集合与常用逻辑 集合概念,基本关系及运算
集合与常用逻辑用语知识点梳理
集合与常用逻辑用语,推理与证明,算法,复数,坐标系与参数方程知识点梳理一.集合的概念与运算1.集合与元素(1)集合中元素的三个特征:____________、________、__________.(2)元素与集合的关系是_____或_______两种,用符号____或_____表示.(3)集合的表示法:列举法、描述法.(4)常见数集的记法2.A∪B={_________}A∩B={_____________}∁A={_________}(1)若有限集A中有n个元素,则A的子集个数为____个,非空子集个数为______个,真子集有_________个.(2)A⊆B⇔A∩B=A⇔A∪B=B.[方法与技巧]1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检¬验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.[失误与防范]1.解题中要明确集合中元素的特征,关注集合的代表元素(集合是点集、数集还是图形集).对可以化简的集合要先化简再研究其关系运算.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.二.命题及其关系。
充分条件与必要条件1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们______的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的_____条件,同时q是p的________条件;(2)如果p⇒q,但q⇏p,则p是q________________条件;(3)如果p⇒q,且q⇒p,则p是q的____________条件;(4)如果q⇒p,且p⇏q,则p是q的______________条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分又不必要条件.[方法与技巧]1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充要条件的几种判断方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:即利用A⇒B与¬B⇒¬A;B⇒A与¬A⇒¬B;A⇔B与B⇔A的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:设A={x|p(x)},B={x|q(x)}:若A⊆B,则p是q的充分条件或q是p的必要条件;若A真包含于B,则p是q的充分不必要条件,若A=B,则p是q的充要条件.[失误与防范]1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提.2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p,则q”的形式.3.判断条件之间的关系要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言.三简单的逻辑联结词.全称量词与存在量词1.全称量词与存在量词(1)常见的全称量词有“所有”“每一个”“任何”“任意一条”“一切”等.(2)常见的存在量词有“有些”“至少有一个”“有一个”“存在”等.2.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.3.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定:非p且非q;p且q的否定:非p或非q.4.简单的逻辑联结词(1)命题中的“且”、“或”、“非”叫作逻辑联结词.(2)简单复合命题的真值表:[方法与技巧]1.把握含逻辑联结词的命题的形式,特别是字面上未出现“或”、“且”时,要结合语句的含义理解.2.要写一个命题的否定,需先分清其是全称命题还是特称命题,再对照否定结构去写,并注意与否命题区别;否定的规律是“改量词,否结论”.[失误与防范]1.p或q为真命题,只需p、q有一个为真即可;p且q为真命题,必须p、q同时为真.2.两种形式命题的否定p或q的否定:非p且非q;p且q的否定:非p或非q.3.命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.四.归纳与类比1.归纳推理根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性.我们将这种推理方式称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理.归纳推理的基本模式:a、b、c∈M且a、b、c具有某属性,结论:任意d∈M,d也具有某属性.2.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.简言之,类比推理是两类事物特征之间的推理.类比推理的基本模式:A:具有属性a,b,c,d;B:具有属性a′,b′,c′;结论:B具有属性d′.(a,b,c,d与a′,b′,c′,d′相似或相同)3.归纳推理和类比推理是最常见的合情推理,合情推理的结果不一定正确.4.演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.[方法与技巧]1.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想2.演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理方法,是由一般到特殊的推理.数学问题的证明主要通过演绎推理来进行.[失误与防范]1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.五.综合法与分析法。
第一章 集合与常用逻辑用语
第一章集合与常用逻辑用语第一章集合与常用逻辑用语§1.1集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A的任意一个元素都是集合B的元素(若则),则称集合A为集合B的子集,记为AB或BA;如果AB,并且AB,这时集合A称为集合B的真子集,记为AB或BA.4.集合的相等:如果集合A、B同时满足AB、BA,则A=B.5.补集:设AS,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记为.6.全集:如果集合S包含所要研究的各个集合,这时S可以看做一个全集,全集通常记作U.7.交集:一般地,由所有属于集合A且属于B的元素构成的集合,称为A与B的交集,记作AB.8.并集:一般地,由所有属于集合A或者属于B的元素构成的集合,称为A与B的并集,记作AB.9.空集:不含任何元素的集合称为空集,记作.10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).13.常用数集的记法:自然数集记作N,正整数集记作N+或N,整数集记作Z,有理数集记作Q,实数集记作R.二、疑难知识导析1.符号,,,,=,表示集合与集合之间的关系,其中“”包括“”和“=”两种情况,同样“”包括“”和“=”两种情况.符号,表示元素与集合之间的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B=易漏掉的情况.5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、Venn图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有n个元素的集合的所有子集个数为:,所有真子集个数为:-1三、经典例题导讲[例1] 已知集合M={y|y=x2+1,x∈R},N={y|y =x+1,x∈R},则M∩N=()A.(0,1),(1,2)B.{(0,1),(1,2)}C.{y|y=1,或y=2}D.{y|y≥1}错解:求M∩N及解方程组得或∴选B错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M、N的元素是数而不是实数对(x,y),因此M、N是数集而不是点集,M、N分别表示函数y=x2+1(x∈R),y=x+1(x∈R)的值域,求M∩N即求两函数值域的交集.正解:M={y|y=x2+1,x∈R}={y|y≥1},N={y|y=x+1,x∈R}={y|y∈R}.∴M∩N={y|y≥1}∩{y|(y∈R)}={y|y≥1},∴应选D.注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x∈R}、{(x,y)|y=x2+1,x ∈R},这三个集合是不同的.[例2] 已知A={x|x2-3x+2=0},B={x|ax-2=0}且A∪B=A,求实数a组成的集合C.错解:由x2-3x+2=0得x=1或2.当x=1时,a=2,当x=2时,a=1.错因:上述解答只注意了B为非空集合,实际上,B=时,仍满足A∪B=A.当a=0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.正解:∵A∪B=A ∴BA又A={x|x2-3x+2=0}={1,2}∴B=或∴C={0,1,2}[例3]已知mA,nB, 且集合A=,B=,又C=,则有:()A.m+nA B. m+nB C.m+nC D.m+n不属于A,B,C中任意一个错解:∵mA,∴m=2a,a,同理n=2a+1,aZ,∴m+n=4a+1,故选C错因是上述解法缩小了m+n的取值范围.正解:∵mA,∴设m=2a1,a1Z, 又∵n,∴n=2a2+1,a2 Z ,∴m+n=2(a1+a2)+1,而a1+a2 Z , ∴m+nB, 故选B.[例4]已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.若BA,求实数p的取值范围.错解:由x2-3x-10≤0得-2≤x≤5.欲使BA,只须∴p的取值范围是-3≤p≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设.正解:①当B≠时,即p+1≤2p-1p≥2.由BA得:-2≤p+1且2p-1≤5.由-3≤p≤3.∴2≤p≤3②当B=时,即p+1>2p-1p<2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,AB 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.[例5] 已知集合A={a,a+b,a+2b},B={a,ac,ac2}.若A=B,求c的值.分析:要解决c的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a+b=ac且a+2b=ac2,消去b得:a+ac2-2ac=0,a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.(2)若a+b=ac2且a+2b=ac,消去b得:2ac2-ac-a=0,∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-.点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.[例6] 设A是实数集,满足若a∈A,则A,且1?A.⑴若2∈A,则A中至少还有几个元素?求出这几个元素.⑵A能否为单元素集合?请说明理由.⑶若a∈A,证明:1-∈A.⑷求证:集合A中至少含有三个不同的元素.解:⑴2∈A ? -1∈A ? ∈A ? 2∈A∴A中至少还有两个元素:-1和⑵如果A为单元素集合,则a=即=0该方程无实数解,故在实数范围内,A不可能是单元素集⑶a∈A ? ∈A ? ∈A?A,即1-∈A⑷由⑶知a∈A时,∈A,1-∈A.现在证明a,1-, 三数互不相等.①若a=,即a2-a+1=0,方程无解,∴a≠②若a=1-,即a2-a+1=0,方程无解∴a≠1-③若1-=,即a2-a+1=0,方程无解∴1-≠.综上所述,集合A中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨. [例7] 设集合A={|=,∈N+},集合B={|=,∈N+},试证:AB.证明:任设∈A,则==(+2)2-4(+2)+5(∈N+),∵n∈N*,∴n+2∈N*∴a∈B故①显然,1,而由B={|=,∈N+}={|=,∈N+}知1∈B,于是A≠B②由①、②得AB.点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.(2)判定两集合相等,主要是根据集合相等的定义.四、典型习题导练1.集合A={x|x2-3x-10≤0,x∈Z},B={x|2x2-x-6>0,x∈Z},则A∩B的非空真子集的个数为()A.16B.14C.15 D.322.数集{1,2,x2-3}中的x不能取的数值的集合是()A.{2,-2 } B.{-2,-}C.{±2,±} D.{,-}3.若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则P∩Q等于()A.P B.QC.D.不知道4. 若P={y|y=x2,x∈R},Q={(x,y)|y=x2,x∈R},则必有()A.P∩Q=B.P Q C.P=QD.P Q5.若集合M={},N={|≤},则MN=()A.B.C.D.6.已知集合A={x|x2+(m+2)x+1=0,x∈R},若A∩R+=,则实数m的取值范围是_________.7.(06高考全国II卷)设,函数若的解集为A,,求实数的取值范围.8.已知集合A=和B=满足A∩B=,A∩B=,I=R,求实数a,b的值.§1.2.常用逻辑用语一、知识导学1.逻辑联结词:“且”、“或”、“非”分别用符号“”“”“”表示.2.命题:能够判断真假的陈述句.3.简单命题:不含逻辑联结词的命题4.复合命题:由简单命题和逻辑联结词构成的命题,复合命题的基本形式:p或q;p且q;非p5.四种命题的构成:原命题:若p则q;逆命题:若q则p;否命题:若p 则q ;逆否命题:若q 则p.6.原命题与逆否命题同真同假,是等价命题,即“若p则q”“若q 则p ”.7.反证法:欲证“若p则q”,从“非q”出发,导出矛盾,从而知“若p则非q”为假,即“若p则q”为真.8.充分条件与必要条件:①pq:p是q的充分条件;q是p的必要条件;②pq:p是q的充要条件.9.常用的全称量词:“对所有的”、“对任意一个”“对一切”“对每一个”“任给”等;并用符号“”表示.含有全称量词的命题叫做全称命题.10.常用的存在量词:“存在一个”、“至少有一个”、“有些”、“有一个”、“有的”、“对某个”;并用符号“”表示.含有存在量词的命题叫做特称命题.二、疑难知识导析1.基本题型及其方法(1)由给定的复合命题指出它的形式及其构成;(2)给定两个简单命题能写出它们构成的复合命题,并能利用真值表判断复合命题的真假;(3)给定命题,能写出它的逆命题、否命题、逆否命题,并能运用四种命题的相互关系,特别是互为逆否命题的等价性判断命题的真假.注意:否命题与命题的否定是不同的. (4)判断两个命题之间的充分、必要、充要关系;方法:利用定义(5)证明的充要条件是;方法:分别证明充分性和必要性(6)反证法证题的方法及步骤:反设、归谬、结论.反证法是通过证明命题的结论的反面不成立而肯定命题的一种数学证明方法,是间接证法之一.注:常见关键词的否定:关键词是都是(全是)()至少有一个至多有一个任意存在否定不是不都是(全是)()一个也没有至少有两个存在任意。
高考数学一轮复习第一章集合与常用逻辑用语1.1集合与集合的运算公开课课件省市一等奖完整版
方法 3 与集合有关的新概念问题的解题策略
与集合有关的新概念问题属于信息迁移类问题,它是化归思想的具体运 用,这类试题的特点是:通过给出新的数学概念或新的运算方法,在新的 情境下完成某种推理证明,这是集合命题的一个新方向.常见的有定义 新概念、新公式、新运算和新法则等类型. 解此类题的一般思路: 1.理解问题中的新概念、新公式、新运算、新法则的含义. 2.利用学过的数学知识进行逻辑推理. 3.对选项进行筛选、验证、定论. 例4 (2016浙江名校协作体测试,8)在n元数集S={a1,a2,…,an}中,设x(S)=
A∩A=A A∪A=A ∁U⌀=U
3.两个常用结论 A∩B=A⇔A⊆B;A∪B=B⇔A⊆B. 4.设有限集合A,card(A)=n(n∈N*),则 (1)A的子集个数是⑧ 2n ; (2)A的真子集个数是⑨ 2n-1 ; (3)A的非空子集个数是⑩ 2n-1 ; (4)A的非空真子集个数是 2n-2 .
⑥ A⫋B(或B⫌A)
集合相等
集合A与集合B中元素相同,那么 A=B 就说集合A与集合B相等
Venn图表示
考点二 集合的运算
1.集合间的运算
名称
自然语言描述
ห้องสมุดไป่ตู้
符号语言表示
并集
对于两个给定集合A、B,由所有 属于集合A或属于集合B的元素 组成的集合
A∪B={x|x∈A,或x∈B}
交集 补集
对于两个给定集合A、B,由所有 属于集合A且属于集合B的元素 组成的集合
集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同 的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素
集合与其中元素的排列顺序无关,如{a,b,c}与{b,c,a}是相同的集合.这个特性通 常被用来判断两个集合的关系
高考数学总复习 第一篇 集合与常用逻辑用语 第1讲 集合的概念和运算课件 理
A.{5}
B.{4}
C.{1,2}
D.{3,5}
解 析 由 题 图 可 知 阴 影 部 分 为 集 合 (∁UA)∩B , ∵∁UA = {3,5,6},∴(∁UA)∩B={3,5}. 答案 D
4.(2012·杭州二中仿真考试)设全集U={x|x∈N*,x<6},集
合A={1,3},B={3,5},则∁U(A∪B)等于
( ).
A.1
B.2
C.3
D.4
解析 由题意知:A={1,2},B={1,2,3,4}.又A⊆C⊆B,
则集合C可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.
答案 D
3.(2012·皖南八校三模)设全集U={1,2,3,4,5,6},集合A= {1,2,4},B={3,4,5},则图中的阴影部分表示的集合为 ( ).
A.{1,4}
B.{1,5}
( ).
C.{2,5}
D.{2,4}
解 析 由 题 意 A∪B = {1,3}∪{3,5} = {1,3,5} . 又 U =
{1,2,3,4,5},所以∁U(A∪B)={2,4}. 答案 D
5 . (2012· 天 津 ) 已 知 集 合 A = {x∈R||x + 2|<3} , 集 合 B = {x∈R|(x - m)(x - 2)<0} , 且 A∩B = ( - 1 , n) , 则 m = ________,n=________. 解析 A={x|-5<x<1},因为A∩B={x| -1<x<n},B= {x|(x-m)(x-2)<0},所以m=-1,n=1. 答案 -1 1
2.集合间的基本关系 (1)子集:对任意的x∈A,都有x∈B,则A ⊆ B(或B⊇A). (2)真子集:若A⊆B,且A≠B,则A B(或B A). (3)空集:空集是任意一个集合的 子集 ,是任何非空集合 的 真子集 .即∅⊆A,∅ B(B≠∅). (4)集合相等:若A⊆B,且B⊆A,则A=B.
高三数学一轮复习 第1章 集合与常用逻辑用语第1课时 集合的概念与运算精品课件
• 集合是高中数学的基础内容,也是高考数学的必考内容,难度 不大,一般是一道选择题或填空题.通过对近两年高考试题的统 计分析可以看出,对集合内容的考查一般以两种方式出现:一是 考查集合的概念、集合间的关系及集合的运算.
• (3){x|x2-ax-1=0}和{a|方程x2-ax-1=0有实根}的意义不 同.{x|x2-ax-1=0}表示由二次方程x2-ax-1=0的解构成的集 合,而集合{a|方程x2-ax-1=0有实根}表示方程x2-ax-1=0有 实数解时参数a的范围构成的集合.
【变式训练】 1.现有三个实数的集合,既可以表示为a,ba,1, 也可表示为{a2,a+b,0},则 a2 011+b2 011=________.
命题与量 词、 基本 逻辑 联结 词
1.了解命题的概念. 2.了解逻辑联结词“或”、“且”、“非”的含义. 3.理解全称量词与存在量词的含义. 4.能正确地对含有一个量词的命题进行否定.
充分条件、
必要
条件 1.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四
与命
种命题的相互关系.
题的 2.理解必要条件、充分条件与充要条件的意义.
①集合 S={a+b 3|a,b 为整数}为封闭集; ②若 S 为封闭集,则一定有 0∈S; ③封闭集一定是无限集; ④若 S 为封闭集,则满足 S⊆T⊆R 的任意集合 T 也是封闭集. 其中的真命题是________.(写出所有真命题的序号)
序号 结论
理由
• 【全解全析】对于任意整数 a1,b1,a2,b2,有 a1+b1 3+a2+b2 3
B.{a|a≤2或a≥4}
知识点-集合与常用逻辑用语
知识点——集合与常用逻辑用语【知识梳理】一、集合及其运算1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R 2.集合间的基本关系关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A⊊B(或B⊋A)集合相等集合A,B中的元素相同或集合A,B互为子集A=B3.集合的基本运算运算自然语言符号语言Venn图交集由属于集合A且属于集合B的所有元素组成的集合A∩B={x|x∈A且x∈B}并集由所有属于集合A或属于集合B的元素组成的集合A∪B={x|x∈A或x∈B}补集由全集U中不属于集合A的所有元素组成的集合∁U A={x|x∈U且x∉A}【知识拓展】1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1. 2.A⊆B⇔A∩B=A⇔A∪B=B.3.A∩(∁U A)=∅;A∪(∁U A)=U;∁U(∁U A)=A.二、命题及其关系、充分条件与必要条件1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系. 3.充分条件与必要条件(1)如果p ⇒q ,则p 是q 的充分条件,同时q 是p 的必要条件; (2)如果p ⇒q ,但qp ,则p 是q 的充分不必要条件;(3)如果p ⇒q ,且q ⇒p ,则p 是q 的充要条件; (4)如果q ⇒p ,且p q ,则p 是q 的必要不充分条件; (5)如果p q ,且qp ,则p 是q 的既不充分也不必要条件.【知识拓展】1.两个命题互为逆否命题,它们具有相同的真假性. 2.若A ={x |p (x )},B ={x |q (x )},则 (1)若A ⊆B ,则p 是q 的充分条件; (2)若A ⊇B ,则p 是q 的必要条件; (3)若A =B ,则p 是q 的充要条件; (4)若A ⊊B ,则p 是q 的充分不必要条件; (5)若A ⊋B ,则p 是q 的必要不充分条件; (6)若A B 且A ⊉B ,则p 是q 的既不充分也不必要条件.【易错提醒】1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x |y =lg x }——函数的定义域;{y |y =lg x }——函数的值域;{(x ,y )|y =lg x }——函数图象上的点集.2.易混淆0,∅,{0}:0是一个实数;∅是一个集合,它含有0个元素;{0}是以0为元素的单元素集合,但是0∉∅,而∅⊆{0}.3.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性. 4.空集是任何集合的子集.由条件A ⊆B ,A ∩B =A ,A ∪B =B 求解集合A 时,务必分析研究A =∅的情况. 5.区分命题的否定与否命题,已知命题为“若p ,则q ”,则该命题的否定为“若p ,则q ⌝”,其否命题为“若p ⌝,则q ⌝”.6.对充分、必要条件问题,首先要弄清谁是条件,谁是结论.【必会习题】1.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于()A.0或 3 B.0或3 C.1或 3 D.1或3答案 B解析∵A∪B=A,∴B⊆A,∴m∈{1,3,m},∴m=1或m=3或m=m,由集合中元素的互异性易知m=0或m=3.2.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是()A.{a|a≥2} B.{a|a≤1} C.{a|a≥1} D.{a|a≤2}答案 A解析若A⊆B,则a≥2,故选A.3.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于()A.{x|-3<x<5} B.{x|-5<x<5} C.{x|x<-5或x>-3} D.{x|x<-3或x>5} 答案 C解析在数轴上表示集合M、N,则M∪N={x|x<-5或x>-3},故选C.4.满足条件{a}⊆A⊆{a,b,c}的所有集合A的个数是()A.1 B.2 C.3 D.4答案 D解析满足题意的集合A可以为{a},{a,b},{a,c},{a,b,c},共4个.5.已知集合U=R(R是实数集),A={x|-1≤x≤1},B={x|x2-2x<0},则A∪(∁U B)等于() A.[-1,0] B.[1,2] C.[0,1] D.(-∞,1]∪[2,+∞)答案 D解析B={x|x2-2x<0}=(0,2),A∪(∁U B)=[-1,1]∪(-∞,0]∪[2,+∞)=(-∞,1]∪[2,+∞),故选D.6.“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析ln(x+1)<0,解得0<x+1<1,∴-1<x<0,所以“x<0”是“-1<x<0”的必要不充分条件.7.给出以下四个命题: ①若ab ≤0,则a ≤0或b ≤0; ②若a >b ,则am 2>bm 2;③在△ABC 中,若sin A =sin B ,则A =B ;④在一元二次方程ax 2+bx +c =0中,若b 2-4ac <0,则方程有实数根. 其中原命题、逆命题、否命题、逆否命题全都是真命题的是( ) A .① B .② C .③ D .④ 答案 C8.设U 为全集,对集合A ,B 定义运算“*”,A *B =∁U (A ∩B ),若X ,Y ,Z 为三个集合,则(X *Y )*Z 等于( )A .(X ∪Y )∩∁U ZB .(X ∩Y )∪∁U ZC .(∁U X ∪∁U Y )∩ZD .(∁U X ∩∁U Y )∪Z 答案 B解析 ∵X *Y =∁U (X ∩Y ),∴对于任意集合X ,Y ,Z , ( X *Y )*Z =∁U (X ∩Y )*Z =∁U [∁U (X ∩Y )∩Z ]=(X ∩Y )∪∁U Z .9.已知M 是不等式ax +10ax -25≤0的解集且5∉M ,则a 的取值范围是________________.答案 (-∞,-2)∪[5,+∞) 解析 若5∈M ,则5a +105a -25≤0,∴(a +2)(a -5)≤0且a ≠5,∴-2≤a <5, ∴5∉M 时,a <-2或a ≥5.10.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0;命题q :实数x 满足x 2+2x -8>0,若q 是p 的必要不充分条件,则实数a 的取值范围是________. 答案 (-∞,-4]解析 由命题q :实数x 满足x 2+2x -8>0,得x <-4或x >2,由命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0,得(x -3a )(x -a )<0,∵a <0,∴3a <x <a , ∵q 是p 的必要不充分条件,∴a ≤-4,∴a ∈(-∞,-4].11.已知命题p :⎪⎪⎪⎪1-x +12≤1,命题q :x 2-2x +1-m 2<0(m >0),若p 是q 的充分不必要条件,则实数m的取值范围是________. 答案 (2,+∞)解析 ∵⎪⎪⎪⎪⎪⎪1-x +12≤1⇔-1≤x +12-1≤1⇔0≤x +12≤2⇔-1≤x ≤3,∴p :-1≤x ≤3;∵x 2-2x +1-m 2<0(m >0)⇔[x -(1-m )][x -(1+m )]<0⇔1-m <x <1+m ,∴q :1-m <x <1+m . ∵p 是q 的充分不必要条件,∴[-1,3]是(1-m,1+m )的真子集,则⎩⎪⎨⎪⎧1-m <-1,1+m >3,解得m >2.。
高中数学知识点总结(集合,不等式,函数))
上海教材高中数学知识点总结一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝ 原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定 ∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x > 0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a ) 3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2)或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T )4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:a bx 2-= 顶点:)44,2(2ab ac a b --单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当a b x 2-=,f(x)min ab ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa1=- m n m na a = 2.对数式b N a=log N a b =⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =n a a b b nl o g l o g =a bl o g 1=注:性质01log =a 1log =a aN a N a =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数) 4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换 平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy =αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+6.特殊角的三角函数值7.同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈ 9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a s i n :s i n :s i n ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边)cos A =bca cb 2222-+(求角)面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π。
专题1 集合与常用逻辑用语
专题1 集合与常用逻辑用语1.1集合的含义与表示 (1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.(3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{|具有的性质},其中为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().1.2集合间的基本关系(7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集.解析获取vx :lingzi980N N *N +Z Q R a M a M ∈a M ∉x x x ∅A (1)n n ≥2n21n-21n-22n -1.3 集合的基本运算1. 2.注意:1. 元素与集合的关系,.2.德摩根公式.3.包含关系4.容斥原理.【例1】(2022•新高考Ⅰ)若集合 }4|{,<=x x M }13| {,≥=x x N 则=N MA .}40|{<≤x xB . }231|{<≤x x C .}163|{<≤x x D . }1631|{<≤x x 【例2】(2022•新高考II )已知集合{}4211,,,-=A ,{}11≤-=x x B ,则=⋂B A A.{}21,- B.{}21, C.{}41, D.{}41,-【例3】(2022•乙卷理)设全集{1U =,2,3,4,5},集合M 满足{1U M =,3},则( )AB {|x x ∈A A A =A∅=∅A B A ⊆A B B ⊆AB {|x x ∈A A A =AA ∅=AB A ⊇AB B ⊇U A {|x x ()U A A =∅()U A A U =U x A xC A ∈⇔∉U x C A x A ∈⇔∉();()U U U U U U C A B C A C B C A B C A C B ==A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+()()()UU U A B A B =()()()U U U A B A B =A .2M ∈B .3M ∈C .4M ∉D .5M ∉【例4】(2019•全国)设集合P ={x |x 2﹣2>0},Q ={1,2,3,4},则P ∩Q 的非空子集的个数为( ) A .8B .7C .4D .3【例5】(2020•上海)集合A ={1,3},B ={1,2,a },若A ⊆B ,则a = . 【例6】已知集合{0A =,1,2},{|B ab a A =∈,}b A ∈,则集合B 中元素个数为( ) A .2B .3C .4D .5【例7】已知集合{{}A =∅,}∅,下列选项中均为A 的元素的是( ) (1){}∅;(2){{}}∅;(3)∅;(4){{}∅,}∅. A .(1)(2)B .(1)(3)C .(2)(3)D .(2)(4)【例8】已知函数2()f x x ax b =++,集合{|()0}A x f x =,集合5|(())4B x f f x ⎧⎫=⎨⎬⎩⎭,若A B =≠∅,则实数a 的取值可以是( ) A .2B .3C .4D .5【例9】向50名学生调查对A 、B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人.则下列说法正确的是( ) A .赞成A 的不赞成B 的有9人 B .赞成B 的不赞成A 的有11人 C .对A 、B 都赞成的有21人D .对A 、B 都不赞成的有8人【例10】(2015•上海)设集合21{|10}P x x ax =++>,22{|20}P x x ax =++>,21{|0}Q x x x b =++>,22{|20}Q x x x b =++>,其中a ,b R ∈,下列说法正确的是( ) A .对任意a ,1P 是2P 的子集,对任意b ,1Q 不是2Q 的子集 B .对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集 C .存在a ,1P 不是2P 的子集,对任意b ,1Q 不是2Q 的子集 D .存在a ,1P 不是2P 的子集,存在b ,使得1Q 是2Q 的子集1.(2022•乙卷文)集合{}{}2,4,6,8,10,16M N x x ==-<<,则MN =( )A. {2,4}B. {2,4,6}C. {2,4,6,8}D. {2,4,6,8,10}2.(2022•上海)已知集合A =(﹣1,2),集合B =(1,3),则A ∩B = .3.(2021•新高考Ⅰ)设集合A ={x |﹣2<x <4},B ={2,3,4,5},则A ∩B =( ) A .{2}B .{2,3}C .{3,4}D .{2,3,4}4.(2021•上海)已知集合A ={x |x >﹣1,x ∈R },B ={x |x 2﹣x ﹣2≥0,x ∈R },则下列关系中,正确的是( ) A .A ⊆BB .∁R A ⊆∁R BC .A ∩B =∅D .A ∪B =R5.(2022•天津)设全集{2U =-,1-,0,1,2},集合{0A =,1,2},{1B =-,2},则()(U A B =⋂)A .{0,1}B .{0,1,2}C .{1-,1,2}D .{0,1-,1,2}6.(2022•浙江)设集合{1A =,2},{2B =,4,6},则(A B = )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}7.(2022•北京)已知全集{|33}U x x =-<<,集合{|21}A x x =-<,则(UA = )A .(2-,1]B .(3,2)[1--,3) C .[2-,1)D .(3-,2](1,3)- 8.(2021•乙卷)已知集合{|21S s s n ==+,}n Z ∈,{|41T t t n ==+,}n Z ∈,则(S T = )A .∅B .SC .TD .Z9.(2020•全国)若集合A 共有5个元素,则A 的真子集的个数为( ) A .32B .31C .16D .1510.(2020•新课标Ⅲ)已知集合{(,)|A x y x =,*y N ∈,}y x ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A .2B .3C .4D .611.(2017•江苏)已知集合{1A =,2},{B a =,23}a +.若{1}A B =,则实数a 的值为 .12.(2022•重庆期末)下列说法正确的是( ) A .任何集合都是它自身的真子集B .集合{a ,}b 共有4个子集C .集合{|31x x n =+,}{|32n Z x x n ∈==-,}n Z ∈D .集合2{|1x x a =+,*2}{|45a N x x a a ∈==-+,*}a N ∈13.(2021•重庆期末)已知全集为U ,A ,B 是U 的非空子集且UA B ⊆,则下列关系一定正确的是()A .x U ∃∈,x A ∉且xB ∈ B .x A ∀∈,x B ∉C .x U ∀∈,x A ∈或x B ∈D .x U ∃∈,x A ∈且x B ∈14.(2021•虎丘区月考)江苏省实验中学科技城校举行秋季运动会,高一某班共有30名同学参加比赛,有20人参加田赛,13人参加径赛,有19人参加球类比赛,同时参加田赛与径赛的有8人,同时参加田赛与球类比赛的有9人,没有人同时参加三项比赛.以下说法正确的有( ) A .同时参加径赛和球类比赛的人数有3人 B .只参加球类一项比赛的人数有2人C .只参加径赛一项比赛的人数为0人D .只参加田赛一项比赛的人数为3人1.4 充分条件与必要条件充要条件(1)充分条件:若,则是充分条件.(2)必要条件:若,则是必要条件.(3)充要条件:若,且,则是充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.抓住关键词:大必小充。
高中数学知识点总结(第一章 集合与常用逻辑用语)
第一章 集合与常用逻辑用语第一节 集 合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A .A B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A .(3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B .两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁U A.二、常用结论(1)子集的性质:A⊆A,∅⊆A,A∩B⊆A,A∩B⊆B.(2)交集的性质:A∩A=A,A∩∅=∅,A∩B=B∩A.(3)并集的性质:A∪B=B∪A,A∪B⊇A,A∪B⊇B,A∪A=A,A∪∅=∅∪A=A.(4)补集的性质:A∪∁U A=U,A∩∁U A=∅,∁U(∁U A)=A,∁A A=∅,∁A∅=A.(5)含有n个元素的集合共有2n个子集,其中有2n-1个真子集,2n-1个非空子集.(6)等价关系:A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.第二节命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.第三节简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词3.全称命题与特称命题4.全称命题与特称命题的否定二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.。
第1单元-集合与常用逻辑用语-数学(理科)-新课标课件
第一单元 集合与常用逻辑用语
第1讲 集合及其运算 第2讲 命题及其关系、充分条件与必要条件 第3讲 简单的逻辑联结词、全称量词与存在量词
单元网络
返回目录
核心导语
一、集合 1.关系——元素与集合之间是从属关系,集合与集合 之间是包含关系. 2.运算——认清集合的元素,通过图示法理解集合运 算的含义.学会用分类讨论法解决集合运算问题. 二、常用逻辑用语 1.命题——四种命题及其关系,特别是原命题与逆否 命题的等价性、逆命题与否命题的等价性. 2.充分、必要条件——p⇒q,p是q的充分条件,q是p 的必要条件.
返回目录
使用建议
2.教学指导 高考对该部分内容的要求不高,教师在引导学生复习该 部分时,切忌对各层次知识点随意拔高,习题一味求深、求 广、求难. 教学时,注意到如下几个问题:(1)集合主要是强调其工 具性和应用性,解集合问题时,要引导学生充分利用图示法 或数轴的直观性来帮助解题;(2)对“命题的逆命题、否命题 与逆否命题”只要求作一般性了解,重点关注必要条件、充 分条件、充要条件;(3)对逻辑联结词“或”“且”“非”的 含义,只要求通过数学实例加以了解,帮助学生正确地表述
合
并集
属于A_或___ 属于B的元 素组成的集
合
{x|x∈A__或_ _x∈B}
补集
全集U中 _不___属于A 的元素组成
的集合
{x|x∈U, x___∉_A}
记法 _A__∩_B__ __A_∪__B_ __∁_U_A__
返回目录
第1讲 集合及其运算
基
础 自
4.集合问题中的几个基本结论:
主 梳
(1)集合A是其本身的子集,即__A_⊆__A___;
返回目录
复习课件11集合的概念及其基本运算
变式训练 2 设 A={x|x2+4x=0},B={x|x2+2(a+1)x +a2-1=0}, (1)若 B⊆A,求 a 的值; (2)若 A⊆B,求 a 的值.
解 (1)A={0,-4},
①当 B=∅时,Δ=4(a+1)2-4(a2-1)=8(a+1)<0,
解得 a<-1;
②当 B 为单元素集时,a=-1,此时 B={0}符合题意;
Hale Waihona Puke 变式训练 3 (2010·重庆)设 U={0,1,2,3},A={x∈U|x2 +mx=0},若∁UA={1,2},则实数 m=__-__3____.
解析 ∵∁UA={1,2},∴A={0,3},∴0,3 是方程 x2+mx =0 的两根,∴m=-3.
易错警示 1.忽略空集致误
试题:(5 分)已知集合 A={-1,1},B={x|ax+1=0}, 若 B⊆A,则实数 a 的所有可能取值的集合为____. 学生答案展示
正确答案 {-1,0,1}
批阅笔记 本题考查的重点是集合的关系以及集合元素
的特征.在解答本题时,存在两个突出错误.一是极易 忽略集合 B 为∅的情况;二是忽视对 B 中的元素-1a的值 为 1 或-1 的讨论.在解决类似问题时,一定要注意分 类讨论,避免误解.
思想方法 感悟提高
方法与技巧 1.集合中的元素的三个性质,特别是无序性和互异性
则实数 a 的取值范围是_a_≤__0__.
题型分类 深度剖析
题型一 集合的基本概念 例 1 定义集合运算:A⊙B={z|z=xy(x+y),x∈A,
y∈B},设集合 A={0,1},B={2,3},则集合 A⊙B 的 所有元素之和为________. 思维启迪 集合 A⊙B 的元素:z=xy(x+y).求出 z 的 所有值,再求其和.
高考数学《1.1集合与常用逻辑用语》
关闭
关闭
解析 答案
第一章
1.1 集合的概念与运算
知识体系
知识梳理
核心考点
-13-
知识梳理 双基自测 自测点评
12345
5.(教材例题改编P8例5)设集合A={x|(x+1)·(x-2)<0},集合 B={x|1<x<3},则A∩B=( )
A.(-1,3) B.(-1,0) C.(1,2) D.(2,3)
A.{1,2,3} B.{1,2,4}
C.{1,3,4} D.{2,3,4}
解析 ∵A={1,4},B={2,4}, ∴A∩B={4}. 又U={x∈N*|x≤4}={1,2,3,4}, A∴∁U(A∩B)={1,2,3}
关闭
关闭
解析 答案
第一章
1.1 集合的概念与运算
知识体系
知识梳理
核心考点
-12-
12345
2.集合间的基本关系
关系 自然语言
符号语言
集合 A 中所有元素都在 子集 集合 B 中(即若 x∈A,则 x A⊆B(或B⊇A)
∈B)
真子 集
相等
集合 A 是集合 B 的子集, 且集合 B 中至少有一个 元素不在集合 A 中
集合 A,B 中元素相同或 集合 A,B 互为子集
A⫋B(或B⫌A) A=B
-5-
Venn 图 或
第一章
1.1 集合的概念与运算
知识体系
知识梳理
核心考点
-6-
知识梳理 双基自测 自测点评
12345
3.集合的运算
集合的并集
集合的交集
集合的补集
图形
符号
A∪B
={x|x∈A或x∈B}
高考数学 集合与常用逻辑用语考点及知识点总结解析(理科)
②若B≠∅,则2mm+-11≥≥-m2+,1, 2m-1≤5.
解得2≤m≤3.由①②可得,符合题意的实数m的取值范围为 (-∞,3].
[答案] (-∞,3]
[易错提醒] 将两个集合之间的关系准确转化为参数所满足的条 件时,应注意子集与真子集的区别,此类问题多与不等 式(组)的解集相关.确定参数所满足的条件时,一定要把 端点值代入进行验证,否则易产生增解或漏解.
考点贯通 抓高考命题的“形”与“神” 集合子集个数的判定
含有n真子集的个数为2n-2(除空集 和集合本身,此时n≥1).
[例1] 已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x
<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为
()
A.1
B.2
C.3
D.4
[解析] 由x2-3x+2=0得x=1或x=2,所以A={1,2}.由
题意知B={1,2,3,4},所以满足条件的集合C为{1,2},{1,2,3},
{1,2,4},{1,2,3,4},共4个.
[答案] D
[易错提醒] (1)注意空集的特殊性:空集是任何集合的子集,是 任何非空集合的真子集. (2)任何集合的本身是该集合的子集,在列举时千万 不要忘记.
∵
2x
-
3>0
,
∴
x>
3 2
,
∴
B
=
3 xx>2
.
∴
A∩B
=
{x|1<x<3}∩xx>32 =32,3. [答案] D
高中数学统编版第一册第一章集合与常用逻辑用语1.3集合的基本运算(第1课时)并集和交集课件
答案:(1)C (2)B (3)A (4){5,6}
)
)
.
一
二
三
三、并集、交集的性质
1.(1)一个集合与其本身的并集、交集分别是什么?
提示:都是这个集合本身.
(2)一个集合与空集的并集和交集分别是什么?
提示:并集是这个集合,交集是空集.
(2)利用数轴分别画出集合M、N,如图:
∴M∩N={x|1≤x<2};
(3)A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.
答案:(1)C (2)A (3)D
反思感悟 求两个集合交集、并集的方法技能
当求两个集合的并集、交集时,对于用描述法给出的集合,第一
明确集合中的元素,其次将两个集合化为最简情势;对于连续的数
当a=-3时,A={-4,-7,9},B={-8,4,9},符合题意.
综上可得a的值为5或-3.
答案:5或-3
探究一
探究二
探究三
思想方法
随堂演练
反思感悟 已知两个有限集运算结果求参数值的方法
对于这类已知两个有限集的运算结果求参数值的问题,一般先用
视察法得到不同集合中元素之间的关系,再列方程求解.另外,在处
解析:(1)A={-1,3},B={-1,1},A∪B={-1,1,3}.
答案:(1)C (2)D
探究一
探究二
探究三
思想方法
随堂演练
变式训练1(1)已知集合A={x∈N|1≤x≤3},B={2,3,4,5},则
A∪B=(
)
A.{2,3}
B.{2,3,4,5}
C.{2}
人教B版高中数学必修第一册精品课件 第1章集合与常用逻辑用语 集合的概念、集合间的基本关系与基本运算
解:∵A∩B={-2},∴-2∈A.
又a2+1>0,∴a2-3=-2,
解得a=±1.
当a=1时,A={-1,2,-2},B={-2,0,2},
则A∩B={-2,2},与A∩B={-2}矛盾.
∴a≠1.
当a=-1时,A={-1,2,-2},B={-4,-2,0},
则A∩B={-2},符合题意.
此时A∪B={-4,-2,-1,0,2}.
答案:(1)B (2)28
个子集.
三、集合的运算
1.(1)A∩B={x|x∈A且x∈B},A∪B={x|x∈A或x∈B},∁UA={x|x∈U且x∉A}.
(2)若A∪B=B,则A⊆B;若A∩B=B,则B⊆A.
(3)(∁UA)∪(∁UB)=∁U(A∩B),(∁UA)∩(∁UB)=∁U(A∪B).
2.(1)若U=R,A=(-6,8),B=[0,+∞),求A∩B,∁UA,(∁UA)∩(∁UB).
(2)已知集合A=(2a,+∞),B=[3,+∞),且A∪B=B,求实数a的取值范围.
解:(1)由题意,得A∩B=[0,8),∁UA=(-∞,-6]∪[8,+∞),A∪B=(-6,+∞).
故(∁UA)∩(∁UB)=∁U(A∪B)=(-∞,-6].
(2)∵A∪B=B,
∴A⊆B,∴2a≥3,∴a≥
∴a的取值范围是
D.9
)
解析:(1)由集合中的元素满足互异性,知集合M中的元素最多有m,n,m2,n2,
且4个元素互不相同.
(2)∵A={0,1,2},B={x-y|x∈A,y∈A},
∴当x=0时,y分别取0,1,2,得x-y的值分别为0,-1,-2;
当x=1时,y分别取0,1,2,得x-y的值分别为1,0,-1;
第一章 集合与常用逻辑用语(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)
第一章集合与常用逻辑用语(公式、定理、结论图表)1.集合的有关概念(1)集合元素的三大特性:确定性、无序性、互异性.(2)元素与集合的两种关系:属于,记为∈;不属于,记为∉.(3)集合的三种表示方法:列举法、描述法、图示法.(4)五个特定的集合集合自然数集正整数集整数集有理数集实数集符号N N *或N +Z Q R 2.集合间的基本关系文字语言符号语言集合间的基本关系相等集合A 与集合B 中的所有元素都相同A =B 子集集合A 中任意一个元素均为集合B 中的元素A ⊆B 真子集集合A 中任意一个元素均为集合B 中的元素,且集合B 中至少有一个元素不是集合A 中的元素BA ⊂≠空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A ∪B A ∩B 若全集为U ,则集合A 的补集为∁U A图形表示集合表示{x |x ∈A ,或x ∈B }{x |x ∈A ,且x ∈B }{x |x ∈U ,且x ∉A }4.集合的运算性质(1)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A .(2)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A .(3)A ∩(∁U A )=∅,A ∪(∁U A )=U ,∁U (∁U A )=A .5.常用结论(1)空集性质:①空集只有一个子集,即它的本身,∅⊆∅;②空集是任何集合的子集(即∅⊆A );空集是任何非空集合的真子集(若A ≠∅,则∅ÜA ).(2)子集个数:若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有2n -1个,非空真子集有22n -个.典例1:已知集合{}2,4,8A =,{}2,3,4,6B =,则A B ⋂的子集的个数为()A .3B .4C .7D .8【答案】B【详解】因为集合{}2,4,8A =,{}2,3,4,6B =,所以{}2,4A B = ,所以A B ⋂的子集的个数为224=个.故选B.典例2:已知集合{}2N 230A x x x =∈--≤∣,则集合A 的真子集的个数为()A .32B .31C .16D .15【答案】D 【详解】由题意得{}{}{}2N230N 130,1,2,3A x x x x x =∈--≤=∈-≤≤=∣∣,其真子集有42115-=个.故选D.(3)A ∩B =A ⇔A ⊆B ;A ∪B =A ⇔A ⊇B .(4)(∁U A )∩(∁U B )=∁U (A ∪B ),(∁U A )∪(∁U B )=∁U (A ∩B ).6.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇏pp是q的必要不充分条件p⇏q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇏q且q⇏p7.充分、必要条件与集合的关系设p,q成立的对象构成的集合分别为A,B.(1)p是q的充分条件⇔A⊆B,p是q的充分不必要条件⇔AÜB;(2)p是q的必要条件⇔B⊆A,p是q的必要不充分条件⇔BÜA;(3)p是q的充要条件⇔A=B.8.全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有些、某些等∃9.全称命题和特称命题10.全称命题与特称命题的否定<知识记忆小口诀>集合平时很常用,数学概念有不同,理解集合并不难,三个要素是关键,元素确定和互译,还有无序要牢记,空集不论空不空,总有子集在其中,集合用图很方便,子交并补很明显.<解题方法与技巧>集合基本运算的方法技巧:(1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn图运算;(2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验.集合常与不等式,基本函数结合,常见逻辑用语常与立体几何,三角函数,数列,线性规划等结合.充要条件的两种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.(3)数学定义都是充要条件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a 2 3a 4
,
3 当a<0时,B=(3a,a),应有3a 2,
得a∈综上.,实数a的取值范围是[4
a 4 ,2].
3
26
( 2 ) 要 满 足 A∩B= , 当 a=0 时 ,
B= ,满足条件;当a>0时,B=(a,3a)
2 应有a≥4或3a≤2,所以0<a≤ 3 或a≥4;
当a<0时,B=(3a,a),应有a≤2或3a≥4,
28
(1)集合元素的互异性
对 于 4 {1,a,a2} , 根 据 元 素 的 互 异 性 有
a≠0,a≠±1.又a≠4,a2≠4,从而可确定a的取值 范围为{a∈R|a≠±1,0,±2,4}.
(2)集合的元素是什么 对 于 A={x2-x=0} , B={x|x2-x=0} ,
C={x|y=x2-x} , D={y|y=x2-x},E={ ( x,y ) |y=x2-x}, 分 别 有 A={x2-x=0} , B={0,1} , C=R , D={x|x≥- 1},E={曲线y=x2-x上的点}.
(3)因为A∩( U B)=A,所以A U BB
所以A∩B=. ①若B= ,则由(2)知a<-3;
B={2②},若不B合≠ 题,意则;由当(a>2)-3时知,,需当1a=-B3时且,2 B
故
a2 2a 2 0
a
2
4a
3
0
,
即
a a
1 3 1且a
3
.
综上,实数a的取值范围是(-∞,-3)∪ (-
6
3.集合M={x|y= x},N={y|y=2 x-1},则
集合M∩N=( C)
A.
B. {(1,1)}
C. {x|x≥0} D. {x|x≥-1}
集合M的元素为x,所以M={x|x≥0} 集合N的元素为y,所以N={y|y≥-1}.因为它们 都是数集,所以M∩N=M,故选C.
7
4.(原创题)
3,-1- 3)∪(-1- ,3 -1)∪(-1,-1+ )3 ∪(-1+ 3 ,+∞).
23
【评注】解决含参数的集合运算问 题,需要理清题目要求,看清集合间存 在的相互关系,注意分类讨论、数形结 合思想的应用以及空集作为一个特殊集 合与非空集合间的关系,在解题中漏掉 它极易导致错解.
24
已 知 集 合 A={x|x2-6x+8 < 0} , B={x|(x-a)(x-3a)<0}.
答案:B
35
3.(2008·山东卷)满足M {a1,a2,a3,a4}, 且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()
A. 1
B. 2
C. 3
D. 4
M至少含有元素a1、a2,所以含有两 个元素的集合M有1个,含有3个元素的集合M
有1个,即M={a1,a2,a4},且集合M不可能含有 4个元素.
2
( 4 ) 集 合 的 三 种 表 列示举法法 :
描述⑤法 图示法、
、
.
2.集合间的基本关系及运算
( 1 ) 若 集 合 A 是 集 合 B 的 子 集 , 则A⑥ B;若集合A是集合B的真子集,则A⑦ B.≠
(2)空集是任何集合的⑧
,是任何
⑨
的真子集.
子集
(3非)空若集全合集为U,且A U,则集合A相对
11
3.集合间的基本关系及运算 (1)设A={x|y= 1 },B={y|y=2x+2}, 则A∩B=⑥(2,+∞);xRA1=⑦ {1} ;( RB ) ∩A=⑧(-∞,1)∪(1,2] .
(2)若{x|x<a}∩{x|x>1}= ,则实数a
的取值范围是⑨ (-∞,1] .
12
题型1 集合元素的特征
答案:B
36
试题透析 集合内容的高考试题呈现的 背景大致有三种类型,一是根据集合的基本 关系,集合元素的基本特征;二是以不等式、 方程和函数为原形解集合的关系,或依元素 的性质讨论参数的取值范围,这是集合试题 立意的重点;三是定义集合的某种运算,考 查学习数学的基本能力.
37
(1)若AB,求实数a的取值范围;
(2)若A∩B= ,求实数a的取值范围;
(3)若A∩B={x|3<x<4},求实数a的取 值范围.
25
A={x|x2-6x+8 < 0}={x|2 < x < 4}
=(2,4).
(1)若A B,则当a=0时,B= ,不成
立;
得
4
当a>0时,B=(a,3a),应有 ≤a≤2;
的取值范围.
20
A={x|x2-3x+2=0}={1,2}. (1)因为A∩B={2},所以2∈B, 故a2+4a+3=0,解得a=-1或a=-3. 当a=-1时,B={-2,2},满足条件; 当a=-3时,B={2},满足条件. 综上,a=-1或-3;
21
( 2 ) 对 于 集 合 B , Δ=4(a+1)2 - 4(a2-5)=
14
已知集合A={a+2,(a+1)2, a2+3a+3}.若1∈A,求实数a的值.
若a+2=1,则a=-1; 若(a+1)2=1,则a=-2或0; 若a2+3a+3=1,则a=-2或-1. 当a=-1或-2时,不符合题意,所以a=0.
15
题型2 集合间的基本关系 已 知 集 合 M={x|x>1} , N={x|ax>1}.
30
(1)数形结合 认清集合的特征,准确地将其转化为图 形关系,借助于图形的分析,能使问题得到 直观具体的解决,这就是数形结合的思想.
① 数 轴 的 应 用 : 如 A={x|x>-1}, B={x|x<a},求A∩B时,利用数轴易知:(ⅰ)
若a≤-1,则A∩B= ;若a>-1,则A∩B=(-
1,a);
于集合U的补集为⑩
.
UA
3
(4)集合A与集合B的交集的意义
是 11 {x|xA,且xB} .
(5)集合A与集合B的并集的意义
是 12 {x|xA,或xB} .
答案:①确定性、互异性、无序性;
②;③ ;④N、Z、Q、R、C;⑤列举法、
描述法、图示法;⑥ ;⑦; ⑧子集;⑨非
空12 {集x|合x;A⑩,或xUA ;B}
②若a<0,则N={x|x< 1 },此时不可能
有N M成立.
a
综上,实数a的取值范围为[0,1].
17
【评注】对于以含参不等式的解为元素 的集合,也是不确定的集合,需要对参数进 行分类处理.分类讨论的一般程序为:①依题 目信息确定分类标准;②在这个标准下合理 分类;③逐类讨论;④综合求解.在这类集合 问题中,如果不确定的集合是某集合的子集, 应当先考虑空集的情况,如果不确定的集合 包含一个非空集合,显然不需要考虑空集.本
若N M,求实数a的取值范围.
集合N表示不等式ax>1的解集.由于 a∈R,所以集合N是不确定的集合.
又N M,所以首先应考虑N= 的情况, 然后讨论N≠时,a的取值范围.
16
(1)当N= 时,易知a=0;
(2)当N≠时,
①若a>0,则N={x|x> 1 }.
由N M,有1a≥1,解得0a<a≤1;
② {(x,y)|y=x+1} .
10
2.集合中的元素的性质 (1)若a∈{1,2,a2},则a=③ 0、2 .(2) 集 合 {x|-1<log2x<2,x∈Z} 用 列 举 法 表 示 为 ④ {1,2,3} . ( 3 ) 已 知 A={0,1 , 2 , 3 , … , 10} , B={y|y=2x,x∈A} , 则 集 合 B 中 各 元 素 的 和 是 ⑤ 2047 .
题中,若把N M换成N M,则考虑空集就
没有必要了.
18
记关于x的不等式 为P,不等式|x-1|≤1的解集为Q.
x x
a1<0的解集
(1)若P Q,求实数a的取值; (2)若Q P,求实数a的取值范围.
(1)集合Q={x|0≤x≤2}.
因为PQ,只有当P为空集时成立,所以a=-1.
(2)当a>-1时,集合P={x|-1<x<a}.
B={x|x>1},则A∩ U B =( )
A.{x|0≤x<1}
B.{x|0<x≤1}
C.{x|x<0}
D.{x|x>1}
答案:B
34
2.(2009·广东卷)已知全集U=R,则正 确表示集合M={-1,0,1}和N={x|x2+x=0}关 系的韦恩(Venn)图是( )
由N={x|x2+x=0}={-1,0},得N M, 故选B.
{
关系的式子中错误的是( D )
A.∈{}
C. ≠{}
B. {}D. {} Nhomakorabea}之间
{ }是以 做为元素的单元素
集,把 看成集合,则B、C正确,把 看
成元素,则A正确,D错误,故选D.
8
5.集合A={(x,y)|y≥|x-2|},B={(x,y)
|y≤-x+b}. 若 A∩B≠ , 则 b 的 取 值 范 围
由于Q P,所以a>2(等号不成立);
当a<-1时,集合P={x|a<x<-1},不合题意.
所以,当Q P时,a∈(2,+∞).
19
题型3 集合的基本运算 设集合A={x|x2-3x+2=0},
B={x|x2+2(a+1)x+(a2-5)=0}. (1)若A∩B={2},求实数a的值; (2)若A∪B=A,求实数a的取值范围; (3)若U=R,A∩( U B )=A,求实数a