高考数学二轮复习 专题5 平面向量 教案 文
高考数学第二轮复习 平面向量教学案
2011年高考其次轮专题复习(教学案):平面对量考纲指要:重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。
考点扫描:1.向量的概念:①向量;②零向量;③单位向量;④平行向量(共线向量);⑤相等向量。
2.向量的运算:(1)向量加法;(2)向量的减法;(3)实数与向量的积。
3.基本定理:(1)两个向量共线定理;(2)平面对量的基本定理。
4.平面对量的坐标表示。
5.向量的数量积:(1)两个非零向量的夹角;(2)数量积的概念;(3)数量积的几何意义;(4)向量数量积的性质;(5)两个向量的数量积的坐标运算;(6)垂直:假如与的夹角为900则称与垂直,记作⊥。
6.向量的应用:(1)向量在几何中的应用;(2)向量在物理中的应用。
考题先知:例1.已知二次函数f(x)=x2-2x+6,设向量a=(sin x,2),b=(2sin x,),c=(cos2x,1),d=(1,2).当x∈[0,π]时,不等式f(a·b)>f(c·d)的解集为___________.解:a·b=2sin2x+1≥1, c·d=cos2x+1≥1,f(x)图象关于x=1对称,∴f(x)在(1,+∞)内单调递增.由f(a·b)>f(c·d)a·b>c·d,即2sin2x+1>2cos2x+1,又∵x∈[0,π] ,∴x∈().故不等式的解集为().例2.求函数的值域.分析:由于向量沟通了代数与几何的内在联系,因此本题利用向量的有关学问求函数的值域。
解:由于,所以构造向量,,则,而,所以,得,另一方面:由,得,所以原函数的值域是.点评:在向量这部分内容的学习过程中,我们接触了不少含不等式结构的式子,如等。
类比一:已知,求的最值。
解:已知等式可化为,而,所以构造向量,则,从而最大值为42,最小值为8。
高考数学第二轮专题复习平面向量教案
高考数学第二轮专题复习平面向量教案一、本章知识结构:二、高考要求1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2、掌握向量的加法和减法的运算法那么及运算律。
3、掌握实数与向量的积的运算法那么及运算律,理解两个向量共线的充要条件。
4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。
7、掌握正、余弦定理,并能初步运用它们解斜三角形。
8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。
三、热点分析对本章内容的考查主要分以下三类:1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.3.向量在空间中的应用〔在B类教材中〕.在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。
对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。
本章的另一部分是解斜三角形,它是考查的重点。
总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。
考查的重点是基础知识和基本技能。
四、复习建议由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法那么、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。
高考数学知识点《平面向量》复习教案
高考数学知识点《平面向量》复习教案【小编寄语】查字典数学网小编给大家整理了2021届高考数学知识点«平面向量»温习教案,希望能给大家带来协助!平面向量的坐标运算一.温习目的:1.了解平面向量基本定理,了解平面向量的坐标概念,会用坐标方式停止向量的加法、减法、数乘的运算,掌握向量坐标方式的平行的条件;2.学会运用分类讨论、函数与方程思想处置有关效果。
二.主要知识:1.平面向量坐标的概念;2.用向量的坐标表示向量加法、减法、数乘运算战争行等等;3.会应用向量坐标的定义求向量的坐标或点的坐标及动点的轨迹效果.三.课前预习:1.假定向量 ,那么 ( )2.设四点坐标依次是,那么四边形为 ( )正方形矩形菱形平行四边形3.以下各组向量,共线的是 ( )4.点 ,且有 ,那么。
5.点和向量 = ,假定 =3 ,那么点B的坐标为。
6.设 ,且有 ,那么锐角。
四.例题剖析:例1.向量,,且,务实数的值。
小结:例2. ,(1)求 ;(2)当为何实数时,与平行,平行时它们是同向还是反向?小结:例3.点 ,试用向量方法求直线和 ( 为坐标原点)交点的坐标。
小结:例4.点及 ,试问:(1)当为何值时, 在轴上? 在轴上? 在第三象限?(2)四边形能否能成为平行四边形?假定能,那么求出的值.假定不能,说明理由。
小结:五.课后作业:班级学号姓名1. 且,那么锐角为 ( )2.平面上直线的方向向量,点和在上的射影区分是和,那么,其中 ( )2 -23.向量且,那么 = ( )(A) (B) (C) (D)4.在三角形中,,点在中线上,且,那么点的坐标是 ( )5.平面内有三点,且∥ ,那么的值是 ( )1 56.三点共线的充要条件是 ( )7.假设 , 是平面内一切向量的一组基底,那么以下命题中正确的选项是 ( )假定实数使,那么空间任一向量可以表示为,这里是实数对实数,向量不一定在平面内对平面内任一向量,使的实数有有数对8.向量,与方向相反,且,那么向量的坐标是_ ____.9. ,那么与平行的单位向量的坐标为。
【高三】2021届高三数学理科平面向量总复习教学案
【高三】2021届高三数学理科平面向量总复习教学案第四平面向量高考导航考试要求重难点击命题展望1.平面向量的实际背景和基本概念(1)了解向量的实际背景;(2)理解平面向量的概念和两个向量相等的含义;(3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义;(2)掌握向量乘法的运算和几何意义,理解两个向量共线的意义;(3)了解向量线性运算的性质及其几何意义.3.平面向量的基本定理及其坐标表示(1)了解平面向量的基本定理及其意义;(2)掌握平面向量的正交分解及其坐标表示;(3)会用坐标表示平面向量的加法、减法与数乘运算;(4)理解用坐标表示的平面向量的共线条4.平面向量的数量积(1)理解平面矢量量积的含义及其物理意义;(2)了解平面向量的数量积与向量投影的关系;(3)掌握量积的坐标表达式,能计算平面向量的量积;(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题;(2)能用矢量法解决一些简单的力学问题和其他实际问题本项目的重点:1.向量的各种运算;2.矢量坐标运算和数形结合的思想;3.向量的数量积在证明有关向量相等、两向量垂直、投影、夹角等问题中的应用.这个困难:1.向量的直角坐标运算在证明向量垂直和平行问题中的应用;2.矢量角公式和距离公式在求解平面矢量上两条直线之间的夹角和两点之间的距离时的应用,是现代数学中重要的基本数学概念之一。
它是沟通代数、几何和三角函数的工具。
它有着极其丰富的实践背景。
同时,它也是数形结合思想应用的典范。
正是因为向量具有几何形式和代数形式的“双重同一性”,它在高考中成为中学数学知识的交汇点,我们不仅关注向量本身的基本知识和方法,还经常与解析几何、三角函数、数列等进行综合考察在考试要求的层次上更加突出向量的实际背景、几何意义、运算功能和应用价值.知识网络4.1 平面向量的概念及线性运算典型案例分析题型一向量的有关概念[例1]以下命题:①向量的长度与的长度相等;② 如果向量a与向量B平行,则a和B的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④ 如果一个向量和一个向量共线,a,B,C和D必须在同一条线上其中真命题的序号是.[分析]① 对零向量和任意向量都是平行向量,但零向量的方向是任意的,所以② 这是错误的;③ 显然是错的;是共线向量,那么a,B,C和D可以在同一条线上或共面,但不在同一条线上,所以④ 因此,只有① 这是一个正确的命题【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.[variant training 1]以下内容:①a=;②(ab)c=a(bc)③-=;④ 在任意四边形ABCD中,如果n是AD的中点,n是BC的中点,则+=2;⑤a=(cosα,sinα),b=(cosβ,sinβ),且a与b不共线,则(a+b)⊥(a-b).正确的数字是()a.1b.2c.3d.4[分析]选择D.A=正确;(ab)c≠a(bc);-正确;如下图所示,=++且=++,将这两个公式相加,得到2=+,即命题④ 是正确的;因为a,b不共线,且a=b=1,所以a+b,a-b为菱形的两条对角线,也就是说,(a+b)⊥ (a-b)所以命题①③④⑤正确.问题类型2:与向量线性运算相关的问题【例2】如图,abcd是平行四边形,ac、bd交于点o,点在线段do上,且=,点n在线段oc上,且=,设=a,=b,试用a、b表示,,.【分析】在ABCD中,AC和BD在O点相交,所以=12=12(-)=12(a-b),=12=12(+)=12(a+b)。
2019-2020学年度高中数学第二章平面向量本章复习教案
——教学资料参考参考范本——2019-2020学年度高中数学第二章平面向量本章复习教案______年______月______日____________________部门本章复习知识网络教学分析向量的重要性可与函数相比,函数思想是整个中学数学的最重要的思想之一,它贯穿于整个中学的每一个学习阶段;而向量可作为一种重要的解题方法,渗透于高中数学的许多章节,它与函数、三角、复数、立体几何、解析几何等知识的联系是显而易见的.因此复习时,要特别重视向量概念、向量运算,并善于与物理中、生活中的模型进行模拟和联想,利用直观的教学手段和方法,帮助学生正确理解、掌握向量的有关概念、运算及几何意义.变抽象为形象,变被动接受为主动运用向量的知识分析问题、解决问题,从而提高本章复习的教学质量.数与形的紧密结合是本章的显著特点,向量与几何之间存在着对应关系;向量又有加减、数乘积及数量积等运算,也有平面向量的坐标运算,因而向量具有几何和代数的双重属性,能沟通几何与代数,从而给了我们一种新的数学方法——向量法.向量方法宜于把几何从思辩数学化成算法数学,将技巧性解题化成算法解题,因此是一种通法.在教学中引导学生搞清向量是怎样用有向线段表示的,掌握向量运算法则的基本依据,搞清向量运算和实数运算的联系和区别,认识向量平移是平面向量坐标运算的基础.将一个实际问题转化为向量之间的关系问题,用向量建立一个数学模型是一个难点问题.在复习课教学中应注意多举例,引导学生思考并及时总结,逐步培养学生用向量工具解题的思维方向.学习本章应注意类比,如向量的运算法则及运算律可与实数相应的运算法则及运算律进行横向类比.而一维情形下向量的共线条件,到二维情形下的平面向量基本定理,进而今后推广到三维情形下的空间向量基本定理,又可进行纵向类比.向量是数形结合的载体,在本章学习中,一方面通过数形结合来研究向量的概念和运算;另一方面,我们又以向量为工具,数形结合地解决数学和物理的有关问题.同时,向量的坐标表示为我们用代数方法研究几何问题提供了可能,丰富了我们研究问题的范围和手段.充分发挥多媒体的作用,向量是建立在平面上的,平移是向量的常见现象,而给学生直观、动态的演示能使学生理解、掌握问题.在复习完本章内容后,还要引导学生反思,重新概括研究思路,这样可以使学生体会数学中研究问题的思想方法,提升学生的数学思维水平.三维目标1.通过展示本章知识网络结构,列出复习提纲,引导学生补充相关内容,加深理解向量概念,平面向量的基本定理,两向量平行与垂直的条件,平面向量的坐标表示及其坐标运算,向量的数量积及其性质,向量的实际应用等知识.提高分析问题、解决问题的能力.2.通过本节对向量有关内容的复习,使学生进一步认识事物之间的相互转化.培养学生的数学应用意识.深刻领悟数形结合思想,转化与化归思想.3.通过一题多解的活动,培养学生的发散性思维能力,同时通过多种方法间的沟通,让学生体验数学的统一美、内在美,逐渐学会用美的心态来看待数学.重点难点教学重点:向量的运算,向量平行、垂直的条件,平面向量的坐标表示及其运算、数量积的理解运用.教学难点:向量的概念、运算法则的理解和利用向量解决物理问题和几何问题.对于本章内容的学习,要注意体会数形结合的数学思想方法的应用.课时安排2课时第1课时导入新课思路 1.(直接导入)前面一段,我们一起探究学习了向量的有关知识,并掌握了一定的分析问题与解决问题的方法,提高了我们的思维能力.这一节,我们一起对本章进行小结与复习,进一步巩固本章所学的知识,强化向量的综合应用.思路 2.(问题导入)由于向量具有几何形式和代数形式的双重身份,与代数、几何都有着密切的关系,因而成为中学数学知识网络的一个交汇点.在中学数学教材中的地位也越来越重要,也成为近几年全国及各省高考命题的重点和热点,根据你所学的本章知识解释一下,它是怎样具有代数、几何双重身份的?向量是怎样进行代数运算的?又是怎样进行几何运算的?你对向量的哪种运算掌握得最好?由此展开全章的复习.推进新课向量的概念、运算及其综合应用.活动:本章概念较多,学生可能不知如何进行复习,从头到尾重新翻看教材,学生兴趣不大,效果也不好.教师要点拨学生不仅要善于学习知识,而且还要善于归纳整理所学的知识.首先教师引导学生回忆从前所学,指导学生归类比较.比较是最好的学习方法,如向量的表示法有:几何表示法为,a(手写时为),坐标表示法为a=xi+yj =(x,y).有哪些特殊的向量:a=0 |a|=0.向量a0为单位向量|a0|=1.相等的向量:大小相等,方向相同.a=b (x1,y1)=(x2,y2) 等等.⇔⇔⇔⇔指导学生从代数运算和几何运算两方面展开思考归纳,引导学生把向量的运算类比数的运算.向量的加减法,数与向量的乘积,向量的数量积及其各运算的坐标表示和性质较杂乱,教师可以利用多媒体课件或投影仪打出下表让学生填写相关内容:运算类型几何方法坐标方法运算性质向量的加法1.平行四边形法则(共起点构造平行四边形)2.三角(多边)形法则(向量首尾相连)a+b=(x1+x2,y1+y2)a+b=b+a(a+b)+c=a+(b+c)AB→+BC→=AC→向量的减法三角形法则(共起点指向被减)a-b=(x1-x2,y1-y2)a-b=a+(-b)AB→=-BA→OB→-OA→=AB→数乘向量1.λa是一个向量,满足|λa|=|λ||a|.2.λ>0时,λa与a同向;λ<0时,λa与a异λa=(λx,λy)λ(μa)=(λμ)a(λ+μ)a=λa+μaλ(a+b)=λa+λba∥b⇔a=λb(b≠0)向;λ=0时,λa=0向量的数量积a·b是一个实数1.a=0或b=0或a⊥b时,a·b=02.a≠0且b≠0时,a·b=|a||b|cos〈a,b〉a·b=x1x2+y1y2a·b=b·a(λa)·b=a·(λb)=λ(a·b)(a+b)·c=a·c+b·ca2=|a2|,|a|=x2+y2|a·b|≤|a||b|本章的重要定理及公式:(1)平面向量基本定理:e1、e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1、λ2,使a =λ1e1+λ2e2.(2)两个向量平行的条件:a∥b(b≠0) 存在惟一的实数λ使得a =λb;⇔若a=(x1,y1),b=(x2,y2),则a∥b x1y2-x2y1=0(b可以为0).⇔(3)两个向量垂直的条件当a、b≠0时,a⊥b a·b=0 x1x2+y1y2=0.⇔⇔讨论结果:①~③略.例1已知a=(1,2),b=(-3,2),当k为何值时,(1)ka+b与a-3b垂直?(2)ka+b与a-3b平行?平行时它们是同向还是反向?活动:向量的垂直、平行关系是向量间最基本、最重要的位置关系,是高考考查的重要内容之一.在解决本题时,教师首先引导学生思考回顾,如何用数量积及有关的定理解决有关长度,角度,垂直的问题;共线的向量和平面向量的两条基本定理,揭示了共线向量和平面向量的基本结构,它们是进一步研究向量的基础,那么怎样应用向量共线这个条件呢?让学生通过例题仔细体会,进一步熟练、提高.解:(1)ka +b =k(1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4).当(ka +b)·(a-3b)=0时,这两个向量垂直. 由(k -3)×10+(2k +2)×(-4)=0,解得k =19, 即当k =19时,ka +b 与a -3b 垂直.(2)当ka +b 与a -3b 平行时,存在惟一实数λ, 使ka +b =λ(a -3b).由(k -3,2k +2)=λ(10,-4),得⎩⎨⎧k -3=10λ,2k +2=-4λ.这是一个以k 、λ为未知数的二元一次方程组.解这个方程组得k =-,λ=-,即当k =-时,ka +b 与a -3b 平行,这时ka +b =-a +b.因为λ=-<0,所以-a +b 与a -3b 反向.点评:向量共线的条件有两种不同的表示形式,但其本质是一样的,在运用中各有特点,解题时可灵活选择.在本例中,也可以根据向量平行条件的坐标形式,从(k -3)×(-4)-10×(2k+2)=0,先解出k =-,然后再求λ.变式训练1.已知向量a 、b 是两非零向量,在下列四个条件中,能使a 、b 共线的条件是( )①2a -3b =4e 且a +2b =-3e②存在相异实数λ、μ,使λa +μb =0 ③x a +y b =0(其中实数x 、y 满足x +y =0) ④已知梯形ABCD 中,AB →=a 、CD →=bA .①②B .①③C .②D .③④解析:A 、B 均含有①,而C 、D 均含有④,所以可先判定①或④.若①能使a 、b 共线,则只有从A 、B 中进一步作出选择,若①不能使a 、b 共线,则应从C 、D 中进一步作出选择.首先判定①能否使a 、b 共线.由向量方程组⎩⎨⎧2a -3b =4e ,a +2b =-3e ,可求得a =-17e ,b =-107e .∴b =10a .∴a 、b 共线,因此可排除C 、D.而由②可得λ、μ是相异实数,所以λ、μ不同时为0,不妨设μ≠0,∴b =-λμa ,故a 、b 共线,∴排除B ,选择A.答案:A2.设坐标平面上有三点A 、B 、C ,i 、j 分别是坐标平面上x 轴、y 轴正方向上的单位向量,若向量AB →=i -2j ,BC →=i +m j ,那么是否存在实数m ,使A 、B 、C 三点共线?解:方法一:假设满足条件的m 存在,由A 、B 、C 三点共线,即AB →∥BC →, ∴存在实数λ,使AB →=λBC →,i -2j =λ(i +m j ),⎩⎨⎧λ=1,λm =-2,∴m=-2,即当m =-2时,A 、B 、C 三点共线.方法二:假设满足条件的m 存在,根据题意可知:i =(1,0),j =(0,1),∴AB→=(1,0)-2(0,1)=(1,-2), BC →=(1,0)+m(0,1)=(1,m). 由A 、B 、C 三点共线,即AB →∥BC →, 故1×m-1×(-2)=0,解得m =-2. ∴当m =-2时,A 、B 、C 三点共线.例2如图1,已知在△ABC 中,=a ,=b ,=c.若a ·b =b ·c =c ·a.求证:△ABC 为正三角形.图1活动:引导学生回顾,向量具有二重性,一方面具有“形”的特点,因此有了几何运算;另一方面又具有一套优良的代数运算性质,因此又有了代数运算.对于这两种运算,前者难度大,灵活多变,对学生来说是个难点,后者学生感到熟悉,易于掌握,但应让学生明了,这两种方法都要掌握好,近几年高考题的解答都是以两种解法给出.本题给出的是三角形,对于某些几何命题的抽象的证明,自然可以转化为向量的几何运算问题来解决,请同学们在探究中要注意仔细体会,领悟其实质.教学中,教师要放手大胆地让学生自己去探究,鼓励学生从不同的角度去观察、去发现.真正做到一题多用,一题多变,串联知识、串联方法,使学生在探究过程中掌握了知识,提高了思维能力和复习效率.证法一:由题意得a +b +c =0,∴c=-(a +b). 又∵b·c=c·a,∴c·(a-b)=0.∴-a2+b2=0.∴|a|2=|b|2,即|a|=|b|. 同理可得|c|=|b|,∴|a|=|b|=|c|. ∴△ABC 为正三角形.证法二:由题意得a+b+c=0,∴a=-b-c,b=-a-c.∴a2=b2+c2+2b·c,b2=a2+c2+2a·c.而b·c=c·a(已知),∴a2-b2=b2-a2.∴a2=b2.∴|a|2=|b|2.∴|a|=|b|.同理可得|c|=|b|,∴|a|=|b|=|c|.∴△ABC为正三角形.证法三:如图2,以AB、BC为邻边作平行四边形ABCD,则=a,=-,图2∴=a-c.又∵a·b=b·c,∴b·(a-c)=0.∴b·=0.∴b⊥.∴平行四边形ABCD为菱形,∴AB=BC.同理可得BC=AC,∴△ABC为正三角形.证法四:取的中点E,连结AE,则→=(+)=(c-b),AE∴·a=(c-b)·a=0.∴⊥a.∴AB=AC.同理可得BC=AC,∴△ABC为正三角形.点评:本题给出了四种证法,教师要善于引导学生进行一题多解,这是一种很有效的办法.数学教学中,一题多解训练是培养学生思维灵活的一种良好手段.通过一题多解的训练能沟通知识之间的内在联系,提高学生应用所学的基础知识与基本技能解决实际问题的能力,逐步学会举一反三的本领,在教材安排的例题中,有相当一部分题目存在一题多解的情况.教师要引导学生善于挖掘.变式训练1.若AB →·BC →+AB →2=0,则△AB C 是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰直角三角形答案:A2.在四边形ABCD 中,AB →·BC →=BC →·CD →=CD →·DA →=DA →·AB →,试证明四边形ABCD 是矩形.证明:设AB →=a ,BC →=b ,CD →=c ,DA →=d ,∵a +b +c +d =0,∴a +b =-(c +d ).两边平方,得|a|2+2a·b +|b|2=|c|2+2c·d +|d|2,又a·b =c·d ,∴|a|2+|b|2=|c|2+|d |2.①同理|a|2+|d|2=|b|2+|c |2.②由①②得|a|2=|c|2,|d|2=|b |2,∴|a|=|c|,|d|=|b|,即AB =CD ,BC =DA.∴四边形ABCD 是平行四边形.于是AB →=-CD →,即a =-c .又a·b =b·c ,故a·b =b·(-a ),∴a·b =0.∴AB →⊥BC →.∴四边形ABCD 为矩形.点评:要证明四边形ABCD 是矩形,可以先证四边形ABCD 为平行四边形,再证明其一组邻边互相垂直.为此我们可以从四边形边的长度和位置两方面的关系来进行思考.例3已知a =(,-1),b =(,),且存在实数k 和t ,使得x =a +(t2-3)b ,y =-ka +tb 且x ⊥y.试求的最小值.活动:本例是一道平面向量综合应用的经典例题,具有一定的综合性,但难度不大,可以先让学生自己探究,独立地去完成.对找不到思路的学生,教师要引导学生注意挖掘题目中的隐含条件,然后根据垂直的条件列出方程,得出k与t之间的关系,再利用二次函数的知识来求最值.根据垂直的条件和坐标运算列方程是解决本例的关键.解:由已知,得|a|==2,|b|==1.∵a·b=×-1×=0,∴a⊥b.∵x⊥y,∴x·y=0,即[a+(t2-3)b]·(-ka+tb)=0.化简,得k=,∴=(t2+4t-3)=(t+2)2-,即t=-2时,有最小值-.点评:本题主要训练学生综合运用所学向量知识解决问题的能力,训练学生利用转化的思想以及建立函数模型的建模能力.变式训练1.如图3,M是△ABC内一点,且满足条件+2+3=0,延长CM交AB于N,令=a,试用a表示.图3解:∵=+,=+,∴由+2+3=0,得(+)+2(+)+3=0.∴+3+2+3=0.又∵A、N、B三点共线,C、M、N三点共线,由平行向量基本定理,设=λ,=μ,∴λ+3+2+3μ=0.∴(λ+2)+(3+3μ)=0.由于和不共线,∴∴⎩⎨⎧ λ=-2,μ=-1.∴=-=.∴=+=2=2a.2.将函数y =2x2进行平移,使得到的图形与抛物线y =-2x2+4x +2的两个交点关于原点对称,求平移后的函数解析式.解法一:设平移向量a =(h ,k),则将y =2x2按a 平移之后得到的图象的解析式为y =2(x -h)2+k.设M(m ,n)和M′(-m ,-n)是y =-2x2+4x +2与y =2(x -h)2+k 的两个交点,则解得或⎩⎨⎧ m =-1,n =-4.∴点(1,4)和点(-1,-4)在函数y =2(x -h)2+k 的图象上. ∴ ⇒⎩⎨⎧ h =-1,k =-4.故所求解析式为y =2(x +1)2-4,即y =2x2+4x -2.解法二:将y =2x2按向量a =(h ,k)平移,设P(x ,y)为y =2x2上任一点,按a 平移之后的对应点为P′(x′,y′),则故⎩⎨⎧ x =x′-h ,y =y′-k.∴y-k =2(x -h)2是平移之后的函数图象解析式.由消去y ,得4x2-4(h +1)x +2h2+k -2=0.又∵两交点关于原点对称,∴x1+x2=0,即=0,h =-1.又y1+y2=0,∴2x-4hx1+2h2+k +2x -4hx2+2h2+k =0.∴2(x+x)+4(x1+x2)=-4-2k.∴2(x1+x2)2+4(x1+x2)-4x1x2=-4-2k.∵x1x2=,x1+x2=0,∴-4×=-4-2k.∴k=-4.∴y=2(x+1)2-4,即y=2x2+4x-2.课本复习题1~6.1.先由学生回顾本节都复习了哪些向量知识,用了哪些方法,在原来的基础上你有哪些提高.对本章的知识网络结构了然于胸了吗?2.教师点拨,通过本节复习,要求大家在了解向量知识网络结构的基础上,进一步熟悉基本概念及运算律,并能熟练运用重要定理、公式解决一些综合问题,加强数学应用意识,提高分析问题、解决问题的能力.1.课本复习题7、8、9、10.2.每人搜集一道向量应用的题目或向量创新题.1.本节复习课的设计容量较大,要求应用多媒体课件.教师在引导学生探究的过程中,始终抓住向量具有几何与代数的双重属性这一特征和向量具有数与形紧密结合的特点.让学生在了解向量知识网络结构的基础上,进一步熟悉基本概念及运算律,并能熟练重要定理、公式的应用,并加强数学应用意识,提高分析问题、解决问题的能力.2.本设计教案中一题多解应用较多.因为在数学知识的学习中,作为扮演教学活动的组织者、引导者和合作者角色的教师,在组织学生学习各数学知识点的同时,如果能善于引导学生沟通各知识点之间的联系,不仅能达到激发学生的发散性思维和多角度的解题思路的目的,而且更重要的是通过注重多种方法间的联系与沟通,学生能深切感受到各种解题方法之间是有联系的,是相通的,而不是孤立的、割裂的,从而体会数学的统一美和简洁美,进一步增强对数学学习的兴趣,这样的美在一题多解中是随处可见的.一、备用习题1.下列四个等式中正确的是( )A.+=0B.=-OB→C.a·b-b·a=0D.(+)+++=AB→2.若直线y=2x按向量a平移得到直线y=2x+6,那么a( ) A.只能是(-3,0) B.只能是(0,6) C.只能是(-3,0)或(0,6) D.有无数个3.已知向量a=(3,4),b=(-3,1),a与b的夹角为θ,则tanθ等于( )A. B.-C.-3 D.34.已知三个点M(-1,0),N(5,6),P(3,4)在一条直线上,P分的比为λ,则λ的值为( )A. B.C.2 D.35.以A(2,7),B(-4,2),C(-1,-3)为顶点的三角形,其内角为钝角的是( )A.∠A B.∠BC.∠C D.不存在6.平面上有三个点C(2,2)、M(1,3)、N(7,k),若∠MCN=90°,那么k的值为…()A.6 B.7C.8 D.97.有下列五个命题:①若a≠0,且a·b=0,则b=0;②若a≠0,且a·b=b·c,则a=c;③若a2=b2,则a=b或a=-b;④(a·b)c=a(b·c);⑤若|a·b|=|a||b|,则a∥b.其中正确命题的序号是________.(请把你认为正确的命题的序号全部填上)8.已知P(1,cosx),Q(cosx,1),x∈[-,].(1)若用f(x)表示向量与的夹角θ的余弦,求f(x);(2)若t=cosx,将f(x)表示成t的函数φ(t),并求φ(t)的定义域.参考答案:1.D 2.D 3.C 4.C 5.B 6.B 7.⑤8.解:(1)∵=(1,cosx),=(cosx,1),与的夹角为θ,∴f(x)=cosθ===.(2)∵t=cosx,∴φ(t)=f(x)=.∵x∈[-,],观察余弦曲线y=cosx在[-,]上的图象可知,t =cosx∈[-,1],∴函数φ(t)的定义域为[-,1].二、关于一题多解培养学生思维的灵活性是数学教学工作者的一个重要教学环节,它主要表现在使学生能根据事物的变化,运用已有的经验灵活地进行思维,及时地改变原定的方案,不局限于过时或不妥的假设之中.因为客观世界时时处处在发展变化,所以它要求学生用变化、发展的眼光去认识、解决问题.数学教学中,一题多解的训练,是培养学生思维灵活的一种良好手段,通过一题多解的训练能沟通知识之间的内在联系,提高学生应用所学的基础知识与基本技能解决实际问题的能力,逐步学会举一反三的本领,在本节安排的例题中,多数采用了一题多解模式.通过一题多解的教学,不仅能使学生掌握新知识,还能起到复习巩固旧知识的作用,使学生对所学的方法有了更进一步的明确,同时能活跃课堂气氛,使学生对数学学习产生浓厚的兴趣,也培养了学生的一种钻研精神,使学生在思考问题上具有灵活性、多变性,避免了学生在公式、定理的应用中钻死胡同的现象.所以教师在教学过程中,要重视一题多解的教学,特别是在备课中要根据教学内容、学生情况适当地进行教材处理和钻研,要对知识进行横向和纵向联系,这样课堂效果才能做到丰富多彩.一题多解也是灵活应用所学知识、培养发散思维的有效途径和方法.充分运用学过的知识,从不同的角度思考问题,采用多种方法解决问题,这有利于学生加深理解各部分知识间的纵、横方向的内在联系,掌握各部分知识之间的相互转化,所以教师在教学过程中要多挖掘一些行之有效的一题多解的例题和习题,使学生的思维应变能力能得到充分的锻炼和提高.使未来多出现具有高思维层次的国际型人才.第2课时导入新课思路 1.(直接导入)请同学们回忆上一节复习的内容,教师点出,上一节我们一起复习了本章向量的基本概念、运算性质及重要定理、公式,这一节我们将通过例题分析,继续探讨向量的有关应用,重点是复习向量的一些独特方法和应用.思路 2.(投影导入)投影展示上节布置的、同学们搜集到的一道向量应用题或创新题,教师选出最有代表性的、最典型的题目引导学生进行探讨,由此展开新课.推进新课向量的坐标运算及其综合应用.通过幻灯出示题目让学生思考讨论:设向量e1、e2满足|e1|=2,|e2|=1,e1、e2的夹角为60°,若向量2te1+7e2与向量e1+te2的夹角为钝角,求实数t的取值范围.解:由题意得e1·e2=|e1||e2|cos60°=1,∴(2te1+7e2)·(e1+te2)=2te+(2t2+7)e1·e2+7te=2t2+15t+7.∵向量2te1+7e2与向量e1+te2的夹角为钝角,∴2t2+15t+7<0,即-7<t<-.活动:引导学生回忆向量的数量积概念,点拨学生结合钝角考虑:向量的数量积是一个数.当两个向量的夹角是锐角时,它们的数量积大于0;当两个向量的夹角是钝角时,它们的数量积小于0;当两个向量的夹角是90°时,它们的数量积等于0.零向量与任何向量的数量积等于0.向量的数量积,可以计算向量的长度、平面内两点间的距离、两个向量的夹角、判断相应的两条直线是否垂直.教师引导学生探究讨论:对于两个非零向量a、b,若a与b的夹角θ为钝角,则a·b<0,反之,却不一定成立.因为当a·b=|a||b|cosθ<0时,a与b的夹角也可能为π,因此,a与b的夹角为钝角a·b<0且a≠λb(λ<0),所以,正确的解答应在上述t的范围中去掉夹角为π的情形,即设2te1+7e2=λ(e1+te2)(λ<0),所以其中λ<0,解得t=-.故所求实数t的取值范围为(-7,-)∪(-,-).⇔比较是最好的老师,反例更能澄清概念的本质,使我们深刻理解概念的内涵和外延,教师应引导学生多做这方面的探讨.如由a·b=0不能推出a=0或b=0,尽管由ab=0 a=0或b=0.又如|a·b|≤|a||b|,尽管|ab|=|a||b|.再如(a·b)c≠a(b·c),尽管(ab)c=a(bc).因此,学习向量的数量积应与代数中实数间的乘积严加区分,切勿混淆.⇒1已知向量a是以点A(3,-1)为起点,且与向量b=(-3,4)垂直的单位向量,求a的终点坐标.活动:关于向量的坐标与表示此有向线段的点的坐标,概念虽小学生却极易混淆.教师引导学生回忆思考:一个向量的坐标与表示此向量的有向线段的点的坐标是什么关系?对此题来说,若要利用两向量垂直的条件,则需设a的终点坐标,然后表示a的坐标,再根据两向量垂直的条件建立方程.解:设a的终点坐标为(m,n),则a=(m-3,n+1),由题意,⎩⎨⎧ --++=0,-++=1, ①②由①得n =(3m -13),代入②得25m2-150m +209=0.解得或∴a 的终点坐标是(,-)或(,-).点评:通过训练要使学生明了,一个向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标,所以向量的坐标与点的坐标既有联系又有区别,二者不能混淆.向量的概念较多,且容易混淆,在复习中教师要引导学生理清主线,分清、理解各概念的本质属性.变式训练1.已知点A(-3,-4)、B(5,-12),(1)若=+,=-,求及的坐标;(2)求·.解:(1)=(2,-16),=(-8,8).(2)·=33.2.如图4所示,=(6,1),=(x ,y),=(-2,-3).图4(1)若∥,求x 与y 间的关系式;(2)若又有⊥,求x 、y 的值及四边形ABCD 的面积.解:(1)∵=++=(x +4,y -2),=-=(-x -4,2-y), 又∥且=(x ,y),∴x(2-y)-y(-x -4)=0,即x +2y =0.①(2)由于=+=(x +6,y +1),BD →=+=(x -2,y -3),又⊥,∴·=0,即(x +6)(x -2)+(y +1)(y -3)=0.②联立①②化简,得y2-2y -3=0,∴y=3或y =-1.故当y=3时,x=-6,此时=(0,4),=(-8,0),∴S四边形ABCD=||||=16;当y=-1时,x=2,此时=(8,0),=(0,-4),∴S四边形ABCD=||||=16.点评:引入平面向量的坐标可使向量运算完全代数化,平面向量的坐标成了数与形结合的载体.例2设向量a=(cosα,sinα),b=(cosβ,sinβ),且a、b满足|ka+b|=|a-kb|(k为正实数).(1)求证:(a+b)⊥(a-b);(2)把a与b的数量积表示为关于k的函数f(k),求f(k);(3)求函数f(k)的最小值及取得最小值时a与b的夹角.活动:本题是一道向量应用的经典例题,难度不大但综合性较强,体现平面向量与函数、三角函数的交汇,是近几年高考的热点问题.解决这类问题必须熟知平面向量的概念、运算性质、定理、公式等基础知识.教师可以充分让学生自己去探究解决.对有困难的学生教师引导其回忆相关的知识,并适时地点拨学生注意条件地转化及解答的规范.(1)证明:|a|==1,|b|==1,∵(a+b)·(a-b)=|a|2-|b|2=0,∴(a+b)⊥(a-b).(2)解:由|ka+b|=|a-kb|,得(ka+b)2=3(a-kb)2,化简,得a·b=,故f(k)=(k>0).(3)解:由y=(y>0),得k2-4yk+1=0.∵k>0,方程有解,∴Δ=16y2-4≥0,解得y≥,即k=1时,f(k)取最小值为.这时,设a与b的夹角为θ,则cosθ==,又0≤θ≤π,∴a 与b的夹角为.点评:解决本题,我们首先要根据题意画出图形,借助对图形的观察,实现实际问题向数学问题的转化.转化与化归思想是解决数学问题的一种重要的策略和方法.以向量为工具,通过转化,可以为函数中的许多问题提供新颖、简捷的解法,请同学们注意体会.例3有两根柱子相距20 m,分别位于电车的两侧,在两柱之间连结一条水平的绳子,电车的送电线就悬挂在绳子的中点,如果送电线在这点垂直向下的作用力是17.8 N,则这条成水平的绳子的中点下降0.2 m,求此时绳子所受的张力.活动:教师应引导学生回忆向量的应用举例的处理方法:向量起源于物理,是从物理学中抽象出来的数学概念.物理学中的许多问题,如位移、速度、加速度等都可以利用向量来解决.用数学知识解决物理问题,首先要把物理问题转化为数学问题,即根据题目的条件建立数学模型,再转化为数学中的向量运算来完成.本题仍可由学生自己去探究,点拨学生先画出受力分析图,认真分析题意,创建数学模型,对感到困难的学生教师给予指导,帮助其复习相关的知识,逐步提高分析问题及解决问题的能力.解:如图5所示,设重力作用点为C,绳子AC、BC所承受的力分别记、,重力记为.图5由C为绳子的中点知||=||.由+=,知四边形CFGE为菱形.又∵cos∠FCG=cos∠DCB=≈0.02,∴||=||=≈=445,即绳子所受的张力为445 N.点评:本题是向量知识在物理中的应用,培养了学生动手操作绘图能力、分析问题及解决问题的能力.对学生来说这是一个难点,突破这个难点的关键是教师引导学生把物理问题转化为数学问题.课本复习题11、12、13.1.先由学生回顾本节都复习了哪些主要内容,用到了哪些数学思想方法.向量在函数、三角函数中的重要作用,两向量的数量积的应用,向量平行与垂直条件在解题中的重要作用,向量的几何运算在解决平面几何问题和物理问题中的重要作用.2.教师点睛,要注意解题方法的灵活性,尤其是向量的坐标化思路在解题时的应用,将几何与代数知识沟通起来,同时注意向量与其他学科的联系.如图6,已知AC 、BD 是梯形ABCD 的对角线,E 、F 分别为BD 、AC 的中点,求证:EF∥BC.图6证明:设=a ,=b ,∵AD∥BC,∴=λ=λb ,则=-=b -a.∵E 为BD 中点,==(b -a),F 为AC 中点,BF →=+=+12CA → =+(-)=(+)=(-)。
平面数量积最值问题 教案-2022届高三数学二轮复习微专题复习
微专题:平面向量数量积最值问题——2022年高三数学复习微专题微课一、本专题在高考中的地位1.课标对本专题的要求知识内容知识要求了解理解掌握平面向量1.平面向量的实际背景及基本概念(1)向量的实际背景√(2)平面向量的概念和两个向量相等的含义√(3)向量的几何表示√2.向量的线性运算(1)向量加法、减法运算,并理解其几何意义√(2)向量的数乘运算及其几何意义,理解两个向量共线的含义√(3)向量线性运算的性质及其几何意义√3.平面向量基本定理及坐标表示(1)平面向量的基本定理及其意义√(2)平面向量的正交分解及其坐标表示√(3)坐标表示平面向量的加减法与数乘运算√(4)用坐标表示的平面向量共线的条件√4.平面向量数量积(1)平面向量数量积的含义及其物理意义√(2)平面向量的数量积与向量投影的关系√(3)数量积的坐标表达式,会进行平面向量数量积的运算√(4)运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系√5.向量的应用(1)向量法解决某些简单的平面几何问题√(2)向量方法解决简单的力学问题与其他一些实际问题√明确《考试大纲》对知识的要求层次。
“理解”“掌握”这两个层次要求的知识点往往是高考命题的首选,尤其是“掌握”,通常高考命题会进行深度挖掘,所以在复习时要重视和强化。
2.近五年全国卷考查情况分析年份题序题型考点明细单独命题综合命题分值难易程度2016年全国卷I(理) 3 选择题向量加法坐标运算与垂直√ 5 易2017年全国卷I(理) 13 填空题 向量的模长和数量积应用√ 5 易 2018年全国卷I(理) 6 选择题 向量线性运算 √ 5 易 2018年全国卷I(理) 8 选择题 抛物线、直线及数量积 √ 5 中 2019年课标全国卷I(理) 7 选择题 向量数量积、夹角 √ 5 中 2020年课标全国卷I(理) 14 填空题 向量的数量积与模 √ 5 易 2020年课标全国卷I (文)14 填空题 向量数量积与向量垂直的充要条件 √ 5 易 2021·新高考Ⅱ卷13填空题向量的数量积与模√5易二、真题回顾1.(2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 2.(2021·全国甲卷)若向量a ,b 满足|a |=3,|a -b |=5,a ·b =1,则|b |=________. 3.(2021·新高考Ⅱ卷)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =________.4.(2020·课标全国Ⅰ高考)设a ,b 为单位向量,且|a+b|=1,则|a-b|= .5.(2020·课标全国Ⅱ高考)已知单位向量a ,b 的夹角为45°,ka -b 与a 垂直,则k = .三.要点提炼考点 平面向量的数量积1.若a =(x ,y),则|a |=a ·a =x 2+y 2. 2.若A(x 1,y 1),B(x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.3.若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.四.典型例题:例1.(2021·福建六校联考)已知P 为边长为2的正方形ABCD 所在平面内一点,则PC →·(PB →+PD →)的最小值为________. 【解析】 建立如图所示的平面直角坐标系, 则A (0,0),B (2,0),C (2,2),D (0,2),设P (x ,y ),则PC →=(2-x ,2-y ),PB →+PD →=(2-x ,-y )+(-x ,2-y )=(2-2x ,2-2y ),∴PC →·(PB →+PD →)=(2-x )(2-2x )+(2-y )(2-2y )=2⎝⎛⎭⎫x -322-12+2⎝⎛⎭⎫y -322-12=2⎝⎛⎭⎫x -322+2⎝⎛⎭⎫y -322-1. ∴当x =y =32时,PC →·(PB →+PD →)取得最小值-1.【探究】 数量积的计算主要有基底法和坐标法,另外解方程也行,数量积的最值问题往往要用到函数思想和数形结合思想,结合求值域的方法求解.变式练习:1.已知四边形ABCD 中,AD ∥BC ,∠BAD =90°,AD =1,BC =2,M 是AB 边上的动点,则|MC →+2MD →|的最小值为________.例2.(2021·益阳模拟考试)如图所示为边长为2的正△ABC ,以BC 的中点O 为圆心,BC 为直径在三角形外部作半圆弧BC ︵,点P 在圆弧上运动,则AB →·AP →的取值范围为( )A .[2,33]B .[4,33]C .[2,4]D .[2,5]答案 D解析 由题可知当点P 在点C 处时AB →·AP →最小,此时AB →·AP →=|AB →|·|AC →|·cos π3=2×2×12=2,过圆心O 作OP ∥AB 交圆弧于点P ,连接AP ,此时AB →·AP →最大,此时AB →·AP →=2×⎝⎛⎭⎫32+1=5,所以AB →·AP →的取值范围为[2,5].故选D.【探究】 本题利用数量积的定义,结合数量量积的几何意义AP →在AB →上的投影,当当点P 在点C 处时AB →·AP →最小,过圆心O 作OP ∥AB 交圆弧于点P ,连接AP ,此时AB →·AP →最大。
高三数学复习教案设计: 《平面向量》
人类的心正是凭借着希望而得到宽慰,一直生活到生命的最后时刻。
下面是为您推荐高三数学复习教案设计:《平面向量》。
【知识网络】【学法点拨】向量是沟通代数与几何的重要工具,它在日常生活、生产实践以及其他相关学科中有着广泛的应用.学习和理解向量有关知识时,建议:1. 注意比较与分析.向量的有关概念与我们学习过的有关知识既有联系又有区别,如:平行、相等、乘积等等.留心比较分析,可防止学习过的有关知识对现学知识的负面影响.2. 能画图时尽可能多画草图.数离形时少直观,形离数时欠入微.向量具有数与形的双重特征,加减法以三角形法则、平行四边形法则为背景,平行、垂直都对应着一个方程,数形结合考察问题,常常事半功倍.3. 学会联想与化归.向量知识是从日常生活、生产实践中抽象出来的,求解向量综合题,常需要适当联想,并将应用问题数学化,复杂问题熟悉化、简单化.【考点指津】1. 理解向量的概念,掌握向量的几何表示,了解共线向量、相等向量等概念.2.掌握向量的加法与减法,会正确运用三角形法则、平行四边形法则.3掌握向量加法的交换律、结合律,并会用它们进行向量化简与计算.4.理解向量的减法运算可以转化为向量的加法运算.【知识在线】1.(2a 8b)-(4a-2b)=2.在△ABC中,BC→=a,CA→=b,则AB→=3.设a表示向东3km,b表示向北偏东30o走3km,则a b表示的意义为4.画出不共线的任意三个向量,作图验证a-b-c=a-(b c).5.向量a、b满足|a|=8,|b|=10,求|a b|的最大值、最小值.【讲练平台】例1 化简以下各式:①AB→ BC→ CA→ ;②AB→ -AC→ BD→ -CD→ ;③OA→ -OD→ AD→ ;④NQ→ QP→ MN→ -MP→ .结果为0的个数为()分析题设条件中多处涉及首尾相接的两个向量求和以及同起点的两个向量相减,对此,我们可以运用向量加减的定义进行合并,当最终形式出现两相反向量之和或相等向量之差时,结果为0.答 D.点评本题巩固了向量加减的定义及向量加法的交换律、结合律等基础知识.求解时需将杂乱的向量运算式有序化处理,必要时也可化减为加,减低出错律.注意:AB→=-BA→ ,CB→=AB→ .变题作图验证A1A2→ A2A3→ A3A4→ … An-1An→=A1An→ (n≥2,n∈N).例2 如图,在δABC中,D、E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→ ,CE→ .分析本题中的已知向量都集中体现在三角形中.为此,可充分利用向量加减法的三角形法则实施求解.如已知CA→ 、CB→ 可求AB→ ,根据AD→ 、AE→ 、AB→ 均为共线向量,故又可求得AD→ 、DE→ 、.由CA→ 、AD→ 又可求CD→ ,由DE→ 、CD→ 又可求CE→ .解AB→=AC→ CB→=-3a 2b,因D、E为AB→ 的两个三等分点,故AD→=AB→=-a b=DE→ ,CD→=CA→ AD→=3a-a b=2a b,CE→=CD→ DE→=2a b-a b=a b.点评三角形中两边对应向量已知,可求第三边所对应的向量.值得注意的是,向量的方向不能搞错.当向量运算转化成基底向量的代数式运算时,其运算过程可仿照多项式的加减运算进行.例3 已知A、B、C、P为平面内四点,求证:A、B、C三点在一条直线上的充要条件是存在一对实数m、n,使PC→=mPA→ nPB→ ,且m n=1.分析 A、B、C 三点共线的一个充要条件是存在实数λ,使得AC→=λAB→ .很显然,题设条件中向量表达式并未涉及AC→ 、AB→ ,对此,我们不妨利用PC→=PA→ AC→ 来转化,以便进一步分析求证.证明充分性,由PC→=mPA→ nPB→ , m n=1,得PA→ AC→=mPA→ n(PA→ AB→ )=(m n)PA→ nAB→=PA→ nAB→ ,∴AC→=nAB→ .∴A、B、C三点共线.必要性:由A、B、C 三点共线知,存在常数λ,使得AC→=λAB→ ,即AP→ PC→=λ(AP→ PB→ ).PC→=(λ-1)AP→ λPB→=(1-λ)PA→ λPB→ ,m=1-λ,n=λ,m n=1,PC→=mPA→ nPB→ .点评逆向应用向量加法运算法则,使得本题的这种证法比其他证法更简便,值得一提的是,一个向量拆成两个向量的和,一定要强化目标意识.变题在δA BC 所在平面上有一点P ,满足PA→ PB→ PC→=AB→ ,试确定点 P的位置.答:P在 AC边上,且 P为 AC的一个三等分点(距 A点较近)例4 (1)若点 O是三角形ABC的重心,求证:OA→ OB→ OC→=0;(2)若 O为正方形ABCD的中心,求证:OA→ OB→ OC→ OD→=0;(3)若O 为正五边形ABCDE 的中心,求证:OA→ OB→ OC→ OD→ OE→=0.若 O为正n边形A1A2A3…A n的中心,OA1→ OA2→ OA3→ …OAn→=0 还成立吗?说明理由.分析本题四问构成一个题链,条件相似,结论相似,求证方法可望相似.正三角形、正方形性质特殊,我们十分熟悉,求证方法多,不容易发现那一种方更有利于推广,我们选定正五边形来研究.看着结论,联想一个相似的并且已经解决的问题,本课例1的变题A1A2→ A2A3→ A3A4→ … An-1An→ AnA1→=0 ,这里的向量首尾相接,我们能不能将OA→ 、OB→ 、OC→ 、OD→ 、OE→ 也转化成首尾相接的形式呢?运用向量相等的定义试试看.解证(3)以 A为起点作AB′→=OB→ ,以B′为起点作B′C′→=OC→ ,以C′为起点作C′D′→=OD→ ,以D′为起点作D′E′→=OE→ .∵∠AOB=72o,∴∠OAB′=108o.同理∠AB′C′=∠B′C′D′=∠C′D′E′=108o,故∠D′E′A=108o.|OA→ |=|AB′→ |=∣B′C′→ |=|C′D′→ |=|D′E′→ |,故E′与 O重合,OAB′C′D′为正五边形.OA→ OB→ OC→OD→ OE→=OA→ AB′→ B′C′→ C′D′→D′E′→=0.正三角形,正方形、正n边形可类似获证.点评本题不仅揭示了正多边形的一类共同性质,而且巩固了“以退为进”的数学思想.面对一般的问题,我们经常先考虑其特殊的情况;面对陌生的问题,经常去联想熟悉的模型.注意退是为了进,退到特殊简单情形后,要在求解中悟出一般的规律.如退到正方形情况,发现OA→ OB→ 与OC→ OD→ 正好互为相反向量,结论成立.这一方法却不具一般性.【知能集成】1. 基础知识:向量加减的代数形式运算与几何形式运算.2. 基本技能:向量运算中的合二为一与拆一为二.3. 基本思想:向量表达式运算与几何式运算的相互结合思想,联想熟悉的类似的模型,化归转化思想.【训练反馈】1.下列各式正确的是:()A.∣a-b∣≤∣a∣ ∣b∣B. a b∣>∣a∣ ∣b∣C.∣a b∣>∣a-b∣D.∣ a-b∣=∣a∣-∣b∣2.下面式子中不能化简成AD→ 的是()A.OC→ -OA→ C D→B.PB→ -DA→ -BP→C.AB→ -DC→ BC→D.(AD→ -BM→ )(BC→ -MC→ )3.正方形ABCD的边长为1,AB→=a,BC→=b,AC→=c,则a b c、a-b c、-a-b c 的摸分别等于 .4.设a、b 为已知向量,若3x 4y=a,2x-3y=b ,则 x=.y=.5. 已知 e1、e2 不共线,AB→=2e1 ke2,CB→=e1 3e2,C D→=2e1-e2,且A、B、D 三点在同一条直线上,求实数k .6.在正六边形ABCDEF中,O 为中心,若OA→=a,OE→=b,用a、b 表示向量OB→ ,OC→ ,OD→ ,结果分别为(),-b-a,-a B. b,-a,b-a,a,,-a,a b7. 试用向量方法证明:对角线互相平分的四边形是平行四边形.8.已知P为△ABO 所在平面内的一点,满足OP→=,则P在()A.∠AOB的平分线所在直线上B. 线段AB的中垂线上C. AB边所在的直线上D. AB边的中线上.9.设O是平面正多边形A1A2A3…A n 的中心,P为任意点,求证:PA1→ PA2→ PA3→ … PAn→=nPO→ .10.如图设O为△ABC内一点,PQ∥BC,且PQ→ ∶BC→=2∶3,OA→=a,OB→=b,OC→=c,则OP→ ,OQ→ .为△ABC所在平面内一点,PA→ PB→ PC→=0 ,则P为△ABC的()A.重心B.垂心C. 内心D.外心12.在四边形ABCD中,E为AD的中点,F为BC的中点.求证:EF→=(AB→DC→ ).第30课向量的坐标运算【考点指津】1. 理解平面向量的坐标表示法,知道平面向量和一对有序实数一一对应.2. 掌握平面向量的和、差、实数与向量积的坐标运算,能利用向量的坐标运算解题.3. 掌握平面向量平行的充要条件的坐标表示,并利用它解决向量平行(共线)的有关问题,弄清向量平行和直线平行的区别.【知识在线】1. 若向量a的起点坐标为(-2,1),终点坐标为(2,-1),则向量a的坐标为2.若O为坐标原点,向量a=(-3,4),则与a共线的单位向量为3.已知a=(-1,2),b=(1,-2),则a b与a-b的坐标分别为()A.(0,0),(-2,4)B.(0,0),(2,-4)C.(-2,4),(2,-4)D.(1,-1),(-3,3)4.若向量a=(x-2,3),与向量b=(1,y 2)相等,则()A. x=I,y=3,B. x=3,y=1C. x=1,y=-5D. x=5,y=-15.已知A(0,0),B(3,1),C(4,3),D(1,2),M、N分别为DC、AB的中点.(1)求证四边形ABCD为平行四边形;(2)试判断AM→ 、CN→ 是否共线?为什么?【讲练平台】例1 已知a=(1,2),b=(-3,2),当k为何值时,ka b与a-3b平行?分析已知a、b的坐标,可求a-3b的坐标,ka b的坐标也可用含k的表达式表示.运用两向量平行的充要条件x1y2-x2y1=0可求k值.解由已知a=(1,2),b=(-3,2),得a-3b=(10,-4), ka b=(k-3,2k 2).因(ka b)∥(a-3b),故10(2k 2) 4(k-3)=0.得k=- .点评坐标形式给出的两个向量,其横坐标之和即为和向量的横坐标;其纵坐标之和即为和向量的纵坐标.实数与向量的积其横、纵坐标分别等于实数与该向量的横、纵坐标的积.向量的平行用坐标形式表达即为一个方程.例2 已知向量a=(,),b=(-1,2),c=(2,-4).求向量d,使2a,-b c及4(c-a)与d四个向量适当平移后,能形成一个顺次首尾相接的封闭向量链.分析四个向量适当平移后,形成一个顺次首尾相接的封闭向量链,说明这四个向量之和为0.即四个向量的纵横坐标之和均为0.据此列出关于向量d (x,y)的方程组,不难求得x、y.简解设向量d的坐标为(x,y),由2a (-b c) 4(c-a) d=0,可解得d=(-9,23).点评数学语言常有多种表达方式,学会转化与变通是求解的关键.本题以几何特征语言形式出现,最终落足点要变式成方程的语言来求解,这一思想方法在求解向量问题时经常用到.例3 已知平面上三点P(2,1),Q(3,-1),R(-1,3).若点S与这三点可以为一个平行四边形的四个顶点,求S的坐标.分析平行四边形对边对应向量相等或相反,由此可求得S点的坐标.但由于题设四点构成四边形的四个顶点,那一组边是对边不明显,需要分类讨论.简解设S的坐标为(x,y).(1)当PQ→ 与RS→ 是一组对边时,若PQ→=RS→ ,则(3,-1)-(2,1)=(x 1,y-3),即(1,-2)=(x 1,y-3),得S点坐标为(0,1).若PQ→=SR→ ,则S点坐标为(-2,5).(2)当PR→ 与SQ→ 是一组对边时,若PR→=SQ→ ,则S点的坐标为(6,-3).若PR→=QS→ ,则S点的坐标为(0,1).(3)当PS→ 与RQ→ 是一组对边时,若PS→=RQ→ ,则S点的坐标为(6,-3).若PS→=QR→ ,则S点的坐标为(-2,5).综上所述,S点坐标可以为(0,1),(6,-3),(-2,5).点评本题求解需运用分类讨论思想.上述解法思路自然、条理清晰,但很显然不是最简方案,如何数形结合,避免重复劳动,读者不妨思考.例4 向量PA→=(k,12),PB→=(4,5),PC→=(10,k),当k为何值时,A、B、C三点共线.分析三点共线问题前一课已涉及,A、B、C三点共线的充要条件是AB→=λBC→ ,本题所不同的是向量用坐标形式给出,对此,我们可以将坐标代入运算.解AB→=PB→ -PA→=(4-k,-7),BC→=PC→ -PB→=(6,k-5).当A、B、C三点共线时,存在实数λ,使得AB→=λBC→ ,将坐标代入,得4-k=6λ,且 -7=λ(k-5),故(4-k)(k-5)=-42.解得k=11,或k=-2.点评向量的几何运算与向量的坐标运算,可以从不同角度去求解(证)同一个问题.只不过两套工具各有适用范围,即便两套工具都适用,也可能繁简不一,应用时要注意前瞻性选择.变题求证:互不重合的三点A(x1,y1),B(x2,y2),C(x3,y3)共线的充要条件是(x2-x1)(y3-y1)=(x3-x1)(y2-y1).证明必要性(略).充分性若(x2-x1)(y3-y1)=(x3-x1)(y2-y1),由A、B、C互不重合,得(x2-x1)、(y3-y1)、(x3-x1)、(y2-y1)中至少有一个不为零,不妨设x3-x1≠0.令x2-x1=λ(x3-x1),若λ=0,则x2-x1=0,此时y2≠y1(否则A、B重合).而已知等式不成立,故λ≠0.于是(x3-x1)(y2-y1)=λ(x3-x1)(y3-y1).因x3-x1≠0 ,故(y2-y1)=λ(y3-y1).于是(x2-x1,y2-y1)=λ(x3-x1,y3-y1),即AB→=λAC→ ,且AC→ ≠0 .又因AB→ 与AC→ 有相同起点,所以A、B、C三点共线.【知能集成】基础知识:坐标形式的向量的加减运算,实数与向量坐标的积.基本技能:向量平行的充要条件及向量相等的充要条件用坐标形式描述和应用.基本思想:将向量等式转化成方程的思想;对几何图形的分类讨论思想.【训练反馈】1.若a=(2,3),b=(4,y-1),且a∥b,则y=()A.6B.5C.7D. 82.已知点B的坐标为(m,n),AB→ 的坐标为(i,j),则点A的坐标为()A.(m-i,n-j)B.(i-m,j-n)C.(m i,n j)D.(m n,i j)3.若A(-1,-1),B(1,3),C(x,5)三点共线,则x=.4.已知a=(5,4),b=(3,2),则与2a-3b平行的单位向量为5.有下列说法① 已知向量PA→=(x,y),则A点坐标为(x,y);② 位置不同的向量,其坐标有可能相同;③ 已知i=(1,0),j=(0,1),a=(3,4),a=3i-4j ;④ 设a=(m,n),b=(p,q),则a=b的充要条件为m=p,且n=q.其中正确的说法是()A.①③B.①④C.②③D.②④6.下列各向量组中,不能作为表示平面内所有向量的基底的一组是()A.a=(-1,2),b=(0,5)B.a=(1,2),b=(2,1)C.a=(2,-1)b=(3,4)D.a=(-2,1),b=(4,-2)7.设a=(-1,2),b=(-1,1),c=(3,-2),用a、b作基底,可将向量c表示为c=pa qb,则()A.p=4, q=1B.p=1, q=-4C.p=0 , q=4D.p=1, q=48.设i=(1,0),j=(0,1),在平行四边形ABCD中,AC→=4i 2j,BD→=2i 6j,则AB→ 的坐标为 .9.已知3s inβ=sin(2α β),α≠kπ ,β≠kπ,k∈z,a=(2,tan (α β)),b=(1,tanα),求证:a∥b.10.已知A(4,0),B(4,4),C(2,6),求AC与OB的交点P的坐标(x,y).11.已知点O(0,0),A(1,2),B(4,5),且OP→=OA→ tAB→ .(1)当t变化时,点P是否在一条定直线上运动?(2)当t取何值时,点P在y轴上?(3) OABP能否成为平行四边形?若能求出相应的t值;若不能,请说明理由.第31课平面向量的数量积【考点指津】1. 掌握平面向量的数量积及其几何意义.2. 了解用平面向量的数量积可以处理有关长度、角度和垂直的问题.3. 掌握向量垂直的条件.【知识在线】1.若∣a∣=4,∣b∣=3,a?b=-6,则a与b的夹角等于()A.150o B 120o C.60o D.30 o2.若a=(-2,1),b=(1,3),则2a2-a?b=()A,3.已知向量 i=(1,0),j=(0,1),则与向量2i j垂直的一个向量为()A. 2i-jB. i-2jC. i jD. i-j4.已知a=(1,2),b=(1,1),c=b-ka,且c⊥a,则C点坐标为5.已知∣a∣=3,∣b∣=4,且a与b夹角为60o,∣ka-2b∣=13,求k的值【讲练平台】例1 (1)在直角三角形ABC中,∠C=90o,AB=5,AC=4,求AB→ ?BC→(2)若a=(3,-4),b=(2,1),试求(a-2b)?(2a 3b)分析(1)中两向量AB→ 、BC→ 的模及夹角容易求得,故可用公式a?b=|a||b|cosθ求解.(2)中向量a、b坐标已知,可求a2、b2、a?b,也可求a-2b与2a 3b 的坐标,进而用(x1,y1)?(x2,y2)=x1x2 y1y2求解.解(1)在△ABC中,∠C=90o,AB=5,AC=4,故BC=3,且cos∠ABC=,AB→ 与BC→ 的夹角θ=π-∠ABC,∴AB→ ?BC→=-∣AB→ ∣∣BC→ ∣cos∠ABC=-5×3×=-9.(2)解法一 a-2b=(3,-4)-2(2,1)=(-1,-6),2a-3b=2(3,-4) 3(2,1)=(12,-5),(a-2b)?(2a 3b)=(-1)×12 (-6)×(-5)=18.解法二(a-2b)?(2a 3b)=2a2-a?b-6b2=2[32 (-4)2]-[3×2 (-4)×1]-6(22 12)=18.点评向量的数量积有两种计算方法,一是依据模与夹角来计算,二是依据坐标来计算.具体应用时可根据已知条件的特征来选择.值得注意的是,向量的夹角与向量的方向相关,(1)中∠ABC并非AB→ 与BC→ 的夹角.从第(2)问的解法二可以看到,向量数量积的运算律,类似于多项式乘法法则,但并不是所有乘法法则都可以推广到向量数量积的运算.如:a?(b c)=a?b b?c,而(a?b)c≠a(b?c).例2.已知O为三角形ABC所在平面内一点,且满足OA2 BC2=OB2 CA2,试用向量方法证明AB⊥OC .分析要证AB→ ⊥OC→ ,即证AB→ ?OC→=0,题设中不涉及AB→ ,我们用AB→=AO→ OB→ 代换,于是只需证AO→ ?OC→=BO→ ?OC→ .至此,我们可以尝试将已知等式转化成只含有OA→ 、OB→ 、OC→ 的形式.证明由已知得OA→ 2 BC→ 2=OB→ 2 CA→ 2,即OA→ 2 (BO→OC→ )2=OB→ 2 (CO→ OA→ )2,整理得AO→ ?OC→=BO→ ?OC→ ,即OC→ ?(BO→ OA→ )=0,故OC→ ?AB→=0.所以AB→ ⊥OC→ .点评用向量方法证明垂直问题,通常转化为证两个向量的数量积为0.本题已知式与求证式中向量的表达形式不统一,针对差异进行有目标的化归,是求解的关键所在.例3.设OA→=a=( 1, -1),OB→=b=(,3),试求∠AOB及δAOB的面积.分析已知a、b可以求|a|、|b|及a?b,进而求得∠AOB(即a与b的夹角),在求到三角形的两边及夹角后,可用公式:S=∣a∣∣b∣sinθ求面积.解设∠AOB=θ,δAOB的面积为S,由已知得:∣OA→ ∣=∣a∣==2 ,∣OB→ ∣=∣b∣=2 ,∴cosθ===.∴θ=.又S=∣a∣∣b∣sinθ=?2=2 ,即∠AOB=,δAOB的面积为2 .点评向量的数量积公式a?b=∣a∣∣b∣cosθ不仅可以用来求数量积,也可以用来求模与夹角.要注意该公式与三角形的面积公式的区别.此外,本题的解题方法可适用于更一般的情况(见变题).变题设δABC的面积为S,AB→=a,AC→=b,求证S=例4.已知a与b都是非零向量,且a 3b与7a-5b垂直,a-4b与7a-2b垂直,求a与b的夹角.分析要求夹角θ,必需求出cosθ;求cosθ需求出a?b与∣a∣∣b∣的比值(不一定要求出∣a∣、∣b∣的具体值).由已知的两个向量的垂直关系,可以得到∣a∣∣b∣与a?b的关系.解∵(a 3b)⊥(7a-5b),(a-4b)⊥(7a-2b),∴ (a 3b)?(7a-5b)=0,(a-4b)?(7a-2b)=0.即 7a2 16a?b-15b2=0,7a2-30a?b 8b2=0.两式相减,得 b2=2a?b.故 a2=b2 ,即∣a∣=∣b∣.∴cosθ==.∴θ=60o , a与b的夹角为60o .点评从基本量思想考虑,似乎没有具体的a与b,无法求出a与b的夹角,其实不然,cosθ是一个a?b与∣a∣∣b∣的比值,并不需要具体分别求出.类似于本题的条件表明,向量的数量积公式、向量的垂直关系都揭示了一种数量积与模的关系,就此意义而言,它们的本质是一致的相通的,可以相互转化和利用.在本题求解过程中注意,b2=2a?b不能得出b=2a,同样a2=b2也不能得到a=±b.【知能集成】基础知识:向量数量积的两种计算公式,向量垂直的充要条件.基本技能:求向量数量积、模及向量的夹角,向量垂直问题的论证与求解.基本思想:向量表达式的数量积与多项式乘法进行类比的思想,将线的垂直这一图形特征转化成方程解决的思想.求向量夹角时的设而不求的思想.【训练反馈】。
高考数学二轮复习精品教学案专题06-平面向量(教师版).
【点评】 向量的共线定理和ቤተ መጻሕፍቲ ባይዱ面向量基本定理是平面向量中的两个带有根本意义的定理.
平
面向量基本定理是平面内任意一个向量都可以用两个不共线的向量唯一线性表示
, 这个
定理的一个极为重要的导出结果是 , 如果 a, b 不共线 , 那么 λ1a+ λ2b= μ1a+ μ2b 的
充要条件是 λ1= μ1 且 λ2 = μ2.共线向量定理有一个直接的导出结论
【高频考点突破】
考点一 向量的有关概念和运算
(1)零向量模的大小为 0, 方向是任意的 , 它与任意向量都共线 , 记为 0.
(2)长度等于 1 个单位长度的向量叫单位向量 ,
a 与 a 同向的单位向量为 |a|.
(3)方向相同或相反的向量叫共线向量 (平行向量 ). 例 1、已知关于 x 的方程: ·x2+ ·2x+ = 0(x∈R),
例 2 如图所示 ,
P 为△ AOB 所在平面内一点 ,
向量 O→A=a,
O→B= b,
且P
在线段 AB 的垂直平分线上 ,
向量 O→P= c.若 |a|=3,
|b|= 2,
则 c·(a- b)的值为 (
)
5
3
A. 5
B.3
C.2
D.2
【答案】 C
【解析】 设 AB 中点为 D,
c= O→P= O→D +D→P,
3.理解平面向量数量积的含义及其物理意义
;了解平面向量数量积与向量投影的关系 ;
掌握数量积的坐标表达式 ,会进行平面向量数量积的运算 ;能运用数量积表示两个向量的夹角 ,
会用数量积判断两个平面向量的垂直关系 .
【知识络构建】
【重点知识整合】
高考数学二轮复习教案(9)平面向量 新人教A版 教案
平面向量【专题要点】向量的概念、向量的表示方法、零向量、单位向量、平行向量、相等向量、向量的加法和减法(向量的加法减法运算法则、坐标运算等)、实数与向量的积、向量共线定理、平面向量基本定理、向量的数量积(向量的定义、几何意义、运算律,相关公式结论等)、两向量平行、垂直的充要条件【考纲要求】1. 了解向量的实际背景,理解平面向量的概念,理解两个向量相等的含义,理解向量的几何表示。
2.掌握向量的加法和减法运算,并理解其几何意义,掌握向量的数乘运算及其几何意义,理解两个向量共线的含义3.了解平面向量基本定理及其意义,掌握平面向量的正交分解及其坐标表示,理解用坐标表示向量的加法和减法运算及数乘运算。
4.了解平面向量的数量积与向量投影的关系,理解平面向量的数量积的含义及其物理意义,掌握平面向量的数量积的坐标表达式并会进行数量积的运算,能用数量积表示两向量的夹角,会用数量积判断两向量的垂直关系5.会用向量法解决简单的平面几何问题。
【知识纵横】【教法指引】本专题内容为每年高考必考内容,以选择题(填空题)+解答题的形式出现,分值在16-17分左右;向量具有代数形式与几何形式的“双重身份”,这使它成为中学数学知识的一个交汇点,也成为多项内容的媒介,在高考中主要考查有关的基础知识,突出向量的工具作用,对平面向量的考查主要其中在:(1)平面向量的性质和运算法则(2)向量的坐标表示,向量的线性运算(3)和其他数学知识结合在一起考查,如和曲线、数列等知识结合。
这就要求我们在复习中应首先立足课本,打好基础,从数形两方面理解平面向量的相关知识,通过认识整个体系知识点,掌握本专题的内容,领会其中的数学思想,形成清晰的知识结构,明确各部分的基本知识,基本题型,基本方法和规律,强化易混、易漏、易错点的反思和感悟和针对性训练【典例精析】例1、(2007某某)直角坐标系xOy 中,i j ,分别是与x y ,轴正方向同向的单位向量.在直角三角形ABC中,若j k i AC j i AB+=+=3,2,则k 的可能值个数是( ) A.1 B.2 C.3 D.4解:如图,将A 放在坐标原点,则B 点坐标为(2,1),C 点坐标为(3,k),所以C 点在直线x=3上,由图知,只可能A 、B 为直角,C 不可能为直角.所以 k 的可能值个数是2,选B点评:本题主要考查向量的坐标表示,采用数形结合法,巧妙求解,体现平面向量中的数形结合思想。
高中数学_平面向量教学设计学情分析教材分析课后反思
平面向量【高考考纲解读】1.平面向量是高考必考内容,每年每卷均有一个小题 ( 选择题或填空题) ,一般出此刻第 3~7 或第 13~15 题的地点上,难度较低.主要观察平面向量的模、数目积的运算、线性运算等,数目积是其观察的热门.2.有时也会以平面向量为载体,与三角函数、分析几何等其余知知趣交汇综合命题,难度中等 .【要点、难点分析】1、(1)平面向量共线定理向量 a(a≠0)与b共线当且仅当存在独一一个实数λ,使b=λa.(2)平面向量基本定理假如 e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一直量 a,有且只有一对实数λ,λ,使 a=λe +λe ,此中 e ,e12112212是一组基底 .2.平面向量的两个充要条件若两个非零向量 a=(x1,y1),b=(x2,y2),则(1)a∥b?a=λb? x1y2-x2y1=0.(2)a⊥b?a·b=0? x1x2+ y1y2=0.3.平面向量的三个性质(1)若 a= (x, y),则 |a|= a·a=x2+ y2.(2)→( x2- x1)2+( y2- y1)2.若 A(x1, y1), B(x2, y2),则 |AB|=(3)若 a= (x1, y1 ), b= (x2, y2),θ为 a 与 b 的夹角,则 cos θ=a·b x1x2+ y1 y2|a||b|=x12+ y12 x22+ y22.4.平面向量的三个锦囊(1)向量共线的充要条件: O 为平面上一点,则A,B,P 三点共线→→→此中λ1+λ2=1).的充要条件是 OP=λ1+λ2OA OB ((2)三角形中线向量公式:若P 为△ OAB 的边 AB 的中点,则向量→→ →→ 1 → →OP与向量 OA,OB的关系是 OP=2(OA+OB).→ → →(3)三角形重心坐标的求法: G 为△ ABC 的重心 ? GA+GB+GC=0? G x A+x B+x C,y A+y B+y C.33【高考真题】[练真题·考什么 ]1. (2018 ·全国卷Ⅱ )已知向量a, b 知足 |a |= 1, a·b=- 1,则 a·(2a - b) = () A . 4 B . 3C . 2D . 02.(2018 ·全国卷Ⅰ )在△ ABC 中, AD 为 BC 边上的中线,→=E 为 AD 的中点,则EB()3 → 1 → 1 → 3 →A. 4AB -4AC B.4AB -4AC3 → 1 → 1 → 3 →C. 4AB +4AC D .4AB +4AC4. (2016 ·全国卷Ⅱ)已知向量 a = (1 , m ), b= (3 ,- 2) ,且 (a + b)⊥ b ,则 m = ()3A.- 8B.- 6C . 6D . 84·全国卷Ⅰ)已知向量 a ,b 的夹角为60°,|a|= 2,|b|= 1,则 |a+ 2 b |= ________.6.(201753.(2017·全国卷Ⅱ)已知△ABC 是边长为 2 的等边三角形,P 为平面ABC 内一点,→ →→()则 PA ·(PB + PC )的最小值是A.- 2 B .-3 24C.-3D.- 1→→→分析:解法一:设 BC 的中点为 D,AD 的中点为 E,则有PB+PC=2PD,→ →→→ →则PA·+PC =·(PB)2PAPD→→→→=2(PE+EA·-EA) (PE)→ 2→ 2=2(PE-EA ).→3 2=3,而EA2=24→2→ → →当 P 与 E 重合时,PE有最小值 0,故此时PA·(PB+PC)取最小值,→ 233最小值为-2EA =-2×=-.应选 B.42解法二:以 AB 所在直线为 x 轴, AB 的中点为原点成立平面直角坐标系,如图,则 A(- 1,0), B(1,0), C(0, 3),设 P(x , y),取 BC 的中点 D ,则 D1, 23 .2→ →→→ →13=2(x + 1)1 3+ PC2PA ·PD =2(- 1-x ,- y) ·2 -y ·x - +y ·y -2=PA ·(PB)=2-x ,222212 132 3 33( x))42x +4 + y -( y -444.4所以,当 x =-1,y =→ → →33时, PA +PC)获得最小值,最小值为 2×- =-3,44·(PB 42应选 B.【规律方法】求数目积的最值,一般要先利用向量的线性运算,尽可能将所求向量转变为长度和夹角已知的向量, 利用向量的数目积运算成立目标函数,利用函数知识求解最值.【典型例题】命热题点角一度1 平面向量的线性运算【训练 1】 (2017衡·阳二模)如图,正方形ABCD 中,M ,N 分别→→ →是 BC ,CD 的中点,若AC =λAM +μBN ,则 λ+μ=()868 A.2B.3C.5D.5分析法一如图以AB ,AD 为坐标轴成立平面直角坐标系,设→1→1, 1 →正方形边长为 1, AM = 1, 2 ,BN = - 2 , AC = (1, 1).→ → →1 + μ- 1 , 1 = λ- μ λ∵ AC = λAM + μBN = λ, 2 , 2+ μ,1 2 216 λ- 2μ= 1,λ= 5 , 8∴ λ解之得2 故 λ+ μ= 5.2 + μ= 1,μ= 5 ,法二:方程思想uuuuruuur1 uuuruuur uuuruuuur uuur AM ABAD以则有2 , 为基底来表示ABADAM,AN, uuur uuur 1 uuurBN AD ABuuur 4 uuuur 2uuur2AB= AMBN解得uuur5 52 uuuur 4uuurADAMBN5 5uuur uuur uuur 6 uuuur 2 uuur 所以AB AD AM BNAC 5 5所以+= 8yDNC MAB x5【训练 2】在平行四边形ABCD中, M,N分别为 DC,BC中点,若uuurACuuuurAMuuurAN ,求+ 的值规律方法1.平面向量线性运算的两个技巧(1)对于平面向量的线性运算问题,要尽可能转变到三角形或平行四边形中,灵巧运用三角形法例、平行四边形法例,密切联合图形的几何性质进行运算.(2)在证明两向量平行时,若已知两向量的坐标形式,常利用坐标运算来判断;若两向量不是以坐标形式表现的,常利用共线向量定理(当 b≠ 0 时, a∥ b? 存在独一实数λ,使得 a=λb)来判断 .热命点题角二度 1平面向量的数目积【例1】 (1)已知向量a与b的夹角为60°,且a=(-2,-6),|b| = 10,则a·b =.→ →(2)已知正方形ABCD的边长为1,点E是AB边上的动点则,DE·CB的值为;→ →DE·DC的最大值为.(2)法一如图,以AB,AD为坐标轴成立平面直角坐标系,则 A(0,0),B(1,0),C(1,1),D(0,1),设 E(t,0), t∈[0,1],→→则 DE=(t,- 1),CB=(0,- 1),→ →所以 DE·CB=(t,- 1) ·(0,-1)=1.→→ →因为 DC=(1,0),所以 DE·DC= (t,- 1) ·(1,0)= t≤1,→ →故 DE·DC的最大值为 1.法二→ →如图,不论 E 点在哪个地点, DE在CB方向上的投影都是 CB → →→=1,所以 DE·=|CB ·=,CB| 1 1→→当 E 运动到 B 点时, DE在DC方向上的投影最大,即为 DC=1,→ →→所以(DE·=|DC ·=1.DC)max| 1(43.)已知向量a=(1, 3),b=(3,m),且 b在 a 上的投影为3,则向量a 与 b 的夹角为.分析:设向量 a 与 b 的夹角为θ.∵b 在 a 上的投影为3,且|a|=12+3 2=2,a·b=3+ 3m,∴|b|cosθ=|b|×a·b=3+ 3m·==3,解得 m= 3.∴|b|=2 3.∴cosθ=a b|a||b|2|a||b|3+3×33π2×23=2 .∵θ∈[0,π],∴向量a 与 b 的夹角θ为6.规律总结:求两个向量的数目积有三种方法:1、利用定义;2、利用向量的坐标运算;3、利用数目积的几何意义.【讲堂小结】1、本节课你有哪些收获2、本节课运用了哪些思想方法【作业】平面向量对应的活页作业NO.15学情分析本节课是高三二轮专题复习课,学生已经在第一轮的学习中基本掌握了平面向量基本定理的基本观点及运算,本节课是在此基础长进一步增强对平面向量的综合运用。
高中数学平面向量教案(精选6篇)
高中数学平面向量教案(精选6篇)为大家收集的高中数学平面向量教案,欢迎阅读,希望大家能够喜欢。
高中数学平面向量教案精选篇1教学目标1、了解基底的含义,理解并掌握平面向量基本定理。
会用基底表示平面内任一向量。
2、掌握向量夹角的定义以及两向量垂直的定义。
学情分析前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。
如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备重点难点重点:对平面向量基本定理的探究难点:对平面向量基本定理的理解及其应用教学过程4.1第一学时教学活动活动1【导入】情景设置火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度v=vx+vy=6i+4j。
活动2【活动】探究已知平面中两个不共线向量e1,e2,c是平面内任意向量,求向量c=___e1+___e2(课堂上准备好几张带格子的纸张,上面有三个向量,e1,e2,c)做法:作OA=e1,OB=e2,OC=c,过点C作平行于OB的直线,交直线OA于M;过点C作平行于OA的直线,交OB于N,则有且只有一对实数l1,l2,使得OM=l1e1,ON=l2e2。
因为OC=OM+ON,所以c=6 e1+6e2。
向量c=__6__e1+___6__e2活动3【练习】动手做一做请同学们自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____(做完后,思考一下,这样的一组实数是否是唯一的呢?)(是唯一的)由刚才的几个实例,可以得出结论:如果给定向量e1,e2,平面内的任一向量a,都可以表示成a=入1e1+入2e2。
活动4【活动】思考问题2:如果e1,e2是平面内任意两向量,那么平面内的任一向量a还可以表示成a=入1e1+入2e2的形式吗?生:不行,e1,e2必须是平面内两不共线向量活动5【讲授】平面向量基本定理平面向量基本定理:如果e1,e2是平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数l1,l2,使a=l1e1+l2e2。
高考数学知识点《平面向量》复习教案
届高考数学知识点《平面向量》复习教案【小编寄语】小编给大家整理了届高考数学知识点《平面向量》复习教案,希望能给大家带来帮助!平面向量的坐标运算一.复习目标:1.了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、减法、数乘的运算,掌握向量坐标形式的平行的条件;2.学会使用分类讨论、函数与方程思想解决有关问题。
二.主要知识:1.平面向量坐标的概念;2.用向量的坐标表示向量加法、减法、数乘运算和平行等等;3.会利用向量坐标的定义求向量的坐标或点的坐标及动点的轨迹问题.三.课前预习:1.若向量 ,则 ( )2.设四点坐标依次是,则四边形为 ( )正方形矩形菱形平行四边形3.下列各组向量,共线的是 ( )4.已知点 ,且有 ,则。
5.已知点和向量 = ,若 =3 ,则点B的坐标为。
6.设 ,且有 ,则锐角。
四.例题分析:例1.已知向量,,且,求实数的值。
小结:例2.已知,(1)求 ;(2)当为何实数时,与平行,平行时它们是同向还是反向?小结:例3.已知点 ,试用向量方法求直线和 ( 为坐标原点)交点的坐标。
小结:例4.已知点及 ,试问:(1)当为何值时, 在轴上? 在轴上? 在第三象限?(2)四边形是否能成为平行四边形?若能,则求出的值.若不能,说明理由。
小结:五.课后作业:班级学号姓名1. 且,则锐角为 ( )2.已知平面上直线的方向向量,点和在上的射影分别是和,则,其中 ( )2 -23.已知向量且,则 = ( )(A) (B) (C) (D)4.在三角形中,已知,点在中线上,且,则点的坐标是 ( )5.平面内有三点,且∥ ,则的值是 ( )1 56.三点共线的充要条件是 ( )7.如果 , 是平面内所有向量的一组基底,那么下列命题中正确的是 ( )若实数使,则空间任一向量可以表示为,这里是实数对实数,向量不一定在平面内对平面内任一向量,使的实数有无数对8.已知向量,与方向相反,且,那么向量的坐标是_ ____.9.已知,则与平行的单位向量的坐标为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学二轮复习 专题五 平面向量
【重点知识回顾】
向量是既有大小又有方向的量,从其定义可以看出向量既具有代数特征,又具有几何特征,因此我们要借助于向量可以将某些代数问题转化为几何问题,又可将某些几何问题转化为代数问题,在复习中要体会向量的数形结合桥梁作用。
能否理解和掌握平面向量的有关概念,如:共线向量、相等向量等,它关系到我们今后在解决一些相关问题时能否灵活应用的问题。
这就要求我们在复习中应首先立足课本,打好基础,形成清晰地知识结构,重点掌握相关概念、性质、运算公式 法则等,正确掌握这些是学好本专题的关键
在解决关于向量问题时,一是要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对“向量”这一二维性的量的本质的认识,并体会用向量处理问题的优越性。
二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用。
在解决解斜三角形问题时,一方面要体会向量方法在解三角形方面的应用,另一方面要体会解斜三角形是重要的测量手段,通过学习提高解决实际问题的能力
因此,在复习中,要注意分层复习,既要复习基础知识,又要把向量知识与其它知识,如:曲线,数列,函数,三角等进行横向联系,以体现向量的工具性 平面向量基本定理(向量的分解定理)
e e a →
→→
12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一
实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →
→
→
→
→
=+
的一组基底。
向量的坐标表示
i j x y →→
,是一对互相垂直的单位向量,则有且只有一对实数,,使得
()a x i y j x y a a x y →
→→→→
=+=,称,为向量的坐标,记作:,,即为向量的坐标
()
表示。
()()
设,,,a x y b x y →
→
==1122
()()()则,,,a b x y y y x y x y →
→±=±=±±11121122
()()
λλλλa x y x y →
==1111,,
()()
若,,,A x y B x y 1122
()则,AB x x y y →
=--2121
()()||AB x x y y A B →=
-+-212212,、两点间距离公式
. 平面向量的数量积
()··叫做向量与的数量积(或内积)。
1a b a b a b →
→
→
→
→
→
=||||cos θ
[]
θθπ为向量与的夹角,,a b →→
∈0
数量积的几何意义:
a b a b a b →
→
→
→
→
·等于与在的方向上的射影的乘积。
||||cos θ (2)数量积的运算法则 ①··a b b a →
→
→
→
=
②··()a b c a c b c →
→→
→
→
→
→
+=+
()()③·,·,a b x y x y x x y y →→
==+11221212
注意:数量积不满足结合律····()()a b c a b c →
→
→
→
→
→
≠
()()
()重要性质:设,,,31122a x y b x y →→
==
①⊥···a b a b x x y y →
→
→
→
⇔=⇔+=001212
②∥··或··a b a b a b a b a b →→→→→→→→→→
⇔==-|||||||| ⇔=≠→
→
→
a b b λλ(,惟一确定)0 ⇔-=x y x y 12210
③,··a a x y a b a b →→
→→→→
==+≤2
2
121
2||||||||
④···cos ||||
θ=
=
+++→→→
→
a b
a b x x y y x y x y 1212
1212222
2
【典型例题】
1.向量的概念、向量的运算、向量的基本定理
例1. (2008湖北文、理)设a=(1,-2),b=(-3,4),c=(3,2),则(a+2b)·c=( ) A.(-15,12) B.0 C.-3 D.-11
解:(a+2b)(1,2)2(3,4)(5,6)-+-=-,(a+2b)·c (5,6)(3,2)3=-⋅=-,选C
点评:本题考查向量与实数的积,注意积的结果还是一个向量,向量的加法运算,结果也是一个向量,还考查了向量的数量积,结果是一个数字
例2、(2008广东文)已知平面向量),2(),2,1(m -==,且∥,则32+=( ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10) 解:由∥,得m =-4,所以,
32+=(2,4)+(-6,-12)=(-4,-8),故选(C )。
点评:两个向量平行,其实是一个向量是另一个向量的λ倍,也是共线向量,注意运算的公式,容易与向量垂直的坐标运算混淆
例3.(1)如图所示,已知正六边形ABCDEF ,O 是它的中心,若BA =a ,BC =b ,试用a
,
b 将向量OE ,BF ,BD , FD
表示出来。
(1)解析:根据向量加法的平行四边形法则和减法的三角形法则,用向量a ,b
来表示其他
向量,只要考虑它们是哪些平行四边形或三角形的边即可
因为六边形ABCDEF 是正六边形,所以它的中心O 及顶点A ,B ,C 四点构成平行四边形ABCO ,
E。