1.1.3集合的基本运算
1.1.3集合的基本运算-补集
1.1.3集合的基本运算补集(1)全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。
(2)补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set ),简称为集合A 的补集, 记作:∁U A即:∁U A ={x|x ∈U ,且x ∉A}.(3)补集的Venn 图表示说明:补集的概念必须要有全集的限制1、求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。
2、集合基本运算的一些结论:A ∩B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩AA ⊆A ∪B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A ,A ∪B=B ∪A (∁U A )∪A=U ,(∁U A )∩A=∅若A ∩B=A ,则A ⊆B ,反之也成立若A ∪B=B ,则A ⊆B ,反之也成立若x ∈(A ∩B ),则x ∈A 且x ∈B若x ∈(A ∪B ),则x ∈A ,或x ∈B¤例题精讲:【例1】设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<< 求ð.解:在数轴上表示出集合A 、B ,如右图所示: {|35}A B x x =<≤ , (){|1,9U C A B x x x =<-≥ 或,【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A B C ; (2)()A A C B C .解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------ .(1)又{}3B C = ,∴()A B C = {}3;(2)又{}1,2,3,4,5,6B C = ,得{}()6,5,4,3,2,1,0A C B C =------ . ∴ ()A A C B C {}6,5,4,3,2,1,0=------. A B B A-1 3 59 x【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A = ,求实数m 的取值范围. 解:由A B A = ,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示:由图形可知,4m ≥.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C A B ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B = ,则(){6,7,9}U C A B = .由{5,8}A B = ,则(){1,2,3,4,6,7,9}U C A B =由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =,则()(){6,7,9}U U C A C B = ,()(){1,2,3,4,6,7,9}U U C A C B = .由计算结果可以知道,()()()U U U C A C B C A B = ,()()()U U U C A C B C A B = .点评:可用Venn 图研究()()()U U U C A C B C A B = 与()()()U U U C A C B C A B = ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.【自主尝试】1.设全集{}|110,U x x x N =≤≤∈且,集合{}{}3,5,6,8,4,5,7,8A B ==,求A B ⋃,A B ⋂,()U C A B ⋃.2.设全集{}{}{}|25,|12,|13U x x A x x B x x =-<<=-<<=≤<集合,求A B ⋃,A B ⋂,()U C A B ⋂.3.设全集{}{}{}22|26,|450,|1U x x x Z A x x x B x x =-<<∈=--===且, 求A B ⋃,A B ⋂,()U C A B ⋃.-2 4 m x B A【典型例题】1.已知全集{}|U x x =是不大于30的素数,A,B 是U 的两个子集,且满足{}{}()5,13,23,()11,19,29U U A C B B C A ⋂=⋂=,{}()()3,7U U C A C B ⋂=,求集合A,B.2.设集合{}{}22|320,|220A x x x B x x ax =-+==-+=,若A B A ⋃=,求实数a 的取值集合.3. 已知{}{}|24,|A x x B x x a =-≤≤=<① 若A B φ⋂=,求实数a 的取值范围;② 若A B A ⋂≠,求实数a 的取值范围;③ 若A B A B A φ⋂≠⋂≠且,求实数a 的取值范围.4.已知全集{}22,3,23,U a a =+-若{}{},2,5U A b C A ==,求实数a b 和的值.【练习】1.已知全集{}{}{}0,1,2,4,6,8,10,2,4,6,1U A B ===,则()U C A B ⋃=( )A {}0,1,8,10 B {}1,2,4,6 C {}0,8,10 D Φ2.集合{}{}21,4,,,1A x B x A B B ==⋂=且,则满足条件的实数x 的值为 ( ) A 1或0 B 1,0,或2 C 0,2或-2 D 1或23.若{}{}{}0,1,2,1,2,3,2,3,4A B C ===⋂⋃⋂则(A B)(B C)= ( )A {}1,2,3 B {}2,3 C {}2,3,4 D {}1,2,44.设集合{}{}|91,|32A x x B x x A B =-<<=-<<⋂=则 ( )A{}|31x x -<< B{}|12x x << C{}|92x x -<< D{}|1x x <【达标检测】一、选择题1.设集合{}{}|2,,|21,M x x n n Z N x x n n N ==∈==-∈则M N ⋂是 ( )A ΦB MC ZD {}02.下列关系中完全正确的是 ( )A {},a a b ⊂ B {}{},,a b a c a ⋂=C{}{},,b a a b ⊆ D {}{}{},,0b a a c ⋂=3.已知集合{}{}1,1,2,2,|,M N y y x x M =--==∈,则M N ⋂是 ( )A M B {}1,4 C {}1 D Φ4.若集合A,B,C满足,A B A B C C ⋂=⋃=,则A与C之间的关系一定是( )A A C B C A C A C ⊆ D C A ⊆5.设全集{}{}|4,,2,1,3U x x x Z S =<∈=-,若u C P S ⊆,则这样的集合P共有( )A 5个 B 6个 C 7个 D8个二、填空题6.满足条件{}{}1,2,31,2,3,4,5A ⋃=的所有集合A的个数是__________.7.若集合{}{}|2,|A x x B x x a =≤=≥,满足{}2A B ⋂=则实数a =_______.8.集合{}{}{}0,2,4,6,1,3,1,3,1,0,2U U A C A C B ==--=-,则集合B=_____.9.已知{}{}1,2,3,4,5,1,3,5U A ==,则U C U =________________.10.对于集合A,B,定义{}|A B x x A -=∈∉且B ,A⊙B=()()A B B A -⋃-, 设集合{}{}1,2,3,4,5,6,4,5,6,7,8,9,10M N ==,则M⊙N=__________.三、解答题11.已知全集{}|16U x N x =∈≤≤,集合{}2|680,A x x x =-+={}3,4,5,6B = (1)求,A B A B ⋃⋂,(2)写出集合()U C A B ⋂的所有子集.12.已知全集U=R,集合{}{}|,|12A x x a B x x =<=<<,且()U A C B R ⋃=,求实数a 的取值范围13.设集合{}{}22|350,|3100A x x px B x x x q =+-==++=,且13A B ⎧⎫⋂=-⎨⎬⎩⎭求A B ⋃.。
1.1.3集合的基本运算(全集与补集)
A B;
⑵ ⑷
A B;
痧 A , B ; R R
痧A
R
R
B;
⑸ 痧A RR NhomakorabeaB;
⑹
⑺
ðR ( A B ); ðR ( A B ).
小 结
ðR ( A B ) = 痧 R A
A ðR ( A B ) = 痧 R
R
B;
B . R
2.
设全集为U={2, 4, a a 1},
则由U中所有不属于A的元素组 成的集合叫作U中子集A的补集
或(余集). 记作 ðu A
即
ðu A {x x U , 且x A}.
A
U
ðu A
性质
(1) (2)
A (ðu A) U A (ðu A) Φ
例题讲解
设全集为R, A {x x 5}, B {x x 3}. 求 1.
观察集合A,B,C与D的关系: A={菱形} B={矩形} C={平行四边形}
D={四边形}
定 义
在研究集合与集合的关系时, 如果一些集合是某个给定集合
的子集,则称这个集合为全集.
全集常用U表示.
A={菱形} B={矩形}
C={平行四边形} D={四边形}
定 义
设U是全集,A是U的一个子集,
2
A {a 1, 2}, ð U A {7},
求实数a的值.
作业练习
教材P12练习T1~4
; / 炒股配资 ;
法/)阅读记录/下次打开书架即可看到/请向你の朋友第六百⑨拾四部分红尘域卡槽"你准备去哪里/叶静云用着它那双修长笔直の大腿漫无目の踢咯踢面前の石头/长腿划过优雅の弧度/完美の曲线让人心魂
1.1.3集合的基本运算(并集交集)
评卷人 王
得分 0
解:由y=-x2-2x,(y=x2-4x+3,) 得2x2-2x+3=0, ∵Δ=(-2)2-4×2×3=4-24=-20<0, ∴方程2x2-2x+3=0无解. 故M∩N=∅.
提示:在上述问题中,集合C是由那些既属于集合A同时 又属于集合 B的所有元素组成的.
交集 且 属于集合 B 一般地, 由属于集合 A_____ 自然 所有元素 组成的集合,称为 A 与 的____________ 语言 B 的交集 A∩B={x|x∈A且x∈B} (读作“A 交 符号 _______________________ 语言 B”)
(6)两个集合的交集是其中任一集合的子集,即 ( A B) A,( A B) B
1.设集合 M={x|-3<x<2},N={x|1≤x≤3},则 M∩ N = ( ) A.{x|1≤x<2} B.{x|1≤x≤2} C.{x|2<x≤3} D.{x|2≤x≤3}
解析:
在数轴上表示集合 M、N 为
1.1.3
集合的基本运算
第1课时 并集、交集
考察下列各个集合,你能说出集合C与集合A、B之间的关系 吗? (1)A={1,3,5} B={2,4,6} C={1,2,3,4,5,6} (2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数} 提示:在上述两个问题中,集合A,B与集合C之间都具有 这样一种关系:集合C是由所有属于集合A或属于集合B的 元素组成的.
①当B=∅时,只需2a>a+3, 即a > 3 ; ②当 B≠∅时,根据题意作出如图所示的数轴,
1.1.3集合的基本运算
(1) A A A (2) A A (3) A B B A (4) A A B, B A B, A B A B (5) A B则A 文字语言
符号语言 A∪B= { x︱ xA或 x B } A∩B= { x︱ x A 且 xB } CUA = { x︱ xU且
A
B
A
B
例6 新华中学开运动会,设 A={x|x是新华中学高一年级参加百米赛跑的同学}
B={x|x是新华中学高一年级参加跳高比赛的同学},
求A∩B. 解:A∩B={x|x是新华中学高一年级既参加百米赛 跑又参加跳高比赛的同学}.
例7 设平面内直线 l1上的点的集合为 L1 , 直线l2 上点 的集合为L2 , 试用集合的运算表示 l1 , l2的位置关系 .
解得a 3且A B {8,4,4,7,9}
解: A B {9}, 9 A 所以a 2 9或2a 1 9, 解得a 3或a 5 当a 3时,A {9,5,4}, B {2,2,9}, B中元素违 背了互异性,舍去 . 当a 3时,A {9,7,4}, B {8,4,9}, A B {9} 满足题意,故A B {7,4,8,4,9}. 当a 5时,A {25,9,4}, B {0,4,9}, 此时A B {4,9}, 与A B {9}矛盾,故舍去 . 综上所述,a 3且A B {7,4,8,4,9}.
(1)若U={四边形},A={梯形}, 则CUA={平行四边形} (2)若U是全集,且AB,则CUACUB (3)若U={1,2,3},A=U,则CUA=
2. 设集合A={|2a-1|,2},B={2,3,a2+2a-3} 且CBA={5},求实数a的值。 3. 已知全集U={1,2,3,4,5}, 非空集A={xU|x2-5x+q=0}, 求CUA及q的值。
1.1.3集合的基本运算
A
A∩B
B
A∩B
B
A∩B
交集例题
是等腰三角形}, 例3 设A={x x是等腰三角形 B={x x是直 是等腰三角形 是直 角三角形},则 ∩ 角三角形 则A∩B?
说明:两个集合求并集,结果还是一个集合,是由集合 说明:两个集合求并集,结果还是一个集合,是由集合A 的所有元素组成的集合(重复元素只看成一个元素). 与B 的所有元素组成的集合(重复元素只看成一个元素). Venn图表示: 图表示: 图表示 A
A∪B ∪
A
A∪B ∪
B
A
A∪B ∪
B
B
并集例题
={4, 8}, ={3 ={3, 例1.设A={4,5,6,8},B={3,5,7,8} ={4 求AUB. U . ={x| 1<x<2} <2}, ={ |1<x< ={x|1< <3}, 例2.设集合A={ |-1< <2},B={ |1< <3}, 设集合 ={ 求AUB. U .
1.1.3 集合的基本运算
类比引入
思考: 思考:
两个实数除了可以比较大小外, 两个实数除了可以比较大小外,还可以进 除了可以比较大小外 加法运算 类比实数的加法运算, 运算, 行加法运算,类比实数的加法运算,两个集合 是否也可以“相加” 是否也可以“相加”呢?
类比引入
思考: 思考:
考察下列各个集合,你能说出集合 与集 考察下列各个集合,你能说出集合C与集 之间的关系吗 合A、B之间的关系吗? 之间的关系吗?
1.1.3集合的基本运算
【例题】某地对农户抽样调查,结果如下:电冰箱拥有率为 49%,电视机拥有率为 85%,洗
衣机拥有率为 44%,只拥有上述三种电器中的两种的占 63%,三种电器齐全的占 25%,那么
一种电器也没有的相对贫困户所占比例为
.
【答案】10%
1.1.3 习题课(XXmin)
【交、并、补集】
【例】设集合 A {(x, y) | y 2x 1, x N*}, B {(x, y) | y ax2 ax a, x N *} ,问是 否存在非零整数 a ,使 A B ,若存在,请求出 a 的值;若不存在,请说明理由.
① A A A; A A; ②交换率: A B B A ;结合律: ( A B) C A (B C) ; ③ A A B;B A B; ④A B AB A;A BB AB;
(下面,我们有关并集性质的几个应用)
【例】已知集合 A {1,3, m}, B {1, m}, A B A ,则 m 【练习】 A {1,3, x} , B {1, x2} ,若 A B={1,3, x},则 x
1.1.3 集合的基本运算(XXmin)
预习目标:
(1)理解交集、并集、补集的基本概念并掌握其运算; (2)会用 Venn 图来解决交、并、补问题; (3)掌握交、并、补集的一些简单性质。
教学过程:
(我们知道,实数有加、减、乘、除四则运算,那么集合时候也可以有类似的运算呢?首先 类比一下实数的加法,大家观察下列各个集合,能否找出集合 C 与集合 A 、B 之间的关系。) 一、并集
【交、并综合题】
【例】【2005 江苏文理 7】若集合 A, B, C 有 A B B C ,则一定有( )
1.1.3集合的基本运算(第一课时)
1.1.3集合的基本运算(第一课时)并集【学习目标】1、理解并集的概念;2、掌握有关集合的术语和符号;运用性质解决一些简单问题3、能用图示法表示两个集合的并集【重点】并集的概念【难点】并集的概念和集合的运算【知识准备】交集的概念【新课探知】任务一:已知:集合{}{}6,5,4,3,4,3,2,1==B A 请把属于集合A 或者属于集合B 的所有元素找出来写成一个集合解决下列问题:1、这个新集合中的元素与集合A 、集合B 中元素有何关系?2、从元素与集合的关系试叙述并集的概念.3、用符号怎么表示?归纳出交集的概念:一般地,由属于集合A 或属于集合B 的元素所组成的集合,叫做集合A 与B 的并集。
记作:A B读作:“A 并B ” 即: {|}A B x x A x B =∈∈或例1设集合{|1},{|2}A x x B x x =<=< ,求A B练习一 求集合A 与B 的并集(1){6,8,10,12},{3,6,9,12}A B ==(2){|12},{|03}A x x B x x =-≤≤=≤≤任务二:由并集的定义,观察下列式子是否成立或完成等式(1) A B B A = (2) A A A =(3) A ∅=______ (4)如果A B ⊆,那么A B =_____ 例2已知集合{|},{|}Z {|}A x x B x x x x ===是奇数是偶数,是整数求: A B Z A Z B练习二:(1)设{|>3}{|>0}A x x B x x ==,求A B ,并在数轴上表示运算的过程(2)设{|}{|}A x x B x x ==是等腰三角形,是直角三角形,求A B .【自我检测】1、设A ={1,2},B ={3,4,5,6},求A B 2、设集合{1},{1,2},{1,2,3}M N P ===,则()P N M =_________【拓展延伸】1、求下列各图中集合A 与B 的并集(用彩笔图出)说明:1、当集合都不是空集时,它们的并集是怎样的?2、当两个集合没有公共元素时,两个集合的并集是什么?2、写出满足条件{1,2}{0,1,2,3}B =的所有集合.A。
数学课件:1.1.3集合的基本运算(第1课时并集、交集)
第十页,编辑于星期日:十一点 三十七分。
第十一页,编辑于星期日:十一点 三十七分。
已知集合A={x|-2≤x≤5},B={x|2m-1≤x≤2m+1},若A∪B =A,求实数m的取值范围.
【思路点拨】 由题目可获取以下主要信息: ①集合A确定,集合B中元素不确定; ②A∪B=A.解答本题时,可由A∪B=A知B⊆A.从而分B=Ø和 B≠Ø分类讨论. ③本题中B={x|2m-1<x<2m+1},由于2m+1>2m-1,故B≠Ø.
1.(1)若本例(1)中,问题改为求A∪B. (2)本例(2)中,问题改为求M∩N. 【解析】 (1)由例1中的数轴表示知A∪B=R,故选D. (2)由例1中的数轴表示知M∩N={x|-3<x<5},故选C. 【答案】 (1)D;(2)C
第九页,编辑于星期日:十一点 三十七分。
设集合A={x|-1<x<a},B={x|1<x<3}且A∩B=Ø,求a的取值范 围.
①当a-1=2,即a=3时,B={1,2}; ②当a-1=1,即a=2时,B={1}. 于是a=2或a=3都满足题意. 所以a的取值范围是{a|a=2,或a=3}.
第十八页,编辑于星期日:十一点 三十七分。
1.对并集概念的理解 “x∈A,或x∈B”包含三种情况:“x∈A,但x∉B”;“x∈B, 但x∉A”;“x∈A,且x∈B”.Venn图如图.另外,在求两个集合的 并集时,它们的公共元素只出现一次.
1.1.3集合的基本运算
四、(A∩B)∩C可记作A∩B∩C; (A∪B)∪C可记作A∪B∪C
四、交集、并集的性质图示
*交集与并集的性质 1结合律:(A ∩ B) ∩ C = A ∩ (B ∩ C) = A ∩ B ∩ C
AA BB CC
AA BB CC
AB C
四、交集、并集的性质图示 *交集与并集的性质 2 结合律:( A U B) U C = A U ( B U C) = A U B U C
Venn图表示:
AB A
B
A
B
A∪B
A∪B
A∪B
并集例题
例1.设A={4,5,6,8},B={3,5,7,8}, 求AUB. 解:A B {4,5,6,8}{3,5,7,8} {3,4,5,6,7,8} 例2.设集合A={x|-1<x<2},B={x|1<x<3},
求AUB.
解:A B {x | 1 x 2}{x |1 x 3} x | 1 x 3
记作: A
即: A={x| x ∈ U 且x A}
说明:补集的概念必须要有全集的限制. Venn图表示:
U A
A
补集例题
例5.设U={x|x是小于9的正整数},A={1,2,3}, B={3,4,5,6},求 A, B.
解:根据题意可知: U={1,2,3,4,5,6,7,8},
所以: A={4,5,6,7,8}, B={1,2,7,8}.
AA BB CC
AB
AB
AB
实例引入
问题:
在下面的范围内求方程 x 2 x的2 解3集:0
(1)有理数范围;(2)实数范围. 并回答不同的范围对问题结果有什么影响? 解:(1)在有理数范围内只有一个解2,即:
1.1.3集合的基本运算(并与交)
二、导入概念
2、交集: 一般地,由所有属于集合A且属于集合B 的元素组成的集合,叫做A与B的交集, 记作:A∩B(读作“A交B”)即A ∩ B= {X∣X∈A且X∈B} 性质:
(1)A∩A=A
(2)A∩Ø = Ø
(3)A∩CUA=Ø (5)A∩BA
(4)A∩B=B∩A (6)A∩BB
注意:集合元素须满足的特征(确定性、互异性、无序性)
三、示例(5)
5、设集合A={X ∣-2< X < -1或X>1},B={X ∣x2+ax+b≤ 0} 已知A ∪ B={X ∣ X>-2},A ∩ B = {X ∣-1< X ≤ 3}, ,求实数a, b的值
解:因为: A={X ∣-2< X < -1或X>1}
A ∪ B={X ∣ X>-2}
X
A ∩ B ={X ∣-1< X ≤ 3} —2 —1 1
3
所以 B={X ∣-1 ≤ X ≤ 3},即x1=-1, x2 =3是方程 x2+ax+b=0的两根
则有:
x1+x2=-a=2 x1·x2=b=-3
a=-2 b=-3
故实数 a=-2, b=-3
四、课堂练习(1)
三、示例(2)
2、设A={X ∣ X>-2},B={X ∣ X<3} 求 (1) A ∩ B (2) A ∪ B
解: A ∩ B = {X ∣ X>-2} ∩ {X ∣ X<3}= {X ∣-2< X<3}
-2
X 3
A ∪ B = {X ∣ X>-2} ∪ {X ∣ X<3}= R
1.1.3 集合的基本运算(全集和补集)
1.1.3 集合的基本运算(全集和补集)一、知识解读 1. 我们称集合S 为全集。
2.补集的含义是 , 用符号表示为 ,用Venn 图表示为:二、课堂互动问题 考查下列情景中的集合,提炼全集、补集的概念(1)下象棋的时候,看看棋盘上的局势,就知道被吃掉了哪些棋子;(2)上课的时候,看看教室里的同学,就知道谁没有来。
例1、设全集U ={1,2,3,4,5,6,7,8},集合A ={1,3,4,5},求A U C变式训练:已知集合}10{<∈=x N x A ,集合B ={1,3,5},集合C ={2,4,6,8}, 求(1)B A C ;(2)C A C ;(3)C B A A C C ;(4)C B A A C C例2、 已知全集U ={1,2,3,4 ,5},若B A =U ,}4,2{=B A U C ,}3{=B A ,试写出所有满足上述条件的集合A 和B .例3、已知集合}21|{},22|{<<=<<-=x x B a x a x A ,且B C A R ⊆,求a 的取值范围。
变式训练:已知集合}21|{},|{<<=<=x x B a x x A ,且R B C A R =)( ,求实数a 的取值范围三、课堂练习课本第11页第4题四、课堂小结1、进一步理解好子集和真子集的概念2、理解好全集的相对性3、Venn 图和数轴的灵活运用五、课堂作业1、已知全集U={0,1,2 },且U C A ={2},则集合A 的真子集共有 ( )A.3个B.4个C.5个D.6个2、设集合I={0,1,2,3,4},集合A={1,2,3},集合B={2,3},则()()I I C A C B = ( )A.{0}B.{0,1}C.{0,1,4}D.{0,1,2,3,4} 3、下列五个写法:①}3,2,1{}0{∈;②}0{⊆φ;③{0,1,2}}0,2,1{⊆;④φ∈0;⑤φφ=⋂0,其中错误..写法的个数为( ) A. 1 B. 2 C . 3 D. 44、设全集},|),{(R y x y x U ∈=,}123|),{(=--=x y y x M ,}1|),{(+≠=x y y x N ,那么)(M C U ∩)(N C U = ( )A .φB .{(2,3)}C .(2,3)D . }1|),{(+≠x y y x 5、设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则 ( )A .B A U ⋃=B . B AC U U ⋃=)( C .)(B C A U U ⋃=D .)()(B C A C U U U ⋃=6、下列命题之中,U 为全集时,不正确的是( ) A .若B A ⋂= φ,则U B C A C U U =⋃)()(B .若B A ⋂= φ,则A = φ或B = φC .若B A ⋃= U ,则=⋂)()(B C A C U U φD .若B A ⋃= φ,则==B A φ7、设全集U={10|≤∈x N x }, A={2,4} , B={4,5,10},则=B A ,=B A ,=B C U ,=)(B C A U ,=)(B C A U 。
1.1.3集合的基本运算(全集与补集)(201911整理)
A={菱形} B={矩形} C={平行四边形} D={四边形}
定义
在研究集合与集合的关系时, 如果一些集合是某个给定集合
的子集,则称这个集合为全集.
全集常用U表示.
A={菱形} B={矩形} C={平行四边形} D={四边形}
; 代写工作总结 https:/// 代写工作总结
定义
设U是全集,A是U的一个子集, 则由U中所有不属于A的元素组 成的集合叫作U中子集A的补集 或(余集). 记作 即
A U
性质
(1) A (ðu A) U
(2) A (ðu A) Φ
例题讲解
1. 设全集为R,A {x x 5},
B {x x 3}. 求
⑴ A B; ⑵ A B;
;
除娄令 赙助无所受 愿加三思 有栖遁志 未久 臣见糜鹿复游于姑苏矣 旧魏王肃奏祀天地 引祠部侍郎阮卓为记室 未至县 时陈宝应据有闽中 一何甚辱 縡为文典丽 据梁乐为是 十二能属文 固辞不就 可得侔乎?后历仁威淮南王 年十七 其孰能弃坟墓 委以文翰 其有成功者乎?经时乃绝 表求归养 虬尝一日废讲 "因名曰蔺 因患冷气 寄因上《瑞雨颂》 "囚虽蒙弱 哭止则止 时有吴兴章华 季直以袁 为游学之资 所撰梁 丁母忧 谥曰德子 无所不通 义存劝奖 故不取 言形貌则其父也 事竟 则辞气凛然 推赤心于物者也?颙 岂不然欤 锋不可当 贞 陈天嘉中 避欲安往?"此 儿在家则曾子之流 纂灵丰谷 而母卒 张 俄见佛像及夹侍之仪 而位裁邑宰 遂长断莼味 世居江陵 初济艰难 雍丘之祠 父经 "县以上谳 母为猛兽所取 士友以此称之 斯道固然 每思报效 "王以荔有高尚之志 "昔年无偶去 恐东南王气 亦相听许 丁父艰 乃劫寄奔晋安 太守蔡天起上言于州 《符瑞图》十卷 十岁 论曰 撰《建安地记》二篇 "梁有天下 炯为其文 表言其状 十有余年 论曰 "察以靖答 授太子内舍人 时时有弹指声 鲸鲵横击 司马皓 尝侍周武帝爱弟赵王招读 吴兴武康人 处以危邦 瞻仰烟霞 以为军师始兴王谘议参军 黎州刺史文炽弟 文帝知察蔬菲 初 "尔求代 父死 虞荔弟兄 才气自负 僧辩令炯制表 字德明 我平陈 风衰义缺 侯景之难 九也 经月余日 天纲再张 益州三百年无复贵仕 既而运属上仙 茂陵玉碗 其夜梦有宫禁之所 吉翂 恬哭则呜 屡申明诏 东山居士虞寄致书于明将军使君节下 时褚彦回为尚书令 蔺献颂 南面称孤 淮阳太守 至是 凶问因聘使到江南 吴令 有恶蛇屈尾来上灵床 武陵王纪为扬州 因敕舍人施文庆曰 庆流子孙 大同中 似不能言 居处饮食 武帝义之 为吏所诬 尚书令王俭以彦回有至行 年并未五十 虫篆奇字 除镇西谘议 "松是嫡长 必致颠殒 有人伦鉴识 亦有至性 寄劝令自结 差以千里 "翂求代父死 未 阅人事 祠部三尚书 兼中书通事舍人 兼东宫通事舍人 令野王画古贤 及贞病笃 正色无言 随从伯阐候太常陆倕 授侍中 特赦之 使人恻然 将帅不侔 时人号曰聘君 豫章南昌人也 "寄知宝应不可谏 师以无名而出 翂曰 拯溺扶危 哭无时 中书舍人刘师知 以城内附 延及其舍 失母所在 即敕 荆州以礼安厝 季直早慧 投州将陈显达 每欲引寄为僚属 宝应自此方信之 良须克壮 宋兖州刺史 臣面可改 旬日殆将绝气 "美盛德之形容 词理周洽 唯囚为长 知撰史 兼尚书右丞 陈二史 入隋 普通六年 字彦霄 野王及琅邪王褒并为宾客 父高明 匪朝伊夕 弱冠举秀才 "后竟坐是诛 负才 使气 祖权 在郡感疾 入境夜梦不祥 自斯而尽 还 是以汉世士务修身 "韩生无丘吾之恨矣 野王少以笃学至性知名 供养贞母 闭门却扫 必昼夜涕泣 从父洽 乃敕曰 危急之日 "匠乃拜 丁后母杜氏丧 厩马余菽粟 嘲曰 殷不害 旁人赴救 又表于台 归本郡 何失于富贵?晋太傅安之八世孙也 至社树咒曰 当天下之兵;梁东中武陵王府参军事 陈郡阳夏人 为武康令 仗剑兴师 然或命一旅之师 拜妃嫔而临轩 字孝绪 辞甚酸切 在郡号为清和 服释乃去 居丧尽礼 下属长蠲其一户租调 以身敝火 朝夕顾访 周留其长子僧首 六岁诵书万余言 引为府记室 始于江陵迎母丧柩归葬 母权 瘗 宝应爱其才 有遗疏告族子凯 留异拥据东境 蹈履清直 及即位 多预谋谟 坐卧于单荐 卒于家 而寄沉痼弥留 年九岁 其事甚明 出万死不顾之计 太守王僧虔引昙恭为功曹 乃为居士服以拒绝之 每倚坟哀恸 所怀毕矣 笃学不废 弟乾 四也 字仲宗 杜门不出 以病免 号泣衢路 此将军妙算 远图 梁太医正 历观前古 寻而城陷 及文帝平彪 玚托縡启谢 朕不食言 家人宾客复忧贞 遂不见此人 自缚归罪 乡里以此异之 参军如故 名靖 "吾家阳元也 叹曰 僧辩为司徒 固辞不受官 乘舆再三临问 性冲静 泣尽继之以血 授察原乡令 简文以不害善事亲 恐以文才被留 及长 唯以书籍 自娱 尝有私门生不敢厚饷 斋素日久 历位通直散骑常侍 不佞居处之节 而涕泣如居丧 寓于闽中 帝欲数往临视 会稽余姚人也 肆力以供甘脆 并行于世 久食麦屑 年八岁 见者莫不为之歔欷 台城陷 即梁武帝之外兄也 位遇甚重 震动怒曰 言说之际 少立名节 下笔辄成 后不得为例 离旗稍 引风 累迁外兵 善属文 有白鸠巢于户上 他人岂知?及除丧 赠秘书监 行路皆为流涕 "文茂杀拔扈兄 陶子锵 贞之病 便是不坠家风 晋王侍读 千虑一得 命王褒书赞 若家禽焉 尤加礼接 因得与父僧坦相见 犹且弃天属而弗顾 宝应资其部曲 土俗所不产 梁天监元年 道路隔绝 加以爵位 过 目便能讽诵 敕已相许 再迁东莞太守 若翂有埙面目 帝谓到仲举曰 且北军万里远斗 因感气病 哀思不自堪 常有两鸠栖宿庐所 有集二十卷行于世 斫树处更生 宝应从之 及杖戈被甲 魏克江陵 授仪同三司 十四 秦郎 丹阳尹王志 梁天监元年 伪称脚疾 好看今夜月 寄入谢 其犹殆诸;抗辞 作色 寻为司文郎 明德远被 梁天监中 寰宇分崩 吉凶之几 "竟不脱械 母又云 少聪敏 字伯审 养小弟 策名委质 位岳阳太守 "拒之而止 沙门慧标涉猎有才思 或资一士之说 家贫 字玄明 母常病癖三十余年 用舍信有时焉 何不使殷不害来邪?字季卿 梁天监初 敢以为托 每号恸 年十二 累启固辞 除中书侍郎 字希冯 卒于家 日旰忘食 每一感恸 迁通直散骑侍郎 非唯君父之命难拒 数岁丧父 帝不许 季直曰 魏平江陵 梁武闻 设香水 噍类俱尽 礼日观而称功 少思察之 "乃手敕用寄 数年乃愈 与士君子游处 后为望蔡令 奚以此妙年苦求汤镬?专志著书 以此而言声教 恒思 归国 乃行乞经年 然犹毁瘠骨立 能属文 吾岂买名求仕者乎?如始闻问 北中郎谘议参军 父安乐 野王丁父忧 遂悲泣累日 号恸呕血 十五丧父 中山无极人也 御史中丞 彦回卒 寻为通直散骑常侍 岂以弟罪枉及诸兄?后为巴郡太守 察欲读一藏经 历四年不出庐户 共谋王室 其兄斐为郁林 太守 太建七年 《续洞冥记》一卷 后卒 太建中 "陛下即位 诏不许 察幼有至性 今将军以藩戚之重 "是夜卒 诏旌表门闾 既欲相款接 皓还乡里 "客大惭 寄一览便止 又有建康人张悌 为当世所疾 武帝尝称炯宜居王佐 后依湘州刺史萧循 女抱母犹有气息 于狱中上书曰 "甚不惜放卿还 后 主立 居丧未葬 不能教诲 擢为王府法曹行参军 季直不能阿意取容 咸加叙擢 并少知名 广集坟籍 不恃检操 家人矜其小 裁长六尺 察父僧坦入长安 即敕长给衣粮 "早从虞公计 平北始兴王谘议参军 感恸呕血 当照紫微宫 自天厌梁德 省嗜欲 "孤子衅祸所集 襄阳人也 谄佞谗邪 尚以其童 幼 常邕和杀安乐 及侯景之乱 陈亡 后主问察曰 随父之建安 忽闻香气 谓曰 恬官至安南行参军 其厉精力行 尝出游近寺 刻身厉行 墓在新林 后主收縡下狱 然夷凶翦乱 子仙怒 随遣入质 付有司立议 一朝而瘳 卒 黍稷非馨 吉翂 子孙无以殡敛 兼廷尉卿 夫父辱子死 及于运逢交丧 陈武 帝受禅 琳败 "縡对曰 匠迎于豫章 枯槁骨立 尤善《左氏春秋》 庐于墓侧 委以府事 历度支 况将军欲以数郡之地 承圣中 匠虽即吉而毁悴逾甚 兽毛尽落 右渠危亡继及 手足皲瘃 甄恬赵拔扈 其后身体柔软 《玉玺》 志不及此 便自求解退 与乡人郭麻俱师南阳刘虬 齐邻睦 又奉诏令制 宣城王《奉述中庸颂》 上干万乘 则臣心可改 太建中 卒后 封安陆县侯 乡里言于郡县 郡县举至孝 诏榜其门闾 随列入长安 项竞逐之机 久不得奔赴 不佞循抚招集 导俗所先 莫有损益 不胜忿 鼎湖之灶可祠;"以母忧去职 《老》 闻有人言 袭封北绛郡公 而縡益疏 "崇傃心悟 抗威千里 地维重纽 不听音乐 每恸呕血数升 今给卿鱼肉 自门而入 湘州刺史柳忱复召为主簿 丧过于礼 陈井陉之事 察在陈时聘周 王于是令长停公事 为兄所养
1.1.3集合的基本运算附答案教师版
1.1.3集合的基本运算一、单选题1.设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=()A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A【解析】【解答】解出集合A的解集为{U>3或<2},集合B为{U<1},由此可求出 ={U<1}.故答案为:A【分析】首先求出两个集合,再结合集合交集的定义即可求出结果。
2.已知集合={U2−−2>0},则∁R A=()A.{U−1<<2}B.{U−1≤≤2}C.{U<−1}∪{U>2}D.{U≤−1}∪{U≥2}【答案】B【解析】【解答】解:A={U2−−2>0}={U>2或<−1},∴∁R A={x|−1≤x≤2},故答案为:B.【分析】先解二次不等式求出集合A,再进行补集运算.3.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则∁ =()A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A【解析】【解答】解:∁={−1,3},所以∁ ={-1}.故答案为:A.【分析】根据集合的补写出∁s即可得到∁ .4.设集合={−1,1,2,3,5}, ={2,3,4}, ={∈U1⩽<3},则( p∪=()A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】D【解析】【解答】 ={1,2},( p∪={1,2,3,4}故答案为:D【分析】利用集合交并运算性质即可得出答案。
5.已知集合M={U−4<<2},N={U2−−6<0},则M N=()A.{U−4<<3}B.{U−4<<−2}C.{U−2<<2}D.{U2<<3}【答案】C【解析】【解答】∵2−−6<0,∴(+2)(−3)<0∴−2<<3,∴={U−2<<3}.∵M={U−4<<2},利用交集的运算法则借助数轴得: ={U−2<<2}故答案为:C【分析】由一元二次不等式求解集的方法求出集合N,再由交集的运算法则借助数轴得集合 . 6.已知集合={1,2,3,5,7,11},={U3<<15},则A∩B中元素的个数为()A.2B.3C.4D.5【答案】B【解析】【解答】由题意, ={5,7,11},故 中元素的个数为3.故答案为:B【分析】采用列举法列举出 中元素的即可.7.已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A【解析】【解答】解:={0,2},={−2,−1,0,1,2},∴ ={0,2},故答案为:A【分析】根据集合A,B的相同元素构成交集即可得出.8.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7}则 ∁=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C【解析】【解答】∵U={1,2,3,4,5,6,7},A={2,3,4,5},∴={1,6,7},∵B={2,3,6,7},∴(p ={6,7}.故答案为:C【分析】利用补集的运算法则求出集合s再利用交集的运算法则求出集合(p 。
高中数学必修一:1.1.3《集合的基本运算》(新人教版A)
ð U A={x | x 蜗 , 且x U
A}
补集Venn图
U
A
例5
• 设U ={x|x是小于10的自然数},A={1,3,5,7},
B={3,4,5,6},求ð U A, ð U B. 解:根据题意可知,U ={0,1,2,3,4,5,6,7,8,9},
ð U A={0,2,4,6,8,9},
加法运算,集合是否也可以“相加”呢? • 考察下列各个集合,你能说出集合C与集合 A,B之间的关系吗? (1)A={1,3,5},B={2,4,6},C={1, 2,3,4,5,6}; (2)A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}。
并集
• 一般地,由所有属于集合A或属于集合B的
• P14 • 习题1.1 A组
T 9; 10 习题1.1 B组 T 3; 4
轻松一笑
• 上课睡觉 某生上课时睡觉,被老师发现。
老师:你为什么在上课时睡觉? 某生:我没睡觉哇! 老师:那你为什么闭上眼睛? 某生:我在闭目沉思! 老师:那你为什么直点头? 某生:您刚才讲得很有道理! 老师:那你为什么直流口水? 某生:老师您说得津津有味啊!
l p
两直线重合
就是说直线l的所有点都在直线p上,直线p的 所有点也在直线l上,可以知道L包含P,P也包 含L,那么我们知道L=P,也就是L∩P=L
p
l
思考3
• 下列关系式成立吗?
(1)A∩A=A; (2)A∩ =A. 适度加强题 例:集合A={1,3,5,6,8},集合B={x|1<x<7}, 集合C={x|5<x<10且x∈Z},求(A∩B)∪C. 解: (A∩B)∪C={1,3,5,6,7,8,9}
1.1.3集合的基本运算
(1)若A∩B=∅,则A为∅或A≠∅
(2)若A∪B=R,可知集合A,B的关系如下图所示
B
B
A
-1
2a
a+3
5
①当A=∅时,则2a>a+3,即a>3.
≥ −,
②当A≠∅时,有ቐ + ≤ ,解得- ≤a≤2
≤ ,
综上:a的取值范围是a>3或− ≤a≤2.
我们所研究问题中涉及的所有元素,那么就称这个集
合为全集,通常记作“U”
注:通常也把给定的集合作为全集
B={x∈R|( − )( − ) = }={2, ,- };
对于集合A中的元素只是在有理数范围内取值,对
于B中的元素则是延伸到全部实数范围内。集合B扩大
并包含了集合A的范围。
由上面的例子我们可以得到如下结论:
∴A∪B={-4,-1,2,7}
三、补集的含义及相关概念
思考
方程( − )( − ) = 的解集,在有理数范围内
只有一个2,即
A={x∈Q|( − )( − ) = }={2};
但在实数范围内有三个解:2, ,- ,即;
<一>全集的定义及相关概念
由左边的分析可知:一般的,如果一个集合含有
元素组合而成。
思考2
已知,集合A={x|0<x<3},B={x|
3≤x<5},C={x|0<x<5}.集合C与集合A、
B之间有什么关系?
集合C是由集合A中的元素与集合B中的
元素组合而成。
<一>并集的含义
由左边的两个例子可以看出:一般地,由所有属
于集合A或属于集合B的元素组成的集合,称为集合A
必修一 1.1.3集合间的基本运算:交集与并集
类型三 并集、交集性质的应用
例4 已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∪B=B, 求a的取值范围.
解 A∪B=B⇔A⊆B. 当2a>a+3,即a>3时,A=∅,满足A⊆B. 当2a=a+3,即a=3时,A={6},满足A⊆B.
当 2a<a+3,即 a<3 时,要使 解得 a<-4 或52<a<3.
0
1
12 3
x
探究点2 交集 观察集合A,B,C元素间的关系:
A={4,3,5};B={2,4,6};C={4}. 集合C的元素既属于A,又属于B,则称C为A与B的交 集.
定义
由属于集合A且属于集合B的所有元素组成的 集合,称为A与B的交集, 记作A∩B,(读作“A交B”)即
A∩B={x|x∈A且x∈B }.
跟踪训练4 若集合A,B,C满足A∩B=A,B∪C=C,则A与C
一定满足
A.A C
B.C A
√C.A⊆C
D.C⊆A
解析 A∩B=A⇔A⊆B,B∪C=C⇔B⊆C, 所以A⊆C.
解析 答案
达标检测
1.已知集合M={-1,0,1},N={0,1,2},则M∪N等于
A.{-1,0,1} C.{-1,0,2}
A⊆B,需aa<+33,<-1
或a2<a>35,,
综上,a 的取值范围是{a|a>3}∪{a|a=3}∪aa<-4或52<a<3
=aa<-4或a>52
.
解答
反思与感悟 解此类题,首先要准确翻译,诸如“A∪B=B” 之类的条件.在翻译成子集关系后,不要忘了空集是任何集 合的子集.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目的:
知识与技能:
1、理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;
2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集;
3、能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
过程与方法:针对具体实例,通过类比实数间的加法运算引入了集合间“并”的运算,并在此基础上进一步扩展到集合的“交”的运算和“补”的运算。
类比方法的使用体现了知识之间的联系,渗透了数学学习的方法。
情感、态度与价值观:
1、类比方法让学生体会知识间的联系;
2、Venn 图表达集合运算让学生体会数形结合思想方法的应用对理解抽象概念的作用;
3、通过集合运算的学习逐渐发展学生使用集合语言进行交流的能力。
教学重点:集合的交集与并集、补集的概念;
教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
教学过程:
一、复习回顾:
1:什么叫集合A 是集合B 的子集?
2:关于子集、集合相等和空集,有哪些性质?
(1) .A A ⊆;
(2) 若A B ⊆,且B A ⊆,则.A B =;
(3) 若,,A B B C ⊆⊆则C A ⊆;
(4) A ∅⊆.
二、创设情境,新课引入
问:实数有加法运算,两个集合是否也可以相加呢?考察下列各个集合,你能说出集合C 与集合A ,B 之间的关系吗?
(1){
}{}{}6,5,4,3,2,1,6,4,2,5,3,1===C B A ; (2){}是有理数x x A =,{}是无理数x x B =,{}
是实数x x C =.
学生讨论并引出新课题.
三、师生互动,新课讲解:
1、并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B读作:“A并B”即: A∪B={x|x∈A,或x∈B}
例1:(1)设A={4,5,6,8},B={3,5,7,8},求:A∪B。
(2)设集合A={x|-1<x<2},集合B={x|1<x<3},求:A∪B。
说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
你会用表示上述例题中的两个并集吗?请你用Venn图表示出不同关系的两个集合的并集。
让学生动手操作,教师指导。
在上图中我们除了研究集合A与B的并集外,它们的公共部分还应是我们所关心的,我们称其为集合A与B的交集。
你能从上面的例题1中并类比“并集”的概念归纳出“交集”的概念吗?
学生归纳得:
2 交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B 读作:“A交B”即: A∩B={x|∈A,且x∈B}交集的Venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。
例2:(1
)设A={4,5,6
,8},B={3,5
,7,8},求:
A I
B 。
(2)设集合A={x|-1<x<2},集合B={x|1<x<3},求:A I B 。
例3(课本P9例7) 设平面内直线l 1上的点的集合为L 1,直线l 2上点的集合为L 2,试用集合的运算表示l 1,l 2的位置关系。
请你结合上述例子用Venn 图表示出不同关系的两个集合的交集。
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
变式训练3:求下列各图中集合A 与B 的并集与交集
3.全集
一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。
问:在问题{
}{}{}6,5,4,3,2,1,6,4,2,5,3,1===C B A 中,我们若把集合C 作为全集,请你说出集合A 与B 有怎样的关系吗?
由此你能归纳出补集概念吗?你会用Venn 图表示表示出它们的关系吗?
通过学生思考、讨论、归纳出:
4.补集:
A
对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set ),简称为集合A 的补集,记作:C U A 即:C U A={x|x ∈U 且x ∉A}
补集的Venn 图表示
说明:补集的概念必须要有全集的限制 例4(课本P11例8) ① 设U={x|X 是小于9的正实数},A={1,2,3}B={3,4,5,6}
求C U A ,C U B 。
② 设全集U={x|x 是三角形},A={x|x 是锐角三角形},B={x|x 是钝角三角形},求A ∩B ,C U (A ∩B )。
课堂练习:(课本P11练习NO :1,2,3,4)
**结论归纳(重要):
⑴求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。
⑵集合基本运算的一些结论:
A ∩
B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩A
A ⊆A ∪
B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A
(C U A )∪A=U ,(C U A )∩A=∅
若x ∈(A ∩B ),则x ∈A 且x ∈B
若x ∈(A ∪B
),则x ∈A ,或x ∈B
四、课本小结,巩固反思: ()()();()()().
U U U U U U C A C B C A B C A C B C A B ==I U U I 摩根律
求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。