,有()()()22||,||TT T T QX QX QX QX QX X Q QX X X X =====,则一定有 ||||QX X =.20.(1)否;(2)是;(3)是;(4)否. 21. 解:(1)A 112(1,1,0)T εεε==+,A 212(1,1,0)T εεε=-=-, A 33(0,0,1)T εε==,所求矩阵为:110110001D ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦. (2) A ()12110T,,ηη==,A()212002T,,ηη==,A ()31232012T,,ηηηη==-+,故所求的矩阵为022101001⎛⎫⎪- ⎪ ⎪⎝⎭.22. 解:(1)A 1123(2,3,5)235T εεεε==++,A 2ε=A 110⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ A 1123(1,3,5)35T εεεε=---=---,A 2ε=A 111⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ A 2ε-A 1123(1,1,1)T εεεε=--=-+-,故所求的矩阵为211331551A --⎛⎫⎪=- ⎪ ⎪--⎝⎭.(2)已知1232αεεε=-+,则21124331110551114y AX --⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭.23. 解:010001000D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦24. 证:必要性:因为12,,,n εεε 是V 的标准正交基,则(,),1,i j ij i j n εεδ=≤≤. 因为A 是正交变换,则(A ()i ε,A ()j ε)ij δ=, 1,i j n ≤≤. 即A ()i ε,A ()j ε,…,A ()n ε是V 的标准正交基. P 40.3.(作业册)解:211111111111011312240000---⎡⎤⎡⎤⎢⎥⎢⎥--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,解得4343423x x x X x x -⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥⎣⎦,则解空间的解向量为[]10,1,1,0T α=,[]22,3,0,1Tα=-,通过Schmidt 标准正交化得]10,1,1,0T γ=,]24,3,3,2Tγ=--.。

2020考研数学之线性代数第四章线性方程组基础与强化训练题(含答案,强..

2020考研数学之线性代数第四章线性方程组基础与强化训练题(含答案,强..

考研数学之线性代数第四章线性方程组基础与强化训练题(含答案,强烈推荐)习题部分一.填空(每题2分)1.设方程组22112122x x kx x kx x 有非零解,则k。

2.线性方程组960654032321321321x x x x x x x x x 有非零解,则。

3.方程组211111111321x x x aa a有无穷多解,则a。

4.非齐次线性方程组b AX(A 为m n 矩阵)有惟一解的的充分必要条件是____________。

5.设A 是n 阶方阵,21,是齐次线性方程组O AX 的两个不同的解向量,则A。

6.设A 为三阶方阵,秩2A r ,321,,是线性方程组b b AX 的解,已知10131321,,则线性方程组b AX 的通解为。

7.三元线性方程组b AX的系数矩阵的秩2A r ,已知该方程组的两个解分别为1111,1112,则b AX 的全部解可表为。

8.设1686493436227521a A,欲使线性齐次方程组O AX 的基础解系有两个解向量,则a =。

9.当a时,线性方程组233321321321321x ax x ax x x x x x 无解。

10.方程组321011032x x x =0的基础解系所含向量个数是___ ______。

11.若5元线性方程组b AX的基础解系中含有2个线性无关的解向量,则Ar 。

12.设线性方程组414343232121a x x a x x a x x a x x 有解,则4321a ,a ,a ,a 应满足条件。

13.设齐次线性方程组为021nx x x ,则它的基础解系中所包含的向量个数为。

14.设21,是非齐次线性方程组b AX 的解向量,则21是方程组的解向量.15.设s,,,21为非齐次线性方程组b AX 的一组解,如果ssc c c 2211也是该方程组的一个解,则sc c c 21。

16.设矩阵1111110A ,则齐次线性方程组O X A E 的一个基础解系为。

【精品】高等数学线性代数习题答案第四章

【精品】高等数学线性代数习题答案第四章

习题4—11.验证函数f (x )=lnsin x 在[π5π,66]上满足罗尔定理的条件,并求出相应的ξ,使f ′(ξ)=0.解:显然()lnsin f x x =在5π,66x ⎡⎤⎢⎥⎣⎦上连续,在π5π,66⎛⎫⎪⎝⎭内可导,且π5π()()ln 266f f ==-,满足罗尓定理的条件。

令cos ()cot 0sin x f x x x '===,则π2x = 即存在ππ5π(,)66ξα=∈,使()0f ξ'=成立。

2。

下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ?[][][]2(1)()1,;(2)(),;1,10,21sin ,0π(3)()0,π1,0e x f x f x x x x f x x =-=--<≤⎧=⎨=⎩解:(1)2()1e x f x =-在[]1,1-上连续,在()1,1-内可导,且(1)1,(1)1,e e f f -=-=-即(1)(1)f f -=() f x ∴在[]1,1-上满足罗尓定理的三个条件。

令2()20e x f x x '==得0x =,即存在0(1,1)ξ=∈-,使()0f ξ'=。

(2)101()1112x x f x x x x -≤<⎧==-⎨-≤≤⎩显然()f x 在(0,1),(1,2)内连续,又1111(10)lim ()lim(1)0,(10)lim ()lim(1)0,(10)(10)(1)0,即x x x x f f x x f f x x f f f --++→→→→-==-=+==-=-=+==所以()f x 在1x =处连续,而且22(00)lim ()lim(1)1(0),(20)lim ()lim(1)1(2),x x x x f f x x f f f x x f ++--→→→→+==-==-==-==即()f x 在0x =处右连续,在2x =处左连续,所以()f x 在[]0,2上连续.又1111()(1)1(1)lim lim 1,11()(1)1(1)lim lim 111x x x x f x f xf x x f x f xf x x --++-→→+→→--'===-----'===--(1)(1)() f f f x -+''∴≠∴在1x =处不可导,从而()f x 在(0,2)内不可导。

线性代数第四章习题答案

线性代数第四章习题答案

0 a+1 1 −1
1 − a2 = (a + 1)2 (a − 2). a
a −1 a
0 a + 1 −1 − a
1 −1
所以, a = −1 或 a = 2 时向量组线性相关. 更常规的思路是: 向量组 a1 , a2 , a3 线性相关, 则存在不全为零的数 k1 , k2 , k3 使得
k1 a1 + k2 a2 + k3 a3 = 0.
50
第四章 向量组的线性相关性 解: (1) 因为
A= −1 2 3 1 1 0 1 −1 0 0 2 7 2 1 7 2 −1 0 0 2 1 0 1 1 , 0
r2 + 3r1 4 r3 + r1 1
可见 R(A) = 2, 所以该向量组是线性相关的. 或者: 由 −1 2 1 3 + 1 = 4 1 0 1 知线性相关. (2) 因为

1 a3 = −1 1
4
.
解: 由 3(a1 − a) + 2(a2 + a) = 5(a3 + a) 得 2 10 1 1 5 + 1 1 a = (3a1 + 2a2 − 5a3 ) = 6 2 1 3 5 3= 3 0 1
2
;

4 −2 1 , b3 = B : b1 = , b2 = 1 1 1 3 1 2
2


0


4
.
即线性方程组

第4章线性方程组自测题(答案)2

第4章线性方程组自测题(答案)2

《线性代数》单元自测题答案第四章 线性方程组一、填空题:1、1-=a ;2、⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛321011k ;3、⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--32012011k (k 为常数). 二、选择题:1、C ;2、B ;3、C 。

三、计算题:1、求齐次线性方程组⎪⎩⎪⎨⎧=+++=-++=+++054202320322432143214321x x x x x x x x x x x x 的一个基础解系,并用基础解系表示它的全部解。

解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-00005100130212510051003221215422321322123211312r r r r r r r r同解方程组为⎩⎨⎧=-=++05013243421x x x x x ,即⎩⎨⎧=--=434215132x x x x x 。

取⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛10,0142x x ,则方程组的基础解系为 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00121α,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=150132α, 所以,方程组的全部解是2211ααk k +(21,k k 是任意常数)。

2、求线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=-+-=-+-=+--04112210234432134321432143214321x x x x x x x x x x x x x x x x 的全部解。

解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=225006615002250011311240411221023443121111311),(141312 r r r r r r b A ⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛---+-00000000005252100113115100000000002250011311322423 r r r r r⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---+0000000000525210051151011321r r原方程组的同解方程组为⎪⎩⎪⎨⎧=-=--52525115143421x x x x x ,即⎪⎩⎪⎨⎧+=++=43421525251511x x x x x 。

线性代数第四章答案解析

线性代数第四章答案解析

线性代数第四章答案解析第四章向量组的线性相关性1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3.解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T=(1-0, 1-1, 0-1)T=(1, 0, -1)T .3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3?1+2?0-3, 3?1+2?1-4, 3?0+2?1-0)T =(0, 1, 2)T .2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1,3)T ,a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T .解由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得)523(61321a a a a -+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61TT T --+==(1, 2, 3, 4)T .3. 已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明由-=312123111012421301402230) ,(B A ????? ??-------971820751610402230421301~r ????? ?------531400251552000751610421301 ~r-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.由-????? ??---????? ??-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R(B )≠R (B , A ), 所以A 组不能由B 组线性表示.4. 已知向量组A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ;B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明由- ??- ??--=000001122010311112201122010311011111122010311) ,(~~r r A B ,知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.5. 已知R (a 1, a 2, a 3)=2, R (a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示;(2) a 4不能由a 1, a 2, a 3线性表示.证明 (1)由R (a 2, a 3, a 4)=3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1,a 2, a 3)=2知a 1, a 2, a 3线性相关, 故a 1能由a 2, a 3线性表示.(2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示.6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为-???? ??-???? ??-=000110121220770121101413121~~r r A , 所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.7. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1,a , -1)T , a 3=(1, -1, a )T . 解以所给向量为列向量的矩阵记为A . 由aa aA 111111||--=如能使行列式等于0,则此时向量组线性相关.(具体看书后相应答案)8. 设a 1, a 2线性无关, a 1+b , a 2+b 线性相关, 求向量b 用a 1,a 2线性表示的表示式. 解因为a 1+b , a 2+b 线性相关, 故存在不全为零的数λ1, λ2使λ1(a 1+b )+λ2(a 2+b )=0, 由此得2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=,设211λλλ+-=c , 则b =c a 1-(1+c )a 2, c ∈R .9. 设a 1, a 2线性相关, b 1, b 2也线性相关, 问a 1+b 1, a 2+b 2是否一定线性相关?试举例说明之. (也可看书后答案)解不一定.例如, 当a 1=(1, 2)T , a 2=(2, 4)T , b 1=(-1, -1)T , b 2=(0, 0)T 时, 有 a 1+b 1=(1, 2)T +b 1=(0, 1)T , a 2+b 2=(2, 4)T +(0, 0)T =(2, 4)T , 而a 1+b 1, a 2+b 2的对应分量不成比例, 是线性无关的.10. 举例说明下列各命题是错误的:(1)若向量组a 1, a 2, ? ? ?, a m 是线性相关的, 则a 1可由a 2, ? ? ?,a m 线性表示. 解设a 1=e 1=(1, 0, 0, ? ? ?, 0), a 2=a 3= ? ? ? =a m =0, 则a 1, a 2, ? ? ?, a m 线性相关, 但a 1不能由a 2, ? ? ?, a m 线性表示.(2)若有不全为0的数λ1, λ2, ? ? ?, λm 使λ1a 1+ ? ? ? +λm a m +λ1b 1+ ? ? ? +λm b m =0成立, 则a 1, a 2, ? ? ?, a m 线性相关, b 1, b 2, ? ? ?, b m 亦线性相关. 解有不全为零的数λ1, λ2, ? ? ?, λm 使λ1a 1+ ? ? ? +λm a m +λ1b 1+ ? ? ? +λm b m =0,原式可化为λ1(a1+b1)++λm(a m+b m)=0.取a1=e1=-b1,a2=e2=-b2,,a m=e m=-b m,其中e1,e2,,e m为单位坐标向量,则上式成立,而a1,a2,,a m和b1,b2,,b m均线性无关.(3)若只有当λ1,λ2,,λm全为0时,等式λ1a1++λm a m+λ1b1++λm b m=0才能成立,则a1,a2,,a m线性无关, b1,b2,,b m亦线性无关.解由于只有当λ1,λ2,,λm全为0时,等式由λ1a1++λm a m+λ1b1++λm b m=0成立,所以只有当λ1,λ2,,λm全为0时,等式λ1(a1+b1)+λ2(a2+b2)++λm(a m+b m)=0成立.因此a1+b1,a2+b2,,a m+b m线性无关.取a1=a2==a m=0,取b1,,b m为线性无关组,则它们满足以上条件,但a1,a2,,a m线性相关.(4)若a1,a2,,a m线性相关, b1,b2,,b m亦线性相关,则有不全为0的数,λ1,λ2,,λm使λ1a1++λm a m=0,λ1b1++λm b m=0同时成立.解a1=(1, 0)T,a2=(2, 0)T,b1=(0, 3)T,b2=(0, 4)T,λ1a1+λ2a2 =0?λ1=-2λ2,λ1b1+λ2b2 =0?λ1=-(3/4)λ2,λ1=λ2=0,与题设矛盾.11.设b1=a1+a2,b2=a2+a3, b3=a3+a4, b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.证明由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1, 于是 a 1 =b 1-b 2+a 3 =b 1-b 2+b 3-a 4 =b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.12. 设b 1=a 1, b 2=a 1+a 2, ? ? ?, b r =a 1+a 2+ ? ? ? +a r , 且向量组a 1, a 2, ? ? ? , a r 线性无关, 证明向量组b 1, b 2, ? ? ? , b r 线性无关. 证明已知的r 个等式可以写成=100110111) , , ,() , , ,(2121r r a a a b b b , 上式记为B =AK . 因为|K |=1≠0, K 可逆, 所以R (B )=R (A )=r , 从而向量组b 1, b 2, ? ? ? , b r 线性无关.13. 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解由-????? ??--????? ??----=000000010291032001900820291844210141002291) , ,(~~321r r a a a , 知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.(2)a 1T =(1, 2, 1, 3), a 2T =(4, -1, -5, -6), a 3T =(1, -3, -4, -7).。

第四章 线性方程组习题及答案

第四章  线性方程组习题及答案

第四章 线性方程组1.设齐次方程组1231231230030x ax x ax x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 有非零解,求a 及其通解.解:因为此方程组有非零解,故系数矩阵的行列式为零.2211||1131********a aa a a a ==-+--+=-=-A所以,21a =,即1a =±(1)当1a =时,对此方程组的系数矩阵进行行变换111111120111000011113022000⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭A原方程组等价于1223200x x x x +=⎧⎨-=⎩, 即 12322x x x x =-⎧⎨=⎩. 取21x =,得1211-⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ为方程组的基础解系. 则方程组的通解为1(2,1,1),k k k ==-∈X ξTR .(2)当1a =-时,111111110111001001113000000---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭A原方程组等价于1230x x x -=⎧⎨=⎩取21x =,得()T21,1,0=ξ为方程组的基础解系.故通解为2(1,1,0),TR k k k ==∈X ξ.2.解齐次方程组(1)12341234123420222020x x x x x x x x x x x x ++-=⎧⎪+++=⎨⎪++-=⎩ (2)12341234123412342350327043602470x x x x x x x x x x x x x x x x +-+=⎧⎪++-=⎪⎨+-+=⎪⎪-+-=⎩(3)12341234123420510503630x x x x x x x x x x x x ++-=⎧⎪++-=⎨⎪+--=⎩ (4)12341234123412343457041113160723023320x x x x x x x x x x x x x x x x +-+=⎧⎪+-+=⎪⎨-++=⎪⎪-+-=⎩(1)解:对此线性方程组的系数矩阵进行初等行变换211111211010221201310103112100340034---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→--→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭A原方程组等价于 132434030340x x x x x x -=⎧⎪+=⎨⎪-=⎩即 1323439434x x x x x x ⎧⎪=⎪⎪=-⎨⎪⎪=⎪⎩取34x =,得()T4,9,4,3=-ξ为原方程组的基础解系. 故通解为 ,R k k =∈X ξ.(2)解:对线性方程组的系数矩阵进行初等行变换2315231531271231241361051312471247--⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪----⎝⎭⎝⎭A 123121231207729011746028250015015000327----⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭故 ||0≠A ,所以此方程组只有零解,即 T(0,0,0,0)=X .(3)解:对线性方程组的系数矩阵进行初等行变换1211120151015001036130000--⎛⎫⎛⎫ ⎪ ⎪=-→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A原方程组等价于142320x x x x =-⎧⎨=⎩ 取 2410,.01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得 ()()TT122,1,0,0,1,0,0,1=-=ξξ为方程组的基础解系.所以,原方程组的通解为 112212(,)R k k k k =+∈X ξξ.(4)解:对方程组的系数矩阵进行初等行变换,34571789411131617897213017192023322332--⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪=→ ⎪ ⎪--- ⎪ ⎪----⎝⎭⎝⎭A 1789017192000000000-⎛⎫ ⎪-- ⎪→ ⎪ ⎪⎝⎭原方程组等价于123423478901719200x x x x x x x +-+=⎧⎨-+-=⎩ 即 134234313171719201717x x x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩取 34170,017x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得 ()()TT123,19,17,0,13,20,0,17==--ξξ为方程组的基础解系.故通解为 112212,,k k k k =+∈X ξξR .3.解非齐次方程组(1)1231231232104221138x x x x x x x x -+=⎧⎪+-=⎨⎪+=⎩ (2)12312312312323438213496245x x x x x x x x x x x x ++=⎧⎪+-=⎪⎨-+=-⎪⎪-+=-⎩ (3)1234123412342133344352x x x x x x x x x x x x +-+=⎧⎪-+-=⎨⎪+-+=-⎩(1)解:对此方程组的增广矩阵进行初等行变换3121031210()42121338113081332--⎛⎫⎛⎫ ⎪ ⎪=-→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A b 133801011340006--⎛⎫⎪→- ⎪ ⎪-⎝⎭因为 ()23()r r =≠=A A b所以,此方程组无解.(2)解:对此方程组的增广矩阵进行初等行变换231412453821307714()41960141428124507714--⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪=→⎪ ⎪--- ⎪ ⎪---⎝⎭⎝⎭A b 12451021011201120000000000000000---⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭原方程组等价于 1323212x x x x +=-⎧⎨-=⎩此方程组对应的导出组的基础解系为()T2,1,1=-ξ此方程组的特解为 ()T01,2,0=-η 故方程组的通解为 0k k =+∈X ξηR .(3)解:对此方程组的增广矩阵进行初等行变换2111114352()331340759514352015101810---⎛⎫⎛⎫ ⎪ ⎪=--→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭A b 143520759501000--⎛⎫ ⎪→-- ⎪ ⎪-⎝⎭103520100000595--⎛⎫ ⎪→ ⎪ ⎪-⎝⎭原方程组等价于 1342343520595x x x x x x -+=-⎧⎪=⎨⎪-=⎩即 142342150915x x x x x ⎧=+⎪⎪=⎨⎪⎪=+⎩此方程组对应导出组的基础解系为 ()T2,0,9,5=ξ特解为 ()T01,0,1,0=η 故通解为 0k k =+∈X ξηR .4.求解非齐次方程组(1)1234523451234512345226323054332x x x x x a x x x x b x x x x x x x x x x ++++=⎧⎪+++=⎪⎨+++-=⎪⎪+++-=⎩ (2)1234123412341234230264132716x x x x x x x x x x px x x x x x t+-+=⎧⎪+-+=-⎪⎨+++=-⎪⎪---=⎩(1)解:对此非齐次线性方程组的增广矩阵进行初等行变换111111111101226012263211300122635433120122625a ab b a a ⎛⎫⎛⎫⎪⎪⎪ ⎪→ ⎪ ⎪------ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭ 111111111101226012260000030000030000025000001a a b b b a b b a a ⎛⎫⎛⎫⎪ ⎪⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪⎪ ⎪+--⎝⎭⎝⎭①当1a ≠,或3b ≠时,方程组无解; ②当1a =且3b =,方程组有无穷多解; 此时方程组等价于 12345234512263x x x x x x x x x ++++=⎧⎨+++=⎩即 13452345522263x x x x x x x x =++-⎧⎨=---+⎩取 3451000,1,0001x x x ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭得对应的导出组的基础解系()T 11,2,1,0,0=-ξ,()T 21,2,0,1,0=-ξ,()T35,6,0,0,1=-ξ,()T02,3,0,0,0=-η为特解.故通解为1122330k k k =+++X ξξξη, 123,,k k k ∈R . (2)解:对方程组的增广矩阵进行初等行变换1123011230216410122132710162111610244P P t t --⎛⎫⎛⎫ ⎪ ⎪------⎪ ⎪→ ⎪ ⎪--+-- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭11230012210080000002P t -⎛⎫⎪ ⎪→ ⎪+ ⎪ ⎪+⎝⎭①当2t ≠-时,方程组无解.②当2t =-,8P =-时,方程组有无穷多解.此时,原方程组等价于1234234230221x x x x x x x +-+=⎧⎨++=⎩即 13423441221x x x x x x =--⎧⎨=--+⎩则 ()T14,2,1,0=-ξ,()T21,2,0,1=--ξ为导出组的基础解系()T01,1,0,0=-η为方程组的一个特解,故通解为1122012,,k k k k =++∈X ξξηR .③ 2t =-,8P ≠-时,方程组有无穷多解 此时,原方程组等价于12342343230220(8)0x x x x x x x P x +-+=⎧⎪++=⎨⎪+=⎩即 142431210x x x x x =--⎧⎪=-+⎨⎪=⎩则 ()T1,2,0,1=--ξ为导出组的基础解系, ()T01,1,0,0=-η为方程组的一个特解. 故方程组的通解为0k k =+∈X ξηR .5.讨论方程组的解,并求解123123123(3)2(1)23(1)(3)3a x x x a ax a x x aa x ax a x +++=-⎧⎪+-+=⎨⎪++++=⎩解:线性方程组的系数矩阵的行列式为312132132||111112323(1)3333333a a a a a a aa a a aa aa a a a a +++=-=-=-----++++++A21320033a aa a a +=----+221120(1)03a a a a a a a +=-=---+令||0=A ,则0a =或1a =(1)0a =时. 线性方程组的增广矩阵为31203120()0110011030330113⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A b 312001100003⎛⎫⎪→- ⎪ ⎪⎝⎭因为()23()r r =≠=A Ab所以,此时方程组无解;(2)当1a =时, 41211012()1012012961430000-⎛⎫⎛⎫ ⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A b方程组等价于1323229x x x x =-+⎧⎨=-⎩,()T1,2,1=-ξ为导出组的基础解系,()T02,9,0=-η为方程组的一个特解. 故通解为0k k =+∈X ξηR .(3)当0a ≠且1a ≠时,方程组有唯一解.2129a x a +=-,222339a a x a ++=,3239a x a +=. 6.设T T11012,,0,,2180⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭αβγA αβB βα,其中T β是β的转置,求解方程22442=++B A x A x B x γ. 解:将TT T ,,2===A αβB βαβα代入下式得22T TTT4T222=⋅B A x βαβααβαβx αβx = 4TTTT3T2=⋅⋅⋅=A x αβαβαβαβx αβx 442=B x x 由 22442=++B A x A x B x γ 得4T 3T 4222=++x x x γαβαβ3T T32(22)--=αβαβE x γ 3T32(2)-=αβE x γ又 T1101212(10)210211102⎛⎫ ⎪⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭αβ所以 3110222101122⎛⎫- ⎪ ⎪-= ⎪ ⎪- ⎪⎝⎭x γ即 12384001680084168-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭x x x对线性方程组的增广矩阵进行初等行变换84002100202216800012201228416800000000----⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭方程组等价于 1323122+=-⎧⎨-=⎩x x x x ,即1323122x x x x =--⎧⎨=+⎩,121-⎛⎫⎪= ⎪ ⎪⎝⎭ξ为导出组的基础解系.0120-⎛⎫ ⎪= ⎪ ⎪⎝⎭η为方程组的一个特解. 故通解为 0R k k =+∈X ξη. 7.已知向量组12301,2,1110a b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭βββ与向量组1231392,0,6317⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ααα具有相同的秩,且3β可由123,,ααα线性表示,求,a b 的值. 解:因为3β可以由123,,ααα线性表示 所以,1233(,,)=X αααβ有解.即 1231233(,,)(,,)r r =ααααααβ1233(,,)αααβ13913920610612123170010203b b b b ⎛⎫⎛⎫ ⎪ ⎪=→--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭139210126500030b b b ⎛⎫ ⎪ ⎪- ⎪→ ⎪ ⎪- ⎪ ⎪⎝⎭ 因为 1231233(,,)(,,)r r =ααααααβ所以 1231233(,,)(,,)2r r ==ααααααβ 故50,530bb -==又 123(,,)βββ01101101210310311100003a b a b a b ⎛⎫⎪--⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭- ⎪⎝⎭ 因为 123123(,,)(,,)r r =αααβββ所以 03ab -= 315a b ==.8.设向量组12311111,1,1,11111λλλ+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==+== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭αααβ讨论λ取可值时,β不能由123,,ααα线性表示. λ取何值时,β可由123,,ααα唯一线性表示. λ取何值时,β可由123,,ααα线性表示,且有无穷多种表示形式.解:β是否能由123,,ααα线性表示,也即是 非齐次线性方程组123(,,)=αααX β是否有解.321(,,)αααβ211111111111100111101(1)λλλλλλλλλ++⎛⎫⎛⎫ ⎪ ⎪=+−−→- ⎪ ⎪ ⎪ ⎪+--+-⎝⎭⎝⎭行2111100003λλλλλλ+⎛⎫ ⎪−−→- ⎪ ⎪---⎝⎭行(1)当0λ=时,123123(,,)(,,)2r r ==ααααααβ,则123(,,)=αααX β有无穷多解. 也即β可由123,,ααα线性表示,并且有无穷多表示方法. 121122312(1),k k k k k k =--++∈βαααR ;(2)3λ=-时,123123(,,)23(,,)r r =≠=ααααααβ,故方程组123(,,)=αααX β无解,也即β不能由123,,ααα线性表示;(3)0,3λλ≠≠-时,123123(,,)(,,)r r =ααααααβ,则方程组123(,,)=αααX β有唯一解. 即β可由123,,ααα唯一线性表示.13λ=+β123(,,)ααα. 9.设四阶方阵A 的秩为2,且(1,2,3,4)i i ==A ηb ,其中122334112112,,012002⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪+=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ηηηηηη 求非齐次方程组=AX b 的通解.解:因为()2r =A ,故非齐次线性方程组=AX b 的导出组的基础解系含有2个向量又 1231202()()10⎛⎫ ⎪- ⎪=+-+= ⎪ ⎪ ⎪⎝⎭ξηηηη,2342313()()12⎛⎫ ⎪ ⎪=+-+= ⎪ ⎪ ⎪⎝⎭ξηηηη为=AX b 对应导出组的2个线性无关的解向量,即12,ξξ是=AX b 导出组的基础解系0121()2=+ηηη是=AX b 的一个解.故=AX b 的通解为1122012,k k k k =++∈X ξξηR . 10.已知方程组(I )的通解为1212(0,1,1,0)(1,2,2,1),k k k k =+-∈X T TR设方程组(II )为 122400x x x x +=⎧⎨-=⎩问方程组(I )、(II )是否有非零公共解,若有,求其所有公共解. 解:由题意,(I )的通解为212121212201212,21201R k k k k k k k k k k --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪=+=∈ ⎪⎪ ⎪+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭X将X 的表达式代入方程组(II )得2121222020k k k k k k -++=⎧⎨+-=⎩ 即 12k k =-所以(I )和(II )有公共解,并且公共解为()()11,,,1,1,1,1k k k k k k =---=---∈X T TR .11.设四元齐次方程组(I )为123123423020x x x x x x x +-=⎧⎨++-=⎩ 且已知另一四元齐次方程组(II )的一个基础解系为T1(2,1,2,1)a =-+α,T 2(1,2,4,8)a =-+α,(1)求方程组(I )的一个基础解系(2)当a 为何值时,方程组(I )与(II )有非零公共解?在有非零公共解时,求出全部非零公共解.解:(1)方程组(I )123123423020x x x x x x x +-=⎧⎨++-=⎩显然,系数矩阵的秩为2. 对(I )的系数阵进行初等行变换2310231012113501--⎛⎫⎛⎫→ ⎪ ⎪--⎝⎭⎝⎭故方程组(I )与1231242335x x x x x x +=⎧⎨+=⎩等价取 1210,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得 ()()TT121,0,2,3,0,1,3,5==ββ为(I )的一个基础解系.(2)若(I )、(II )有非零公共解,即存在不全为0的数1234,,,x x x x ,使11223142x x x x +=+ββαα (*)即 12121234(,,,)0x x x x ⎛⎫⎪ ⎪--= ⎪ ⎪⎝⎭ββαα有非零解 故 1212(,,,)4r --<ββαα. 1212(,,,)ββαα10211021112011223240326351805511a a a a --⎛⎫⎛⎫ ⎪⎪--⎪ ⎪=−−→⎪ ⎪----+- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭行1021011200100001a a -⎛⎫⎪- ⎪−−→⎪+ ⎪⎪+⎝⎭行所以 1a =-时,方程组有非零解此时 1342342020x x x x x x -+=⎧⎨+-=⎩即 13423422x x x x x x =-⎧⎨=-+⎩所以 ()()T T122,1,1,0,1,2,0,1=-=-ξξ为(*)的基础解系.将12,ξξ表示式代入(*)得(I )、(II )的全部解为()()TT122,1,1,11,2,4,7k k =-+-X (12,k k 为不同时为0的常数).12.设112224336⎛⎫⎪= ⎪ ⎪⎝⎭A ,求一秩为2的矩阵B ,使.=AB 0解:先求=AX 0的基础解系112112224000336000⎛⎫⎛⎫⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A故齐次线性方程组=AX 0等价于12320x x x ++= 1232x x x =--得 ()()TT121,1,0,2,0,1=-=-ξξ为=AX 0的一个基础解系令 121001--⎛⎫⎪= ⎪ ⎪⎝⎭B ,()2r =B 并且 =AB 0.13.设T 2122(),(,,,)ij n n n a x x x ⨯==A X ,方程组=AX 0的一个基础解系为T 12,2(,,,),1,2,,i i i n b b b i n =,求方程组 1111221,222112222,221122,22000n n n n n n n n n b y b y b y b y b y b y b y b y b y +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的通解.解:将题中所求通解的线性方程组记为=BY 0由题意 1112121121121222212222122122220n n n n n n n n n n n n a a a b b b a a a b b b a a a b b b ⎛⎫⎛⎫⎪⎪ ⎪⎪= ⎪⎪⎪⎪⎝⎭⎝⎭ 两边取转置1112121121121222212222122122220n n n n n n n n nnn n b b b a a a b b b a a a b b b a a a ⎛⎫⎛⎫⎪⎪ ⎪⎪= ⎪⎪⎪⎪⎝⎭⎝⎭故T A 的每一列为=BY 0的解向量.又 =AX 0的基础解系含有n 个向量,所以,()2r n n n =-=A ,则A 的行向量组线性无关. 又 ()r n =B ,所以,A 的行向量组为=BY 0的基础解系.14.已知4阶方阵1234(,,,)=A αααα,其中234,,ααα线性无关,1232=-ααα,如果1234=+++βαααα,求线性方程组=AB β的通解.解:因为234,,ααα线性无关,又123420=-+⋅αααα, 则 ()3r =A . 所以,=AX 0的基础解系只含有1个向量.又 1234200+-+⋅=αααα所以 123412(,,,)100⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭αααα 故 ()T1,2,1,0=-ξ为=AX 0的一个基础解系. 又 1234+++=ααααβ则 123411(,,,)11⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ααααβ 所以 ()T01,1,1,1=η为=AB β的一个特解 故 =AB β的通解为0R k k =+∈X ξη.15.设()ij m n a ⨯=A 的行向量组是某个齐次线性方程组的基础解系. 证明()ij m n b ⨯=B 的行向量组也是该方程组的基础解系⇔存在可逆阵()ij m m p ⨯=P ,使1,1,2,,,1,2,,mij ik kj k b p a i m j n ====∑.解:设m n ⨯A 的行向量组是=CX 0的基础解系,若m n ⨯B 的行向量组也是=CX 0的基础解系, 则A 的行向量组与B 的行向量组等价 故存在可逆阵P ,使得 =B PA , 所以 1mij ik kjk b P a==∑ 1,2,,i m =,1,2,,j n =.反之,若存在可逆阵,()ij m m P ⨯=P P ,使得1,1,2,,;1,2,,mij ik kj k b P a i m j n ====∑则=B PA ,故A 的行向量组与B 的行向量组等价.又 因为A 的行向量组是=CX 0的基础解系. 所以,B 的行向量组也是=CX 0的基础解系.16.设=AX 0的解都是=BX 0的解,则=AX 0与=BX 0同解()()r r ⇔=A B . 证:必要性.若=AX 0与=BX 0同解,则=AX 0与=BX 0具有相同的解空间, 即()()=N A N B 故 ()()n r n r -=-A B , 所以()()r r =A B .充分性.设1,,n r -ξξ是=AX 0的基础解系,()r r =A ,因为=AX 0的解都是=BX 0的解. 所以,1,,n r -ξξ是=BX 0的n r -个线性无关的解向量.又()()r r =A B ,所以,=BX 0的基础解系所含向量的个数为 ()()n r n r n r -=-=-B A因此,1,,n r -ξξ为=BX 0的一个基础解系. 故=AX 0与=BX 0同解.17.设A 为m p ⨯阵,B 为p n ⨯阵,证明=ABX 0与=BX 0同解()()r r ⇔=AB B证:必要性.因为=ABX 0与=BX 0同解,所以,=ABX 0与=BX 0有相同的解空间, 即()()=N AB N B 因此()()n r n r -=-AB B , 故()()r r =AB B . 充分性.设1X 是=BX 0的解,1=BX 0. 则1==ABX A 00. 所以,=BX 0的解都是=ABX 0的解.设1,,n r -ξξ是=BX 0的基础解系,()r r =B ,则1,,n r -ξξ也是=ABX 0的线性无关解向量. 并且,=ABX 0的基础解系所含向量的个数为()()n r n r n r -=-=-AB B所以 1,,n r -ξξ为=ABX 0的基础解系,故=ABX 0与=BX 0同解.18.设A 为m n ⨯阵,B 为m p ⨯阵,证明=AX B 有解()()r r ⇔=A B A证:必要性.A 为m n ⨯阵,B 为m p ⨯阵,=AX B ,则X 为n p ⨯阵 令 1(,,)p =X X X ,1(,,)p =B b b因为 =AX B 所以 1122,,,p p ===AX b AX b AX b 故 12()()()()p r r r r ===A b A b A b A即矩阵B 的列向量组可以由A 的列向量组线性表示 所以 ()()r r =A B A 充分性.若 ()()r r =A B A ,又由1(,,)p =B b b有 ()()()()1,,i r r r r i p ≤≤==A A b A B A所以 ()()1,,i r r i p ==A b A故 12,,,p ===AX b AX b AX b 有解. 设解分别为12,,,p X X X 1212(,,,)(,,,)p p =A X X X b b b即 =AX B 有解.19.设A 为m n ⨯阵,B 为l n ⨯阵,则=AX 0与=BX 0同解⇔()()r r r ⎛⎫== ⎪⎝⎭A AB B证:若=AX 0与=BX 0同解,则⎛⎫= ⎪⎝⎭A XB 0与=AX 0同解.又 ⎛⎫= ⎪⎝⎭A XB 0的解一定是=AX 0的解.由题16, ()r r ⎛⎫= ⎪⎝⎭A A B同理, ()r r ⎛⎫= ⎪⎝⎭A B B故 ()()r r r ⎛⎫== ⎪⎝⎭A A B B .反之,若 ()()r r r ⎛⎫== ⎪⎝⎭A AB B .因为,⎛⎫=⎪⎝⎭A X B 0的解都是=AX 0的解. 所以,由题16,⎛⎫= ⎪⎝⎭A XB 0与=AX 0同解. 又因为⎛⎫= ⎪⎝⎭A X B 0的解都是=BX 0的解,所以 ⎛⎫= ⎪⎝⎭A XB 0与=BX 0同解,故,=AX 0与=BX 0同解.20.设T (),0ij n n a ⨯⎛⎫==⎪⎝⎭Ab A B b ,其中T 12(,,,)n =b b b b ,若()()r r =A B ,则=AX b 有解.证:因为 ()()()()r r r r ≤≤=A A b B A 所以, ()()r r =A b A故 =AX b 有解.21.设A 为(1)n n ⨯-阵,,()n∈=b R B A b ,若b =AX 有解,则||=B 0. 又当()1r n =-A 时,b =AX 有解||⇔=B 0.证:(1)因为A 为(1)n n ⨯-阵,所以()1n ≤-R A .故()()1r r n n =≤-<A b A又 ()=B A b 为n n ⨯阵,故 ||=B 0.(2)若()1r n =-A ,=AX b 有解,则()()1r r n ==-A b A所以||0=B .反之,若||,()1r n ==-B A 0. 故 ()1r n =-B即 ()()()1r r r n ===-A A b B 所以=AX b 有解.22.若方阵A 的行列式为0,则A 的伴随阵*A 各行成比例. 证:因为||0=A ,所以()1r n ≤-A . (1)若()1r n =-A ,则*()1r =A .故*A 的行向量组的秩为1,不妨设第一行1α为行向量的极大无关组,则剩余行向量均可以由1α线性表示,故各行成比例.(2)若()1r n <-A ,则*()0r =A ,即*=A 0,显然各行成比例.23.设(1)(),()ij n n a r n ⨯+==A A ,则方程组0=AX 的任意两解成比例. 证:因为A 为(1)n n ⨯+阵,()r n =A所以,=AX 0的基础解系所含向量个数为(1)1n n +-=. 设ξ为=AX 0的一个基础解系. 则任意解,R k k =∈X ξ. 所以,任意两解成比例.24.设()ij n n a ⨯=A ,且10,1,2,,nijj ai n ===∑,则A 不可逆.证:由于10nijj a==∑故 111⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭A 0. 所以,()T1,1,,1=X 是=AX 0的解.即 齐次线性方程组=AX 0有非零解,故||0=A .25.设A 为n n ⨯实矩阵,若对任意n 维非零列向量X ,均有T0>X AX ,则||0.≠A 证:反证,若||0=A则 =AX 0有非零解设1X 是=AX 0的一个非零解,则1=AX 0T T 11100=⋅=X AX X此与对任意 ≠X 0,T0>X AX 矛盾.26.设A 为(实)反对称阵,D 为对角元全大于0的对角阵,则||0+≠A D ,且还有||0.+>A D证:(1)反证,若||0.+=A D 则 ()+=A D X 0有非零解,设为1X1()+=A D X 0进而 T11()0+=X A D XT T 11110+=X AX X DX因为A 为反对称阵,所以 T110=X AX 故 T110=X DX但 1diag(,,),0n i a a a =>D所T110>X DX ,此为矛盾所以, ||0+≠A D . (2)令()||[0,1]f x x x =+∈A D假设 ||0+<A D .因为 (0)||0f =>D ,(1)||0f =+<A D . 由介值定理 存在0(0,1)x ∈使得00()||0f x x =+=A D0001||||0x x x +=+=D A D A 0x D 为对角元全大于0的对角阵. 但由第(1)步 0||0x +≠DA 矛盾. 故||0+>A D . 27.求出平面上n 点(,)(1,2,,(3))i i x y i n n =≥位于一条直线上的充要条件.证:设n 点所共直线为y kx b =+,则关于,k b 的方程组i i y kx b =+ (1,,)i n =有解,从而矩阵12111n x x x ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭与1122111n n x y x y x y ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭的秩相等,故11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ ,反之,若 11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ (1)若12n x x x ==,则此n 点共线.(2)否则,121121n x x r x ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,但11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ 故 11221121nn x y x y r x y ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, 从而 12111n x x x ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 与 1122111nn x y x y x y ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭的秩相等. 方程组(未知量为,k b )1122n nkx b y kx b y kx b y +=⎧⎪+=⎪⎨⎪⎪+=⎩ 有解,于是n 点共线,故平面上n 点(,)1,,;1,,i i x y i n y n ==共线的充要条件是 11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ 即 11221131n n x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭. 28.求出平面内n 条直线0(1,2,,)i i i a x b y c i n ++==共点的充分必要条件. 证:若平面内n 条直线0i i i a x b y c ++=(1,2,,)i n =共点,则线性方程组 111222000n n n a x b y c a x b y c a x b y c ++=⎧⎪++=⎪⎨⎪⎪++=⎩ 有解,故矩阵1122n n a b a b a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 与 111222n n n a b c a b c a b c ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭的秩相等. 反之,若矩阵1122n n a b a b a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭与111222n n n a b c a b c a b c ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭秩相等,则线性方程组 111222000n n n a x b y c a x b y c a x b y c ++=⎧⎪++=⎪⎨⎪⎪++=⎩ 有解,即n 条直线共点.故n 条直线0(1,2,,)i i i a x b y c i n ++==共点的充要条件是 矩阵1122nn a b a b a b ⎛⎫ ⎪⎪ ⎪ ⎪ ⎪⎝⎭与111222n n n a b c a b c a b c ⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎝⎭的秩相等. 29.设T12(,,,)(1,2,,;)i i i in a a a i r r n ==<α是n 维实向量,且12,,,r ααα线性无关,已知T 12(,,,)n b b b ==β是线性方程组11112212122221122000n n n nr r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的非零解向量,试判断向量组12,,,r ααα,β的线性相关性. 解:设有一组数12,,,,r k k k k 使得11220r r k k k k ++++=αααβ成立,因为T 12(,,,)n b b b ==β是线性方程组111122121122221122000n n n n r r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的解,且0≠β,故有T(1,2,,)i i r ==αβ即 T(1,2,,)i i r ==βα于是,由1122T T T T 0r r k k k k ++++=βαβαβαββ得 T0k =ββ,但T0≠ββ,故0k =.从而 11220r r k k k +++=ααα由于向量组12,,,r ααα线性无关,所以有120r k k k ====因此,向量组12,,,,r αααβ线性无关.30.已知向量()()()TTT1231,1,0,2,2,1,1,4,4,5,3,11=-=-=-ηηη,是方程组112334411223442122344324335a x x a x a x d x b x x b x d x c x x c x d ⎧+++=⎪+++=⎨⎪+++=⎩ 的三个解. 求该方程组的通解.解:由已知有()()TT21311,2,1,2,3,6,3,9-=--=-ηηηη是相应的齐次方程组的两个线性无关解.所以,系数矩阵的秩2≤,(因为4()2r -≥A ).又 系数矩阵134242424335a a ab b cc ⎛⎫⎪⎪ ⎪⎝⎭有二阶子式43035≠所以,系数矩阵的秩2≥. 于是,系数矩阵的秩为2.故齐次方程组的基础解系包含2个向量,即2131,--ηηηη是齐次方程组的基础解系. 因此,该方程组的通解为121231112()()(,)R k k k k -+-+∈ηηηηη.31.设12,,,t ααα是齐次线性方程组0=AX 的基础解系,向量β不是0=AX 的解,试证向量组12,,,,t +++ββαβαβα线性无关.证:设有一组01,,,t k k k 得01112()()()0t t k k k k +++++++=ββαβαβα得 0121122()0t t t k k k k k k k ++++++++=βααα (1)由于12,,,t ααα是齐次线性方程组0=AX 的基础解系,向量β不是0=AX 的解,所以β不能表为1,,t αα的线性组合,所以010t k k k +++=因此(1)式变为 11220t t k k k +++=ααα由于1,,t αα线性无关,所以 120t k k k ====,进而00k =,故向量组12,,,,t +++ββαβαβα线性无关.32.已知齐次方程组(I )124213224000x x x ax a x ax a x ++=⎧⎪+=⎨⎪+=⎩的解都满足方程1230x x x ++=,求a 和方程组(I )的通解.解:(I )的解都满足1230x x x ++=的充要条件是(I )与方程组1242132241230000x x x ax a x ax a x x xx ++=⎧⎪+=⎪⎨+=⎪⎪++=⎩同解,于是该方程组系数矩阵的秩等于方程组(I )的秩,即22110100001110a a a a ⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭B 与 2211010000a a a a ⎛⎫⎪= ⎪ ⎪⎝⎭A的秩相等,对,A B 都施以行变换得222110100aa a a a ⎛⎫ ⎪→ ⎪ ⎪-⎝⎭A 2211010000110002a a a a ⎛⎫⎪⎪→ ⎪- ⎪ ⎪-⎝⎭B 因此,当0a =时,秩()1=≠A 秩()2=B 不满足题意当0a ≠时 1101010001a a a ⎛⎫ ⎪→ ⎪ ⎪-⎝⎭A 1101010001100021a a ⎛⎫ ⎪⎪→ ⎪- ⎪ ⎪-⎝⎭B 使秩()=A 秩()3=B 的充要条件是12a =,此即12a =为题意所求.把12a =代入方程组(I )得系数矩阵110011012111000102421100110024⎛⎫⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪=→ ⎪⎪ ⎪ ⎪- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭A 所以 14243411,,22x x x x x x =-=-=方程组(I )的基础解系为 T11(,,1,1)22=--α通解 为()R k k =∈X α. 33.设121201101t t t ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,且方程组0=AX 的基础解系中含有两个解向量,求0=AX 的通解.解:因为4,()2n n r =-=A ,所以()2r =A 对A 施行初等行变换得1112121201011010211t t t t t t ⎛⎫⎛⎫ ⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭A 2212120100(1)(1)t t t t ⎛⎫⎪→ ⎪ ⎪----⎝⎭221012220100(1)(1)tt t t t t --⎛⎫ ⎪→ ⎪ ⎪----⎝⎭要使()2r =A ,则必有1t =,此时与0=AX 同解的方程组为13234x x x x x =⎧⎨=--⎩ 得基础解系 ()()TT121,1,1,0,0,1,0,1=-=-ξξ方程组的通解为 112212(,)R k k k k =+∈X ξξ.34.讨论三个平面11111:a x b y c z d π++=,22222:a x b y c z d π++=,33333:a x b y c z d π++=的位置关系解:设111222333a b c a b c a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,111122223333a b c d a b c d a b c d ⎛⎫ ⎪= ⎪ ⎪⎝⎭A(1)若()()3r r ==A A ,则三平面交于一点,因为三平面的联立方程组仅有唯一解.(2)若()3,()2r r ==A A ,则三平面不相交,因为此时三平面的联立方程组无解. 由()2r =A ,知A 的3个行向量123,,ααα线性相关,故存在3个不全为零的数,123,,k k k 使得1122330k k k ++=ααα,当123,,k k k 都不为零时,三平面中任意两平面的交线与另一平面平行;当123,,k k k 中有一个为零时,三平面中有两平面平行,另一平面与这两平面相交.(3)若()()2r r ==A A ,则三平面相交于一直线,因为此时三平面联立方程组有无穷多解.由于()2r =A ,则A 的3个行向量123,,βββ线性相关. 故存在3个不全为零的数123,,k k k ,使得1122330k k k ++=βββ,当123,,k k k 均不为零时,三平面互异;当123,,k k k 中有一个为零时,三平面中有两平面相重合.(4)若()2r =A ,()1r =A ,则三平面不交,因为此时三平面的联立方程组无解. 由()1r =A ,故三平面平行,又因为()2r =A ,所以三平面中至少有两个互异. (5)若()()1r r ==A A ,则三平面重合,因为此时三平面的方程实际上是一样的.。

线性代数第四章答案

线性代数第四章答案

第四章 向量组的线性相关性1设v 1(1 1 0)T v 2(0 1 1)T v 3(3 4 0)T 求v 1v 2及3v 12v 2v 3解 v 1v 2(1 1 0)T (0 11)T(10 11 01)T(1 01)T3v 12v 2v 33(1 1 0)T 2(0 1 1)T (34 0)T(31203 31214 30210)T (0 1 2)T2 设3(a 1a )2(a 2a )5(a 3a ) 求a 其中a 1(2 5 13)Ta 2(10 1 5 10)Ta 3(41 1 1)T解 由3(a 1a )2(a 2a )5(a 3a )整理得)523(61321a a a a -+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61TT T --+=(1 2 3 4)T3 已知向量组 A a 1(0 1 2 3)T a 2(3 0 1 2)T a 3(2 30 1)TBb 1(2 112)T b 2(02 1 1)T b 3(4 4 13)T证明B 组能由A 组线性表示 但A 组不能由B 组线性表示证明 由⎪⎪⎪⎭⎫ ⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫ ⎝⎛------531400251552000751610421301 ~r ⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r 知R (A )R (A B )3 所以B 组能由A 组线性表示由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )2 因为R (B )R (B A ) 所以A 组不能由B 组线性表示4 已知向量组 A a 1(0 1 1)T a 2(1 10)TBb 1(10 1)T b 2(1 2 1)T b 3(3 2 1)T证明A 组与B 组等价 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B知R (B )R (B A )2 显然在A 中有二阶非零子式 故R (A )2 又R (A )R (BA )2 所以R (A )2 从而R (A )R (B )R (A B ) 因此A 组与B 组等价5 已知R (a 1 a 2 a 3)2 R (a 2 a3 a 4)3 证明(1) a 1能由a 2 a 3线性表示 (2) a 4不能由a 1 a 2 a 3线性表示 证明 (1)由R (a 2 a 3 a 4)3知a 2 a 3 a 4线性无关 故a 2 a 3也线性无关 又由R (a 1 a 2 a 3)2知a 1 a 2 a 3线性相关 故a 1能由a 2 a 3线性表示(2)假如a 4能由a 1 a 2 a 3线性表示 则因为a 1能由a 2 a 3线性表示 故a 4能由a 2 a 3线性表示 从而a 2 a 3 a 4线性相关 矛盾 因此a 4不能由a 1 a 2 a 3线性表示6 判定下列向量组是线性相关还是线性无关 (1) (1 3 1)T (2 1 0)T (1 4 1)T (2) (23 0)T (14 0)T (00 2)T解 (1)以所给向量为列向量的矩阵记为A 因为⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A所以R (A )2小于向量的个数 从而所给向量组线性相关(2)以所给向量为列向量的矩阵记为B 因为22200043012||≠=-=B所以R (B )3等于向量的个数 从而所给向量组线性相无关7 问a 取什么值时下列向量组线性相关? a 1(a 1 1)T a 2(1a 1)T a 3(11 a )T解 以所给向量为列向量的矩阵记为A 由aa aA 111111||--=如能使行列式等于0,则此时向量组线性相关(具体看书后相应答案)8 设a 1 a 2线性无关 a 1b a 2b 线性相关 求向量b 用a 1 a 2线性表示的表示式解 因为a 1b a 2b 线性相关 故存在不全为零的数12使1(a 1b )2(a 2b )0由此得2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=设211λλλ+-=c 则b c a 1(1c )a 2 c R9 设a 1 a 2线性相关 b 1 b 2也线性相关 问a 1b 1 a 2b 2是否一定线性相关?试举例说明之 (也可看书后答案) 解 不一定例如 当a 1(1 2)T , a 2(2 4)T , b 1(1 1)T , b 2(0 0)T 时 有 a 1b 1(1 2)T b 1(0 1)T , a 2b 2(2 4)T (0 0)T (2 4)T而a 1b 1 a 2b 2的对应分量不成比例 是线性无关的10 举例说明下列各命题是错误的 (1)若向量组a 1 a 2a m 是线性相关的则a 1可由a 2a m 线性表示解设a1e1(1000)a2a3a m0则a1 a2a m线性相关但a1不能由a2a m线性表示(2)若有不全为0的数12m使a1m a m1b1m b m01成立则a1a2a m线性相关, b1b2b m亦线性相关解有不全为零的数12m使a1m a m1b1m b m01原式可化为(a1b1)m(a m b m)01取a1e1b1a2e2b2a m e m b m其中e1e2e m为单位坐标向量则上式成立而a1a2a m和b1b2b m均线性无关(3)若只有当12m全为0时等式a1m a m1b1m b m01才能成立则a1a2a m线性无关, b1b2b m亦线性无关解由于只有当12m全为0时等式由1a1m a m1b1m b m0成立所以只有当12m全为0时等式(a1b1)2(a2b2)m(a m b m)01成立因此a1b1a2b2a m b m线性无关取a1a2a m0取b1b m为线性无关组则它们满足以上条件但a1a2a m线性相关(4)若a1a2a m线性相关, b1b2b m亦线性相关则有不全为0的数12m使a1m a m01b1m b m01同时成立解a1(1 0)T a2(2 0)T b1(0 3)T b2(0 4)Ta12a2 01221b12b2 01(3/4)210与题设矛盾1211设b1a1a2b2a2a3 b3a3a4 b4a4a1证明向量组b1b2 b3b4线性相关证明 由已知条件得a 1b 1a 2 a 2b 2a 3 a 3b 3a 4 a 4b 4a 1于是 a 1 b 1b 2a 3 b 1b 2b 3a 4b 1b 2b 3b 4a 1从而 b 1b 2b 3b 40这说明向量组b 1 b 2 b 3 b 4线性相关12 设b 1a 1 b 2a 1a 2b ra 1a 2a r 且向量组a 1 a 2a r 线性无关 证明向量组b 1 b 2b r 线性无关证明 已知的r 个等式可以写成⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅100110111) , , ,() , , ,(2121r r a a a b b b上式记为B AK 因为|K |10 K 可逆 所以R (B )R (A )r 从而向量组b 1 b 2b r 线性无关13 求下列向量组的秩, 并求一个最大无关组(1)a 1(1 2 1 4)T a 2(9 100 10 4)T a 3(2 4 2 8)T解 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a知R (a 1 a 2 a 3)2 因为向量a 1与a 2的分量不成比例 故a 1 a 2线性无关 所以a 1 a 2是一个最大无关组(2)a 1T (1 2 1 3)a 2T (41 5 6)a 3T (134 7)解 由⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛------⎪⎪⎪⎭⎫⎝⎛------=00000059014110180590590141763451312141) , ,(~~321r r a a a知R (a 1T a 2T a 3T )R (a 1 a 2 a 3)2 因为向量a 1T 与a 2T 的分量不成比例 故a 1Ta 2T 线性无关 所以a 1T a 2T 是一个最大无关组14 利用初等行变换求下列矩阵的列向量组的一个最大无关组(1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---14011313021512012211解 因为⎪⎪⎪⎭⎫ ⎝⎛---141131302151201221113142~rr r r --⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122112343~rr r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211所以第1、2、3列构成一个最大无关组(关于14的说明:14题和书上的14题有些不同,答案看书后的那个)15 设向量组(a3 1)T (2 b 3)T (1 2 1)T (2 31)T的秩为2 求a b解 设a 1(a 3 1)T a 2(2 b 3)T a 3(12 1)T a 4(23 1)T因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a而R (a 1 a 2 a 3 a 4)2 所以a 2 b 516设a1a2a n是一组n维向量已知n维单位坐标向量e1e2e n能由它们线性表示证明a1a2a n线性无关证法一记A(a1a2a n)E(e1e2e n)由已知条件知存在矩阵K使E AK两边取行列式得|E||A||K|可见|A|0所以R(A)n从而a1a2a n线性无关证法二因为e1e2e n能由a1a2a n线性表示所以R(e1e2e n)R(a1a2a n)而R(e1e2e n)n R(a1a2a n)n所以R(a1a2a n)n从而a1a2a n线性无关17设a1a2a n是一组n维向量, 证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示证明必要性设a为任一n维向量因为a1a2a n线性无关而a1a2a n a是n1个n维向量是线性相关的所以a能由a1a2a n线性表示且表示式是唯一的充分性已知任一n维向量都可由a1a2a n线性表示故单位坐标向量组e1e2e n能由a1a2a n线性表示于是有n R(e1e2e n)R(a1a2a n)n即R(a1a2a n)n所以a1a2a n线性无关18设向量组a1a2a m线性相关且a10证明存在某个向量a k (2k m)使a k能由a1a2a k1线性表示证明因为a1a2a m线性相关所以存在不全为零的数12使ma12a2m a m01而且23m不全为零这是因为如若不然则1a10由a10知10矛盾因此存在k(2k m)使0k1k2m0k于是a12a2k a k01a k(1/k)(1a12a2k1a k1)即a k 能由a 1 a 2 a k 1线性表示19 设向量组B b 1 b r 能由向量组A a 1a s 线性表示为(b 1b r )(a 1a s )K 其中K 为s r 矩阵 且A 组线性无关 证明B 组线性无关的充分必要条件是矩阵K 的秩R (K )r 证明 令B (b 1b r ) A (a 1a s ) 则有B AK必要性 设向量组B 线性无关 由向量组B 线性无关及矩阵秩的性质 有 r R (B )R (AK )min{R (A ) R (K )}R (K )及 R (K )min{r s }r因此R (K )r充分性 因为R (K )r 所以存在可逆矩阵C 使⎪⎭⎫ ⎝⎛=O E KC r 为K 的标准形 于是(b 1b r )C ( a 1a s )KC(a 1 a r )因为C 可逆 所以R (b 1b r )R (a 1a r )r 从而b 1b r 线性无关20 设⎪⎩⎪⎨⎧+⋅⋅⋅+++=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅++=+⋅⋅⋅++=-1321312321 n n n nααααβαααβαααβ证明向量组12n 与向量组12n 等价证明 将已知关系写成⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅0111101111011110) , , ,() , , ,(2121n n αααβββ将上式记为B AK 因为0)1()1(0111101111011110||1≠--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-n K n所以K 可逆 故有A BK 1由B AK 和A BK 1可知向量组12n与向量组12n 可相互线性表示 因此向量组12n 与向量组12n 等价21 已知3阶矩阵A 与3维列向量x 满足A 3x 3A x A 2x 且向量组x A x A 2x 线性无关(1)记P (x A x A 2x ) 求3阶矩阵B 使AP PB解 因为AP A (x A x A 2x ) (A x A 2x A 3x )(A x A 2x 3A x A 2x )⎪⎪⎭⎫⎝⎛-=110301000) , ,(2x x x A A所以⎪⎪⎭⎫ ⎝⎛-=110301000B(2)求|A |解 由A 3x 3A x A 2x 得A (3x A x A 2x )0 因为x A x A 2x 线性无关 故3x A x A 2x 0 即方程A x 0有非零解 所以R (A )3 |A |0(从22题开始,凡涉及到基础解系问题的,答案都不是唯一的,可以参考本文答案,也可以看书后的答案,不过以书后的答案为主。

线性代数(第四章)(完整资料).doc

线性代数(第四章)(完整资料).doc

【最新整理,下载后即可编辑】第四章 二次型习题4.1 二次型及其标准形(P.108-P.109)1.用矩阵记号表示下列二次型: (1)2222426;f x xy y xz z yz =+++++(2)22221234121314232424264f x x x x x x x x x x x x x x =+++-+-+- 解:(1)2222426f x xy y xz z yz =+++++()111,,143131x x y z y x ⎛⎫⎛⎫⎪⎪'== ⎪⎪ ⎪⎪⎝⎭⎝⎭x Ax(2)22221234121314232424264f x x x x x x x x x x x x x x =+++-+-+-()1212343411211132,,,23101201x x x x x x x x --⎛⎫⎛⎫ ⎪⎪-- ⎪⎪'== ⎪ ⎪ ⎪ ⎪ ⎪⎪--⎝⎭⎝⎭x Ax 2.用配方法或矩阵变换法化下列二次型为标准形,并求所用的变换矩阵:(1)222123121323235448f x x x x x x x x x =+++--; 解:222123121323235448f x x x x x x x x x =+++--22212323232()34x x x x x x x =+-++-2221232332()(2)x x x x x x =+-+--令:11231123223223333311122012001y x x x x y y y y x x x y y C y x x y =+-=----⎧⎧⎛⎫⎪⎪ ⎪=-⇒=+=⎨⎨ ⎪⎪⎪ ⎪==⎩⎩⎝⎭10C =≠得2221232f y y y =+-(2)222123122313210282f x x x x x x x x x =+++++; 解: 222123122313210282f x x x x x x x x x =+++++2221232323()96x x x x x x x =+++++ 2212323()(3)x x x x x =++++令112311232232233333211233013001y x x x x y y y y x x x y y C y x x y =++=-+-⎧⎧⎛⎫⎪⎪ ⎪=+⇒=-=-⎨⎨ ⎪⎪⎪ ⎪==⎩⎩⎝⎭, 10C =≠得 2212f y y =+ (3)122334f x x x x x x =++解:令11211212223343343444110110000110011x y y x y x y y x y x y y x y x y y x y =+⎧⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪=--⎪ ⎪ ⎪⎪⇒=⎨ ⎪ ⎪⎪=+⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪=--⎝⎭⎝⎭⎝⎭⎩121212343434()()()()()()f y y y y y y y y y y y y =+-+-+++-2222123413142324y y y y y y y y y y y y =-+-++--222213423423243411351()22442y y y y y y y y y y y y =++-+----2222134234341111()()2222y y y y y y y y =++-+++-令1134113422342234333344441111222211112222z y y y y z z z z y y y y z z z z y y z z y y z ⎧⎧=++=--⎪⎪⎪⎪⎪⎪=++=--⇒⎨⎨⎪⎪==⎪⎪⎪⎪==⎩⎩,即1122334411102211012200100001y z y z y z y z ⎛⎫-- ⎪⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭ 得 22221234f z z z z =-+-变换矩阵:1110110011112211001111000122001100110010001100110001C ⎛⎫-- ⎪--⎛⎫⎛⎫ ⎪⎪ ⎪--⎪⎪ ⎪--== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪⎝⎭⎝⎭ ⎪⎝⎭40C =≠(4)222123121323255448f x x x x x x x x x =+++-- 解: 222123123232()334f x x x x x x x =+-++-222123233252()3()33x x x x x x =+-+-+令1123112322322333331322,33x y y y y x x x y x x x y y C y x x y ⎧=-+⎪=+-⎧⎪⎪⎪⎪=-⇒=+=⎨⎨⎪⎪==⎪⎪⎩⎪⎩x y 即,其中11132013001C ⎛⎫- ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎝⎭, 10C =≠ 得2221235233f y y y =++3.若矩阵1A 合同于12,B A 合同于2B ,试证:12⎛⎫⎪⎝⎭A 00A 合同于12⎛⎫ ⎪⎝⎭B 00B 。

线性代数第四章答案解析

线性代数第四章答案解析

第四章 向量组的线性相关性1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3.解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T=(1-0, 1-1, 0-1)T=(1, 0, -1)T .3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3⨯1+2⨯0-3, 3⨯1+2⨯1-4, 3⨯0+2⨯1-0)T =(0, 1, 2)T .2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T ,a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T .解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得)523(61321a a a a -+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61TT T --+==(1, 2, 3, 4)T .3. 已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫ ⎝⎛------531400251552000751610421301 ~r ⎪⎪⎪⎭⎫⎝⎛-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示.4. 已知向量组A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ;B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B ,知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.5. 已知R (a 1, a 2, a 3)=2, R (a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示;(2) a 4不能由a 1, a 2, a 3线性表示.证明 (1)由R (a 2, a 3, a 4)=3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1,a 2, a 3)=2知a 1, a 2, a 3线性相关, 故a 1能由a 2, a 3线性表示.(2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示.6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.7. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由aa aA 111111||--=如能使行列式等于0,则此时向量组线性相关.(具体看书后相应答案)8. 设a 1, a 2线性无关, a 1+b , a 2+b 线性相关, 求向量b 用a 1, a 2线性表示的表示式. 解 因为a 1+b , a 2+b 线性相关, 故存在不全为零的数λ1, λ2使 λ1(a 1+b )+λ2(a 2+b )=0, 由此得2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=,设211λλλ+-=c , 则b =c a 1-(1+c )a 2, c ∈R .9. 设a 1, a 2线性相关, b 1, b 2也线性相关, 问a 1+b 1, a 2+b 2是否一定线性相关?试举例说明之. (也可看书后答案) 解 不一定.例如, 当a 1=(1, 2)T , a 2=(2, 4)T , b 1=(-1, -1)T , b 2=(0, 0)T 时, 有 a 1+b 1=(1, 2)T +b 1=(0, 1)T , a 2+b 2=(2, 4)T +(0, 0)T =(2, 4)T , 而a 1+b 1, a 2+b 2的对应分量不成比例, 是线性无关的.10. 举例说明下列各命题是错误的:(1)若向量组a 1, a 2, ⋅ ⋅ ⋅, a m 是线性相关的, 则a 1可由a 2, ⋅ ⋅ ⋅, a m 线性表示. 解 设a 1=e 1=(1, 0, 0, ⋅ ⋅ ⋅, 0), a 2=a 3= ⋅ ⋅ ⋅ =a m =0, 则a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, 但a 1不能由a 2, ⋅ ⋅ ⋅, a m 线性表示.(2)若有不全为0的数λ1, λ2, ⋅ ⋅ ⋅, λm 使λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0成立, 则a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, b 1, b 2, ⋅ ⋅ ⋅, b m 亦线性相关. 解 有不全为零的数λ1, λ2, ⋅ ⋅ ⋅, λm 使λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0,原式可化为λ1(a1+b1)+⋅⋅⋅+λm(a m+b m)=0.取a1=e1=-b1,a2=e2=-b2,⋅⋅⋅,a m=e m=-b m,其中e1,e2,⋅⋅⋅,e m为单位坐标向量,则上式成立,而a1,a2,⋅⋅⋅,a m和b1,b2,⋅⋅⋅,b m均线性无关.(3)若只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0才能成立,则a1,a2,⋅⋅⋅,a m线性无关, b1,b2,⋅⋅⋅,b m亦线性无关.解由于只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式由λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0成立,所以只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式λ1(a1+b1)+λ2(a2+b2)+⋅⋅⋅+λm(a m+b m)=0成立.因此a1+b1,a2+b2,⋅⋅⋅,a m+b m线性无关.取a1=a2=⋅⋅⋅=a m=0,取b1,⋅⋅⋅,b m为线性无关组,则它们满足以上条件,但a1,a2,⋅⋅⋅,a m线性相关.(4)若a1,a2,⋅⋅⋅,a m线性相关, b1,b2,⋅⋅⋅,b m亦线性相关,则有不全为0的数,λ1,λ2,⋅⋅⋅,λm使λ1a1+⋅⋅⋅+λm a m=0,λ1b1+⋅⋅⋅+λm b m=0同时成立.解a1=(1, 0)T,a2=(2, 0)T,b1=(0, 3)T,b2=(0, 4)T,λ1a1+λ2a2 =0⇒λ1=-2λ2,λ1b1+λ2b2 =0⇒λ1=-(3/4)λ2,⇒λ1=λ2=0,与题设矛盾.11.设b1=a1+a2,b2=a2+a3, b3=a3+a4, b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.证明 由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1, 于是 a 1 =b 1-b 2+a 3 =b 1-b 2+b 3-a 4 =b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.12. 设b 1=a 1, b 2=a 1+a 2, ⋅ ⋅ ⋅, b r =a 1+a 2+ ⋅ ⋅ ⋅ +a r , 且向量组a 1, a 2, ⋅ ⋅ ⋅ , a r 线性无关, 证明向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关. 证明 已知的r 个等式可以写成⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅100110111) , , ,() , , ,(2121r r a a a b b b , 上式记为B =AK . 因为|K |=1≠0, K 可逆, 所以R (B )=R (A )=r , 从而向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关.13. 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a , 知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.(2)a 1T =(1, 2, 1, 3), a 2T =(4, -1, -5, -6), a 3T =(1, -3, -4, -7).解 由⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛------⎪⎪⎪⎭⎫⎝⎛------=00000059014110180590590141763451312141) , ,(~~321r r a a a , 知R (a 1T , a 2T , a 3T )=R (a 1, a 2, a 3)=2. 因为向量a 1T 与a 2T 的分量不成比例, 故a 1T , a 2T 线性无关, 所以a 1T , a 2T 是一个最大无关组.14. 利用初等行变换求下列矩阵的列向量组的一个最大无关组:(1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125, 所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---14011313021512012211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221113142~rr r r --⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122112343~rr r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组.(关于14的说明:14题和书上的14题有些不同,答案看书后的那个)15. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5.16. 设a 1, a 2, ⋅ ⋅ ⋅, a n 是一组n 维向量, 已知n 维单位坐标向量e 1, e 2,⋅ ⋅ ⋅, e n 能由它们线性表示, 证明a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.证法一 记A =(a 1, a 2, ⋅ ⋅ ⋅, a n ), E =(e 1, e 2,⋅ ⋅ ⋅, e n ). 由已知条件知, 存在矩阵K , 使E =AK .两边取行列式, 得|E |=|A ||K |.可见|A |≠0, 所以R (A )=n , 从而a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.证法二 因为e 1, e 2,⋅ ⋅ ⋅, e n 能由a 1, a 2, ⋅ ⋅ ⋅, a n 线性表示, 所以R (e 1, e 2,⋅ ⋅ ⋅, e n )≤R (a 1, a 2, ⋅ ⋅ ⋅, a n ),而R (e 1, e 2,⋅ ⋅ ⋅, e n )=n , R (a 1, a 2, ⋅ ⋅ ⋅, a n )≤n , 所以R (a 1, a 2, ⋅ ⋅ ⋅, a n )=n , 从而a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.17. 设a 1, a 2, ⋅ ⋅ ⋅, a n 是一组n 维向量, 证明它们线性无关的充分必要条件是: 任一n 维向量都可由它们线性表示.证明 必要性: 设a 为任一n 维向量. 因为a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关, 而a 1, a 2, ⋅ ⋅ ⋅, a n ,a是n+1个n维向量,是线性相关的,所以a能由a1,a2,⋅⋅⋅,a n线性表示,且表示式是唯一的.充分性:已知任一n维向量都可由a1,a2,⋅⋅⋅,a n线性表示,故单位坐标向量组e1,e2,⋅⋅⋅,e n能由a1,a2,⋅⋅⋅,a n线性表示,于是有n=R(e1,e2,⋅⋅⋅,e n)≤R(a1,a2,⋅⋅⋅,a n)≤n,即R(a1,a2,⋅⋅⋅,a n)=n,所以a1,a2,⋅⋅⋅,a n线性无关.18.设向量组a1,a2,⋅⋅⋅,a m线性相关,且a1≠0,证明存在某个向量a k (2≤k≤m),使a k能由a1,a2,⋅⋅⋅,a k-1线性表示.证明因为a1,a2,⋅⋅⋅,a m线性相关,所以存在不全为零的数λ1,λ2,⋅⋅⋅,λm,使λ1a1+λ2a2+⋅⋅⋅+λm a m=0,而且λ2,λ3,⋅⋅⋅,λm不全为零.这是因为,如若不然,则λ1a1=0,由a1≠0知λ1=0,矛盾.因此存在k(2≤k≤m),使λk≠0,λk+1=λk+2=⋅⋅⋅=λm=0,于是λ1a1+λ2a2+⋅⋅⋅+λk a k=0,a k=-(1/λk)(λ1a1+λ2a2+⋅⋅⋅+λk-1a k-1),即a k能由a1,a2,⋅⋅⋅,a k-1线性表示.19.设向量组B:b1,⋅⋅⋅,b r能由向量组A:a1,⋅⋅⋅,a s线性表示为(b1,⋅⋅⋅,b r)=(a1,⋅⋅⋅,a s)K,其中K为s⨯r矩阵,且A组线性无关.证明B组线性无关的充分必要条件是矩阵K的秩R(K)=r.证明令B=(b1,⋅⋅⋅,b r),A=(a1,⋅⋅⋅,a s),则有B=AK.必要性:设向量组B线性无关.由向量组B线性无关及矩阵秩的性质,有r=R(B)=R(AK)≤min{R(A),R(K)}≤R(K),及 R (K )≤min{r , s }≤r . 因此R (K )=r .充分性: 因为R (K )=r , 所以存在可逆矩阵C , 使⎪⎭⎫ ⎝⎛=O E KC r 为K 的标准形. 于是(b 1, ⋅ ⋅ ⋅, b r )C =( a 1, ⋅ ⋅ ⋅, a s )KC =(a 1, ⋅ ⋅ ⋅, a r ).因为C 可逆, 所以R (b 1, ⋅ ⋅ ⋅, b r )=R (a 1, ⋅ ⋅ ⋅, a r )=r , 从而b 1, ⋅ ⋅ ⋅, b r 线性无关.20. 设⎪⎩⎪⎨⎧+⋅⋅⋅+++=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅++=+⋅⋅⋅++=-1321312321 n n nnααααβαααβαααβ, 证明向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价. 证明 将已知关系写成⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅0111101111011110) , , ,() , , ,(2121n n αααβββ, 将上式记为B =AK . 因为0)1()1(0111101111011110||1≠--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-n K n , 所以K 可逆, 故有A =BK -1. 由B =AK 和A =BK -1可知向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 可相互线性表示. 因此向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价.21. 已知3阶矩阵A 与3维列向量x 满足A 3x =3A x -A 2x , 且向量组x , A x , A 2x 线性无关.(1)记P =(x , A x , A 2x ), 求3阶矩阵B , 使AP =PB ; 解 因为AP =A (x , A x , A 2x ) =(A x , A 2x , A 3x ) =(A x , A 2x , 3A x -A 2x )⎪⎪⎭⎫⎝⎛-=110301000) , ,(2x x x A A ,所以⎪⎪⎭⎫ ⎝⎛-=110301000B .(2)求|A |.解 由A 3x =3A x -A 2x , 得A (3x -A x -A 2x )=0. 因为x , A x , A 2x 线性无关, 故3x -A x -A 2x ≠0, 即方程A x =0有非零解, 所以R (A )<3, |A |=0.(从22题开始,凡涉及到基础解系问题的,答案都不是唯一的,可以参考本文答案,也可以看书后的答案,不过以书后的答案为主。

线性代数第四章习题答案

线性代数第四章习题答案

习题四答案(A)1. 求下列矩阵的特征值与特征向量:(1) ⎪⎪⎭⎫ ⎝⎛--3113 (2) ⎪⎪⎪⎭⎫ ⎝⎛---122212221 (3) ⎪⎪⎪⎭⎫ ⎝⎛----020212022 (4)⎪⎪⎪⎭⎫ ⎝⎛--201034011 (5) ⎪⎪⎪⎭⎫ ⎝⎛--011102124 (6)⎪⎪⎪⎭⎫ ⎝⎛----533242111 解 (1)矩阵A 的特征多项式为=-A E λ)4)(2(3113--=--λλλλ,所以A 的特征值为4,221==λλ.对于21=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)1,1(1=αT ,所以A 的属于特征值2的全部特征向量为)1,1(111k k =αT (01≠k 为任意常数).对于42=λ,解对应齐次线性方程组=-X A E )4(O ,可得它的一个基础解系为)1,1(2-=αT ,所以A 的属于特征值4的全部特征向量为)1,1(222-=k k αT(02≠k 为任意常数).(2)矩阵A 的特征多项式为=-A E λ)3)(1)(1(122212221--+=------λλλλλλ, 所以A 的特征值为11-=λ,12=λ,33=λ.对于11-=λ,解对应齐次线性方程组=--X A E )(O ,可得它的一个基础解系为)0,1,1(1-=αT ,所以A 的属于特征值-1的全部特征向量为)0,1,1(111-=k k αT (01≠k 为任意常数).对于12=λ,解对应齐次线性方程组=-X A E )(O ,可得它的一个基础解系为)1,1,1(2-=αT ,所以A 的属于特征值1的全部特征向量为)1,1,1(222-=k k αT (02≠k 为任意常数).对于33=λ,解对应齐次线性方程组=-X A E )3(O ,可得它的一个基础解系为)1,1,0(3-=αT ,所以A 的属于特征值3的全部特征向量为)1,1,0(333-=k k αT (03≠k 为任意常数).(3) 矩阵A 的特征多项式为=-A E λ)4)(1)(2(2021222--+=--λλλλλλ, 所以A 的特征值为11=λ,42=λ,23-=λ.对于11=λ,解对应齐次线性方程组=-X A E )(O ,可得它的一个基础解系为)2,1,2(1-=αT ,所以A 的属于特征值1的全部特征向量为)2,1,2(111-=k k αT (01≠k 为任意常数).对于42=λ,解对应齐次线性方程组=-X A E )4(O ,可得它的一个基础解系为)1,2,2(2-=αT ,所以A 的属于特征值4的全部特征向量为)1,2,2(222-=k k αT (02≠k 为任意常数).对于23-=λ,解对应齐次线性方程组=--X A E )2(O ,可得它的一个基础解系为)2,2,1(3=αT ,所以A 的属于特征值-2的全部特征向量为)2,2,1(333k k =αT (03≠k 为任意常数).(4)矩阵A 的特征多项式为=-A E λ)3()1(212123242--=------λλλλλ, 所以A 的特征值为12,1=λ(二重),23=λ.对于12,1=λ,解对应齐次线性方程组=-X A E )(O ,可得它的一个基础解系为)1,2,1(1-=αT ,所以A 的属于特征值1的全部特征向量为)1,2,1(111-=k k αT (01≠k 为任意常数).对于23=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)1,0,0(2=αT ,所以A 的属于特征值2的全部特征向量为)1,0,0(222k k =αT (02≠k 为任意常数).(5)矩阵A 的特征多项式为=-A E λ2)2(11132124-=------λλλλλ, 所以A 的特征值为01=λ,23,2=λ(二重).对于01=λ,解对应齐次线性方程组=-X A E )0(O ,可得它的一个基础解系为)2,1,1(1--=αT ,所以A 的属于特征值0的全部特征向量为)2,1,1(111--=k k αT (01≠k 为任意常数).对于23,2=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)0,1,1(2-=αT ,所以A 的属于特征值2的全部特征向量为22αk )0,1,1(2-=k T (02≠k 为任意常数).(6)矩阵A 的特征多项式为=-A E λ)3()1(212123242--=------λλλλλ, 所以A 的特征值为61=λ,23,2=λ(二重).对于61=λ,解对应齐次线性方程组=-X A E )6(O ,可得它的一个基础解系为)3,2,1(1-=αT ,所以A 的属于特征值6的全部特征向量为)3,2,1(111-=k k αT (01≠k 为任意常数).对于23,2=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)0,1,1(2-=αT ,)1,0,1(3=αT ,所以A 的属于特征值2的全部特征向量为3322ααk k +)0,1,1(2-=k T )1,0,1(3k +T (32,k k 为不全为零的任意常数).2. 设A 为n 阶矩阵, (1) 若O A ≠,且存在正整数k ,使得O A k=(A 称为幂零矩阵),证明:A 的特征值全为零;(2) 若A 满足A A =2(A 称为幂等矩阵),证明:A 的特征值只能是0或1;(3) 若A 满足E A =2(A 称为周期矩阵),证明:A 的特征值只能是1或1-. 证明:设矩阵A 的特征值为λ,对应的特征向量为α,即λαα=A .(1)因αλαk k A =,而,O A k=故O k =αλ.又因O ≠α,故0=k λ,得.0=λ(2)因αλα22=A ,而,2A A =故αλααλα22===A A ,即.)(2O =-αλλ又因O ≠α,故02=-λλ,得0=λ或1.(3)同(2)可得αλααα22===A A ,即.)1(2O =-αλ又因O ≠α,故012=-λ,得1=λ或1-.3. 设21,αα分别为n 阶矩阵A 的属于不同特征值1λ和2λ的特征向量,证明:21αα+不是A 的特征向量.证明:反证法.若21αα+是A 的特征向量,相应的特征值为λ,则有)()(2121ααλαα+=+A ,即2121λαλααα+=+A A .又因21,αα分别为矩阵A 的属于特征值1λ和2λ的特征向量,即111αλα=A ,222αλα=A ,则2121λαλαλαλα+=+,即O =-+-2211)()(αλλαλλ.因21,αα是矩阵A 的属于不同特征值的特征向量,故21,αα线性无关,于是可得0,021=-=-λλλλ,即21λλλ==,矛盾.4. 证明定理4.4.若λ是n 阶矩阵A 的特征值,则(1)设m m x a x a a x f +++= 10)(,则)(λf 是)(A f 的特征值,其中m m A a A a E a A f +++= 10)()(N m ∈;(2)若A 可逆,则0≠λ,且λ1是1-A 的特征值,λ||A 是A 的伴随矩阵*A 的特征值. 证明:设矩阵A 属于特征值λ的特征向量为α,即λαα=A .(1)因αλαλλαλλαααααα)()()(101010f a a a a a a A a A a a A f m m m m m m =+++=+++=+++=故)(λf 是)(A f 的特征值. (2)因A 可逆,故0||≠A .而||A 为A 的特征值之积,故A 的特征值0≠λ.用1-A 左乘λαα=A 两端得αλλααα111---===A A A A .因0≠λ,故αλα11=-A ,即λ1是1-A 的特征值. 因1*||-=A A A ,故λ||A 是A 的伴随矩阵*A 的特征值.5. 证明:矩阵A 可逆的充分必要条件是A 的特征值全不等于零.证明:因矩阵A 可逆,故0||≠A .由n n A λλλλ,,(||11 =是A 的全部特征值)得01≠n λλ ,故),,1(0n i i =≠λ.6. 已知三阶矩阵A 的特征值为1,2,3,求*12,,3A A E A A -++的特征值. 解:由矩阵的特征值的性质得 A A 32+的特征值为41312=⨯+,102322=⨯+,183332=⨯+;1-+A E 的特征值为34311,23211,2111=+=+=+; 因6321||=⨯⨯=A *A 的特征值为236,326,616===. 7. A 是三阶矩阵,已知0|3|,0|2|,0||=-=-=+A E A E A E ,求|4|A E +.解:因,0||)1(||3=+-=--A E A E 0|3|,0|2|=-=-A E A E ,故三阶矩阵A 的全部特征值为-1,2, 3.因此A E +4的特征值为,734,624,3)1(4=+=+=-+于是126763|4|=⨯⨯=+A E .8. 已知向量)1,,1(k =αT 是矩阵⎪⎪⎪⎭⎫ ⎝⎛=211121112A 的逆矩阵1-A 的特征向量,求常数k 的值.解:因α是1-A 的特征向量,故也是A 的特征向量.设对应的特征值为λ,于是由λαα=A 可得⎪⎩⎪⎨⎧=++=++=++λλλ2112112k k k k ,解得2-=k 或1=k .9. 证明:如果矩阵A 可逆,则BA AB ~.证明:因BA BA A A A AB A ==--))(()(11,且A 可逆,则BA AB ~.10. 如果B A ~,证明:存在可逆矩阵P ,使得BP AP ~.证明:因B A ~,故存在可逆矩阵P ,使得AP P B 1-=.将上式两端右乘,P 得P AP P AP P BP )(11--==,即BP AP ~. 11. 如果B A ~,D C ~,证明:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛D O O B C O O A ~. 证明:因B A ~,D C ~,故存在可逆矩阵Q P ,,使得CQ Q D AP P B 11,--==.于是有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---D O O B Q O O P C O O A Q O O P Q O O P C O O A Q O O P 111.而⎪⎪⎭⎫ ⎝⎛Q O O P 可逆,故⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛D O O B C O O A ~. 12. 已知A 为二阶矩阵,且0||<A ,证明:存在可逆矩阵P ,使得AP P 1-为对角矩阵.证明:A 为二阶矩阵,且0||<A ,故A 必有两个不等特征值,因此必存在可逆矩阵P ,使得AP P 1-为对角矩阵.13. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛--=x A 14020112与矩阵⎪⎪⎪⎭⎫ ⎝⎛-=21y B 相似,求(1) 常数x 和y 的值;(2) 可逆矩阵P ,使得B AP P =-1.解:(1)因B A ~,故B A 与有相同的特征值.而B 的特征值为2,,1y -,故-1,2也是A 的特征值.而=-A E λ]42)2()[2(140201122+--+-=-----+x x xλλλλλλ. 将1-=λ代入上式中得3=x .于是可得)1()2(2+-=-λλλA E ,故有A 的特征值为2,2,1-,因此2=y .(2)由(1)知A 的特征值为11-=λ,23,2=λ(二重).对应11-=λ的无关特征向量为)1,0,1(1=αT ,对应23,2=λ的无关特征向量为)0,4,1(2=αT ,)4,0,1(3=αT ,令⎪⎪⎪⎭⎫ ⎝⎛=401040111P ,则P 可逆,且B AP P =-1.14. 设三阶矩阵A 的特征值为1, 2, 3, 对应的特征向量分别为)1,1,1(T ,)1,0,1(T ,)1,1,0(T ,求(1)A ;(2)n A .解:(1)令⎪⎪⎪⎭⎫ ⎝⎛=111101011P ,则⎪⎪⎪⎭⎫ ⎝⎛=-3211AP P .而⎪⎪⎪⎭⎫ ⎝⎛---=-1011101111P 则⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛=-4122121113211P P A . (2)因⎪⎪⎪⎭⎫ ⎝⎛==-3211ΛAP P ,所以1-=P P A Λ,故 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==-1011101113211111010111n nn n P P A Λ⎪⎪⎪⎭⎫ ⎝⎛-+------=13221311313112211n n n n n n n n. 15. 判断第1题中各矩阵是否可以对角化?若可以对角化,求出可逆矩阵P ,使得AP P 1-为对角阵.解:由第1题结果知 (1) 可以对角化, ⎪⎪⎭⎫ ⎝⎛-=1111P ;(2) 可以对角化, ⎪⎪⎪⎭⎫ ⎝⎛---=110111011P ;(3) 可以对角化, ⎪⎪⎪⎭⎫ ⎝⎛--=212221122P ; (4) (5) 不可以对角化;(6) 可以对角化, ⎪⎪⎪⎭⎫ ⎝⎛--=103012111P .16.证明正交矩阵的实特征值只能是1或1-.证明:设A 为正交矩阵,则AA T E A A T ==.设矩阵A 的特征值为λ,对应的特征向量为α,即λαα=A .将上式两端取转置得TT T A λαα=.将上面两式左右相乘得ααλααT T T A A 2=,即ααλααT T 2=.而ααT 为非零常数,故1,12±==λλ.17. 设⎪⎪⎪⎭⎫ ⎝⎛=111111111A ,求正交矩阵P ,使得AP P 1-为对角阵.解:矩阵A 的特征多项式为=-A E λ)3(1111111112-=---------λλλλλ, 所以A 的特征值为02,1=λ(二重),33=λ.对于02,1=λ,解对应齐次线性方程组=-X A E )0(O ,可得它的一个基础解系为)0,1,1(1-=αT ,)1,0,1(2-=αT .将其正交化,取⎪⎪⎪⎭⎫ ⎝⎛-=0111β,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=-=1212101121101),(),(1111222ββββααβ, 再单位化,得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-==366666,02222222111ββγββγ; 对于33=λ,解对应齐次线性方程组=-X A E )3(O ,可得它的一个基础解系为)1,1,1(3=αT.将其单位化,得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==333333333ααγ. 令⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=33360336622336622P ,则⎪⎪⎪⎭⎫⎝⎛==-3001ΛAP P .18. 设三阶实对称矩阵A 的特征值为1,23,21=-=λλ, 属于1λ的特征向量为)1,1,0(1=αT,求属于3,2λ的特征向量及矩阵A .解:设属于13,2=λ的无关特征向量为32,αα.因A 是实对称矩阵,故123,21=-=λλ的特征向量与的特征向量必正交,于是⎪⎩⎪⎨⎧==03121ααααTT , 即32,αα是齐次线性方程组O X T=1α的两个线性无关解向量.求得上述方程组的基础解系为)0,0,1(T ,)1,1,0(-T,故取)0,0,1(1=αT,)1,1,0(2-=αT,因此属于13,2=λ的全部特征向量为)0,0,1(1k T)1,1,0(2-+k T(21,k k 不全为零);令⎪⎪⎪⎭⎫⎝⎛-=101101010P ,则⎪⎪⎪⎭⎫ ⎝⎛-==-1121ΛAP P . 而⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=-21210011212101P ,故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----==-21230232100011P P A Λ. (B)1. 设n 阶矩阵A 的各行元素之和为常数a ,证明:a =λ是矩阵A 的一个特征值,)1,,1,1( T是对应的特征向量.证明:设n n ij a A ⨯=)(,其中T nj ija a)1,,1,1(,1==∑=α.由ααa a a a a a a A T nj nj nj j nj j ===∑∑∑===),,,(),,,(11211知a =λ是矩阵A 的一个特征值,)1,,1,1( =αT 是对应的特征向量.2. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n b b b a a a 2121,βα都是非零向量,且0=βαT,记αβ=A T ,求(1)2A ;(2)A 的特征值与特征向量.解:(1)由0=βαT得0)(==TTTβααβ,于是O A T T T T ===βαβααβαβ)())((2.(2)由A 组第2题(1)知A 的特征值为0.求A 的特征向量.⎪⎪⎪⎪⎪⎭⎫⎝⎛==n n n n n n T b a b a b a b a b a b a b a b a b a A 212221212111αβ,因βα,都是非零向量,故必存在某个i a 和j b 不为零,因此A 中元素0≠j i b a ,不妨设011≠b a .将A 做初等行变换得⎪⎪⎪⎪⎪⎭⎫⎝⎛00000021n b b b ,即1)(=A r ,故齐次线性方程组O AX =-的基础解系含有1-n 个解向量.令T n x x x ),,,(21 为T b )0,,0,(1 ,T b )0,,,0(1 ,T b ),,0,0(,1 ,得T b b )0,,0,,(121 -=α,T b b )0,,,0,(132 -=α,T n n b b ),,0,0,(,11 -=-α,于是所求特征向量为T n n b b k k k k )0,,0,,(121112211 -=+++--αααT b b k )0,,,0,(132 -+T n n b b k ),,0,0,(111 ---++,121,,,(-n k k k 不全为零).3. 已知三阶矩阵A 的特征值为2, 3, 4, 对应的特征向量分别为)1,2,1(1-=αT ,)2,1,2(2-=αT ,)2,3,3(3-=αT .令向量=β)6,5,4(T ,(1)将β用321ααα,,线性表示;(2)求βnA (n 为正整数).解:(1)由⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛---=210030104001622153124321),,,(321βααα得321234αααβ++=.(2)321321234)234(ααααααβnn n n n A A A A A ++=++=332211234αλαλαλnn n ++=,2332,23322(12131212++++++⨯-+⨯+⨯-=n n n n n n)23222212++++⨯+-n n n T .4. 设A 为三阶实对称矩阵,2)(=A r ,且满足条件O A A =+232,求矩阵A 的全部特征值.解:设矩阵A 的特征值为λ,则由O A A =+232得0223=+λλ,故0=λ或2-=λ.因A 为三阶实对称矩阵,故A 必与某三阶对角矩阵Λ相似.因2)(=A r ,故2)(=Λr ,所以Λ的对角线元素有两个-2和一个0.因此A 的全部特征值为22,1-=λ(二重),03=λ.5. 设四阶矩阵A 满足AAA E ,0|2|=+T0||,2<=A E ,求*A 的一个特征值.解:因0||<A ,故矩阵A 可逆.由E AA T 2=知422||=A 得4||-=A .因,0|2|)1(|2|4=+-=--A E A E 得2-=λ是矩阵A 的一个特征值,因此*A 的一个特征值为22.6. 设⎪⎪⎪⎭⎫ ⎝⎛=0011100y x A 有3个线性无关的特征向量,求x 与y 满足的条件.解:矩阵A 的特征多项式为=-A E λ2)1)(1(01110-+=-----λλλλλy x ,所以A 的特征值为11-=λ,13,2=λ(二重).因A 有3个线性无关的特征向量,故齐次线性方程组=-X A E )(O 的系数矩阵的秩为1,即1)(=-A E r .而⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛----=-000001011010101y x y x A E ,于是0=+y x .7. 问n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111 与⎪⎪⎪⎪⎪⎭⎫⎝⎛00100100 n 是否相似,为什么?解:令⎪⎪⎪⎪⎪⎭⎫⎝⎛=111111111 A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00100100 n B ,则B A ~. 矩阵B 的特征值为1(01,,1-=-n n λ重),n n =λ.01,,1=-n λ对应的齐次线性方程组的系数矩阵为,1)(,000000001=-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→-B r B故属于01,,1=-n λ的无关特征向量有1-n 个;n n =λ对应的齐次线性方程组的系数矩阵为,1)(,00000001=-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→-B nE r n B nE故属于n n =λ的无关特征向量有1个.因此矩阵B 有n 个线性无关的特征向量,故B 可对角化,且;00~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n B Λ 因为0||,11===++A trA n n λλλλ ,故A 的特征值必有0和非零数值.因1)()(==-A r A r ,故特征值0有1-n 个线性无关的特征向量,所以0的重数至少为1-n ,则A 的非零特征值为n ,因此矩阵A 的特征值为1(01,,1-=-n n λ重),n n =λ.因A 为实对称矩阵,故必可对角化,且⎪⎪⎪⎪⎪⎭⎫⎝⎛=n A 00~ Λ,于是B A ~.8. 设A 为n 阶矩阵, O A ≠,且存在正整数m ,使得O A m=,证明A 不能对角化.解:反证法.假设A 可对角化,由A 组第2题(1)知,A 的特征值都为0,故O A ~,即存在可逆矩阵P ,使得O AP P =-1,则O A =,矛盾.9. 设矩阵,220021000030000⎪⎪⎪⎪⎪⎭⎫⎝⎛-=B 矩阵B A ~,求)3()(E A r E A r -+-. 解:矩阵B 的特征方程为=-B E λ0)3)(2(2=-+=λλλ,所以B 的特征值为01=λ,22-=λ,14,3=λ(二重).因矩阵B 是实对称矩阵,故属于14,3=λ的线性无关的特征向量必有2个,即224)3(=-=-B E r .因B A ~,则A 的特征值只有0,-2,3(二重),且属于3的线性无关的特征向量也有2个,即2)3(=-A E r .因1不是矩阵A 的特征值,故0||≠-A E ,即4)(=-A E r .因此6)3()(=-+-E A r E A r .。

线性代数第四章答案

线性代数第四章答案

线性代数第四章答案第四章向量组的线性相关性1 设v1(1 1 0)T v2(0 1 1)T v3(3 4 0)T求v1v2及3v12v2v3解v1v2(1 1 0)T(0 1 1)T(10 11 01)T(1 0 1)T3v12v2v33(1 1 0)T 2(0 1 1)T (3 4 0)T(31203 31214 30210)T(0 1 2)T2 设3(a1a)2(a2a)5(a3a) 求a其中a1(2 5 1 3)Ta2(10 1 5 10)T a3(4 1 1 1)T解由3(a1a)2(a2a)5(a3a)整理得(1 2 3 4)T3 已知向量组A a1(0 1 2 3)T a2(3 0 1 2)T a3(2 3 0 1)TB b1(2 1 1 2)T b2(0 2 1 1)T b3(4 4 1 3)T证明B组能由A组线性表示但A组不能由B组线性表示证明由知R(A)R(A B)3 所以B组能由A组线性表示由知R(B)2 因为R(B)R(B A) 所以A组不能由B组线性表示4 已知向量组A a1(0 1 1)T a2(1 1 0)TB b1(1 0 1)T b2(1 2 1)T b3(3 2 1)T证明A组与B组等价证明由知R(B)R(B A)2 显然在A中有二阶非零子式故R(A)2 又R(A)R(BA)2 所以R(A)2 从而R(A)R(B)R(A B) 因此A组与B组等价5 已知R(a1a2a3)2 R(a2a3a4)3 证明(1) a1能由a2a3线性表示(2) a4不能由a1a2a3线性表示证明 (1)由R(a2a3a4)3知a2a3a4线性无关故a2a3也线性无关又由R(a1 a2a3)2知a1a2a3线性相关故a1能由a2a3线性表示(2)假如a4能由a1a2a3线性表示则因为a1能由a2a3线性表示故a4能由a2a3线性表示从而a2a3a4线性相关矛盾因此a4不能由a1a2a3线性表示6 判定下列向量组是线性相关还是线性无关(1) (1 3 1)T (2 1 0)T (1 4 1)T(2) (2 3 0)T (1 4 0)T (0 0 2)T解 (1)以所给向量为列向量的矩阵记为A因为所以R(A)2小于向量的个数从而所给向量组线性相关(2)以所给向量为列向量的矩阵记为B因为所以R(B)3等于向量的个数从而所给向量组线性相无关7 问a取什么值时下列向量组线性相关?a1(a 1 1)T a2(1 a 1)T a3(1 1 a)T解以所给向量为列向量的矩阵记为A由如能使行列式等于0,则此时向量组线性相关(具体看书后相应答案)8 设a1a2线性无关a1b a2b线性相关求向量b用a1a2线性表示的表示式解因为a1b a2b线性相关故存在不全为零的数12使(a1b)2(a2b)01由此得设则b c a1(1c)a2c R9 设a1a2线性相关b1b2也线性相关问a1b1a2b2是否一定线性相关?试举例说明之(也可看书后答案)解不一定例如当a1(1 2)T, a2(2 4)T, b1(1 1)T, b2(0 0)T时有a1b1(1 2)T b1(0 1)T, a2b2(2 4)T(0 0)T(2 4)T而a1b1a2b2的对应分量不成比例是线性无关的10 举例说明下列各命题是错误的(1)若向量组a1a2a m是线性相关的则a1可由a2a m线性表示解设a1e1(1 0 0 0) a2a3a m0则a1a2a m线性相关但a1不能由a2a m线性表示(2)若有不全为0的数12m使a1m a m1b1m b m01成立则a1a2a m线性相关, b1b2b m亦线性相关解有不全为零的数12m使a1m a m 1b1m b m01原式可化为(a1b1) m(a m b m)01取a1e1b1a2e2b2a m e m b m其中e1e2e m为单位坐标向量则上式成立而a1 a2a m和b1b2b m均线性无关(3)若只有当12m全为0时等式a1m a m1b1m b m01才能成立则a1a2a m线性无关, b1b2b m亦线性无关解由于只有当12m全为0时等式由1a1m a m1b1m b m0成立所以只有当12m全为0时等式(a1b1)2(a2b2) m(a m b m)01成立因此a1b1a2b2a m b m线性无关取a1a2a m0取b1b m为线性无关组则它们满足以上条件但a1a2a m线性相关(4)若a1a2a m线性相关, b1b2b m亦线性相关则有不全为0的数12m使a1m a m0 1b1m b m01同时成立解a1(1 0)T a2(2 0)T b1(0 3)T b2(0 4)Ta12a2 01221b12b2 01(3/4)210 与题设矛盾1211 设b1a1a2b2a2a3 b3a3a4 b4a4a1证明向量组b1b2b3b4线性相关证明由已知条件得a1b1a2a2b2a3 a3b3a4 a4b4a1于是a1 b1b2a3b1b2b3a4b1b2b3b4a1从而b1b2b3b40这说明向量组b1b2b3b4线性相关12 设b1a1b2a1a2b r a1a2 a r且向量组a1a2a r线性无关证明向量组b1b2b r线性无关证明已知的r个等式可以写成上式记为BAK因为|K|10 K可逆所以R(B)R(A)r从而向量组b1b2b r线性无关13 求下列向量组的秩, 并求一个最大无关组(1)a1(1 2 1 4)T a2(9 100 10 4)T a3(2 4 2 8)T解由知R(a1a2a3)2 因为向量a1与a2的分量不成比例故a1a2线性无关所以a1 a2是一个最大无关组(2)a1T(1 2 1 3) a2T(4 1 5 6) a3T(1 3 4 7)解由知R(a1T a2T a3T)R(a1a2 a3)2 因为向量a1T与a2T的分量不成比例故a1T a2T 线性无关所以a1T a2T是一个最大无关组14 利用初等行变换求下列矩阵的列向量组的一个最大无关组(1)解因为所以第1、2、3列构成一个最大无关组.(2)解因为所以第1、2、3列构成一个最大无关组(关于14的说明:14题和书上的14题有些不同,答案看书后的那个)15 设向量组(a 3 1)T (2 b 3)T(1 2 1)T (2 3 1)T的秩为2 求a b解设a1(a 3 1)T a2(2 b 3)T a3(1 2 1)T a4(2 3 1)T因为而R(a1a2a3a4)2 所以a2 b516 设a1a2a n是一组n维向量已知n维单位坐标向量e1e2e n 能由它们线性表示证明a1a2a n线性无关证法一记A(a1a2a n) E(e1e2e n) 由已知条件知存在矩阵K使EAK两边取行列式得|E||A||K|可见|A|0 所以R(A)n从而a1a2a n线性无关证法二因为e1e2e n能由a1a2a n线性表示所以R(e1e2e n)R(a1a2a n)而R(e1e2e n)n R(a1a2a n)n所以R(a1a2a n)n从而a1a2a n线性无关17 设a1a2a n是一组n维向量, 证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示证明必要性设a为任一n维向量因为a1a2a n线性无关而a1a2a n a 是n1个n维向量是线性相关的所以a能由a1a2a n线性表示且表示式是唯一的充分性已知任一n维向量都可由a1a2a n线性表示故单位坐标向量组e1 e2e n能由a1a2a n线性表示于是有nR(e1e2e n)R(a1a2a n)n即R(a1a2a n)n所以a1a2a n线性无关18 设向量组a1a2a m线性相关且a10证明存在某个向量a k (2km) 使a k能由a1a2a k1线性表示证明因为a1a2a m线性相关所以存在不全为零的数12m使a12a2m a m01而且23m不全为零这是因为如若不然则1a10由a10知10 矛盾因此存在k(2km) 使0 k1k2m0k于是a12a2k a k01a k(1/k)(1a12a2k1a k1)即a k能由a1a2a k1线性表示19 设向量组B b1b r能由向量组A a1a s线性表示为(b1b r)(a1a s)K其中K为sr矩阵且A组线性无关证明B组线性无关的充分必要条件是矩阵K的秩R(K)r证明令B(b1b r) A(a1a s) 则有BAK必要性设向量组B线性无关由向量组B线性无关及矩阵秩的性质有rR(B)R(AK)min{R(A) R(K)}R(K)及R(K)min{r s}r因此R(K)r充分性因为R(K)r所以存在可逆矩阵C使为K的标准形于是(b1b r)C( a1a s)KC(a1a r)因为C可逆所以R(b1b r)R(a1a r)r从而b1b r线性无关20 设证明向量组12n与向量组12n等价证明将已知关系写成将上式记为BAK因为所以K可逆故有ABK1由BAK和ABK1可知向量组12n与向量组12n可相互线性表示因此向量组12n与向量组12n等价21 已知3阶矩阵A与3维列向量x满足A3x3A x A2x且向量组x A x A2x线性无关(1)记P(x A x A2x) 求3阶矩阵B使APPB解因为APA(x A x A2x)(A x A2x A3x)(A x A2x 3A x A2x)所以(2)求|A|解由A3x3A x A2x得A(3x A x A2x)0因为x A x A2x线性无关故3x A x A2x0即方程A x0有非零解所以R(A)3 |A|0(从22题开始,凡涉及到基础解系问题的,答案都不是唯一的,可以参考本文答案,也可以看书后的答案,不过以书后的答案为主。

线性代数练习册第四章习题及答案

线性代数练习册第四章习题及答案

线性代数练习册第四章习题及答案篇一:线代第四章习题解答第四章空间与向量运算4-1-1、已经明白空间中三个点A,B,C坐标如下:A?2,?1,1?,B?3,2,1?,C??2,2,1? (1)求向量,,的坐标,并在直角坐标系中作出它们的图形;(2)求点A与B之间的间隔.解:(1) (1,3,0), (?5,0,0), (4,?3,0)(2)AB?4-1-2.利用坐标面上和坐标轴上点的坐标的特征,指出以下各点的特别位置:A?3,4,0?; B?0,4,3? ;C?3,0,0? ;D?0,?1,0? 解:A (3,4,0) 在xoy面上B(0,4,3)点在yoz 面上C(3,0,0)在x轴上D(0,-1,0)在y轴上4-1-6. 设u?a?b?2c,v??3b?c,试用a、b、c表示3u?3v.解:3u-2v=3(a-b+2c)-2(-3b-c)=3a+3b+8c4-1-7. 试用向量证明:假设平面上的一个四边形的对角线互为平分,那么这个四边形是平行四边形.解:设四边形ABCD中AC与DB交于O,由已经明白AO=OC,DO=OB 由于AB=AO+OB =OC+DO=DC,AD=AO+OD=OC+BO=BC 因此ABCD为平行四边形。

4-1-8. 已经明白向量a的模是4,它与轴u的夹角60,求向量a在轴u上的投影.解:.prjuu)4*cos60=4?r?rcos(r。

3=23 24-1-9. 已经明白一向量的终点在点B?2,?1,7?,它在x轴、y轴、z轴上的投影依次为4、-4、7,求这向量起点A的坐标解:设起点A为(x,y,z)prjxAB?(2?x0)?4prjyAB?(?1?y)??4 prjzAB?(7?z0)?7解得:x2y?3z0?04-1-12. 求以下向量的模与方向余弦,并求与这些向量同方向的单位向量:(1)a??2,?1,1? ;(2)b??4,?2,2? ;(3)c??6,?3,3? ;(4)d2,1,?1? .解:(1)a=(2,-1,1)a?22(1)122cos??22 ??a36cos??126cos a6a6(2)b=(4,-2,2) b?42(2)2 cos2226b3cos??26?2?b666cos b0,, b6b6b366(3)c=(6,-3,3) c?b2(4)3 cos222363cos??336cos??233626 62(4)d=(-2,1,-1)d?(?2)?1?(?1)?6cos??263cos??16d6cosd0??{?,,?66d366与前三向量单位同的d??{?6,,?。

(完整版)线性代数第四章线性方程组试题及答案.doc

(完整版)线性代数第四章线性方程组试题及答案.doc

充 1:当 A 列 秩 ( 或 A 可逆 ,A 在矩 乘法中有左消去律AB=0 B=0;AB=AC B=C.明B =(1,, ⋯,t ), AB = Ai =0,i=1,2, ⋯,s., , ⋯ , t 都是 AX =0212的解 . 而 A 列 秩 , AX =0 只有零解 ,i=0,i=1,2,⋯ ,s, 即 B =0.同理当 B 行 秩(或 B 可逆 ),AB 0 B T A T0 A T0A 0AB CB A C充 2如果 A 列 秩(或 A 可逆) , r( AB )=r( B ).分析 : 只用 明 次方程ABX =0 和 BX =0 同解 .( 此 矩 AB 和 B 的列向量 有相同的 性关系, 从而秩相等 .)明:是 ABX = 的解 AB = B =0( 用推 ) 是 BX = 的解 .于是 ABX =0 和 BX =0 确 同解 .同理当 B 行 秩(或B 可逆) , r( AB )=r( A ).例题一 . 填空1.A m 方 , 存在非零的 m × n 矩 B, 使 AB = 0 的充要条件是 ______.解: Ax 0 有非零解, r Am2.A n 矩 , 存在两个不相等的n 矩 B, C, 使 AB = AC 的充要条件是解: A B C 0 , B, C 不相等, Ax0 有非零解, r An3.若 n 元 性方程 有解, 且其系数矩 的秩r, 当 ______, 方程 有唯一解;当 ______ , 方程 有无 多解 .解:假 方程A m × n x = b, 矩 的秩 r ( A) r .当 r n , 方程 有惟一解 ; 当 r n , 方程 有无 多解 .4. 在 次 性方程 A m ×n x = 0 中 , 若秩 (A) = k 且 1, , ⋯ , r 是它的一个基 解2系 ,r = _____; 当 k = ______ , 此方程 只有零解。

线性方程组

线性方程组

线性代数练习题 第四章 线性方程组系 专业 班 姓名 学号 第一节 解线性方程组的消元法一.选择题: 1.设A 是n m ⨯矩阵,b Ax =有解,则 [ C ](A )当b Ax =有唯一解时,n m = (B )当b Ax =有无穷多解时,<)(A R m (C )当b Ax =有唯一解时,=)(A R n (D )当b Ax =有无穷多解时,0=Ax 只有零解2.设A 是n m ⨯矩阵,如果n m <,则 [ C ](A )b Ax =必有无穷多解 (B )b Ax =必有唯一解 (C )0=Ax 必有非零解 (D )0=Ax 必有唯一解3.设A 是n m ⨯矩阵,齐次线性方程组0=Ax 仅有零解的充要条件是)(A R [ D ](A )小于m (B )小于n (C )等于m (D )等于n 二.填空题:设⎪⎪⎪⎭⎫ ⎝⎛-+=21232121a a A ,⎪⎪⎪⎭⎫ ⎝⎛=031b ,⎪⎪⎪⎭⎫⎝⎛=321x x x x(1)齐次线性方程组0=Ax 只有零解,则 31a a ≠≠-或 (2)非齐次线性方程组b Ax =无解,则a = 1=-三.计算题:1. 求解非齐次线性方程组⎪⎩⎪⎨⎧=--+=+-+=+-+1222412w z y x w z y x w z y x213122211112111121001421120011000110211110002000020121122000.2000r r r r r r yx x y y xz w z z w w w --+--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-−−−→-−−−→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭-⎧=⎪+==-⎧⎧⎪⎪⎪-=∴==⎨⎨⎨⎪⎪⎪-===⎩⎩⎪或3.λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x ⑴ 有唯一解 ⑵ 无解 ⑶ 有无穷多解32111132(1)(2)11111111111000111000111111212212124003λλλλλλλλλλ=-+=-+≠⎛⎫⎛⎫⎪⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎪⎪--→-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭当1,-2时,方程有唯一解11当=1时10,有无穷多解;10-22当=-2时11,方程组无解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档