最新多边形内角和教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形内角和教案
教学目标
【认知目标】
1、知道四边形、多边形、正多边形的定义,能够在图形中识别它们的有关概念。
2、解释并会验证四边形内角和、n边形的内角和,会应用它进行简单的计算和说理。
【能力目标】
1、通过多边形定义及内角和学习,增强类化推理和发散思维能力。
2、通过将多边形问题转化为三角形问题解决,使学生体会化归思想的应用方法,从而提高
分析问题和解决问题的能力。
【情感目标】
通过三角形和多边形之间的联系与区别的分析研究,培养学生辩证唯物主义观点和激发学生
学习几何的兴趣。
其中,以知识目标为主线,能力、情感目标渗透于知识目标中来体现。
确定此目标基于以下几点:新课程标准要求、教材编写意图,七年级学生实际、素质教育需要、布卢姆目标分类理论等。为完成教学目标,设计知识线、诱导线、思维线三线合一的教
学链。
二.教学重点、难点:
“多边形”在教材中起着承上启下的作用,它既是前面所学的“三角形”知识的应用,也是
后面学习用正多边形拼地板、各种特殊四边形的重要的预备知识。因此,本节课的教学重点是:多边形内角和。另外培养学生主动探究新知识的方法也是本节课的一个重点。三角形的三个顶点确定一个平面,所以三个顶点总是共面的。但四边形的四个顶点有不共面的情况,
又限于我们现在研究的是平面图形,所以在四边形定义中有“在平面内”这个条件,学生对
这一条件的理解是难点。
突出重点、化解难点的措施是:
(l)教师自制教具,操作演示;
(2)随时总结学习几何命题的一些规律,在得出结论前“引导分析”;
(3)本节课内容较多,但各部分知识之间的联系密切,为了便于学生学习,教学中既注重各
部分知识之间的联系,又注意保持各部分知识之间相对的独立性。使其条理清楚,层次分明;(4)利用表格使所学知识形成网络;
(5)设计有目的、有梯度、循序渐进的练习题组,强化训练。
三、教学过程
在教学中采用的教学流程,使学生对多边形的内角和经过引入──掌握──熟练──提高的
过程,既掌握知识,又提高能力,培养兴趣。
(一)创设情境
出示章头气象观测站平面图(多媒体展示)。
师:在小学里,我们学过三角形、长方形、正方形、平行四边形、梯形。在图中,同学们能
找出来吗?
学生观察图形,然后互相交流。
生答:能。
师指出:长方形、正方形、平行四边形、梯形都是四边形。而且都是特殊的四边形。
师导语:前面我们系统学习研究了三角形的有关知识。四边形是怎样定义的?有哪些性质?
在工农业生产及日常生活中有着哪些应用?本节课首先学习多边形的内角和。
点评利用现代化的教学手段“创设问题情境”可以有效地激发学生的好奇心和求知欲,使
学生很快进人角色。
(二)自主探究
1、四边形及多边形的定义
师:请同学们回忆三角形的定义。
生思考后答:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
师:请同学们类比三角形的定义尝试总结四边形的定义。
生独立思考,互相交流。
生答:……
学生回答不完整、不准确,同学之间可以给予提示,老师给予补充、指正。教师板书定义、
图形。
师强调:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形。
师质疑:在定义中,为什么要有“在平面内”这一条件呢?
学生思考,教师出示自制的空间四边形模型。
师:请同学们看老师这里的这个模型(空间四边形模型)。这个图形有几条边围成的?
生答:4条。
师追问:对!这4条边在同一平面内吗?
生答:不在。
师指出:这是一个空间四边形,即立体图形,立体几何我们将到高中系统学习。我们初中所
说的四边形都是平面图形。所以,在四边形的定义中,“在平面内”这一条件必备。
师质疑:同学们能给出五边形的定义吗?n边形(多边形)呢?
师指出:如果多边形的各边都相等,各内角也都相等,那么就称它为正多边形。如正三角形
(等边三角形)、正四边形(正方形)、正五边形等等。
点评借助于自制的直观教具,说明四边形定义中“在平面内”这一不可省略的条件,易于
学生理解,化解了本课时的难点。
2、四边形及多边形的有关概念
师质疑:我们知道三角形有三条边、三个角。那么四边形、五边形的有关概念有哪些?
生答:也有边、角。
师在黑板上四边形的图形中标出边、角。
师指出:如图的四边形用表示它的各个顶点的字母来表示,可以按照顶点的顺序,记作“四边形ABCD".
点评对于边、角这些能在图形中识别,而不要求学生掌握的描述性定义,采取学生类比的边、角表示方法来归纳,渗透类比的数学思想方法。
师:对角线的概念学生从字面即可理解。如图,连接线段AC,线段AC是四边形ABCD的对角线。即在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。
师:如下表(多媒体展示),请同学们口答。
生口答上面表中的空格内容。
师:同学们回答的非常好!
师指出:如图1的四边形的任何一边向两方延长,如果其他各边都在延长所得直线的同一旁,
这样的四边形叫做凸四边形。图2的四边形不是凸四边形。今后所说的四边形都是指凸四边形。
3、巩固性应用
师:请同学们口答下面的选择题。
(l)四边形的定义正确的是()。
A、由四条线段首尾顺次相接组成的图形
B、在平面内,由四条线段首尾顺次相接组成的图形
C、平面内,四个点所确定的图形
D、在平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形
(2)下列命题中正确的是()。
A、五边形中有两条对角线
B、如图3的四边形可以记作四边形ACBD
C、n边形有n条边、n个角
D、只有长方形和正方形是四边形
点评此处设计一组口答练习题,可以及时巩固四边形的定义和有关的概念。
(三)合作释疑
1、学生猜想四边形内角和是
师质疑:三角形的内角和是(出示教师用的教具──三角板),四边形的内角和是多少度?
生思考
师提示:长方形的每个内角都是多少度?正方形的每个内角呢?看看我们的书、本、桌面。
师:请同学们猜想一般四边形内角和的度数。
生答:四边形内角和是.(教师板书)
师肯定:同学们回答的非常好!我们小学学过的长方形的内角和是,正方形的内角和也是,由此我们猜测一般四边形内角和也是。
师指出:这个结论是否正确呢?我们要从理论上加以验证。
点评以小学学过长方形、正方形的每个内角都是为依托,猜想一般四边形内角和的度数。
向学生渗透由具体到抽象、由特殊到一般的数学思想方法。
2、探索研究解释的方法,并交流不同方法
师质疑:怎样说明四边形内角和是呢?
师指出:处理复杂问题普遍实用的方法,就是把未知转化为已知,用已有知识研究新问题。
所以,研究四边形的问题可转化为已学过的知识去解决。
生答:三角形。
师:对!同学们回答的非常好!把四边形问题转化为三角形知识解决。
师追问:转化的关键?
生答:作辅助线。
点评研究四边形的问题可转化为三角形知识去解决,向学生渗透“化归”的数学思想方法。师:请同学们考虑说明的方法。
生独立思考──生生交流讨论(教师个别辅导)──生再独立思考。
师:请同学们说说各自的思路。
众生:如图4,连接AC……如图5,在BC边上任取一点P(也可在AB或CD或AD边上任取一点P),连接AP,DP……如图6,在四边形ABCD内任取一点O,连接AO,BO,CO,DO……如图7,在四边形ABCD外任取一点P,连接AP,BP,CP,DP……如图8,过D点作AB平行DP,交BC于P点……
师:同学们的思路都非常的好!你想到的是哪一种方法呢?
生:比较而言,应该说连接AC时说明的过程最好。
点评四边形内角和这一结论的解释说明是本节课的一个重点,添加辅助线是关键。本环节