PKPM钢结构框架实例(多高层篇)
钢结构pkpm讲解
钢框架结构PKPM讲解(2010版)一、钢结构→框架→三维模型与荷载输入1、轴线输入→正交轴网(对于柱网比较规则的结构)→轴线命名(按屏幕提示操作)2、楼层定义→柱布置、梁布置注意:关于次梁的布置有两种方法,即“次梁按主梁输”、“次梁按次梁输”。
“次梁按主梁输”,次梁与主梁连接方式为刚接,梁的相交处会形成无柱联接节点,节点又把一跨梁分成一段段的小梁,导致整个平面的梁根数和节点数会增加很多;因为划分房间单元是按梁进行的,因此整个平面的房间碎小,数量众多。
“次梁按次梁输”,次梁以两端铰接的形式传力至其承重梁,次梁端点不形成节点、不切分主梁,次梁与次梁之间也不形成节点,这时可避免形成过多的无柱节点,整个平面的主梁根数和节点数大大减少,房间数量也大大减少。
因此,当工程规模较大而节点,杆件或房间数量可能超出程序允许范围时,将“次梁按次梁输”可有效地、大幅度减少节点、杆件和房间的数量。
次梁按主梁输和按次梁输,在跨度相差不大时其差别影响不大,但当跨度相差较大时支座负弯矩相差较大,“次梁按次梁输”配筋偏小。
因此,建议在跨度相差不大的情况下“次梁按主梁输”还是合理的;但当跨度相差较大时还是不要嫌麻烦,将“次梁按次梁输”结果较为合理。
注意:通常非主要承重构件(填充墙、楼梯、阳台、雨棚、挑檐、空调板等)在整体建模时不用输入,秩序考虑其荷载即可。
3、构件删除(删除多余构件)4、偏心对齐→柱与梁齐(根据屏幕提示操作)5、截面显示→柱显示、主梁显示、次梁显示(以检查截面输入是否正确)6、楼层定义→本层修改→主梁查改(用于楼梯间梁降标高)7、此项执行完毕后,点击第三个按钮,以检查框架结构是否有误8、楼板生成→生成楼板→修改板厚→压板布置(按屏幕提示操作)修改板厚:设置楼梯间板厚为0,即该房间没有楼板,但是可以设置楼板面荷载及导荷方式压板布置:无论布置还是需要删除压板,执行完压板布置或是压板删除命令后,都需要再执行一次“生成楼板”命令9、、荷载输入→恒活设置(输入楼面荷载前必须先生成楼板)恒载:一般是根据建筑图上楼面的做法来计算,恒载取值也不一样,在计算恒载时,还要考虑楼下是否有吊顶等。
pkpm框架结构总信息输入示例
总信息..............................................结构材料信息: 钢砼结构..........按主体结构材料填写混凝土容重(kN/m3): Gc = 28.00.....应考虑构件装修重量,建议取28kN/m3钢材容重(kN/m3): Gs = 78.00.....一般取78kN/m3(没有计入构件装修重量)水平力的夹角(Rad): ARF = 0.00.....一般取0(地震力.风力作用方向,反时针为正);当结构分析所得的[地震作用最大的方向]>15度时,宜将其角度输入补充验算地下室层数: MBASE= 0.....无地下室时填0竖向荷载计算信息: 按一次性加荷计算方式......多层取[一次性加载];高层取[模拟施工加载1],《高规》5.1.9条,高层框剪基础宜取[模拟施工加载2]风荷载计算信息: 计算X,Y两个方向的风荷载....选[计算风荷载]地震力计算信息: 计算X,Y两个方向的地震力....选[计算水平地震力],《抗规》5.1.1条(强条)特殊荷载计算信息: 不计算............一般情况下不考虑结构类别: 框架结构..........按结构体系选择裙房层数: MANNEX= 0.....无裙房时填0转换层所在层号:MCHANGE= 0.....无转换层时填0墙元细分最大控制长度(m) DMAX= 2.00.....一般工程取2.0,框支剪力墙取1.5或1.0墙元侧向节点信息: 内部节点........…..剪力墙少时取[出口],剪力墙多时取[内部],[出口]精度高于[内部],参见《手册》是否对全楼强制采用刚性楼板假定是.............计算位移与层刚度比时选[是],《高规》5.1.5条;计算内力与配筋及其它内容时选[否]风荷载信息..........................................修正后的基本风压(kN/m2): WO = 0.30 ....取值应≥0.3 kN/m2,一般取50年一遇(n=50),《荷规》7.1.2(强条),附录D.4附表D.4地面粗糙程度: B 类.............有密集建筑群的城市市区选[C]类;乡村、乡镇、市郊等选[B]类,指有密集建筑群且房屋较高的城市市区D类;A 类指近海海面和海岛、海岸、湖岸及沙漠地区;详《荷规》7.2.1条结构基本周期(秒): T1 = 0.06.....宜取程序默认值(按《高规》附录B公式B.0.2);规则框架T1=(0.08-0.10)n,n为房屋层数,详见《高规》3.2.6条表3.2.6-1注;《荷规》附录E;体形变化分段数: MPART= 1.....体形无变化填1各段最高层号: NSTi = 6.....按各分段内各层的最高层层号填写各段体形系数: USi = 1.30.....《荷规》7.3.1表7.3.1;高宽比不大于4的矩形、方形、十字形平面取1.3,详见《高规》3.2.5条地震信息............................................振型组合方法(CQC耦联;SRSS非耦联) CQC....….《抗规》3.4.3条,5.2.3条;《高规》3.3.1条2款;一般工程选[耦联],规则结构用[非耦联]补充验算计算振型数: NMODE= 9.....《抗规》5.2.2条2款,5.2.3条2款;《高规》5.1.13条2款;参见《手册》;[耦联]取3的倍数,且≤3倍层数,[非耦联]取≤层数,参与计算振型的[有效质量系数]应≥90%地震烈度: NAF = 7.00.....《抗规》1.0.4条,1.0.5条,3.2.4条,附录A场地类别: KD = 2.....《抗规》4.1.6条表4.1.6(强条);见地勘报告设计地震分组: 二组........《抗规》3.2.4条,附录A特征周期TG = 0.40.....II类场地一、二、三组分别取0.35s、0.40s、0.45s,《抗规》3.2.3条,5.1.4条表5.1.4-2(强条)多遇地震影响系数最大值Rmax1 = 0.08.....7度取0.08,《抗规》5.1.4条表5.1.4-1(强条)罕遇地震影响系数最大值Rmax2 = 0.50.....7度取0.50,《抗规》5.1.4条表5.1.4-1(强条)框架的抗震等级: NF = 3.....7度H≤30m取3,《抗规》6.1.2条表6.1.2(强条)剪力墙的抗震等级: NW = 2.....7度框剪取2,《抗规》6.1.2条表6.1.2 (强条)活荷质量折减系数: RMC = 0.50.....雪荷载及一般民用建筑楼面等效均布活荷载取0.5,详见《抗规》5.1.3条表5.1.3(强条)组合值系数周期折减系数: TC = 0.70.....框架砖填充墙多0.6-0.7,砖填充墙少0.7-0.8;框剪砖填充墙多0.7-0.8,砖填充墙少0.8-0.9;剪力墙 1.0;《高规》3.3.16条(强条),3.3.17条结构的阻尼比(%): DAMP = 5.00...砼结构一般取5.0;《抗规》5.1.5条1款;《高规》3.3.8条是否考虑偶然偏心: 否........单向地震力计算时选[是],多层规则结构可不考虑,《高规》3.3.3条;参见《手册》;是否考虑双向地震扭转效应: 是........一般工程选[是],此时可不考虑上条[偶然偏心];《抗规》5.1.1条3款(强条);《高规》3.3.2条2款(强条)斜交抗侧力构件方向的附加地震数=0.....无斜交构件时取0;《抗规》5.1.1条2款(强条);斜交角度>15应考虑;《高规》3.3.2条1款(强条)活荷载信息..........................................考虑活荷不利布置的层数从第 1 到6层.... 多层应取全部楼层;高层宜取全部楼层,《高规》5.1.8条柱、墙活荷载是否折减不折算............PM不折减时,宜选[折算],《荷规》4.1.2条(强条)传到基础的活荷载是否折减折算............PM不折减时,宜选[折算],《荷规》4.1.2条(强条)---------柱,墙,基础活荷载折减系数---------.....《荷规》4.1.2条表4.1.2(强条)计算截面以上的层号------折减系数1 1.00 《荷规》4.1.2条表4.1.2(强条)2---3 0.85 《荷规》4.1.2条表4.1.2(强条)4---5 0.70 《荷规》4.1.2条表4.1.2(强条)6---8 0.65 《荷规》4.1.2条表4.1.2(强条)9---20 0.60 《荷规》4.1.2条表4.1.2(强条)> 20 0.55 《荷规》4.1.2条表4.1.2(强条)调整信息........................................中梁刚度增大系数:BK = 2.00......《高规》5.2.2条;装配式楼板取1.0;现浇楼板取值1.3-2.0,一般取2.0梁端弯矩调幅系数:BT = 0.85......主梁弯矩调幅,《高规》5.2.3条;现浇框架梁0.8-0.9;装配整体式框架梁0.7-0.8梁设计弯矩增大系数:BM = 1.00......放大梁跨中弯矩,取值1.0-1.3;已考虑活荷载不利布置时,宜取1.0连梁刚度折减系数:BLZ = 0.70......一般工程取0.7,位移由风载控制时取≥0.8;《抗规》6.2.13条2款,《高规》5.2.1条梁扭矩折减系数:TB = 0.40......现浇楼板(刚性假定)取值0.4-1.0,一般取0.4;现浇楼板(弹性楼板)取1.0;《高规》5.2.4条全楼地震力放大系数:RSF = 1.00......用于调整抗震安全度,取值0.85-1.50,一般取1.00.2Qo 调整起始层号:KQ1 = 0......用于框剪(抗震设计时),纯框填0;参见《手册》;《抗规》6.2.13条1款;《高规》8.1.4条0.2Qo 调整终止层号:KQ2 = 0......用于框剪(抗震设计时),纯框填0;参见《手册》;《抗规》6.2.13条1款;《高规》8.1.4条顶塔楼内力放大起算层号:NTL = 0......按突出屋面部分最低层号填写,无顶塔楼填0顶塔楼内力放大:RTL = 1.00......计算振型数为9-15及以上时,宜取1.0(不调整);计算振型数为3时,取1.5九度结构及一级框架梁柱超配筋系数CPCOEF91 = 1.15.....取1.15,《抗规》6.2.4条是否按抗震规范5.2.5调整楼层地震力IAUTO525 = 1.....用于调整剪重比,《抗规》5.2.5条(强条)是否调整与框支柱相连的梁内力IREGU_KZZB = 0.....一般不调整,《高规》10.2.7条剪力墙加强区起算层号LEV_JLQJQ = 1.....《抗规》6.1.10条;《高规》7.1.9条强制指定的薄弱层个数NWEAK = 0.....强制指定时选用,否则填0,《抗规》5.5.2条,《高规》4.6.4条配筋信息........................................梁主筋强度(N/mm2): IB = 300......设计值,HPB235取210N/mm2,HRB335取300N/mm2;《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)柱主筋强度(N/mm2): IC = 300......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)墙主筋强度(N/mm2): IW = 210 .....《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)梁箍筋强度(N/mm2): JB = 210......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)柱箍筋强度(N/mm2): JC = 210......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)墙分布筋强度(N/mm2): JWH = 210......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)梁箍筋最大间距(mm): SB = 100.00......《砼规》10.2.10条表10.2.10;可取100-400,抗震设计时取加密区间距,一般取100,详见《抗规》6.3.3条3款(强条)柱箍筋最大间距(mm): SC = 100.00......《砼规》10.3.2条2款;可取100-400,抗震设计时取加密区间距,一般取100,详见《抗规》6.3.8条2款(强条)墙水平分布筋最大间距(mm): SWH = 200.00......《砼规》10.5.10条;可取100-300,《抗规》6.4.3条1款(强条)墙竖向筋分布最小配筋率(%): RWV = 0.30......《砼规》10.5.9条;可取0.2-1.2;抗震设计时应≥0.25,《抗规》6.4.3条1款(强条)设计信息........................................结构重要性系数: RWO = 1.00......《砼规》3.2.2条,3.2.1条(强条);安全等级二级,设计使用年限50年,取1.00柱计算长度计算原则: 有侧移............一般按[有侧移],用于钢结构梁柱重叠部分简化: 不作为刚域........一般不简化,《高规》5.3.4条,参见《手册》是否考虑P-Delt 效应:否................一般不考虑;《砼规》5.2.2条3款,7.3.12条;《抗规》3.6.3条;《高规》5.4.1条,5.4.2条柱配筋计算原则: 按单偏压计算......宜按[单偏压]计算;角柱、异形柱按[双偏压]验算;可按特殊构件定义角柱,程序自动按[双偏压]计算钢构件截面净毛面积比: RN = 0.85.....用于钢结构梁保护层厚度(mm): BCB = 25.00.....室内正常环境,砼强度>C20时取≥25mm,《砼规》9.2.1条表9.2.1,环境类别见3.4.1条表3.4.1,柱保护层厚度(mm): ACA = 30.00.....室内正常环境取≥30mm,《砼规》9.2.1条表9.2.1,是否按砼规范(7.3.11-3)计算砼柱计算长度系数: 否...一般工程选[否],详见《砼规》7.3.11条3款,水平力设计弯矩占总设计弯矩75%以上时选[是]荷载组合信息........................................恒载分项系数: CDEAD= 1.20.....一般情况下取1.2,详《荷规》3.2.5条1款(强条)活载分项系数: CLIVE= 1.40.....一般情况下取1.4,详《荷规》3.2.5条2款(强条)风荷载分项系数: CWIND= 1.40.....一般情况下取1.4,详《荷规》3.2.5条2款(强条)水平地震力分项系数: CEA_H= 1.30.....取1.3,《抗规》5.1.1条1款(强条),《抗规》5.4.1条表5.4.1(强条)竖向地震力分项系数: CEA_V= 0.50.....取0.5,《抗规》5.1.1条4款(强条),《抗规》5.4.1条表5.4.1(强条)特殊荷载分项系数: CSPY = 0.00.....无则填0,《荷规》3.2.5条注(强条)活荷载的组合系数: CD_L = 0.70.....大多数情况下取0.7,详见《荷规》4.1.1条表4.1.1(强条)风荷载的组合系数: CD_W = 0.60.....取0.6,《荷规》7.1.4条活荷载的重力荷载代表值系数: CEA_L= 0.50.....雪荷载及一般民用建筑楼面等效均布活荷载取0.5,详见《抗规》5.1.3条表5.1.3(强条)组合值系数剪力墙底部加强区信息.................................剪力墙底部加强区层数IWF= 1 .......取1/8剪力墙墙肢总高与底部二层高度的较大值,《抗规》6.1.10条,《高规》7.1.9条剪力墙底部加强区高度(m) Z_STRENGTHEN= 7.00.....取1/8剪力墙墙肢总高与底部二层高度的较大值,《抗规》6.1.10条,《高规》7.1.9条。
利用PKPM进行多层框架结构设计的主要步骤全
利用PKPM进行多层框架结构设计的主要步骤全利用PKPM 进行多层框架结构设计的主要步骤一、执行PMCAD 主菜单1,输入结构的整体模型(一)根据建筑平、立、剖面图输入轴线1、结构标准层“轴线输入”1)结构图中尺寸是指中心线尺寸,而非建筑平面图中的外轮廓尺寸2)根据上一层建筑平面的布置,在本层结构平面图中适当增设次梁3)只有楼层板、梁、柱等构件布置完全一样(位置、截面、材料),并且层高相同时,才能归并为一个结构标准层2、“网格生成”——轴线命名(二)估算(主、次)梁、板、柱等构件截面尺寸,并进行“构件定义”1、梁1)抗震规范第6.3.6条规定:b ≥2002)主梁:h = (1/8~1/12) l ,b =(1/3~1/2)h3)次梁:h = (1/12~1/16) l ,b =(1/3~1/2)h2、框架柱: 1/20~1/15层高1)抗震规范第6.3.1条规定:矩形柱b c 、h c ≥300,圆形柱d ≥3502)控制柱的轴压比cc c c f wnS f N A λγλ== λ——柱的轴压比限值,抗震等级为一到四级时,分别为0.7~1.0γ——柱轴力放大系数,考虑柱受弯曲影响,γ=1.2~1.4w ——楼面竖向荷载单位面积的折算值,w =13~15kN/m 2n ——柱计算截面以上的楼层数S ——柱的负荷面积 3、板楼板厚:h = l /40 ~ l /45 (单向板) 且h ≥60mmh = l /50 ~ l /45 (双向板) 且h ≥80mmh = l /12 悬壁板(三)选择各标准层进行梁、柱构件布置,“楼层定义”1、构件布置,柱只能布置在节点上,主梁只能布置在轴线上。
2、偏心,主要考虑外轮廓平齐。
3、本层修改,删除不需要的梁、柱等。
4、本层信息,给出本标准层板厚、材料等级、层高。
5、截面显示,查看本标准层梁、柱构件的布置及截面尺寸、偏心是否正确。
6、换标准层,进行下一标准层的构件布置,尽量用复制网格,以保证上下层节点对齐。
PKPM 设计参数- 钢结构新型结构-
PKPM 设计参数PKPM 设计参数楼层组装—设计参数a.总信息1.结构体系(框架,框剪,框筒,筒中筒,剪力墙,断肢剪力墙,复杂高层,砌体,底框)。
2.结构主材(钢筋混凝土,砌体,钢和混凝土)。
3.结构重要性系数(《高层混凝土结构技术规程》4.7.1 ,混凝土规范3.2.3)。
4.底框层数,地下室层数按实际选用。
5.梁柱钢筋的混凝土保护层厚度(《混凝土结构设计规范》表3.4.1及表9.2.1)。
6.与基础相连的最大楼层号,按实际情况,如没有什么特殊情况,取1。
7.框架梁端负弯矩调幅系数一般取(0.85—0.9)《高层混凝土结构技术规程》5.2.3条文中有说明。
b.材料信息1.混凝土容重取 26-27,全剪力墙取27,取25时需输入粉刷层荷载。
2.钢材容重取 78。
3.梁柱主筋类别,按设计需要选取。
优先采用三级钢,可以节约钢材。
SATWE设计参数a.总信息1.水平力与整体坐标夹角(度),通常采用默认值。
(逆时针方向为正,当需进行多方向侧向力核算时,可改变次参数)2.混凝土容重取 26-27,钢材容重取 78。
3.裙房层数,转换层所在层号,地下室层数,均按实际取用。
(如果有转换层必须指定其层号)。
4.墙元细分最大控制长度,这是在墙元细分时需要的一个参数,对于尺寸较大的剪力墙,在作墙元细分形成一定的小壳元时,为确保分析精度,要求小壳元的边长不得大于给定限值Dmax,程序限定1.0≤Dmax≤5.0 ,隐含值为Dmax=2.0 , Dmax对分析精度略有影响,但不敏感,对于一般工程,可取Dmax=2.0 ,对于框支剪力墙结构, Dmax可取略小些, 例如Dmax=1.5或1.0 。
5.对所有楼板强制采用刚性楼板假定(在计算结构位移比时选用此项,除了位移比计算,其他的结构分析、设计不应选择此项)。
6.墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”,则只把墙元因细分而在其内部增加的节点凝聚掉,四边上的节点均作为出口节点,墙元的边形协调性好,分析结果符合剪力墙的实际,但计算量大。
pkpm运用实例
楼梯梯段和休息平台传到休息平台 梯梁再传到框架柱的集中活载:
(3.75K N/m +1.7×2.5)×1.8=14.4KN
现浇扳的内力计算方法 ① 矩形板:
单向板 当两端铰支时,M中=gl2/8; 当一端铰支另一端固定时, M中=gl2/11;M支=gl2/14; 当两端固定时,M中=M支=gl2/16。 双向板(宽/ 长<3):按弹性理论计算弯矩, 取单块板计算其跨中和支座弯矩,对于中区格,按 四边固定;对于边区格和角区格,如是砖墙支座取 简支,如是梁或混凝土墙支座则取固定端计算。
楼梯梯段传到楼层梯梁的活载:
2.5×3/2=3.75KN/m
楼梯梯段和休息平台传到休息平台 梯梁再传到下层框架梁的集中恒载:
{[(0.15/2+0.12/0.894×25+(0.03×0.3+0.03×0.15)/0.3 ×20+17×0.02/0.894]×3/2+3.56×1.5/2+0.2×0.25 ×25+2×0.02×0.2×17}×(0.25×0.25×25+2×0.02 ×0.25×17)×1.65=22.97KN
楼梯梯段和休息平台传到休息平台梯 梁再传到下层框架梁的集中活载:
(2.5×3/2+2.5×1.5/2)×3/2=8.44KN
楼梯梯段和休息平台传到休息平 台梯梁再传到框架柱的集中恒载:
(9.32KN/m +3.56×1.7+0.25×0.25×25 +2×0.02×0.25×17)×1.8=22.97KN
总计 g k 3 .2 6 K N m 2
钢窗恒载:0 .4 5 K N m 2 木门恒载:0 .2 K N m 2
PKPM多高层钢结构设计
水平支撑加变截面柱
编辑课件
变截面梁柱
编辑课件
多层钢结构工业厂房
编辑课件
空间塔围结构
编辑课件
普通多层钢结构
编辑课件
普通多层钢结构
编辑课件
特殊工业钢结构
编辑课件
2。多层钢结构的分析模型
➢ 结构分析应满足相应的设计规范、规程。 ➢ 结构分析一般可以选择:弹性楼板、P-Δ效应、总
刚模型计算结构的振型、振型数应取得足够多满足 有效质量系数,等等。 ➢ 结构的振型分析,可以观察到结构的薄弱部位,应 尽量减少结构的面外振动、局部振动。
编辑课件
➢ 层间位移:抗震规范规定,当地震力作用下的位 移应小于1/300,当为高层钢结构时,可以放松到 1/250。同时还应考虑舒适度的要求,控制顶点的 加速度值。。
➢ 有侧移无侧移:1。当楼层最大杆间位移小于 1/1000时,可以按无侧移设计;2。当楼层最大 杆间位移大于1/1000但小于1/300时,柱长度系数 可 以 按 1.0 设 计 ; 3 。 当 楼 层 最 大 杆 间 位 移 大 于 1/300时,应按有侧移设计。
编辑课件
吊车内力的预组合目标
➢ 吊车柱预组合目标共14项: ➢ (1)Vxmax(2)Vymax(3)+Mxmax(4)-Mxmax ➢ (5)+Mymax(6)-Mymax(7)Nmax+Mxmax ➢ (8)Nmax-Mxmax(9)Nmax+Mymax ➢ (10)Nmax-Mymax(11)Nmin+Mxmax ➢ (12)Nmin-Mxmax(13)Nmin+Mymax ➢ (14)Nmin-Mymax ➢ 吊车荷载作用下梁的预组合目标为: ➢ (1)+Mmax/T(2)-Mmax/T(3)-Vmax/N
PKPM框架设计实例
砼的重度,程序缺省值为253,由于与程序可 以根据梁柱截面尺寸计算构件自重,故一般 框架结构工程中输入的荷载不包括梁,柱,墙 自重,亦不包括其粉刷重,对柱,墙来讲,取253 则偏小,应根据工程情况,考虑粉刷,取26-283 为宜,本工程取263。
二、结语
由本工程的结构设计,我们可以看到,地震 作用比较复杂,而计算时只是简单地变任意方向 为两个主轴方向,变弹塑性分析为弹性分析。故 得出的结论不一定与实际情况完全相符。所以我 们在认真计算的基础上还应重视概念设计,采取 有效的构造措施等等。另外,我们还应从结构的 整体着眼,针对一些薄弱环节如应力集中部位, 连接节点,主要抗侧力构件等进行加强处理。综 上所述个人总结了以下几点:
(2)像本工程这种住宅楼选用主次梁楼盖能实现居家对各种 不同功能房间的不同布局的要求。从上文的分析中很明显 就可以看出:
(a)柱网设计成矩形比设计成正方形更合理。另一方面
选择短跨为主梁长跨为次梁可以创造一个较小的楼盖高度。
这对于提高房屋净高,尤其现在的商品住宅建筑非常重要。
2、梁设计
1.主次梁与柱网的合理布局 本工程做主次梁楼盖的柱网布置时优先选择的柱网
是矩形(除建筑有功能要求的以外)以短跨为主梁, 长跨为次梁,而且短跨与长跨的比例应小于0.75比 较经济,本工程一般比较常取0.65-0.7,这样设计出 来的主次梁截面高度能协调一致,从而保证楼盖的 结构高度最小. 本工程主次梁布局主要是依据墙下有梁的方案来定 的. 截面按计算手册确定。
一、结构选型
建筑物的结构设计,不仅要求具有足够的承载 力,而且必须使结构具有足够抵抗侧力的刚度,使结 构在水平力作用下所产生的侧向位移限制在规定 的范围内.基于上述基本原理,本工程综合分析了结 构的适用,安全,抗震,经济,施工方便等因素,选取了 合适结构方案.此结构为框架体系,由钢筋砼框架承 担竖向力和侧力.本钢筋砼框架刚度布置相对比较 均匀,在满足建筑功能情况下,尽量减少平面扭转对 结构的影响.
PKPM-设计参数--钢结构新型结构-
PKPM 设计参数PKPM 设计参数楼层组装—设计参数a.总信息1.结构体系(框架,框剪,框筒,筒中筒,剪力墙,断肢剪力墙,复杂高层,砌体,底框)。
2.结构主材(钢筋混凝土,砌体,钢和混凝土)。
4.底框层数,地下室层数按实际选用。
6.与基础相连的最大楼层号,按实际情况,如没有什么特殊情况,取1。
b.材料信息1.混凝土容重取 26-27,全剪力墙取27,取25时需输入粉刷层荷载。
2.钢材容重取 78。
3.梁柱主筋类别,按设计需要选取。
优先采用三级钢,可以节约钢材。
SATWE设计参数a.总信息1.水平力与整体坐标夹角(度),通常采用默认值。
(逆时针方向为正,当需进行多方向侧向力核算时,可改变次参数)2.混凝土容重取 26-27,钢材容重取 78。
3.裙房层数,转换层所在层号,地下室层数,均按实际取用。
(如果有转换层必须指定其层号)。
4.墙元细分最大控制长度,这是在墙元细分时需要的一个参数,对于尺寸较大的剪力墙,在作墙元细分形成一定的小壳元时,为确保分析精度,要求小壳元的边长不得大于给定限值Dmax,程序限定1.0≤Dmax≤5.0 ,隐含值为Dmax=2.0 , Dmax对分析精度略有影响,但不敏感,对于一般工程,可取Dmax=2.0 ,对于框支剪力墙结构, Dmax可取略小些, 例如Dmax=1.5或1.0 。
5.对所有楼板强制采用刚性楼板假定(在计算结构位移比时选用此项,除了位移比计算,其他的结构分析、设计不应选择此项)。
6.墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”,则只把墙元因细分而在其内部增加的节点凝聚掉,四边上的节点均作为出口节点,墙元的边形协调性好,分析结果符合剪力墙的实际,但计算量大。
若选“内部”则只把墙元上、下边的节点作为出口节点,墙元的其他节点均作为内部节点被凝聚掉,这时,带动口的墙元两侧边中部的节点为变形不协调点。
这是对剪力墙的一种简化模拟,其精度略逊于前者,但效率高,实用性好。
PKPM内部资料钢框架设计
STS-钢框架设计——
4.3 节点设计参数-螺栓排列
STS-钢框架设计——
4.4 节点设计参数-连接参数
d
t
B e R
STS-钢框架设计——
4.5 节点设计参数-全焊连接
STS-钢框架设计——
4.6 计算结果查看
计算结果详细输出 ➢ 翼缘对接焊缝计
算 ➢ 连接板与柱翼缘
连接焊缝计算 ➢ 梁净截面,连接
➢ 常用截面,双角钢,双槽钢,H形截面,箱形截面 ➢ 可采用焊缝连接,普通螺栓连接,高强度螺栓连接。 ➢ 支撑与梁柱连接 ➢ 支撑与梁连接 ➢ 支撑与柱脚连接 ➢ 支撑连接计算 ➢ 支撑节点施工图,出图方式 ➢ 支撑构件施工图
STS-钢框架设计——
5. 三维框架施工图
➢ 设计图适用于出设计图的单位 ➢ 节点图适用于出设计图的单位(设计院) ➢ 构件图适用于出详图的单位(制作单位) ➢ 平面布置图,立面布置图 ➢ 三维模型图 ➢ 钢材统计和高强度螺栓统计
M=Mf + Mw;Mf = M×If/I Mw = M-Mf
➢ 程序确定设计方法的原则:
➢ 未考虑计算地震时:
当If/I<0.7时,采用精确设计法 当If/I≥0.7时,采用常用设计法
➢ 考虑计算地震时,均采用精确设计法
STS-钢框架设计——
4.6.3 节点设计方法—铰接
➢ 梁端设计内力V ➢ 梁柱连接:
STS-钢框架设计——
4.7 节点修改 ➢ 类型修改:
针对单独的节点修改设计参数,连接形式 对修改的节点进行重新设计 全楼重新归并
➢ 节点修改:
修改设计结果(焊脚尺寸,连接板尺寸,螺栓数量排列等) 程序目前没有进行重新验算 全楼重新归并
➢ 修改的结果可以在施工图中体现出来
利用PKPM进行多层框架结构设计的主要步骤(精)
一、执行PMCAD主菜单1,输入结构的整体模型(一)根据建筑平、立、剖面图输入轴线1、结构标准层“轴线输入”1)结构图中尺寸是指中心线尺寸,而非建筑平面图中的外轮廓尺寸2)根据上一层建筑平面的布置,在本层结构平面图中适当增设次梁3)只有楼层板、梁、柱等构件布置完全一样(位置、截面、材料),并且层高相同时,才能归并为一个结构标准层2、“网格生成”——轴线命名(二)估算(主、次)梁、板、柱等构件截面尺寸,并进行“构件定义”1、梁1)抗震规范第6.3.6条规定:b≥2002)主梁:h = (1/8~1/12) l ,b=(1/3~1/2)h3)次梁:h = (1/12~1/16) l ,b=(1/3~1/2)h2、框架柱:1)抗震规范第6.3.1条规定:矩形柱bc、hc≥300,圆形柱d≥3502)控制柱的轴压比——柱的轴压比限值,抗震等级为一到四级时,分别为0.7~1.0——柱轴力放大系数,考虑柱受弯曲影响,=1.2~1.4——楼面竖向荷载单位面积的折算值,=13~15kN/m2——柱计算截面以上的楼层数——柱的负荷面积3、板楼板厚:h = l /40 ~ l /45 (单向板) 且h≥60mmh = l /50 ~ l /45 (双向板) 且h≥80mm(三)选择各标准层进行梁、柱构件布置,“楼层定义”1、构件布置,柱只能布置在节点上,主梁只能布置在轴线上。
2、偏心,主要考虑外轮廓平齐。
3、本层修改,删除不需要的梁、柱等。
4、本层信息,给出本标准层板厚、材料等级、层高。
5、截面显示,查看本标准层梁、柱构件的布置及截面尺寸、偏心是否正确。
6、换标准层,进行下一标准层的构件布置,尽量用复制网格,以保证上下层节点对齐。
(四)定义各层楼、屋面恒、活荷载,“荷载定义”1、荷载标准层,是指上下相邻且荷载布置完全相同的层。
2、此处定义的荷载是指楼、屋面统一的恒、活荷载,个别房间荷载不同的留在PM主菜单3局部修改(五)根据建筑方案,将各结构标准层和荷载标准层进行组装,形成结构整体模型,“楼层组装”1、楼层的组装就遵循自下而上的原则。
PKPM多高层结构分析和设计
PKPM多高层结构分析和设计PKPM(Pcon-Kangyuan Project Management System)是一种国内领先的建筑工程管理软件,广泛应用于建筑工程项目的设计、施工和监理过程中。
PKPM的高层结构分析和设计主要包括系统整体架构设计、模块划分和模块之间的交互设计。
下面将对PKPM的高层结构分析和设计进行详细阐述。
首先是系统整体架构设计。
PKPM的整体架构采用分层架构,主要分为三层:表示层(Presentation Layer)、应用层(Application Layer)和数据层(Data Layer)。
表示层负责用户界面的展示和交互,应用层负责业务逻辑的处理,数据层负责数据的存储和管理。
这种分层架构能够有效地将业务逻辑和数据进行分离,提高了系统的可扩展性和可维护性。
其次是模块划分。
PKPM的各个功能模块根据不同的业务需求进行划分,包括项目管理、资源管理、进度管理、成本管理、质量管理等。
每个功能模块都对应一个具体的业务功能,并且可以独立运行。
各个功能模块之间通过接口进行数据的传递和交互,实现了模块之间的解耦合。
再次是模块之间的交互设计。
PKPM中的各个功能模块之间存在着复杂的交互关系,需要进行良好的设计和协调。
通过定义接口和消息队列等机制,实现了模块之间的解耦合和协作。
例如,在项目管理模块中,可以创建和修改项目信息,并将这些信息同步到资源管理模块中,从而实现项目与资源的关联。
同时,通过消息队列的方式,实现了实时的数据传输和更新,确保了各个模块之间数据的一致性和准确性。
此外,PKPM还采用了模块化和面向服务的设计思想。
通过将系统功能进行模块化,可以实现对功能模块的独立拓展和更新,而不会对整个系统造成影响。
同时,采用面向服务的设计思想,可以将系统拆分为多个服务,并通过服务间的调用和通信实现复杂的业务逻辑。
这种设计思想不仅提高了系统的可扩展性和可维护性,还为系统的未来拓展和二次开发提供了便利。
钢结构PKPM抗震计算模型四
多高层计算书项目编号:多高层No.1项目名称:多高层目录一、设计依据 (4)二、软件信息 (4)三、结构模型概况 (4)1.总信息 (4)2.楼层信息 (5)3.支座信息 (5)4.材料信息 (6)5.活荷载折减 (7)6.地震信息 (8)7.风荷载信息 (8)8.调整信息 (9)9.设计信息 (9)四、工况和组合 (10)1.工况表 (10)2.组合表 (10)五、质量信息 (10)1.结构质量分布 (11)2.各层质心、刚心、偏心率信息 (12)六、荷载效应 (13)1.地震作用下的基底总反力 (13)2.支座工况反力表 (13)3.支座组合反力表-标准值 (17)4.支座组合反力表-设计值 (23)七、立面规则性 (30)1.楼层刚度 (30)2.楼层薄弱层调整系数 (31)3.各楼层受剪承载力 (32)八、抗震分析及调整 (33)1.结构周期及振型方向 (33)2.各地震方向参与振型的有效质量系数 (37)3.地震作用下楼层剪重比及其调整 (39)九、结构体系指标及二道防线调整 (41)1.竖向构件的倾覆力矩及百分比 (41)2.竖向构件地震剪力及百分比 (43)十、变形验算 (44)1.规定水平作用下的位移比验算 (44)2.地震作用下的楼层位移和位移角验算 (46)3.弹塑性层间位移角 (48)十一、风振舒适度验算 (49)十二、抗倾覆和稳定验算 (50)1.抗倾覆验算 (50)2.整体稳定刚重比验算 (50)十三、时程分析包络结果 (51)1.结构底部地震剪力包络结果 (51)2.楼层剪力包络结果 (51)3.楼层位移角包络结果 (53)4.楼层位移包络结果 (54)5.层间位移包络结果 (56)十四、构件验算结果统计 (58)1.钢构件、方钢管混凝土构件应力比统计 (58)十五、指标汇总 (59)一、设计依据《建筑结构荷载规范》GB50009-2012《建筑抗震设计规范》 (GB50011-2010)(2016年版)《钢结构设计规范》GB50017-2017二、软件信息3D3S14.0.0三、结构模型概况1.总信息结构材料信息:钢框架,无填充墙结构结构体系:框架结构结构重要性系数:1.00地下室层数:0嵌固端层号:0裙房层数:0转换层层号:0中梁刚度放大系数:按2010规范值取整体指标采用刚性楼板假定:是用于地震效应计算的连梁刚度折减系数:0.70地震位移自动按连梁刚度不折减计算:是2.楼层信息(一)楼层表3.支座信息支座类型说明:N:无约束 R:刚性约束 E:弹性约束D:支座位移 G:间隙约束4.材料信息(一)材料表(二)材料统计图(三)配筋信息(1) 梁、柱、支撑(2) 剪力墙5.活荷载折减楼面梁活荷载折减:不折减活荷载柱、墙活荷载折减:不折减活荷载6.地震信息地震作用计算依据:《建筑抗震设计规范》 (GB50011-2010)(2016年版)地震作用计算依据:7度(0.10g)场地类别:Ⅱ设计地震分组:第二组特征周期值:0.40多遇水平地震影响系数最大值:0.080罕遇水平地震影响系数最大值:0.500考虑抗侧力构件斜置地震作用:否反应谱:按规范周期折减系数:1.00计算振型数:15振型组合方法:CQC按双向地震作用考虑耦联:否计算竖向地震作用:否结构阻尼比:0.047.风荷载信息建筑结构类型:高层建筑房屋类型:钢结构参考点高度Z0(m):0.00基本风压:0.55(kN/m2)地面粗糙度:D风压高度变化修正系数η:1.00风荷载计算用阻尼比:0.02考虑顺风向风振影响:是考虑横风向风振影响:否基本周期T1来源:模态分析8.调整信息梁端负弯矩调幅:是框支柱调整系数上限5.00调整与框支柱相连的梁内力:否薄弱层刚度计算方法:抗规方法(V/u)进行最小减重比调整:是最小剪力系数:按《抗规》表5.2.5取值0.2V0调整:程序确定调整系数0.2V0调整系数上限:1.50与柱相连的框架梁端M、V调整:否9.设计信息按高层结构进行内力调整及设计:是考虑P-Δ效应:是仅考虑竖向荷载Pz的影响:否P-Δ力(几何刚度)来源:1.0恒+0.5活考虑框架结构缺陷(假想水平力):否考虑结构整体缺陷(屈曲模态):否框支剪力墙结构底部加强区框支柱、剪力墙抗震等级自动提高一级:否地下一层一下抗震构造措施的抗震等级逐层降低至抗震措施四级:否转换层指定为薄弱层:否钢柱计算长度按有侧移计算:是承载力设计时风荷载效应放大系数:1.009度结构及一级框架结构梁柱钢筋超配系数:1.15梁活荷载内力放大系数:1.00梁扭矩折减系数:0.40与剪力墙面外相连的梁按框架梁设计:是连梁按对称配筋设计:是柱剪跨比设计方法:通用方法(M/Vb0)框架柱的轴压比限值按纯框架结构采用:否构造边缘构件设计执行高规7.2.16-4:否约束边缘构件层全部设为约束边缘构件:否构造边缘构件尺寸设计依据:《抗规》GB50011-2010 第6.4.5条位移指标统计时考虑斜柱:是支撑临界角:15.00°四、工况和组合1.工况表2.组合表五、质量信息1.结构质量分布根据《高规》3.5.6条的规定,楼层质量沿高度宜均匀分布,楼层质量不宜大于相邻下部楼层的1.5倍。
PKPM结构设计软件入门与应用实例:钢结构框架(多高层篇)
需修改截面参数时,选择需修改的构件,再单击修改,进入“截面类型选择界面”图17,再按图18,操作完成修改。
需定义新截面时按上述图16至图18重新操作即可完成,如定义相同类型新截面时,还可选择与要定义的截面类型相同的已有截面,单击 ,进入截面参数定义界面,如图1-18,修改截面参数,单击 ,完成新截面定义。
本工程耐火等级一级,建筑类别为一类,建筑物使用年限100年。
结构类型:钢框架结构。
本地设防烈度6度,场地土类别二类。
楼板采用压型钢板非组合型楼板。
结构安全等级一级,建筑物抗震设防类别为乙类。
墙体材料:±0.000以上采用加气混凝土砌块,容重≤6kN/m3
基本分压:0.45kN/m2
基本雪压:0.40kN/m2
2.钢梁定义:选择梁布置进入梁定义的界面,如图1-19,单击 ,进入截面类型选择界面,如图1-17。
图1-19梁定义界面
本工程钢梁选用H型梁单击 ,进入截面参数定义界面,如图1-20。
图1-20截面参数定义界面
随后的操作与钢柱定义操作相同。
3.次梁布置:先在图1-19界面中定义好钢梁截面,选择次梁布置,进入次梁选择界面,如图1-19。选择所布置次梁截面后,单击 ,进入次梁布置界面,如图1-21。
图1-10五层~二十二层结构平面布置图
1.2平面建模
编者按:高层钢结构的在设计中的分析与钢筋混凝土高层结构的建模与结构分析操作过程类似,本书重点介绍的就是高层钢结构与钢筋混凝土高层结构PKPM应用的不同之处。
1.2.1建立工作目录
启动PKPM软件钢结构模块后,进入用户界面,如图1-11所示。
图1-11框架主界面
支撑:H250×380×16×20,H250×380×14×18
PKPM-多高层结构分析和设计pdf
5.2 地下室和人防的设计
1。设计参数分第1层和其他层,对最下一层的地下室其设计 调整系数按第1层的系数取用,其他层地下室按其他层系 数取用,±0层按第1层系数取用, ±0以上层按其他层系 数取用; 2。地下室考虑侧向土压力和水压力,此时土、水压力按: qs=hs wsγ qw=hw 三角形作用形式 其中:hs、hw----为土、水的深度;ws----为土的容重; γ ----为土的侧压力系数 当土、水同时作用时,还要减去水的浮力。 3。对有人防的内外临空墙,还有侧向人防荷载。人防侧向 荷载与侧向土、水压力综合为一个侧向均布力,对外墙和 临空墙作剪力墙平面外的水平、竖向分布筋的配筋; 4。人防的竖向力按活荷载分布规律分布,并作用在梁墙上, 所以结构必须计算活荷载; 5。人防设计只考虑人防层及以下层,人防以上层不考虑。
对于大多数一般的结构应选择第 3 种层刚度算法; 对于多层结构可以选择第 1 种层刚度算法; 对于有斜支撑的钢结构可以选择第 2 种层刚度算法。 转换层结构按照“高规”要求计算转换层上下几层的层 刚度比,一般取转换层上下等高的层数计算。 层刚度作为该层是否为薄弱层的重要指标之一,对结构 的薄弱层,规范要求其地震剪力放大1.15,这里程序将 由用户自行控制。
1.1 7层框架结构
风位移:1.57%;地震位移:16.2%;剪力系数:15.76%; 梁全楼配筋:4.6%;柱全楼配筋:15.1%。
1.2 18层框架剪力墙结构
风位移:-1.77%;地震位移:13.4%;剪力系数:9.81%; 梁全楼配筋:14.4%;柱全楼配筋:17.9%。
1.3 36层剪力墙结构
三、考虑P-△效应与柱长度系数
新规范对重力二阶效应做了明确的要求,程序采用精确 的弹性分析法,以解决二阶效应问题。由于二阶效应计算 较为复杂,新规范又给出了两种不同的简化算法,因此对 柱的计算长度系数就有三套,分别得到不同的计算长度系 数,这对柱的配筋也有影响。 1。考虑P-⊿效应,柱长度系数仍按要求计算; 2。按现浇楼板施工,考虑柱长度系数为1、1.25; 3。按新规范梁柱刚度比,计算柱长度系数,>1、>1.25。 第三种方法在结构复杂且又斜交梁时,采用简化的投影方 法,并没有考虑斜支撑的作用。