初二数学:分式
16.1 分式及其基本性质 课件-华师版数学八年级下册
感悟新知
知2-练
例2 x 满足什么条件时下列分式有意义?
(1)
2 x+1 5 x-3
;(2)
x
2 -1
;(3)
x+1 x2+3
;(4)
x-2
x-2 x+4
.
解题秘方:分母的值不等于0 时,分式有意义.
感悟新知
知2-练
(1)
2 x+1 5 x-3
;
解:当5x-3 ≠ 0,即x ≠
4 m
,-2
x
2, 3 5+y
,2 5
,x
2+y 6
2
,p2 p
,1 4
3
x-y
பைடு நூலகம்
,
2
x
x 3+3
,3a+b
2
, a-b a+b+c
.
知1-练
感悟新知
知1-练
解题秘方:利用分式的三要素判断即可,关键是分
母中是否含有字母.
解:分式有 4 , 3 ,p2 , a-b ; m 5+y p a+b+c
整式有-2x2,2,x2+y2 ,1 3x-y,3a+b .
第十六章 分式
16.1 分式及其基本性质
学习目标
1 课时讲解
分式的概念 分式有意义和无意义的条件 分式的值为 0 的条件 分式的基本性质 分式的约分 分式的通分
感悟新知
知识点 1 分式的概念
知1-讲
1. 定义:形如AB (A, B是整式,且B中含有字母, B≠ 0)
的式子,叫做分式 . 其中 A 叫做分式的分子, B 叫做
;
-3n (2) ;
8m
-3n - 3n ; 8m 8m
初二数学分式计算
初二数学分式计算初二数学(下): 分式的运算及分式方程一、基本运算1.计算 $17x^2y-9ab^3\div\frac{222x-6x+9x+2xy}{51xy}$,化简得 $\frac{17x^2y-9ab^3}{222x+2xy}$。
2.计算 $\frac{2}{x-4}-\frac{x}{x-3}\div(-x)$,化简得$\frac{2x-7}{(x-4)(x-3)}$。
3.计算 $\frac{-y}{xz}\div\frac{-x}{yz}$,化简得$\frac{y^2}{x^2}$。
4.计算 $\frac{24}{a-bab-a^2}\div\frac{22}{4a+abab-a}$,化简得 $\frac{12}{a+b}$。
5.计算 $\frac{4x^2-4xy+y^2}{2x-y}\div(4x^2-y^2)$,化简得 $\frac{1}{2x+y}$。
6.计算 $\frac{2x-y}{x+3y}\div\frac{2x-3y}{2-x}$,化简得$\frac{2-x}{3y}$。
7.计算 $\frac{2xy}{xy+a}+\frac{6}{a}-\frac{a}{a+3}-\frac{3}{a}$,化简得 $\frac{8xy+6a}{a(a+3)(xy+a)}$。
8.计算 $\frac{2}{2x+y}-\frac{x}{x-y}+\frac{y}{x+y}-\frac{y}{x}$,化简得$\frac{2x^2-xy-2y^2}{(2x+y)(x-y)(x+y)}$。
9.计算 $\frac{2}{x+y}-\frac{2}{x-y}+\frac{a}{x+y}-\frac{3a}{a-3}$,化简得$\frac{-2x+2y+4a}{(x+y)(x-y)(a-3)}$。
10.计算$\frac{x^2a^2+3a+12b^2}{1+12a-b}-(x-1)\div(a-1)$,化简得$\frac{x^2a^2+15a+12b^2-12bx+12b}{(1+12a-b)(a-1)}$。
八年级数学上册《分式》知识点归纳
分 式一、概念:定义1:整式A 除以整式B ,可以表示成BA的形式。
如果除式..B .中含有分母.....,那么称BA为分式。
(对于任何一个分式,分母不为0。
如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
分式:分母中含有字母。
整式:分母中没有字母。
而代数式则包含分式和整式。
)定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
定义3:分子和分母没有公因式的分式称为最简分式。
(化简分式时,通常要使结果成为最简分式或者整式。
)定义4:化异分母分式为同分母分式的过程称为分式的通分。
定义5:分母中含有未知数的方程叫做分式方程 定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。
二、基本性质:分式的基本性质:分式的分子与分母都.乘以(或除以)同.一个不等于零....的整式,分式的值不变。
三、运算法则:1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:b a ﹒d c =bdac)2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(用符号语言表示:b a ÷dc =b a ﹒cd =bcad) 分式乘除法的运算步骤:当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。
(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。
当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面. 最后的计算结果必须是最简分式或整式. 3、同分母分式加减法则是:同分母的分式相加减。
八年级上册分式
八年级上册分式
八年级上册数学中,分式是其中的一个重要内容。
分式是数学中表示数量关系的一种代数式,其分子和分母都是代数式,分母不能为0。
分式的知识点包括分式的定义、分式的性质、分式的约分、通分以及分式的运算。
以下是对这些知识点的详细解释:
1.分式的定义:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字
母,那么式子A/B就叫做分式,其中A称为分子,B称为分母。
2.分式的性质:
•分式的分子和分母同乘或除以同一个不为0的整式,分式的值不变。
即:BA =B×CA×C=BA÷C(C≠0)
•分式的符号变化规律:分子、分母、分式本身这三项,其中任何两项交换位置,分式不变。
3.分式的约分:把一个分式的分子和分母的公因数约去,这种变形称为分式的约
分。
约分的步骤是:找分子与分母的公因式;约去分子与分母的公因式。
4.分式的通分:通分就是把几个异分母的分式分别化为与原来的分式相等的同分
母的分式,这种变形称为分式的通分。
通分的步骤是:求出原来几个分式的最简公分母;根据等量代换的原则,把原来几个异分母的分式分别化为与原来的分式相等的同分母的分式。
5.分式的运算:包括加、减、乘、除等运算。
在进行这些运算时,要注意运算顺
序和运算法则。
初二数学分式知识点
初二数学分式知识点一、引言分式是初中数学中的重要概念,它在代数运算、方程求解以及后续的高中数学学习中都扮演着关键角色。
本文旨在总结初二数学中分式的基本概念、性质、运算规则以及应用实例,帮助学生掌握分式相关知识点。
二、分式的定义1. 分式:形如 \(\frac{a}{b}\) 的代数式,其中 \(a\) 称为分子,\(b\) 称为分母,\(b \neq 0\)。
2. 条件:分母不能为零,因为除以零没有定义。
三、分式的基本性质1. 等值变换:分式的分子和分母同时乘以或除以同一个非零数,分式的值不变。
2. 符号规则:分式的符号由分子和分母的符号决定,分子分母同号结果为正,异号结果为负。
3. 约分:通过找出分子和分母的最大公约数并约去,简化分式。
4. 通分:将多个分式转化为具有相同分母的分式,便于进行加减运算。
四、分式的运算规则1. 加减法:- 同分母分式相加减:分子相加减,分母不变。
- 异分母分式相加减:先通分,再按照同分母分式进行加减。
2. 乘法:- 分式的乘法:分子乘分子,分母乘分母。
3. 除法:- 分式的除法:将除数的分式取倒数,然后进行乘法运算。
4. 乘方:- 分式的乘方:分子和分母分别取方。
五、分式的解方程1. 一元一次方程:通过移项和化简分式,求解未知数。
2. 一元二次方程:在解一元二次方程时,要注意分式的化简和检验根。
六、分式的应用题1. 比例问题:利用分式表示比例关系,解决实际问题。
2. 工作问题:通过分式方程解决工作效率和工作时间的问题。
3. 浓度问题:使用分式计算溶液的稀释和浓缩。
七、常见题型与解题技巧1. 化简求值:熟练掌握分式的化简方法,准确求出分式的值。
2. 分式方程:注意检验解的有效性,避免出现除以零的情况。
3. 应用题:理解题意,找出等量关系,建立分式方程求解。
八、总结分式是初中数学的重要内容,掌握分式的性质和运算规则对于提高数学成绩至关重要。
通过不断的练习和应用,可以加深对分式概念的理解,提高解题能力。
初二数学知识点归纳初二数学笔记整理大全
初二数学知识点归纳初二数学笔记整理大全初中数学是我们学习数学的一个重要阶段。
在初二阶段,我们需要掌握更加深入的数学知识,为进一步的学习打下坚实的基础。
在本文中,我们将对初二数学知识点归纳,帮助大家更好地理解数学知识,提高数学成绩。
第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3、整数指数幂的加减乘除法4、分式方程及其解法第二章反比例函数1、反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/某(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形第四章四边形1、平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
初二数学八上第十五章分式知识点总结复习和常考题型练习.doc
第十五章分式二、知识概念:A1•分式:形如一,A 、B 是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫 B做分式的分子,3叫做分式的分母. 2. 分式有意义的条件:分母不等于0.3. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值 不变.4. 约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5. 通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6. 最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式. 7. 分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减•用字母表示为:a .b a±b—士 —— ---C C C⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同ci c ad + cb分母分式的加减法法则进行计算•用字母表示为: -±-=b d bd ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为n r CLC积的分母•用字母表示为:-x- = —b d bd⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字 e 士一“ a c a d ad 母表不为: 5 = —X —=b d bc be/ 、川n⑸分式的乘方法则:分子、分母分别乘方•用字母表示为:兰=二0丿b n8. 整数指数幕:列式实际问题分式类比分 数性质列方程{分氏丽目标分式基本性质|类比分数輕分式的运算去分每整式戈程H 标;-]分'式方程的解-检矍解整式方程转式方租的解Wa m xa H =a m+n 5、n是正整数)⑵(/)" = /"(加、斤是正整数)⑶(ah)n =a n h n(〃是正整数)⑷ a m a n = a tn^n(QH O, m> 刃是正整数,m> n)(5)[-| =—(〃是正整数)⑹b n(6)«-w =—(dH(), n 是正整数)a n9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).常考例题精选1. (2015 •宜昌屮考)若分式二有意义,则a的取值范围是() a+1A.a=0B. a=lC. aHTD. aHO2-(2015 •丽水中考)把分式方程丘三转化为-元-次方程时,方程两边需同乘A. xB. 2xC. x+4D. X (x+4)3.(2015 •宜宾中考)分式方程芫-令匕的解为()X2-9 x-3 x+3A. 3B. -3C.无解D. 3 或-34.(2015 •海南中考)今年我省荔枝喜获丰收,有甲、乙两块而积相同的荔枝园,分别收获荔枝8 600kg 和9 800kg,甲荔枝园比乙荔枝园平均每亩少60kg,问甲 荔枝园平均每亩收获荔枝多少kg?设甲荔枝园平均每亩收获荔枝xkg,根据题意, 可得方程()8 600 9 800 X X+60 8 600_9 800 x-60 x5-(2015 •河池中考)若分式幺有意义,则x 的取值范围是 --------------6. (2015 •白银中考)若代数式丄-1的值为零,则x 二X-1-----------------------7. (2015 •齐齐哈尔中考)若关于x 的分式方程三二壬-2有非负数解,则a 的取x-1 2x-2值范围是 ___________ .9. (2015 •连云港中考)先化简,再求值:_iv m^-Zmn+n^ 其中旷一3,旷5.m n/ mn10. (2015 -凉山州中考)某车队要把4000t 货物运到雅安地震灾区(方案定后,每天的运量不变).(1)从运输开始,每天运输的货物吨数n (单位:t )与运输时间t (单位:天)之间 有怎样的函数关系式?8 600 9 800 X X-60 8 600_9 800 x+60 x8. (2015 •呼和浩特中考)化简:(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成 任务,求原计划完成任务的天数.11. (2015 •重庆中考)先化简,再求值:(乎-岂片泊三石,其中x 是不等式 3x+7>l 的负整数解.12. (2015 •玉溪中考)某学校为鼓励学生积极参加体育锻炼,派王老师和李老师 去购买一些篮球和排球•回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?13. (2015 •娄底屮考)为了创建全国卫生城市,某社区要清理一个卫生死角内的 垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4 800元.已知 甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,>1.乙车每趟运费比甲 车少200元.(1) 求甲、乙两车单独运完此堆垃圾各需运多少趟? (2)若单独租用一台车,租用哪台车合算?李老师说:“用1000元购买的排球个数和 用1600元购买的蓝球个數相等:“篮球的单价比排球的单价多:・)元”1・(2015-黔西南州)分式七有意义,则x 的取值范围是()X 1A ・x>lB ・xHl C. x<l D ・一切实数 2 •下列各分式与?相等的是()db 2 b+2 ab a+bCQ3•下列分式的运算正确的是()a —3a -2A • a—2c B. a+2 C. ~a —3 [2_ 3 a +b —a+bB.= a+b3—a _____ 1 ^*a 2—6a+9 3 —a4 • (2015-泰安)化简(a+[二。
数学8年级上册分式方程
数学8年级上册分式方程一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。
在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。
因为解分式方程时可能产生增根,所以解分式方程时必须验根。
三、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.今日练习11.校运动会上,初二(3)班啦啦队买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为元,根据题意可列方程为:A.B.C.D.2.以下是解分式方程,去分母后的结果,其中正确的是:A.B.C. D .【参考答案】1.B若设甲种雪糕的价格为x元,根据等量关系“甲种雪糕比乙种雪糕多20根”可列方程求解解:设甲种雪糕的价格为x元,则甲种雪糕的根数:;乙种雪糕的根数:.可得方程:故选B考点:由实际问题抽象出分式方程2.B。
八年级数学上册分式知识点
八年级数学上册分式知识点八年级数学上册分式知识点在我们的学习时代,不管我们学什么,都需要掌握一些知识点,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
哪些才是我们真正需要的知识点呢?下面是店铺帮大家整理的八年级数学上册分式知识点,仅供参考,欢迎大家阅读。
八年级数学上册分式知识点1分式知识点1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。
3.分式值为零的条件:分式AB=0的条件是A=0,且B≠0.(首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。
)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为(其中A、B、C是整式),5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是确定几个式子的最简公分母。
几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。
求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。
6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。
约分的关键是找出分式中分子和分母的公因式。
(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;(2)找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。
新人教版八年级数学上册《分式》知识点归纳
新人教版八年级数学上册《分式》知识点归纳规则进行运算。
通分的方法是将各个分式的分母化为相同的多项式,然后将分子进行相应的乘法运算,最后再按同分母分式的加减法规则进行运算。
最后的计算结果必须化为最简分式或整式。
分式是数学中的重要概念之一,它表示了两个整式的比值,其中分母中含有字母的被称为分式,而分母中没有字母的则被称为整式。
分式的约分是指将分子和分母的公因式约去,化为最简分式或整式。
化异分母分式为同分母分式的过程称为分式的通分。
分式方程是指分母中含有未知数的方程,将其变形为整式方程时需要注意增根的情况。
分式的乘除法规则和同分母分式加减法规则都需要注意化为最简分式或整式的要求。
2x+1与2x+1的分母相同,则最简公分母为__________。
2.分式3x+2x-1的倒数为__________。
3.分式2x+1x-3的平方为__________。
4.分式2x+3x-1与分式x-42x-1的和为__________。
5.若分式a+bc与分式a-bc互为倒数,则a²-b²的值为__________。
6.若分式2x-1x-2的值等于分式3x+2x+1的值,则x的值为__________。
7.分式2x+1x-3与分式x-12x+5的差为__________。
8.若分式ab+c的值等于分式ba+c的值,则a:b:c的比值为__________。
9.若分式a+b2的值等于分式a-b3的值,则a:b的比值为__________。
10.分式2x-1x+2的平方根为__________。
二、选择题(每小题3分,共15分)1.下列关于分式的说法中,正确的是()A。
分式的分子和分母都是整式B。
分式的分母不能为0C。
分式的分子和分母都是单项式D。
分式的分子和分母都是多项式2.若分式a2b的值等于分式c3d的值,则()A。
ad=3bcB。
ac=2bdC。
ab=3cdD。
ad=2bc3.若分式ab+c的值等于分式ba+c的值,则a:b:c的比值为()A。
初二数学分式函数知识点整理
初二数学分式函数知识点整理分式函数是初中数学中的一个重要内容,本文将对初二数学分式函数的知识点进行整理和总结。
一、分式的定义与性质分式是由分子和分母组成的表达式,其中,分子和分母都是代数式。
分式可以表示两个整式之间的除法关系。
分式的形式可以是普通分式、整式分式和带分数等形式。
分式的性质包括:分式的值与分式的定义有关、分式的定义域、分式的相等与简化、分式的约分与通分,以及分式的加减乘除等运算性质。
二、分式函数的定义与性质分式函数是指含有分式形式的函数。
具体来说,分式函数是由一个分子是整式,分母是整式的有理函数所定义的函数。
分式函数在数学中起到了连接有理函数和代数函数的桥梁作用。
分式函数的性质包括:定义域、值域、奇偶性、单调性以及图像的特点等。
三、分式函数图像的绘制方法1. 首先,确定分式函数的定义域,并排除分母为零的情况。
2. 然后,确定分式函数的值域,可以通过求函数的极值来确定函数的变化趋势。
3. 接下来,绘制分式函数的图像,可以通过绘制关键点、画出特殊点的渐近线、寻找函数的极值点等方法来帮助绘制图像。
需要注意的是,当分式函数有分母为一次因式的平方时,可能会出现拐点。
四、分式函数的应用分式函数在实际生活中有着广泛的应用,特别是在经济学、物理学等领域。
1. 经济学中可以通过分式函数描述成本、利润、价格等变化规律。
2. 物理学中可以通过分式函数描述物体运动的位移、速度、加速度等变化规律。
五、分式函数的解与方程解分式函数的关键是将其化为整式方程。
可以通过以下步骤解决分式函数的方程:1. 将分式函数化为整式方程。
2. 化简方程,使其成为一元高次或低次整式方程。
3. 求解整式方程,得出解的集合。
六、分式函数的综合运用分式函数的知识点在数学中具有重要的综合性,能够与其他知识点相互结合,解决复杂的问题。
例如,在几何学中,可以通过分式函数知识点来解决比例问题,在代数学中,可以通过分式函数知识点来解决方程与不等式等问题。
八年级数学《分式》知识点
八年级数学《分式》知识点一、分式的概念形如 A/B(A、B 是整式,B 中含有字母且 B 不等于 0)的式子叫做分式。
其中 A 叫做分子,B 叫做分母。
理解分式的概念时,需要注意以下几点:1、分式的分母中必须含有字母。
例如:5/x 是分式,而 5/3 就不是分式,因为它的分母 3 是常数。
2、分母的值不能为 0。
如果分母 B 的值为 0,那么分式就没有意义。
3、分式是两个整式相除的商,其中分子是被除式,分母是除式。
4、整式和分式统称为有理式。
二、分式有意义的条件分式有意义的条件是分母不等于 0。
即:对于分式 A/B,当B≠0 时,分式有意义。
例如:对于分式 2/(x 1),要使其有意义,则x 1≠0,即x≠1。
三、分式的值为 0 的条件分式的值为 0 时,需要同时满足两个条件:1、分子等于 0,即 A = 0。
2、分母不等于 0,即B≠0。
例如:对于分式(x 2)/(x + 1),当 x 2 = 0 且 x +1≠0 时,分式的值为 0。
由 x 2 = 0 得 x = 2,又因为 x +1≠0,即x≠ 1,所以当 x = 2 时,该分式的值为 0。
四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不等于 0 的整式,分式的值不变。
即:A/B = A×M/B×M,A/B = A÷M/B÷M(M 为不等于 0 的整式)例如:将分式 2x/(3y)的分子分母同时乘以 2,得到 4x/(6y),分式的值不变。
利用分式的基本性质,可以进行分式的约分和通分。
五、约分把一个分式的分子和分母的公因式约去,叫做约分。
约分的关键是确定分子和分母的公因式。
确定公因式的方法:1、系数:取分子和分母系数的最大公约数。
例如:在分式 8x/12 中,8 和 12 的最大公约数是 4,所以分子分母同时除以 4 进行约分。
2、字母:取分子和分母相同字母的最低次幂。
例如:在分式 x²y/xy²中,相同字母是 x 和 y,x 的最低次幂是 1,y 的最低次幂是 1,所以公因式是 xy,约分后为 x/y。
初二数学分式讲解
初二数学分式讲解分式是数学中的一个重要概念,是沟通整数与分数的桥梁。
分式既可以在分数形式表示,也可以在分式形式表示,这种表达形式在数学中非常重要。
一、分式的定义分式定义为两个整式相除的商,分母中必须含有字母,分子、分母均为整式。
二、分式的基本性质1. 分式的分子和分母同乘(或除以)同一个不等于0的整式,分式值不变。
2. 分式的取值范围:分母不等于0。
三、分式的运算1. 约分:把一个分式的分子和分母的公因式约去,叫做分式的约分。
约分的步骤是:(1)如果分式的分子和分母都是单项式或者是几个单项式的积,则约去分子和分母中相同的因式或因子的幂的最低次幂。
(2)把分子、分母分解因式,并且约去分子和分母中的公因式。
2. 通分:几个异分母的分式通分时,取这几个分母的最小公倍数作为公分母,对各分式的分子、分母同乘相应的倍数。
3. 分式的加减法则:同分母的分式相加减,只把分子相加减,分母不变。
异分母的分式相加减,先通分,然后再加减。
4. 分数乘法法则:用分子乘整式或整式的计算结果做新分子的方法进行约分和化简。
5. 分数除法法则:把除法转化为乘法,再约分。
四、应用举例1. 解方程:如 x + 1/x = 3, x^2 + 1/x^2 = (x + 1/x)^2 - 2 = 3^2 - 2 = 7。
2. 解决实际问题:如已知某地的人口数量为 P,年增长率为 r,求 n 年后的人口数量,可采用复利公式 P(1 + r)^n。
五、注意事项1. 分式的约分和通分的依据是分数的基本性质。
2. 在进行约分和通分的操作时,要确保结果是最简形式。
3. 在解方程时,要注意对增根和假根的判断。
4. 在解决实际问题时,要注意单位的统一。
通过以上讲解,相信你对初二数学中的分式有了更深入的了解。
希望你在数学学习的道路上越走越顺利!。
八年级数学上册《分式》知识点归纳
分 式一、概念:定义1:整式A 除以整式B ,可以表示成的形式。
BA如果除式B 中含有分母,那么称为分式。
(对于任BA何一个分式,分母不为0。
如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
分式:分母中含有字母。
整式:分母中没有字母。
而代数式则包含分式和整式。
)定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
定义3:分子和分母没有公因式的分式称为最简分式。
(化简分式时,通常要使结果成为最简分式或者整式。
)定义4:化异分母分式为同分母分式的过程称为分式的通分。
定义5:分母中含有未知数的方程叫做分式方程定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。
二、基本性质:分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
三、运算法则:1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:﹒=)b a dc bdac2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(用符号语言表示:÷=﹒=)b a d c b a c d bcad 分式乘除法的运算步骤:当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。
(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。
当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面. 最后的计算结果必须是最简分式或整式.3、同分母分式加减法则是:同分母的分式相加减。
15.2.1 分式的乘除 课件 人教版数学八年级上册
3
(2)
a4b2 -3c2
;
3
a4b2 -3c2
=((-a43bc22))33=-a2172cb66;
知3-练
感悟新知
3
(3)
xy x-y
;
3
解:
xy x-y
=(x(x-y)y3)3=(xx-3yy3)3 ;
(4)
a2-b2 ab
2
.
a2-b2 ab
2=[(a+(ba)b(a)2-b)]2=(a+ba)22b(a2-b)2.
课堂小结
分式的乘除
分式的乘除 分式的乘方 转化 分式的乘法 转化 分式的除法
混合运算
感悟新知
知1-练
例 1 计算: (1)3xy2·145xy32;(2)65xy2·(-4xy2);(3)ab4+ab2b2·a62-a2bb2.
解题秘方:利用分式的乘法法则进行计算.
感悟新知
(1)3xy2·145xy32;
解:3xy2·145xy32=1152xx23yy2=45xy;
知1-练
(2)65xy2·(-4xy2);
算后再约分;
(2)若分子、分母中有多项式,可先对多项式分解因式,
看能否约分,再进行乘法运算;
(3)若分式乘整式,可把整式看成分母为1 的“分式”参
与运算.
感悟新知
知1-讲
特别解读 分式乘法运算的基本步骤: 1. 确定积的符号,写在积中分式的前面; 2. 运用法则,将分子与分母分别相乘,是多项式的要带括号; 3. 约分,将结果化成最简分式或整式.
感悟新知
例 4 [母题 教材P139练习T1]计算:
知4-练
(1)98ax2yb÷23xb·32axb3y2; (2)1-3x2-x+12x2÷(x+1)·x42--x1.
八年级数学知识点:分式的加减
八年级数学知识点整理:分式的加减分式的四则运算1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减。
用字母表示为:a/c±b/c=(a±b)/c2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进展计算。
用字母表示为:a/b ±c/d=(ad±cb)/bd3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
用字母表示为:a/b * c/d=ac/bd4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
a/b÷c/d=ad/bc(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c不管什么样的计算,其过程都是需要大家急躁和细心的。
一、约分与通分:1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;分式约分:将分子、分母中的公因式约去,叫做分式的约分。
分式约分的依据是分式的根本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。
约分的方法和步骤包括:(1)当分子、分母是单项式时,公因式是一样因式的最低次幂与系数的最大公约数的积;(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2.通分:依据分式的根本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的`最小公倍数、一样字母的最高次幂的全部不同字母的积;(2)假如各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;(3)通分后的各分式的分母一样,通分后的各分式分别与原来的分式相等;(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。
初二数学分式
初二数学分式初二数学分式:一、定义分式是数学中用来表示两个或多个数之间关系的代数表示方法,它由被除数和除数组成。
它可以表示分数、小数和无限不循环小数,因此也被称为“fraction”或“fractional”。
二、分式的表示用符号A/B表示分式,其中A是被除数,B是除数,两个数都不为0。
分式可以自由组合,常记作“a over b”。
当被除数和除数都是整数时,分式就是普通的分数。
三、加减运算(1)分式的加减运算需要首先将除数改为同一个数,称为同分母运算。
例如:(2/3) +(4/5)= (2 x 5/ 3 x 5) + (4 x 3/ 3 x 5) = 10/15 + 12/15 =22/15(2)若分母不相同,可以先将分式进行变形,使之拥有同一个分母,然后进行同分母运算。
例如:(2/3) + (1/4) ,先变形:(2/3) + (2/6) ,再同分母加减:(2 x 6/3 x 6) + (2/3 x 6) = 12/18 +4/18 = 16/18四、乘除运算(1)分式的乘除运算不需要改变分子、分母,只需要将分子分母分别进行乘除操作即可。
例如:(2/3) x (4/5) = (2 x 4/ 3 x 5) = 8/15(2)若乘除的是一个数,则被乘除数要乘除被除数和除数,用一个数去乘除一个分式,就是乘除了一个分式。
例如:5 x (2/3) = (5 x 2)/(5 x 3) = 10/15五、分式的几何意义分式的几何意义是指分式的乘除运算和几何图形的形状有关。
例如:(2/3) x (6/4) = (2 x 6)/(3 x 4) = 12/12 = 1,可以用三角形来表示,其中三角形的面积就是1,三角形的高度和底都是3,因此可以得出结果:2/3 x 6/4 = 1。
六、取分母与取分子取分母指当除数不为0时,可以将除数系数为1,称为取分母;取分子指当被除数不为0时,可以将被除数系数为1,称为取分子。
初二数学知识点--分子式
初二数学知识点-- 分子式1.分式的定义:假如 A、B 表示两个整式,而且 B 中含有字母,那么式子叫做分式。
分式存心义的条件是分母不为零,分式值为零的条件分子为零且分母不为零2.分式的基天性质:分式的分子与分母同乘或除以一个不等于 0 的整式,分式的值不变。
()3.分式的通分和约分:重点先是分解因式4.分式的运算:分式乘法法例:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法例:分式除以分式,把除式的分子、分母颠倒地点后,与被除式相乘。
分式乘方法例:分式乘方要把分子、分母分别乘方。
分式的加减法例:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变成同分母分式,而后再加减混淆运算 :运算次序和从前同样。
能用运算率简算的可用运算率简算。
5.任何一个不等于零的数的零次幂等于 1 ,即;当 n 为正整数时,(6.正整数指数幂运算性质也能够推行到整数指数幂.(m,n是整数)(1)同底数的幂的乘法:;(2)幂的乘方: ;(3)积的乘方:;(4)同底数的幂的除法:(a ≠ 0) ;(5)商的乘方: (); (b ≠ 0)7.分式方程:含分式,而且分母中含未知数的方程-- 分式方程。
解分式方程的过程,本质上是将方程两边同乘以一个整式(最简公分母),把分式方程转变成整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,所以分式方程必定要验根。
解分式方程的步骤:(1)能化简的先化简 (2) 方程两边同乘以最简公分母,化为整式方程; (3) 解整式方程; (4) 验根.增根应知足两个条件:一是其值应使最简公分母为 0,二是其值应是去分母后所的整式方程的根。
分式方程查验方法:将整式方程的解带入最简公分母,假如最简公分母的值不为 0,则整式方程的解是原分式方程的解;不然,这个解不是原分式方程的解。
列方程应用题的步骤是什么?(1) 审;(2) 设;(3) 列;(4) 解;(5) 答.应用题有几种种类;基本公式是什么?基本上有五种: (1) 行程问题:基本公式:行程 = 速度×时间而行程问题中又分相遇问题、追及问题. (2) 数字问题在数字问题中要掌握十进制数的表示法.(3) 工程问题基本公式:工作量 = 工时×工效. (4)顺流逆水问题v 顺流 =v 静水+v 水. v 逆水 =v 静水 -v 水.8.科学记数法:把一个数表示成的形式(此中,n 是整数)的记数方法叫做科学记数法.用科学记数法表示绝对值大于10 的 n 位整数时,此中10 的指数是用科学记数法表示绝对值小于 1 的正小数时 ,此中 10 的指数是第一个非 0 数字前方 0 的个数 (包含小数点前方的一个 0)精心整理,仅供学习参照。
八年级数学上册“第十五章分式”必背知识点
八年级数学上册“第十五章分式”必背知识点一、分式的定义与意义1. 分式的定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式,A为分子,B为分母。
整式是分母中没有字母的代数式,而分式是分母中含有字母的代数式。
2. 分式有意义的条件:分母不能为0,即B≠0时,分式A/B才有意义。
3. 分式无意义的条件:分母为0,即B=0时,分式A/B无意义。
二、分式的基本性质基本性质:分式的分子与分母同乘 (或除以)一个不等于0的整式,分式的值不变。
用式子表示为:若C≠0,则A/B = A×C / B×C。
约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
分子与分母没有公因式的分式叫做最简分式。
通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
最简公分母是取各分母所有因式的最高次幂的积作公分母。
三、分式的运算1. 乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
即:(a/b) ×(c/d) = ac/bd。
2. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
即:(a/b) ÷(c/d) = (a/b) ×(d/c) = ad/bc。
3. 乘方法则:分式乘方要把分子、分母分别乘方。
即:(a/b)^n = a^n/b^n (其中n为正整数)。
4. 加减法法则:同分母分式相加减,分母不变,把分子相加减。
即:(a/c) ±(b/c) = (a±b)/c。
异分母分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。
四、分式方程的解法定义:分母中含有未知数的方程叫做分式方程。
解法步骤:1. 去分母:把方程两边同乘以各分母的最简公分母,得到整式方程。
2. 解整式方程:解这个整式方程,得到整式方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。
这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。
二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。
解法较多,属于较难题,得分率较低。
【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。
2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。
【解题思路】1.把向量用OA ,OB ,OC 表示出来。
2.把求最值问题转化为三角函数的最值求解。
【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。
【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。
【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。
2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。
【解题思路】1.设出点的坐标,列出方程。
2.利用韦达定理,设而不求,简化运算过程。
3.根据圆的性质,巧用点到直线的距离公式求解。
【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。
即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。
题型分值完全一样。
选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。
3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。
四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。