二次函数存在性问题总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知,抛物线322

--=x x y 交x 轴于点A、B,交y 轴于点C. 1、线段最值 ①线段和最小

点P 是抛物线对称轴上一动点,当点P 坐标为多少时,PA+PC值最小.

A B

C

O x

y

②线段差最大

点Q 是抛物线对称轴上一动点,当点Q 坐标为多少时,|Q A-QC |值最大.

A B

C

O x

y

③线段最值

连接B C,点M是线段BC 上一动点,过点M 作M N//y 轴,交抛物线于点N ,求线段MN 的最大值及点N 的坐标.

A B

C

O x

y

N

M

变式①

点N是第四象限内抛物线上一动点,连接BN、CN,求BCN S ∆的最大值及点N 的坐标

A B

C

O x

y

N

变式②

点N 是第四象限内抛物线上一动点,求点N 到线段BC 的最大距离及点N 的坐标

A B

C

O x

y

N

M

2、等腰三角形的存在性问题

点D为抛物线322

--=x x y 的顶点,连接BC ,点P 是直线BC 上一动点,是否存在点P ,使△PAD 为等腰三角形,若存在,求出点P 的坐标,若不存在,说明理由.

A B

C

O

x

y

D

3、菱形的存在性问题

点D为抛物线322

--=x x y 的顶点,连接BC 点P 是直线B C上一动点,点Q 为坐标平面内一点,是否存在以A 、D 、P 、Q 为顶点的四边形是菱形,若存在,求出点P坐标,若不存在,说明理由.

A B

C

O x

y

D

4、平行四边形的存在性问题

点D 为抛物线322

--=x x y 的顶点,点M是抛物线上一动点,点N 为直线B C上一动点,是否存在以O、D、M 、N 为顶点的四边形是平行四边形,若存在,求出点M 坐标,若不存在,说明理由.

A

B

C

O x

y

D

5、直角三角形的存在性问题

点P 为抛物线322

--=x x y 的对称轴上的一动点,是否存在点P ,使△PBC为直角三角形,若存在,求出点P 的坐标,若不存在,说明理由.

A B

C

O x

y

6、等腰直角三角形的存在性问题

点M在线段BC 上,过点M 作MN 平行于x 轴交抛物线322

--=x x y 第三象限内于点N,点R在x 轴上,是否存在点R,使△MNR 为等腰直角三角形,若存在,求出点R 坐标,若不存在,说明理由.

A

B

C

O

x

y

M

N

7、相似的存在性问题

点D 为抛物线322

--=x x y 的顶点,点E 是OD与BC 的交点,点F 为x 轴上的一动点,是否存在点F ,使△B EF和△OCE 相似,若存在,求出点F 坐标,若不存在,说明理由.

A

B

C O x

y

D

E

相关文档
最新文档