离散数学 第1章 集合的基本概念和运算
离散数学课本定义和定理
第1章集合集合的基本概念1. 集合、元元素、有限集、无限集、空集2. 表示集合的方法:列举法、描述法3. 定义子集:给定集合A和B,如果集合A的任何一个元都是集合B中的元,则称集合A包含于B或B包含A,记为或,并称A为B的一个子集;如果集合A和B满足,但B中有元不属于A,则称集合A真包含于B,记为,并且称A为B的一个真子集;4. 定义幂集:给定集合A,以A的所有子集为元构成的一个集合,这个集合称为A的幂集,记为或集合的运算定义并集:设A和B是两个集合,则包含A和B的所有元,但不包含其他元的集合,称为A和B 的并集,记为.定义交集:A和B是两个集合,包含A和B的所有公共元,但不包含其他元的集合,称为A和B 的交集,记为.定义不相交:A和B是两个集合,如果它们满足,则称集合A和B是不相交的;定义差集:A和B是两个集合,属于A而不属于B的所有元构成集合,称为A和B的差集,记为.定义补集:若A是空间E的集合,则E中所有不属于A的元构成的集合称为A的补集,记为. 定义对称差:A和B是两个集合,则定义A和B的对称差为包含排斥原理定理设为有限集,其元素个数分别为,则定理设为有限集,其元素个数分别为,则定理设为有限集,则重要例题P11 例第2章二元关系关系定义序偶:若和是两个元,将它们按前后顺序排列,记为,则成为一个序偶;※对于序偶和,当且仅当并且时,才称和相等,记为定义有序元组:若是个元,将它们按前后顺序排列,记为,则成为一个有序元组简称元组;定义直接积:和是两个集合,则所有序偶的集合,称为和的直接积或笛卡尔积,记为.定义直接积:设是个集合,,则所有元组的集合,称为的笛卡尔积或直接积,记为.定义二元关系若和是两个集合,则的任何子集都定义了一个二元关系,称为上的二元关系;如果,则称为上的二元关系;定义恒等关系:设是上的二元关系,,则称是上的恒等关系;定义定义域、值域:若是一个二元关系,则称为的定义域;为的值域;定义自反:设是集合上的关系,若对于任何..,都有即则称关系是自反的;定义反自反:设是集合上的关系,若对于任何,都满足,即对任何都不成立,则称关系是反自反的;定义对称:设是集合上的关系,若对于任何,只要,就有,那么称关系是对称的;定义反对称:设是集合上的关系,若对于任何,只要并且时,就有,那么称关系是对称的;定义传递设是集合上的关系,若对于任何,只要并且时,就有,则称关系是传递的;定理设是集合上的关系,若是反自反的和传递的,则是反对称的;关系矩阵和关系图定义无定理无关系的运算定义连接:设为上的关系,为上的关系,则定义关系称为关系和的连接或复合,有时也记为.定义逆关系:设为上的关系,则定义的逆关系为为上的关系:.定理设和都是上的二元关系,则下列各式成立12345定理设为上的关系,为上的关系,则闭包运算定义自反闭包:设是集合上的二元关系,如果是包含的最小自反关系,则称是关系的自反闭包,记为.定义对称闭包:设是集合上的二元关系,如果是包含的最小对称关系,则称是关系的对称闭包,记为.定义传递闭包:设是集合上的二元关系,如果是包含的最小传递关系,则称是关系的传递闭包,记为或.定理设是集合上的二元关系,则(1)是自反的,当且仅当.(2)是对称的,当且仅当.(3)是传递的,当且仅当.定理设是集合上的二元关系,则. “恒等关系”定理设是集合上的二元关系,则. “逆关系”定理设是集合上的二元关系,则. “幂集”定理设是一个元集,是上的二元关系,则存在一个正整数,使得.等价关系和相容关系定义覆盖、划分:是一个集合,,如果,则称是的一个覆盖;如果,并且,则称是的一个划分,中的元称为的划分块;定义等价关系:设是上的一个关系,如果具有自反性、对称性和传递性三个性质,则称是一个等价关系;设是等价关系,若成立,则称等价于.定义等价类:设是上的一个等价关系,则对任何,令,称为关于的等价类,简称为的等价类,也可以简记为.定义同余:对于整数和正整数,有关系式:如果,则称对于模同余的,记作定义商集:设是上的一个等价关系,由引出的等价类组成的集合称为集合上由关系产生的商集,记为. “等价类的集合”定理若是上的一个等价关系,则由可以产生唯一的一个对的划分; “商集”定义相容关系:设是上的一个关系,如果是自反的和对称的,则称是一个相容关系;相容关系可以记为.所有的等价关系都是相容关系,但相容关系却不一定是等价关系;定义最大相容块:设是一个集合,是定义在上的相容关系;如果,中的任何两个元都有关系,而的每一个元都不能和中所有元具有关系,则称是的一个最大相容块;偏序关系定义偏序关系:是定义在集合上的一个关系,如果它具有自反性、反对称性和传递性,则称是上的一个偏序关系,简称为一个偏序,记为.更一般地讲,若是一个集合,在上定义了一个偏序,则我们用符号来表示它,并称是一个偏序集;定义全序/链:是一个偏序集,对任何,如果或这两者中至少有一个必须成立,则称是一个全序集或链,而称是上的一个全序或线性序;定义盖住:是一个偏序集,,若,并且不存在,使并且,则称盖住. “紧挨着”定义最小元、最大元:是一个偏序集,如果中存在有元,对任何都满足,则称是的最小元;如果中存在有元,对任何都满足,则称是的最大元; 定义极小元、极大元:是一个偏序集,如果,而中不存在元,使,则称是的极小元;如果,而中不存在元,使,则称是的极大元;定义上界、下界、上确界、下确界:是一个偏序集,,如果对于所有的,都有,则称是的一个上界;如果对于所有的,都有,则称是的一个下界;如果是的一个上界,对于的任一上界,都有,则称是的最小上界上确界. 如果是的一个上界,对于的任一上界,都有,则称是的最大下界下确界.定义良序集:设是一个偏序集,对于偏序,如果的每个非空子集都具有最小元,则称是一个良序集,而称是上的一个良序;每个良序集都是全序集;第3章函数和运算函数定义映射、象:关系定义在上,如果对于每一个.....,使,...,都有唯一的一个则称是从到的一个函数或映射,记为.称为函数的变元,称为变元在下的值或象,记为.注意:(1)定义域,而不是.(2)每一个,有唯一的,使. 多值函数不符合定义(3)值域.定义受限、扩展:若是从到的一个函数,,则也是一个函数,它定义于到,我们称它是在上的受限;如果是函数的一个受限,则称是的一个扩展;★定义映上、映内、一对一、一一对应:若,则的值域时,称函数是映上的或满射;如果的值域时,则称函数是映内的;如果,则有,则称是一对一的单射即时,有.如果映上的,又是一对一的,则称是一一对应的或双射;定义复合运算:若,则定义和的复合运算为:即.注:逆函数若要存在需要满足以下条件:1函数是映上的2函数必须是一对一的定义恒等函数函数称为恒等函数;定理,则的充分必要条件是,并且运算定义二目运算:若是一个集合,是从到的一个映射函数,则称为一个二目运算;一般地,若是从到的一个映射是正整数,则称是一个目运算;运算的封闭:运算的结果总是集合中的一个元,因此这个定义保证了运算的施行,这种情况又称为集合对于该种运算是封闭的;定义可交换:若是一个运算,对于任何,都有,则称运算是可交换的或者说,服从交换律.定义可结合:若是一个运算,对于任何,都有,则称运算是可结合的或者说,服从结合律.定义可分配:若是一个运算,是一个运算,对于任何,都有,则称运算对于运算是可分配的或者说,对于服从分配律定义左单位元、右单位元:设是上的一个运算,如果中存在有一个元,对于任何,有,则称是运算的左单位元;如果中存在有一个元,对于任何,有,则称是运算的右单位元;定理若是上的一个运算,和分别是它的左、右单位元,则,并且是唯一的因此,称为运算的单位元.定义左零元、右零元:设是上的一个运算,如果中存在有一个元,对于任何,有,则称是运算的左零元;如果中存在有一个元,对于任何,有,则称是运算的右零元.定义等幂:若是上的一个运算,,对于运算,有,则称元对于运算是等幂的;定义左逆元、右逆元:若是上的一个运算,它具有单位元,对于任何一个,如果存在有元,使,则称是的左逆元;如果存在有元,使,则称是的右逆元;定理若是上的一个运算,它具有单位元,并且是可结合...的,则当元可逆时,它的左、右逆元相等,并且唯一的此时称之为的逆元,并且记为.定义可消去:若是上的一个运算,对于任何,如果元满足:则;或则,则称元对于运算是可消去的;第4章无限集合基数★定义等势:若和是两个集合,如果在和之间可以建立一个一一....对应关系,则称集合和等势,并记为;定理令是由若干个集合为元所组成的集合,则上定义的等势关系是一个等价关系;定义有限集、无限集:若是一个集合,它和某个自然数集等势,则称是一有限集,不是有限集的集合称为无限集;定理有限集的任何子集都是有限集定理有限集不与其任何真子集等势定理自然数集是无限集可列集定义可列集:若是一个集合,它和所有自然数的集合等势,则称是一个可列集;可列集的基数用符号表示;定理若是一个集合,可列的充分必要条件是可以将它的元排列为的序列形式;定理任何无限集必包含有可列子集;定理可列集的子集是有限集或可列集记为:定理若是可列集,是有限集,并且,则是可列集记为:.定理若和都是可列集,并且,则是可列集记为:推论设都是可列集,则是可列集记为:定理设都是可列集,并且,则是可列集记为:推论设都是可列集,则是可列集.定理所有有理数的集合是可列集;不可列集定理区间中所有实数构成的集合是不可列的;定义连续基数:开区间中所有数组成集合的基数记为,具有基数的集合称为连续统,称为连续基数;推论:集合的基数也是.定理所有实数的集合是不可列的,它的基数是.定理对于任何数,若,则区间,以及都具有连续基数定理一个无限集和一个可列集作并集时,并集的基数等于集的基数;推论一个无限集和一个有限集的并集,其基数等于集的基数;基数的比较定义设集合的基数是.如果与的真子集等势,而和不等势,则称的基数小于的基数,记为.定理:是两个集合,若与的某一子集等势,与的某一子集等势,则.定理:是任意两个集合,的基数为,的基数为,则下列三个关系:中必有一个且只有个成立;定理:若是有限集的基数,则.定理:若是无限集合,则定理:若是可列个互不相交的集合,它们的基数都是,则的基数是记为:定理:可列集的幂集,其基数是记为:定理:若是一个集合,是的幂集,则.此定理说明:不存在最大的基数;补充:第5章形式语言文法和语言定义产生式:一个产生式或重写规则是一个有序对,通常写成,其中,是一个符号,而是一个符号的非空有限串,是这个产生式的左部,而是产生式的右部.产生式将简称为规则;定义非终极符号、字母表、终极符号、开始符号:一个文法是一个四元组.其中,是元语言的语法类或变元的集合,它生成语言的串,这些语法类或变元成为非终极符号,是符号的非空有穷集合,称为字母表,的符号称为终极符号.是之一,是词汇表的一个识别元素,称为开始符号.是产生式的集合;定义直接产生、直接推导,直接规约:设是一个文法,如果,而中有规则,就称串直接产生串,或称是直接推导出来的,或直接规约到,记为.定义产生、规约到、推导:设是一个文法,如果存在产生式序列,使得,而,就说产生规约到,或是的推导,记为.定义句型:令是一个文法,如果串可从开始符号推导出来,即如果,则称为一个句型;补充:若,则,其中是空串,不含空串文法的类型定义0-型文法:在上的0-型文法由以下组成:(1)不在中的不同符号的非空集合,称为变量表,它包含一个纲符号,称为开始变量; (2)产生式的有限集合;由产生的所有字集称为由产生的语言;定义0-型语言:在上可由某一0-型文法产生的字集称为0-型语言;定义1-型文法:如果在0-型文法中,对于中的每个产生式,要求,则这文法称为1-型文法或上下文敏感文法.定义2-型文法:设文法,对于中的每一个产生式有且有的人要求,则此文法叫2-型文法或前后文无关文法;定义3-型文法:设为一文法,又设中的每一个产生式都是或,其中和都是变量,而为终极符号,而此文法为3-型文法或正规文法;第1章代数系统代数系统的实例和一般性质定义代数系统:若是序偶,是一个非空集合,是定义在上的某些运算的非空集合,则称是一个代数系统,或称代数;代数系统的类型:(1)代数系统的类型是,其中代表目运算符; (2),分别为目运算符,则的类型为.同态和同构定义同态象、同态映射:和是两个同类型的代数系统,映射和也构成一一对应.如果对于任意目运算,及其对应的运算,当时,都有,则称代数是的同态象,称是从到的一个同态映射;定义同态象、同态映射:若和是两个同类型的代数系统,和都是二目运算,映射.如果对于任何,都有,则称是的一个同态象,称是从到的一个同态映射;注:如果就是,则映射是从到它自身;当上述条件仍然满足时,我们就称是的一个自同态映射;定义同构、同构映射、自同构映射:如果和是同态的,映射不仅是同态映射,而且是一一对应....的,则称和同构,称是从到的一个同构映射;如果就是,则称是上的一个自同构映射定义同余关系:设是一个代数系统,是上的一个等价关系,如果存在,当时,成立,则称是上的一个同余关系;定理:设~是上的一个等价关系,如果存在同态映射,使得当时,当且仅当,则~是上的同余关系;商代数与积代数定义子代数:设是一个代数系统,在运算下封闭的,则称是的一个子代数;定义直接积:设到是两个同类型的代数系统,如果对任意的和,定义运算于,称是和的直接积,称和为的因子;第2章半群和群半群和有幺半群定义半群、有幺半群:是一个非空集合,如果中定义了一个二目运算,对于任何,都有,则称是一个半群.如果半群中具有单位元,使得对任何,都有,则称是一个有幺半群;1是一个由有限个符号组成的集合,其中的元称为字母;表示所有的字构成的集合,表示非空串组成的集合;2自由半群:半群的各元相互间没有任何关系;说明:半群是一个定义了二目运算,并且服从结合律的代数系统;有幺半群则是具有单位元的半群;群和循环群定义群:在代数系统中,如果二目运算满足1对于任何,有;2中存在单位元,对任何,有;3对于任何,存在有逆元,使则称是一个群;注:对于群来说,单位元是唯一的,每个元的逆元也是唯一的;“存在逆元的有幺半群叫做群”定义阶数:若是一个群,当是有限集时,则称中元的个数为群的阶数,记为.定理若是一个群,,则,其中即.定义幂:是一个群,,则记个的积为,称为幂,记为表示单位元;定理指数律:若和是整数,则.定理若则定义次数:若是一个群,,使的最小正整数,称为元的次数;定理若是一个群,,的次数为,则都是中不同的元;定义循环群、生成元:由一个单独元素的一切幂所组成的群称为循环群,称为这个群的生成元;定理在阶数为的循环群,由生成元所产生的元次数为,即是生成元的充分必要条件是和互质;定理若和不是互质的,则的次数是,其中的是和的最小公倍数;定义阿贝尔群:如果群中的元对于运算满足交换律,则称这个群是一个阿贝尔群; “满足交换律的群叫做阿贝尔群”循环群是一个阿贝尔群;定理若和都是有限的阿贝尔群,定义则是一个阿贝尔群;最简单的一个阿贝尔群是群,为按位加二面体群、置换群二面体群是从图形的变换中到处,这些图形都是比较正规的图形;定理更一般地讲,定义置换:若是一个非空的有限集合,则上任何一个到它自身的一一对应的映射,都称为上的置换;定理两个置换的乘积仍是一个置换,并且置换的乘积服从结合律;的恒等映射也是一个置换称为单位置换;上所有置换的集合,对于置换乘法构成一个群,这个群称为对称群,记为,是中元的个数;定义阶置换群若是非空有限集合,是上的个置换所构成的群,则称是一个阶置换群; 定理任何一个阶群都同构于一个阶置换群;子群、群的同态定义子群:是一个群,,如果1单位元2若,则的逆元3若,则则称是的一个子群;定理是一个群,,是一个子群的充分必要条件是:若,则定义同态象、群同态映射:和是群,.若对任何,有群的同态映射具有下列性质:1将单位元映射为单位元2将逆元映射为逆元3对运算封闭,即对任何,有定理若和是群,是一个群同态映射,则将的子群映射为的子群;定义同态核:若是一个群同态映射,是的单位元,则中所有满足的元的集合,称为同态核,记为.定理同态核是一个子群;定理若是群的子群,则定义了上的一个划分因而也定义了上一个等价关系. 群子集:假定都是群中的元构成的集合称之为群子集,定义特别地,当是一元集时,我们简记为,则定理若是群的子群都是群的子群,则是一个群的充分必要条件是.陪集、正规子群、商群定义左陪集:若是群的子群,对于,称称为的一个左陪集. 定理若是群的子群,则的所有左陪集构成的一个划分;定理拉格朗日定理每个左陪集的元和中的元都是一样多;推论子群中元的个数一定是群中元的个数的因子;定义正规子群:若是群的子群,对于任何,都满足,则称是群的一个正规子群.一个阿贝尔群的任何子群都是正规子群;当是群的正规子群时,对于关于的陪集.定义运算为考虑所有关于的陪集组成的集合和运算构成的系统为一个群;这个群称为关于的商群,记为.定理若是从群到群的映上的同态映射,则核是正规子群,商群同构于.群同态基本定理:商群是由陪集构成的群,也是同余类的集构成的群,所以它同构于象代数,即同构于.如果群没有真正的正规子群,则该群为单群;正规群的任何子群都是正规子群;第3章格和布尔代数格定义格:表示一个偏序集,如果对于中的任何两个元和,在中都存在一个元是它们的上确界,存在一个元是它们的下确界,则称是一个格;对于中的元,它们的上确界常常记为,它们的下确界常常记为,前者又称为和析取或和或,后者又称为和的合取或积或或;定理若是一个格,则对于任何,有(1)的充分必要条件是.(2)的充分必要条件是.定理保序性若是一个格,则对于任何,当时,有引理若是一个格,,则定理分配不等式:若是一个格,则对于任何,定理模数不等式若是一个格,则对于任何,的充分必要条件是定理若是一个代数系统,和是上的二目运算,它服从交换律、结合律和吸收律.则是一个格.定义子格是一个格,,当且仅当对于运算和是封闭的,运算结果和在中相同时,则称代数系统是的一个子格;定义直接积若和是两个格,则称为这两个格的直接积,其中的运算和定义为:对于任何的,定义同态映射设和是两个格,.如果对任何,有则称是到的一个同态映射.特别地,当是一个一一对应时,称是一个同构映射,并且称格和同构的;如果是格上一个同态映射,则称是一个自同态映射.如果是一个同构映射,则称是一个自同构映射.定义完备:对于一个格,如果它的每一个非空子集在格中都具有一个上确界和下确界,则这个格称为完备的;显然每个有限的格都是完备的;对于一个格,它的上确界和下确界如果存在,我们称它们为这个格的边界,并分别记为1和0,因此有时这种格称为有界格;定义补元:是一个有界格,,如果存在元,使且,则称为的补元;定义补格:中的每个元都至少具有一个补元,则称这个格是一个补格;定义分配格:是一个格,如果对任何,有则称是一个分配格;定理任何两个分配格的直接积是分配格;定理若是一个分配格,则对于任何,如果,并且,则推论如果一个格是分配格,同时又是补格,则它的每一个元都具有唯一的一个补元;布尔代数定义布尔代数一个既是补格,又是分配格的格,称为布尔代数;定义对偶命题如果是一个布尔代数,是关于中变元的一个命题,它可以由中变元元通过运算来表示.如果对的表示式进行下列代换:代换为;代换为;代换0;0代换为1,则这样代换后也将得到一个命题,它成为命题的对偶命题,简称为对偶;定理对偶原理如果是一个命题,它在任何一个布尔代数中都成立,并且可以由运算来表示,则对它的对偶命题也在任何一个布尔代数中成立;定理对偶原理如果是一个命题,它在任何一个布尔代数中都成立,并且可以由运算和关系来表示,则将中的运算代换为;代换为;0代换为1,代换0;换为,换为,所得到的对偶命题也在任何一个布尔代数中成立;定理若和是两个布尔代数,是一个同态映射,则在中的同态象是的一个子布尔代数;定义基元:是一个布尔代数,,如果中不存在元,使,则称是的一个基元;如果对于任何都存在有基元,则称这个布尔代数是基元的; 定理若是一个布尔代数,,则下列命题是等价的;1是一个基元2对于所有的,若,则或3对于所有的,推论若和是不同的基元,定理是一个基元的布尔代数,是其基元的集合,对任一令,则,并且作为基元的析取式,这个表达式是唯一的;定理若是一个非空有限的布尔代数,是它的所有基元构成的集合,则同构.推论一个有限的布尔代数具有个元,其中的是它的基元的个数;推论对于任意正整数,具有个元的布尔代数是同构的;其他代数系统定义环若代数系统满足下列条件:1对于二目运算是一个可交换的加法群;2对于二目运算即乘法是封闭的;3乘法结合律成立,即对中任何三个元和,有4分配律成立,即对中任何元和,有则称是一个环;定义交换环一个环中的任何两个元,如果都满足,则称是一个交换环;定义逆元、零元一个环中如果存在有元,使得对中任何一个元都有,则称是的一个单位元;定义逆元、零元在一个有单位元的环里,如果和是环中的元,满足,则称是。
离散数学知识点总结
离散数学知识点总结 一、各章复习要求与重点第一章 集 合[复习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、 De Morgan 律等),文氏(V enn )图3、序偶与迪卡尔积本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明 [复习要求]1、理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。
2、掌握集合的表示法和集合的交、并、差、补等基本运算。
3、掌握集合运算基本规律,证明集合等式的方法。
4、了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。
[本章重点习题]P5~6,4、6; P14~15,3、6、7; P20,5、7。
[疑难解析] 1、集合的概念因为集合的概念学生在中学阶段已经学过,这里只多了一个幂集概念,重点对幂集加以掌握,一是掌握幂集的构成,一是掌握幂集元数为2n 。
2、集合恒等式的证明通过对集合恒等式证明的练习,既可以加深对集合性质的理解与掌握;又可以为第三章命题逻辑中公式的基本等价式的应用打下良好的基础。
实际上,本章做题是一种基本功训练,尤其要求学生重视吸收律和重要等价式在B A B A ~⋂=-证明中的特殊作用。
[例题分析]例1 设A ,B 是两个集合,A={1,2,3},B={1,2},则=-)()(B A ρρ 。
解}}3,2,1{},3,2{},3,1{},2,1{},3{},2{},1{,{)(φρ=A}}2,1{},2{},1{,{)(φρ=B于是}}3,2,1{},3,2{},3,1{},3{{)()(=-B A ρρ例2 设{}{}Φ=,,,,b a b a A ,试求:(1){}b a A ,-; (2)Φ-A ; (3){}Φ-A ; (4){}{}A b a -,; (5)A -Φ; (6){}A -Φ。
解 (1){}{}{}Φ=-,,,b a b a A (2)A A =Φ- (3){}{}{}b a b a A ,,,=Φ- (4){}{}Φ=-A b a , (5)Φ=-ΦA (6){}Φ=-ΦA 例3 试证明()()()()B A B A B A B A ~~~~⋂⋃⋂=⋃⋂⋃ 证明()()()()()()()()()()()()()()()()()()B A B A B A B A B B B A A B A A B B A A B A B A B A ~~~~~~~~~~~~~⋂⋃⋂=Φ⋃⋂⋃⋂⋃Φ=⋂⋃⋂⋃⋂⋃⋂=⋂⋃⋃⋂⋃=⋃⋂⋃第二章 二元关系[复习知识点]1、关系、关系矩阵与关系图2、复合关系与逆关系3、关系的性质(自反性、对称性、反对称性、传递性)4、关系的闭包(自反闭包、对称闭包、传递闭包)5、等价关系与等价类6、偏序关系与哈斯图(Hasse )、极大/小元、最大/小元、上/下界、最小上界、最大下界7、函数及其性质(单射、满射、双射)8、复合函数与反函数本章重点内容:二元关系的概念、关系的性质、关系的闭包、等价关系、半序关系、映射的概念 [复习要求]1、理解关系的概念:二元关系、空关系、全关系、恒等关系;掌握关系的集合表示、关系矩阵和关系图、关系的运算。
1.1-集合的基本概念(离散数学)
幂集的性质
1.
为有穷集, 若A为有穷集,|A|=n,则 为有穷集 , |2A | = Cn0 + Cn1 + … + Cnn =2n 。 x∈ρ 当且仅当 A。 ∈ρ(A)当且仅当 ∈ρ 当且仅当x 。 是两个集合, 当且仅当 设 A、 B是两个集合 , AB当且仅当 、 是两个集合 ρ(B); ρ(A)ρ ; ρ
多样性
集合中的元素可以是任意的对象, 集合中的元素可以是任意的对象,相 互独立, 互独立,不要求一定要具备明显的共 同特征。 同特征。 例如: 例如: A={a,{a},{{a},b},{{a}}, 1} A={1,a,*,-3,{a,b},{x|x是汽车 地球 是汽车},地球 是汽车 地球}
罗素悖论(Russell’ paradox) 罗素悖论(Russell’s paradox)
集合的表示法
列举法;将集合中的元素一一列举, 列举法;将集合中的元素一一列举, 或列出足够多的元素以反映集合中元 素的特征,例如: 素的特征,例如:V={a,e,i,o,u} 或 B={1,4,9,16,25,36……}。 。 描述法 ;通过描述集合中元素的共同 特征来表示集合,例如: 特征来表示集合,例如: V= {x|x是元 是元 音字母} 是自然数} 音字母 ,B= {x|x=a2 , a是自然数 是自然数
空集、 空集、全集
约定,存在一个没有任何元素的集合, 约定,存在一个没有任何元素的集合, 称为空集(empty set) ,记为φ,有时也用{} ) 记为φ 有时也用{} 来表示。 来表示。 约定, 约定,所讨论的对象的全体称为全集 (universal set),记作 或U,我们所讨论 ,记作E或 , 的集合都是全集的子集 全集是相对的。 的集合都是全集的子集 。全集是相对的。 全集
离散数学第一章知识点总结
离散数学第一章知识点总结离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、物理学等领域都有着广泛的应用。
第一章通常是对离散数学的基础概念和预备知识进行介绍,为后续的学习打下坚实的基础。
以下是对离散数学第一章知识点的详细总结。
一、集合的基本概念集合是由一些确定的、不同的对象所组成的整体。
集合中的对象称为元素。
我们通常用大写字母来表示集合,用小写字母表示元素。
如果一个元素 a 属于集合 A,记作 a ∈ A;如果一个元素 b 不属于集合 A,记作 b ∉ A。
集合有两种常见的表示方法:列举法和描述法。
列举法是将集合中的元素一一列举出来,例如 A ={1, 2, 3, 4, 5}。
描述法是通过描述元素的共同特征来表示集合,例如 B ={x | x 是大于 0 小于 10 的整数}。
集合之间的关系包括子集、真子集和相等。
如果集合 A 中的所有元素都属于集合 B,那么 A 是 B 的子集,记作 A ⊆ B。
如果 A 是 B 的子集,且 B 中存在元素不属于 A,那么 A 是 B 的真子集,记作 A ⊂ B。
如果 A 和 B 包含相同的元素,那么 A 和 B 相等,记作 A = B。
二、集合的运算集合的基本运算有并集、交集和差集。
集合 A 和集合 B 的并集,记作 A ∪ B,是由属于 A 或者属于 B 的所有元素组成的集合。
集合 A 和集合 B 的交集,记作A ∩ B,是由同时属于 A 和 B 的所有元素组成的集合。
集合 A 与集合 B 的差集,记作 A B,是由属于 A 但不属于 B 的所有元素组成的集合。
此外,还有补集的概念。
如果给定一个全集 U,集合 A 的补集记作A,是由属于 U 但不属于 A 的所有元素组成的集合。
集合运算满足一些重要的定律,如交换律、结合律、分配律等。
例如,A ∪ B = B ∪ A(并集的交换律),A ∩ B =B ∩ A(交集的交换律),(A ∪ B) ∪ C = A ∪(B ∪ C)(并集的结合律),(A ∩B) ∩ C =A ∩ (B ∩ C)(交集的结合律)等。
离散数学集合的基本概念(一)
离散数学集合的基本概念(一)离散数学集合的基本概念集合是离散数学中最基本的概念之一,它是由一些确定的、互不相同的对象组成的整体。
这些对象被称为集合的元素,可以是任何事物,比如数字、字母、人、动物等。
在集合中,元素的顺序和重复是无关紧要的。
集合的表示集合通常用大写字母表示,如A、B。
元素属于集合时,通常用小写字母表示,如a、b。
一个元素a属于某个集合A时,表示为a∈A。
不属于某个集合时表示为a∉A。
集合的表示形式1.列举法:通过逐个列举出集合中的元素来表示集合。
例如,集合A={1, 2, 3}表示A为包含元素1、2、3的集合。
2.描述法:通过描述元素的特征来表示集合。
例如,集合A={x|x为正整数,且x<4}表示A为包含不大于3的正整数的集合。
1.并集:将两个集合中的元素合并在一起,形成的新集合包含了两个集合中的所有元素,且没有重复。
用符号∪表示。
例如,A∪B 表示集合A和集合B的并集。
2.交集:求两个集合中共有的元素,形成的新集合包含了两个集合中的所有共有元素。
用符号∩表示。
例如,A∩B表示集合A和集合B的交集。
3.差集:求一个集合中去除另一个集合中的元素后的剩余元素。
用符号-表示。
例如,A-B表示集合A去除集合B的元素后的剩余元素。
4.补集:求一个集合关于全集的差集。
用符号’表示。
例如,A’表示集合A的补集。
集合的性质1.互斥性:两个集合没有共同的元素时,称为互斥的。
两个互斥的集合的交集为空集。
2.包含关系:一个集合包含另一个集合时,称为包含关系。
包含关系可以是真包含或假包含,当一个集合包含另一个集合且两者不相等时,称为真包含。
3.幂集:一个集合所有可能的子集的集合称为幂集。
离散数学中的集合理论在计算机科学、信息技术、逻辑学、概率论等领域有着广泛的应用。
集合的概念和基本操作可以用于解决各种问题,例如数据处理、算法设计、数据库管理等。
以上是对离散数学集合的基本概念及相关内容的简要介绍,希望可以对读者有所帮助。
离散数学答案
2015春课件作业第一部分集合论第一章集合的基本概念和运算1-1 设集合 A ={{2,3,4},5,1},下面命题为真是 A (选择题) [ A ] A.1 ∈A; B.2 ∈ A; C.3 ∈A; D.{3,2,1} ⊆ A。
1-2 A,B,C 为任意集合,则他们的共同子集是 D (选择题) [ D ] A.C; B.A; C.B; D.Ø。
1-3 设 S = {N,Z,Q,R},判断下列命题是否正确(是非题)(1) N ⊆ Q,Q ∈S,则 N ⊆ S,否[错](2)-1 ∈Z,Z ∈S,则 -1 ∈S 。
否[错]1-4 设集合 B = {4,3} ∩Ø, C = {4,3} ∩{ Ø },D ={ 3,4,Ø },E = {x│x ∈R 并且 x2 - 7x + 12 = 0},F = { 4,Ø,3,3},试问:集合 B 与那个集合之间可用等号表示 A (选择题) [A ]A. C;B. D;C. E;D. F.1-5 用列元法表示下列集合:A = { x│x ∈N 且 3-x 〈 3 }(选择题) [D ]A. N;B. Z;C. Q;D. Z+1-6 为何说集合的确定具有任意性 ? (简答题)按照所研究的问题来确定集合的元素。
而我们所要研究的问题当然是随意的。
所以,集合的定义(就是集合成分的确定)就带有任意性。
第二章二元关系2-1 给定 X =(3, 2,1),R 是 X 上的二元关系,其表达式如下:R = {〈x,y〉x,y ∈X 且 x > y } (综合题)求:(1)domR =?; (2)ranR =?; (3)R 的性质。
所谓谓词表达法,即是将集合中所有元素的共同性质用一个谓词概括起来,如本题几例所示。
有的书上称其为抽象原则。
反过来,列元法则是遵照元素的性质和要求,逐一将他们列出来,以备下用,结果如下:R = {<1,1>,<2,2>,<3,3>};(1)DomR={R中所有有序对的x}={3,2,1};(2)RanR={R中所有有序对的y}={3,2,1};(3)R 的性质:自反,对称,传递性质.2-2 设 R 是正整数集合上的关系,由方程 x + 3y = 12 决定,即R = {〈x,y〉│x,y ∈Z+ 且 x + 3y = 12},试给出 dom(R 。
离散数学讲解第一章
2018/12/20 21
集合族: 由集合构成的集合.
{{6}, {1,5} , {2,4}, {1,2,3}} 幂集都是集族.
2018/12/20
22
指标集(index set): 设A是集合族, 若 A = { Ai | iK }, 则K称为A的指标集.
全集是相对的, 视情况而定, 因此不唯一.
2018/12/20
24
1.4集合之间的运算
1. 并集: 设有集合A、B,属于A或属于B的所有元素 组成的集合,称为A与B的并集,记作AB AB = { u | uA 或 uB}
AB
2018/12/20
25
2. 交集:设有集合A、B,属于A同时又属于B的所有 元素组成的集合,称为A与B的交集,记作A B AB = { u | u A 且 u B }
2018/12/20 15
对任意集合A, A 证明: 反证法(设结论不成立,推出矛盾)
假设空集不是集合A的子集,即 A 根据定义1-2,存在x , x A, 这与空集的定义矛盾 假设不成立,应有A,原结论成立。
2018/12/20
16
定理: 空集是唯一的.
证明: 设1与2都是空集, 则 12 且 21 1=2 .
2018/12/20
5
2. 集合的表示
列举法:
列出集合中的全体元素,元素之间用逗号分 开,然后用花括号括起来,例如: A={a,b,c,d,…,x,y,z} B={0,1,2,3,4,5,6,7,8,9} C={2,4,6,…}
2018/12/20
6
描述法
给定一个条件P(x) ,当且仅当a使条件P(a)成立 时,a∈A。
离散数学导论(第5版)-第二篇 集合论
18
• • 四个次序关系间的关系: • • • R是拟序则r (R) = R • • • R是偏序则R-Q是拟序 • • • 字典次序关系必为线性次序关系 • • • R是拟序则必反对称 • 八个概念: • • 最大元素(最小元素) • • 极大元素(极小元素) • • 上界(下界) • • 上确界(下确界)
• • |A∪B|=|A|+|B|-|A∩B|
• •|A∪B∪C| = |A|+|B|+|C| - |A∩B| - |A∩C| -|B∩C|+|A∩B∩C| n
i=1 1≤i<j≤n
1≤i<j<k≤n
• •|S1∪S2∪…∪Sn|n-=1∑|Si|-∑ |Si∩Sj|+ ∑
• |Si∩Sj∩Sk|(-1)∑ |S1∩S2∩…∩S n|
§3.1 函数的基本概念
• (1)一个基本概念——函数的基本概念。
•
函数建立了从一个集合到另一个集合的特殊对应关系。
设有集合X与Y,如果我们有一种对应关系f,使X的任一元素x能
与y中的一个唯一的元素y相对应,则这个对应关系f叫从X到Y的
函数或叫从X到Y的映射。x所对应的y内的元素y叫x的像,而x则
叫y的像源。上述函数我们可以表示成f:XY;或写成XY;
以及y=f(x)。
•
(2)三种不同性质函数:
•
• 满射与内射
离散数学文档1
(2)关系的性质和运算
(3)等价关系和集合的划分
(4)偏序关系
第1章关系
1.1序偶与笛卡儿积
1.2二元关系及其表示
1.3关系的运算
1.4关系的性质
1.5关系的闭包
1.6等价关系与集合的划分
1.7相容关系
1.8偏序关系
1.1序偶与笛卡儿积
1.1.1有序n元组
定义1.1由两个固定次序的个体x,y组成的序列称为序偶,
R◦S={<2,2>,<4,3>}。
如图所示:
1.3关系的运算
1.3.2关系的复合运算
(2)设R,S都是A上的关系,A={1,2,3,4}。
R={<1,2>,<1,3>,<3,4>},S={<1,1>,<2,2>,<3,3>,
<4,4>},即S为A上的恒等关系,则R◦S=S◦R=R。
如图所示:
定理1.3设A,B,C,D为四个非空集合,则A×BC×D的充
1.2.1二元关系的概念
定义1.6设IA为集合A上的二元关系,且满足IA={<x,x>xA}
,则称IA为集合A上的恒等关系。
1.2二元关系及其表示
1.2.2二元关系的表示
1.关系矩阵表示法
设给定集合A={a1,a2,…,an},集合B={b1,b2,…,bm},R为
从A到B的一个二元关系,构造一个n×m矩阵。用集合A的元素标
A∪~B。
1.3集合的运算
1.3.4集合的对称差文氏图
定义1.10设A、B是两个集合,集合A和B的对称差记作A♁B,
它是一个集合,其元素或属于A,或属于B,但不能既属于A又
离散数学题型梳理-第1章
离散数学常考题型梳理第1章 集合及其运算一、题型分析本章主要介绍集合论的基本概念和结论,集合的运算及其性质,以及利用运算性质进行集合表达式的化简和集合恒等式的证明等内容.经常涉及到的题型有:1-1集合与集合之间的包含、元素与集合之间的属于关系1-2幂集的计算1-3集合之间的运算1-4利用集合运算性质证明集合恒等式因此,在本章学习过程中希望大家要清楚地知道:1.集合与集合之间存在一种包含关系,当两个集合A 和B 存在关系A 包含B ,用A ⊇B 表示,或存在关系B 被A 包含,用B ⊆A 表示,这时称B 为A 的子集.注意空集∅是任意一个集合的子集,集合A 也是自己的子集.当B ⊆A 且B ≠A ,也就是说,只有B ⊂A 或A ⊃B 成立,则称B 为A 的真子集.若B 不是A 的子集,即B ⊆A 不成立时,则称A 不包含B ,记作B ⊆A .然而,元素与集合之间存在一种从属关系,当a 是集合A 中的元素,则称a 属于A ,记作a∈A ;若a 不是集合A 中的元素,则称a 不属于A ,记作a ∉A .因此,这两种关系一定不要混淆.2.由集合A 的所有子集组成的集合,称为A 的幂集,记作P (A )或2A .若集合A 是由n 个元素所组成的集合,则A 的幂集由2n 元素组成.当n =3时,A 的幂集由23=8个元素组成.例如,设集合A = {0, 1, 2 },则A 的全部子集由以下子集组成:0元子集(即空集):∅;1元子集:{0},{1},{2};2元子集:{0, 1},{0, 2},{1, 2};3元子集(即集合A ):{0, 1, 2}.因此,计算集合A 的幂集时,首先要按照上述方法写出集合A 的全部子集,然后检验写出的子集个数是否等于2n 个,其中n 是集合A 的元素个数.3.集合之间的运算有并(⋃)、交(⋂)、差(-)、补(~)和对称差(⊕)等五种运算,在做集合运算的题目时,一定要按照它们的定义进行计算.(1) 集合A 和B 的并集A B x x A ⋃=∈{或 x B ∈} 特点:由集合A 和B 的所有元素组成的集合.见图1 图1 图2(2) 集合A 和B 的交集A B x x A ⋂=∈{ 且 x B ∈}特点:由集合A 和B 的公共元素组成的集合.见图2(3) 集合A 与B 的差集A B -=∈∉{}x x A x B 且 特点:由属于A ,而不属于B 的所有元素组成的集合.见图3(4) 集合A 的补集~A ={}x x E x A ∈∉且特点:由属于全集E 但不属于集合A 的元素组成的集合.见图4补集总相对于一个全集而言,可以看作是全集E 与集合A 的差集.(5) 集合A 与B 的对称差A ⊕B =(A -B )⋃(B -A )或 A ⊕B =(A ⋃B )-(A ⋂B )特点:由分别属于集合A 与B 的元素但不属于它们公共元素组成的集合.见图5(6) 把集合A ,B 合成集合A ×B 叫做笛卡儿积,规定A ×B ={<x , y >∣x ∈A 且y ∈B }注意:由于有序对<x , y >中x ,y 的位置是确定的,因此A ×B 的记法也是确定的,不能写成B ×A..笛卡儿积的运算一般不能交换..虽然,笛卡儿积的内容是第2章2.1.1目的内容,是二元关系的预备知识,但我们认为把它作为集合的一种运算考虑更好些。
(完整版)哈工大《离散数学》教科书习题答案
教材习题解答第一章 集合及其运算8P 习题3. 写出方程2210x x ++=的根所构成的集合。
解:2210x x ++=的根为1x =-,故所求集合为{1}- 4.下列命题中哪些是真的,哪些为假a)对每个集A ,A φ∈;b)对每个集A ,A φ⊆; c)对每个集A ,{}A A ∈;d)对每个集A ,A A ∈; e)对每个集A ,A A ⊆;f)对每个集A ,{}A A ⊆; g)对每个集A ,2A A ∈;h)对每个集A ,2A A ⊆; i)对每个集A ,{}2A A ⊆;j)对每个集A ,{}2A A ∈; k)对每个集A ,2A φ∈;l)对每个集A ,2A φ⊆; m)对每个集A ,{}A A =;n){}φφ=;o){}φ中没有任何元素;p)若A B ⊆,则22A B ⊆q)对任何集A ,{|}A x x A =∈;r)对任何集A ,{|}{|}x x A y y A ∈=∈; s)对任何集A ,{|}y A y x x A ∈⇔∈∈;t)对任何集A ,{|}{|}x x A A A A ∈≠∈; 答案:假真真假真假真假真假真真假假假真真真真真 5.设有n 个集合12,,,n A A A 且121n A A A A ⊆⊆⊆⊆,试证: 12n A A A ===证明:由1241n A A A A A ⊆⊆⊆⊆⊆,可得12A A ⊆且21A A ⊆,故12A A =。
同理可得:134n A A A A ====因此123n A A A A ====6.设{,{}}S φφ=,试求2S ?解:2{,{},{{}},{,{}}}S φφφφφ=7.设S 恰有n 个元素,证明2S 有2n 个元素。
证明:(1)当n =0时,0,2{},212S S S φφ====,命题成立。
(2)假设当(0,)n k k k N =≥∈时命题成立,即22S k =(S k =时)。
那么对于1S ∀(11S k =+),12S 中的元素可分为两类,一类为不包含1S 中某一元素x 的集合,另一类为包含x 的集合。
第一章 离散数学
定义1-9 设有集合A、B,所有属于B而不属于
A的元素组成的集合,称为A相对于B的补集, 记作B-A。即
B A u | u B但u A
用文氏图表示为:(图中斜线部分即是)
B
B-A
例:A={2,5,6} B={3,4,2} B-A={3,4} 则 A-B={5,6}
A
定义1-10 集合A相对于全集合U的补集称为A的
{ }
定理1-2:设A是具有基数#A的有限集,则#(2A ) 2# A
分析:前面介绍了,A的子集是A的一部分,那么由 i A中i个元素组成的子集有C n个,若A有n个元素,于 是有:
C n 0 C n1 ... C n n 1 C n n 2n
(证明略)
例3、确定集合A={a,{a}}的幂集
A不够成一个集合,因为没有确定老的标准,50岁 以上的老,还是60岁以上的老呢?这需要一个确定的标 准,根据这个标准来判断一个55岁的中国人是否属于这 个集。
总之,任一个个体,对某一个集合而言, 或属于该集合,或不属于该集合。两者 必 居其一,不可兼得。
又如:
A={b,c} 是一个集合,但它是集合B 的元素,其中B={a,{b,c}}; A={b,c}是以一个整体作为B的元素。 另外,要将b,与{b} 区分开来,b∈{b}; b是一个个体,{b}是一个单元素的集合。
故 A C(由定义1-2)
综合(1)、(2)即知原结论成立。
1.3
一、幂集的定义
幂集
定义1-5:任给集合A,由A的所有子集组成的集合, 称为A的幂集。记作2A,即2A={s|s A}。 例1 A={1,2,3}
则 2A {,{1},{2},{3},{1, 2},{1,3},{2,3},{1, 2,3}} 例2 (1) A={a}
集合的基本概念(离散数学)
并集
01
并集是将两个或多个集合中的 所有元素合并到一个新集合中 。
02
并集运算可以用符号"∪"表示, 例如,A∪B表示集合A和集合B 的并集。
03
并集运算满足交换律和结合律, 即A∪B=B∪A, (A∪B)∪C=A∪(B∪C)。
交集
01
交集是两个或多个集合中共有的元素组成的集合。
02
交集运算可以用符号"∩"表示,例如,A∩B表示集合A和集合 B的交集。
集合的运算
并集
两个集合中所有元素的集合。
交集
两个集合中共有的元素组成的集合。
差集
从一个集合中去除另一个集合中的元素后得到的集合。
03
集合的性质
空集
定义
不含有任何元素的集合称为空集。记作∅。
性质
空集是任何集合的子集,即对于任意集合A,都有∅⊆A。
应用
在数学逻辑和集合论中,空集常用于作为其他集合的基底或参考点。
06
集合的应用
在数学中的应用
在概率论中的应用
集合是概率论的基本概念,用来 表示随机事件。概率论中的许多 概念,如事件的并、交、差等, 都是基于集合运算的。
在几何学中的应用
集合论为几何学提供了统一的数 学语言。在几何学中,点、线、 面等基本元素都可以被视为集合。
在逻辑学中的应用
集合论为逻辑学提供了形式化的 工具,使得逻辑推理更加严谨。 集合论中的集合关系和集合运算, 可以用来表示逻辑中的命题和推 理。
并集
两个或多个集合中所有元素的 集合。
集合
由确定的、不同的元素所组成 的总体。
子集
一个集合中的所有元素都属于 另一个集合,则称这个集合是 另一个集合的子集。
离散数学中的集合与运算
离散数学中的集合与运算在离散数学中,集合与运算是一个重要的概念和工具。
集合是由一些确定的、独立的对象组成的。
这些对象可以是数字、字母、符号、元素等。
在离散数学中,我们可以通过运算来处理集合,并进行各种操作和推理。
一、集合的定义与表示集合是指具有某种特定性质的所有对象的总体。
它可以用花括号{}括起来,其中的元素之间使用逗号隔开。
例如,集合A可以表示为A={a, b, c},表示A中包含了元素a、b和c。
二、集合的关系1. 包含关系:若集合A的所有元素都属于集合B,我们可以说B包含A,记作A⊆B。
例如,若A={1, 2},B={1, 2, 3},则A⊆B。
2. 相等关系:若两个集合A和B的元素完全相同,我们可以说这两个集合相等,记作A=B。
例如,若A={1, 2},B={2, 1},则A=B。
3. 真包含关系:若集合A包含于集合B,且A不等于B,我们可以说B真包含A,记作A⊂B。
例如,若A={1, 2},B={1, 2, 3},则A⊂B。
三、集合的运算1. 交集:两个集合A和B的交集是指同时属于A和B的所有元素所构成的集合,记作A∩B。
例如,若A={1, 2},B={2, 3},则A∩B={2}。
2. 并集:两个集合A和B的并集是指包含了A和B的所有元素所构成的集合,记作A∪B。
例如,若A={1, 2},B={2, 3},则A∪B={1, 2, 3}。
3. 差集:集合A相对于集合B的差集是指属于A且不属于B的元素所构成的集合,记作A-B。
例如,若A={1, 2},B={2, 3},则A-B={1}。
4. 补集:相对于某个全集U,集合A的补集是指属于U但不属于A 的元素所构成的集合,记作A'或者A^c。
例如,若U={1, 2, 3},A={2},则A'={1, 3}。
四、集合的运算规律集合运算满足一些基本规律,包括交换律、结合律、分配律等。
1. 交换律:对于任意两个集合A和B,有A∩B=B∩A,A∪B=B∪A。
离散数学-集合及其运算
∪ ������������ = [0, 1)
∞
������=1 ������
������=1 ∞
∩ ������������ = { 0 }
������=1 ������
∪ ������������ = (0, n) ∩ ������������ = (0, 1)
文氏图:
与交/并运算的关系? 与补集的关系?
说明(集合的运算): 1. 只使用圆括号 2. 运算顺序: 优先级别为(1)括号, (2)和幂集, (3)其他. 同级别的按从左到右运算
22
1.2.3 集合的运算
实例
例1 设E={ x | x是北京某大学学生}, A,B,C,D是E的子集, A= { x | x是北京人}, B= { x | x是走读生}, C= { x | x是数学系学生}, D= { x | x是喜欢听音乐的学生}. 试描述下列各集合中学生的特征:
0 n
设 |A| = n,求A的幂集: ������ = 1 ������ ������ ������ 求0元子集: ������ 个,即 ;求1元子集: ������ 个; ������ ������ 求2元子集: ������������ 个,…… ,求n元子集:������������ 个 将上述子集集合在一起,即得A的幂集.
相对补:称属于A而不属于B的元素组成的集合为 B对A 的相对补集,记作AB ,即 AB = { x | xA xB } 绝对补 :设E为全集,A E,称E A为A的绝对补集, 记作 A,即 A = EA= { x | xA } 例如 设E={0,1, … ,9}, A={0,1,2,3}, B={1,3,5,7,9}, 则 A-B={0, 2}, B-A={5, 7, 9} A ={4,5,6,7,8,9}, B ={0,2,4,6,8}
离散数学---集合的基本运算
从而, A-(B∪C)=(A-B)∩(A-C)
利用谓词公式证明求证:A(B∪C)=(A-B)∩(A-C)
证明:(A-B)∩(A-C)={x|x(A-B)∩(A-C)} ={x|x(A-B)∧ x(A-C)} ={x|xA∧(xB)∧(xA)∧(xC)}
={x|(xA)∧(xB)∧(xC)}
集合运算性质(运算律)
1、 交换律A∪B=B∪A,A∩B=B∩A
2、 结合律(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩ C)
3、 分配律
A∪(B∩C)=(A∪B)∩(A∪C) A∩(B∪C)=(A∩B)∪(A∩C)
4、幂等律 A∪A=A,A∩A=A
5、同一律 A∪=A,A∩E=A 6、零一律 A∩=,A∪E=E 9、 德摩根律(A∪B)=A∩B (A∩B)=A∪B
求证:A-(B∪C)=(A-B)∩(A-C) 证明: x(A-B)∩(A-C), 则x(A-B)∧ x(A-C)
(xA)∧(xB)∧(xA)∧(xC) (xA)∧(xB)∧(xC)
(xA)∧(xB)∧(xC)
(xA)∧ (xB∨xC) (xA)∧(xB∪C ) x A-(B∪C)
集合的交并例题3
设A1={1,{2,3}},A2={2,{1,3}},
A3={3,{1,2}},
求A1∩A2,A1∩A3,A2 ∩ A3。
解:三个集合均有两个元素,其中一个元素是
数。另一元素是两个数组成的集合,三个集合没
有相同元素,∴A1∩A2=A2∩A3=A3∩A1=
不相交
如A∩B=称A,B不相交。
集合的差
设A,B是两集合,属于A而不属于B的元 素全体称为A与B的差集,记作A-B, 即A-B={xxA∧xB}。
离散数学大一第1章知识点总结
离散数学大一第1章知识点总结离散数学是一门学科,它主要研究离散的数学结构和离散的数学对象。
它与连续数学形成鲜明的对比,连续数学主要研究连续的数学结构和连续的数学对象。
离散数学在计算机科学、信息科学、数学、电子工程等领域有着广泛的应用。
离散数学的第1章主要介绍了一些基本概念和基础知识。
这些知识对学习离散数学后续的内容起到了铺垫作用。
首先,我们来讨论集合的概念。
在离散数学中,集合是一个基本的概念。
它是指具有确定的、互不相同的对象所组成的整体。
集合中的对象称为元素。
集合可以用列表、描述、特征等方式表示。
在集合中,元素的顺序是不重要的,而且每个元素只能在集合中出现一次。
集合之间可以进行交集、并集、差集等运算。
接下来,我们介绍了逻辑的基本概念。
在离散数学中,逻辑主要研究命题和命题之间的关系。
命题是一个陈述句,它要么是真的,要么是假的。
逻辑运算符包括否定、合取、析取、条件、双条件等。
通过使用逻辑运算符,我们可以构建复合命题。
离散数学中还介绍了数学归纳法。
数学归纳法是一种证明方法,它用于证明与自然数有关的命题。
数学归纳法的基本思想是:首先证明基础情况成立,然后假设一个数k的情况成立,再证明k+1的情况也成立。
通过这种方式,我们可以证明自然数的某个性质对所有数值都成立。
离散数学的第1章还介绍了关系和函数。
关系是一个集合,其中包含了有序对。
关系可以是自反的、对称的、传递的等。
函数是一种特殊的关系,它的每一个输入都有且只有一个输出。
函数可以表示为图表、公式或算法的形式。
函数的定义域和值域是函数的重要概念。
另外,离散数学的第1章还介绍了图论的基础知识。
图是由节点和边组成的结构。
节点表示对象,边表示节点之间的关系。
图可以是有向的、无向的、加权的、连通的等。
图的表示方法包括邻接矩阵和邻接表等。
总的来说,离散数学的第1章主要介绍了集合、逻辑、数学归纳法、关系、函数和图论的基本概念和基础知识。
这些知识对后续章节的学习至关重要,构建了离散数学的基础框架。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B A ( x) ( x B x A)
例:设A={1,2,3,4,5,6,}, B={2,4,5,}及C={1,2,3,4,5} 定义3.1.2(外延性原理)设A,B为集合,如果B⊆A且A⊆B, 则称A与B相等,记作A=B。相等的符号化表示为
x 则 x A B或x A C , A且x B或x A且x C ,即 x A且x B C, 于是x A ( B C ) 所以 ( A B) ( A C ) A ( B C ) 因此 ( A B) ( A C ) A ( B C )
离散数学
第一章 集合的基本集合的基本概念和运算
1.1 1.2 1.3 1.4 集合的基本概念 集合的基本运算 集合中元素的计数 笛卡尔乘积
1.1 集合的基本概念
集合是不能精确定义的基本的数学概念,直观地讲,集合是 由某些可以相互区别的事物汇集在一起所组成的整体。对于给定 的集合和事物,应该可以断定这个特定的事物是否属于这个集合。 如果属于,就称它为这个集合的元素。 集合通常用大写的英文字母来表示。 集合有两种表示方法:枚举法和谓词表示法。前一种方法是 将集合中的所有元素罗列出来,元素之间用逗号隔开,并把它们 用花括号括起来。例如 A {a, b, c} , {1, 2, 3, ...}, {春, 秋, },都是合法的表示。 C 夏, 冬 B 谓词表示法是用谓词来概括集合中元素的属性,例如 2 } F D {x | x是学生 , {x | x是整数 , {x | x R x 1 0} } E 一般的 A={x︱R(x)} R(x)表示x具有性质R,表示任何谓词 集合的元素是彼此不同的,如果同一个元素在集合中多次出现 应该认为是一个元素。集合的元素也是无序的,元素的排列顺序 对集合没有影响。
则
AC B C
集合的交运算具有以下性质: 1. A A A 2. A 3. A E A 4. A B B A 5. (A B) C A (B C) A (x 证明: (B C) = {x ︱ A) ( x B C) } ( A B) C ={x ︱ x ( A B) ( x C ) } ( A B) ( x C ) [ ( x A) ( x B) ( x C ) ] ( x A) [( x B) ( x C )] ( x A) ( x B C) 故 ( A B) C = A (B C) 此外还有 A B A A B B 定理 设A,B,C为三个集合,则下列分配律成立 a. A ( B C ) ( A B) ( A C ) b. A ( B C ) ( A C ) ( A C ) 证明:设 x A ( B C ), 则x A且x B C 即 x A且x B或x A且x C 故 x A B或x A C即x ( A B) ( A C ), A ( B C ) ( A B) ( A C ) 反之,若 x ( A B) ( A C )
1.1 集合的基本概念
集合的元素还可以允许时一个集合,例如: S={a,{1,2},p,{q}} 但:q {q}, q S 又: {1,2,4}={1,2,2,4} {1,2,4}={1,4,2} 但, {{1,2},4} {1,4,2}
{1,3,5,。。。} = {x|x是正奇数}
1.1 集合的基本概念
B A A BB A
由以上定义可知,两个集合相等的充分必要条件是它们具有 相同的元素。如 A {x | x是小于等于 的素数 , B {x | x 2 x 3} 3 } 则A=B。
1.1 集合的基本概念
定义1.1.3设A,B为集合,如果B⊆A且B≠A,则称B是A的真 子集,记作B⊂A。真子集的符号化表示为 B⊂A⇔B⊆A∧B≠A 如果B不是A的真子集,则记作 B A 。例如{0, 1}是{0, 1, 2} 的真子集,但{0, 3}和{0, 1, 2}都不是{0, 1, 2}的真子集。 定义1.1.4 不含任何元素的集合叫做空集,记作Ø,空集可以 符号化表示为Ø={x | x≠x} 定理1.1.1 空集是一切集合的子集。 证明:任何集合,由子集定义有
第一章 集合的基本概念和运算
1.1 1.2 1.3 1.4 集合的基本概念 集合的基本运算 集合中元素的计数 笛卡尔乘积
1.2 集合的基本运算
1.2.1 集合的运算
1.2.2 集合运算算律
1.2.1 集合的运算
给定集合A和B,可以通过集合的并∪,交∩,相对补-,绝 对补~和对称差 等运算产生新的集合。 定义1.2.1设A,B为集合,A与B的并集A∪B,交集A∩B,B对A 的相对补集A-B分别定义如下: A B {x | x A x B} A B {x | x A x B} A B {x | x A x B} 显然A∪B由A或B中的元素构成, A∩B由A和B中的公共元素构 成, A-B由属于A但不属于B的元素构成。 把以上定义加以推广,可以得到n个集合的并集和交集,即
Ø A xx Ø x A
右边的蕴涵式中因前件 x Ø 为假,所以整个蕴涵式对一切x为真, 因此 Ø A 为真。
1.1 集合的基本概念
推论 空集是唯一的。 一般地,称集合A的子集Ø和A为A的平凡子集。
Ø A
A A
集合的包含具有下列性质 1.自反性: A A 2.反对称性 若 A B且B A则A B 3.传递性 A B且B C则A C 含有n个元素的集合简称n元集,它的含有m个(m≤n)元素的子集称 作它的m元子集。任给一个n元集,如何求出它的全部子集呢? 例3.1.4 A= {a, b, c},求A的全部子集。 解: 将A的子集从小到大分类: 0元子集,即空集, Ø ; 1元子集,即单元集,{a},{b},{c}; 2元子集,{a, b},{b, c},{a, c}; 3元子集,{a, b, c}。 m 一般地,对n元集A,它的m(0≤m≤n)元子集有 Cn 个,不同的子 集总数有
A B {0, 1} {3} {0, 1, 3}
~ A E A {x | x E x A}
或
A B {0, 1, 2, 3} {2} {0, 1, 3}
集合之间的相互关系和有关运算可用文氏图给出形象的描述。
差运算具有以下性质: a.A-A= b.A-B=A- A B c.(A-B)-C=A-A ∪ B d.A ∪ (B-A)=A ∪ B
A1 A2 ... An {x | x A1 x A2 ... x An}
A1 A2 ... An {x | x A1 x A2 ... x An}
集合并的运算具有下列性质: 1. A A =A 2. A E =E 3. A =A 4. A B = B A 5. ( A B) C A ( B C ) B A B 6. A A B
0 1 2 n Cn Cn Cn ... Cn 2n
1.1 集合的基本概念
定义1.1.5 设A为集合,把A的全体子集构成的集合叫做A的幂 集,记作ρ(A)。幂集的符号化表示为 ρ(A) = { x | x⊆A} 对于例1.1.4中的集合A有ρ(A) ={ , {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}。 p( x) p( x) 定义1.1.6 在一个具体的问题中,如果所涉及的集合都是某个 集合的子集,则称这个集合为全集,记作E。 E={x | p( x) p( x) } 全集是有相对性的,不同的问题有不同的全集,即使是同一 个问题也可以取不同的全集。例如在研究平面上直线的相互关系 时,可以把整个平面(平面上所有点的集合)取作全集,也可以 把整个空间(空间上所有点的集合)取作全集。一般地,全集取 得小一些,问题的描述和处理会简单些。
定理 设A,B为任意两个集合,则下列关系式成立 a. A ( A B) ( A E ) ( A B) A ( E B) A b. A ( A B) ( A A) ( A B) A ( A B) A 定理 设 A B当且仅当A B B或A B A 证明 若 A B ,对任意 x A必有x B 对任意 x A B ,则 x A或x B, 故x B 所以 A B B 又 B A B 故得到 A B B 反之:若 A B B 因为 A A B 故 A B 同理可证 A B, iff A B A 例 设A={2,5,6},B={1,2,4,7,9} 则A-B={5,6} 例 设A使素数集合,B是奇数集合,A-B={2}
1.2.1 集合的运算
定义1.2.2 设U为全集, A⊆E,则称A对U的相对补集为A的绝对补集, 记作~A。 定义1.2.3 设A,B为集合,则A与B的对称差为 A B ( A B) (B A) A与B的对称差还有一个等价的定义,即 A B ( A B) (B A) 。 例3.2.1 A={0, 1, 2},B={2, 3},计算 A B
定理:如A,B为任意集合,则 A B 当且仅当 P(A) P(B)
证明:先证必要性 若 A B ,又x P(A)有 x A ,A B ,故x B, 从而x ∈P(B),即P(A) P(B) 再证充分性: 设P(A) P(B),假设A B,那么至少有一 元素a ∈A且a B,设集合{a},有{a}∈P(A)且 {a} P(B),与P(A) P(B)矛盾,故 A B