2017小升初数学盈亏问题:盈亏问题

合集下载

小升初奥数第18讲 盈亏问题

小升初奥数第18讲   盈亏问题

第十七讲盈亏问题学生年级小升初科目数学总课时第课过程盈亏问题知识点:盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1,两盈:两次分配都有多余;2,两不足:两次分配都不够;3. 一盈一亏:一次分配有余,一次分配不够4. 盈适足:一次分配有余,一次分配够分;5. 不足适足:一次分配不够,一次分配正好。

一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。

解题时我们可以记住:1,“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2,“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;3,“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。

金钥匙:少少减,多多减,一多一少就相加,然后除以分配差。

1.一盈一亏:例1:幼儿园老师拿出苹果发给小朋友。

如果平均分给小朋友每人5个,则少4个;如果每个小朋友只发给4个,则老师自己也能留下4个。

有多少个小朋友?共有多少个苹果?例2:把一些桃子分给猴子吃,每只猴子分的一样.如果分给5只猴子,那么还剩下12个桃子;如果分给7只猴子,就会缺4个桃子.问:每只猴子分到多少个桃子?例3:运动会上,班长给参赛选手发矿泉水,如果每名选手分4瓶水,那么还多5瓶;如果每名选手分5瓶水,就会缺少3瓶.请问:有多少名选手,多少瓶水?练习:1.同学们早餐吃面包,每袋面包有10片,开始来了9个同学,老师给每人发了同样多片面包之后,还剩下半袋.后来又来了5个同学,老师发现还要再买两袋面包才够给新来的同学每人发同样多的面包.问:老师开始准备了几袋面包?2.过年了,某工厂打算拿出一笔钱给表现优秀的工人发资金,每人发同样多的钱.开始一数,共有40名优秀的工人,按原计划发完奖之后还能剩下400元.后来发现少统计了10名优秀工人,结果总钱数不够了,还缺500元.如果公司只有这么些资金,那么只能给每名优秀工人发多少元钱?3.冬冬请三名同学去看电影,买完票之后还剩下一张10元钱、一张5元钱和两张1元钱.这时又来了两名同学,冬冬也想请他们一起看,可是他发现还差3元钱.请问:冬冬一共有多少钱?类型2:两盈问题例1:绵羊村村长给羊羊们发青草丸子,每只羊分到的同样多,还剩下20个青草丸子.后来又来了1只小山羊.村长也发给它同样多的青草丸子,这时只剩下10个青草丸子了.请问:每只羊分到多少个与草丸子?例2:老师给同学们发作业本,每人发了同样多的作业本后,还剩下20本,后来给新来的2个人也发了同样数目的作业本,就只剩下12本了.请问:每个人发了几本?剩下的作业本还能再发给几个人?例3:小悦去文具店买水彩笔,如果买7支,还能剩7元9角钱;后来小悦决定买13支,结果只剩1角钱.请问:小悦一共带了多少元钱?练习:1.裁缝做衣服,他已经做好一些西服,现在要往上面缝扣子,如果每件西服缝3个扣子,还会剩下26个扣子;如果每件缝5个,就只剩下4个扣子了.请问:裁缝一共有多少个扣子?他已经做了几件西服?2.学校组织学生们去农村郊游,如果每户农家住4名同学,就会有7个人没地方住;(1)如果每户农家住5名同学,就会空出3个床位,这批学生一共有多少人?(2)如果每户农家住5名同学,最后2个农家就正好空着没有同学住了,这批学生一共有多少人?3.老师把一堆苹果分给小朋友,每人分的同样多.如果分给9个人,那么还剩下21个苹果;如果分给12个人,就只剩下12个苹果.请问:这堆苹果一共有多少个?类型3:两亏问题例1:绵羊村村长给羊羊们发青草蛋糕,每只羊分到的同样多,还缺少5块青草蛋糕.后来又来了1只小山羊,村长也想发给它同样多的青草蛋糕,这时就会缺少10块青草蛋糕.请问:每只羊分到多少块青草蛋糕?练习:小明计划在若干天内做完一章习题,如果每天做5道题,恰好提前1天做完,如果每天做7道题,恰好提前3天做完.这章习题一共有多少道题?类型4:盈适足例1:绵羊村村长给羊羊们发青草蛋糕,每只羊分到的同样多,还剩下10块青草蛋糕.后来又来了2只小山羊,村长也发给它们同样多的青草蛋糕,这时青草蛋糕恰好全部分完.请问:每只羊分到多少块青草蛋糕?例2:幼儿园教师把一箱饼干分给小班和中班的小朋友,平均每人分得6块;如果只分给中班的小朋友,平均每人可以多分得4块。

小升初小学数学经典应用题专题练习《盈亏问题》答案详解

小升初小学数学经典应用题专题练习《盈亏问题》答案详解

经典应用题—专题10《盈亏问题》一.选择题(共7小题)1.(2017•长沙)美猴王带着蟠桃回到花果山分给众猴,先分给3只老猴各6个,每只小猴4个,发现还有4只小猴分不到,于是收回重新分,3只老猴各5个,每只小猴3个,可是还剩下12个,那么花果山共有()只猴.A.24B.25C.26D.28【解答】解:设花果山共有x只猴.6×3+(x﹣3)×4﹣4×4=5×3+(x﹣3)×3+1218+4x﹣12﹣16=15+3x﹣9+12x=28答:花果山共有28只猴.故选:D.2.(2017•长沙)甲乙二人买同一种杂志,甲买一本差2角8分,乙买一本差2角6分,而他俩的钱合起来买一本还剩2角6分,那么这种杂志每本价钱是()A.1元B.7角C.8角D.9角【解答】解:2角8分=0.28元,2角6分=0.26元.0.28+0.26+0.26=0.8(元)=8角答:这种杂志每本价钱是0.8元.故选:C.3.(2015•绵阳)有一批同学去划船,他们算了一下,如果增加一条船,正好每船坐6人,如果减少一条船,正好每条船坐9人,则该班有()名同A.32B.36C.40D.48【解答】解:法一:(9+6)÷(9﹣6),=15÷3,=5(条);6×5+6,=36(人).法二:设使用x条船,据题意可得方程:(x+1)×6=(x﹣1)×96x+6=9x﹣93x=15x=5,则班级人数为:(5+1)×6=36(人),答:该班有36人.故选:B.4.(2013•浦东新区模拟)将若干个苹果分给几个小朋友,如果每人分到4个,那么还多12个,如果每人分到6个,那么正好分完.小朋友有几个?根据题意,所列方程或算式错误的是()A.解:设小朋友有x个.4 x+12=6xB.解:设小朋友有x个.6x﹣12=4xC.解:设小朋友有x个.4x+12×4=6xD.12÷(6﹣4)【解答】解:(1)用方程解可列式为:设有小朋友X人,根据题意得①4X+12=6X,12=6X﹣4X,2X=12,X=12÷2,X=6.答:有小朋友6人.②6X﹣12=4X,6X﹣4X=12,2X=12,X=12÷2,X=6.答:有小朋友6人.③6X﹣4X=12,2X=12,X=12÷2,X=6.答:有小朋友6人.(2)用算术法解12÷(6﹣4),=12÷2,=6(人).答:有小朋友6人.故选:C.5.(2012秋•杨浦区期末)小聪用一根绳子来测量一口井的深度,他把绳子的一端放入井底,井口外绳子长9米,小聪把这根绳子对折后,将一端入井底,这时在井口外的绳子还有3米,这口井的深度为()米.A.2B.3C.4D.5【解答】解:9﹣3×2,=9﹣6,=3(米).答:这口井的深度为3米.故选:B.6.用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,绳子长()厘米.A.240B.210C.280【解答】解:树的周长:(30+40)÷(4﹣3)=70÷1=70(厘米)绳长:70×3+30=210+30=240(厘米)答:绳子长240厘米.故选:A.7.小红从家里到县城去上她以每分钟50米的速度走了3分钟,发觉按这个速度走下去就要迟到8分钟,于是立即加快了速度,每分钟多走了10米,结果到学校时,离上课还有5分钟,小红家到学校的路程是()米.A.3900B.4050C.4300【解答】解:50+10=60(米)(8×50+5×60)÷10=700÷10=70(分钟)50×(70+8)=3900(米)3900+50×3=4050(米)答:小红家到学校的路程是4050米.故选:B.二.填空题8.(2019•深圳)有一口枯井,现有一根绳子,对折后垂直放到井底,绳子一端比井口多10米;如果三折后垂到井底,绳子的一端比井口多2米,绳子的长度是48米.【解答】解:绳子长:(10﹣2)÷(﹣)=8=48(米)答:绳子的长度是48米.故答案为:48.9.(2019•长沙)若干个同学去划船,若每船4人,则多5人;若每船5人,则船上有4个空位,有41名同【解答】解:船的数量:(5+4)÷(5﹣4)=9÷1=9(条),共有学生:4×9+5=41(人)或:5×9﹣4=41(人),答:共有41个同故答案为:41.10.(2019•郑州)某公司给职工发奖金,每人发250元则缺180元,每人发200元则余220元,那么平均每人能发奖金227.5元.【解答】解:设员工共x人,则250x﹣180=200x+220250x﹣200x=220+18050x=400x=8每人发250元则缺180元,所以奖金总数:250×8﹣180=2000﹣180=1820(元),那平均每人发的奖金数就是:1820÷8=227.5(元),答:平均每人能发奖金227.5元.故答案为:227.5.11.(2019•广州模拟)一次数学考试共有20道题.规定答对一题得2分,答错一题扣1分,未答的题不得分.小明得了23分,已知他未答的题目数是偶数.那么他答错了3道.【解答】解:因为得了23分,所以小明至少答对了12题即2×12=24>23分那么小明答错的和没答的是20﹣12=8道又因为没答的题是偶数,而小明的得分是奇数,所以依此类推小明至少答对的题目数应该是奇数13、15、17、19假设小明答了全部的题那么得分如下:(1)2×13﹣7=19(2)2×15﹣5=25>23(3)2×17﹣3=31>23(4)2×19﹣1=37>23因此可以判定(2)、(3)、(4)不满足题意要求所以小明答对了13,答错的题:13×2﹣23=3(道)未答的题:20﹣13﹣3=4(道)符合题意.故小明答错了3题,有4道题没有答.答:小明答错了3道题.12.(2018•金湖县)小明步行上如果每分钟步行40米,就会迟到2分钟;如果每分钟步行60米,就提前2分钟到校.小明家到学校有480米.【解答】解:(60×2+40×2)÷(60﹣40)=200÷20=10(分钟)40×(10+2)=40×12=480(米)答:小明家到学校有480米.故答案为:480.13.(2018•长沙)学校安排学生到会议室听报告,如果每3人坐一条长椅,则剩下36人没有座位;如果每5人坐一条长椅,则刚好空出2条长椅,参加会议室的学生有105人.【解答】解:(36+5×2)÷(5﹣3)=(36+10)÷2=46÷2=23(条),23×3+36=69+36=105(人).答:参加会议室的学生有105人;故答案为:105.14.(2015秋•达州月考)学校给学生分配宿舍,每间屋住3人则多出20人,每间屋住5人,恰好够住.学校宿舍10间,学生50人.【解答】解:设有宿舍x间,由题意得:2x=20x=10则学生有:10×5=50(人)答:学校宿舍有10间,学生有50人.故答案为:10,50.15.(2013春•武侯区校级期末)一批小朋友去买东西,若每人出10元则多8元;若每人出7元则少4元.问:有4个小朋友,东西的价格是32元.【解答】解:小朋友:(8+4)÷(10﹣7)=12÷3=4(人)东西的价格:10×4﹣8=32(元)答:有4个小朋友,东西的价格是32元.故答案为:4;32.16.(2013秋•江南区月考)托儿所买一车梨.按计划吃的天数计算一下,如果每天吃40个,那么剩下480个;如果每天吃60个,那么还少80个.买回这车梨有1600个,托儿所计划吃28天.【解答】解:天数:(480+80)÷(60﹣40),=560÷20,=28(天);个数:28×40+480=1600(个);答:买回这车梨有1600个,托儿所计划吃28天.故答案为:1600,28.17.(2013春•江南区月考)小虹借了一本科幻书,必须按期归还.小虹若每天读35页,则读完全书比规定日期迟一天;如果每天读40页,则最后一天要少读5页;这本科幻书共有315页,规定日期是8天,如果他每天读39页,最后一天要读42页才能按期读完.【解答】解:(35+5)÷(40﹣35),=8(天),8×35+35,=280+35,=315(页).315﹣39×7,=315﹣273,=42(页).答:这本科幻书共有315页,规定日期是8天,如里他每天读39页,最后一天要读42页才能按期读完.故答案为:315,8,42.三.应用题18.(2018秋•娄底期末)妈妈带一些钱去买布.买2米布后还剩下1.80元;如果买同样的布4米则差2.40元.问:妈妈带了多少钱?【解答】解:(2.40+1.80)÷(4﹣2)=4.2÷2=2.1(元/米)2.1×2+1.8=4.2+1.8=6(元)答:妈妈带了6元.19.(2019秋•深圳月考)某班学生要栽一批树苗.若每个人分配k棵树苗,则剩下38棵;若每个学生分配9棵树苗,则还差3棵.那么k是多少棵树苗?【解答】解:41÷(9﹣k)表示分配人数因为分配人数是整数所以9﹣k=41或者9﹣k=1k=﹣32(舍)或k=8答:k是8棵树苗.20.(2019春•普陀区校级期中)学校安排寝室,如果每间13人就正好住满,如果每间10人,还缺三间寝室,学校有几间寝室?【解答】解:(10×3)÷(13﹣10)=10(间)答:学校有10间寝室.21.(2018春•水富县校级月考)妈妈带了一些钱去买肉.如果买4千克牛肉,还剩20元;如果买7千克猪肉,还差10元.已知牛肉比猪肉每千克贵15元,妈妈带了多少钱?【解答】解:买4千克猪肉要余出:15×4=60(元):剩余:60+20=80(元);每千克猪肉的价格为:(80+10)÷(7﹣4)=30(元);妈妈共带了:7×30﹣10=200(元);答:妈妈带了200元钱.22.(2018秋•福田区校级月考)手工课上,王老师带了一些彩纸分给学生.若每组分3张彩纸,则剩下18张,如每组分7张彩纸,则还差2张.王老师一共带了多少张彩纸?【解答】解:设一共有x组,3x+18=7x﹣24x=20x=53×5+18=15+18=33(张)答:王老师一共带了33张彩纸.23.(2018•玄武区)一小和二小有同样多的同学参加某项比赛.学校用汽车把学生运往赛场.一小用的汽车每车坐15人,二小用的汽车每车坐13人,结果是二小比一小多派1辆车.后来每校各增加一人参加比赛,这样两校需要的汽车就一样多了.最后学校又决定每校增加一人参加比赛,二小又比一小多派1辆车.问两校共有多少人参加比赛?【解答】解:由于:6×15+1=7×13,所以每校原来参加人数为:6×15=90(人),两校共有:90×2+4=184(人).答:最后两校共有184人参加竞赛.24.(2016•徐州)同学们集体买一件商品,每人付6元,就会多48元,每人付5元,就会少3元,问这件商品多少元?一共有多少人?【解答】解:(48+3)÷(6﹣5)=51(人)6×51﹣48=258(元)答:这件商品258元,一共有51人.25.有一些自行车辐条,安装4辆自行车后,还剩66根辐条;若安装5辆自行车,则少了14根辐条.现在一共有多少根辐条?【解答】解:设每辆自行车安装x根辐条,4x+66=5x﹣144x+66﹣4x=5x﹣14﹣4xx﹣14=66x﹣14+14=66+14x=804×80+66=386(根)答:现在一共有386根辐条.26.一群小朋友分苹果.若每人分14个,则还多出11个;若一位小朋友只拿10个,则其余小朋友都能拿到17个.这些苹果共有多少个?【解答】解:(11+17﹣10)÷(17﹣14)=18÷3=6(人)6×14+11=95(个)答:这些苹果共有95个.27.小明家与学校相距6千米,每天小明都以一定的速度骑自行车去学校,恰好在上课前5分钟赶到.这天,小明比平时晚出发了10分钟,于是他提速骑车,结果在上课前1分钟赶到学校.已知小明提速后的速度是平时的1.5倍.小明平时骑车的速度是每小时多少千米?【解答】10﹣(5﹣1)=10﹣4=6(分钟)6分钟=0.1小时设小明平时骑车速度为x,可得方程:﹣=0.1.=0.1×1.5x=0.1×1.5x3=0.15x3÷0.15=0.15x÷0.15x=20答:平时小明平时骑车的速度是每小时20千米.28.王老师把买来的一箱橙子分给幼儿园的小朋友,如果其中2人每人分4个,其余每人分2个,则多出4个橙子;如果其中1人分6个,其余每人分4个,则又缺12个.王老师买了多少个橙子?一共分给多少个小朋友?【解答】解:(4﹣2)×2+4=8(个)12﹣(6﹣4)=10(个)(10+8)÷(4﹣2)=18÷2=9(个)4×2+(9﹣2)×2+4=26(个)答:王老师买了26个橙子.一共分给9个小朋友.29.小明步行上如果每分钟步行80米,就会迟到3分钟,如果每分钟步行100米,就会提前3分钟到校.小明家到学校有多少米?【解答】解:小明准时到达用的时间:(80×3+100×3)÷(100﹣80)=540÷20=27(分钟)小明家到校的路程80×(27+3)=80×30=2400(米)答:小明家离学校有2400米.四.解答题30.(2019春•嘉定区校级月考)朱老师为参加军训的学生安排宿舍.如果每间宿舍住8人,那么这些宿舍正好住满;如果每间宿舍住6人,那么正好缺4间宿舍.学生宿舍有多少间?参加军训的学生有多少人?【解答】解:(6×4)÷(8﹣6)=24÷2=12(间)12×8=96(人)答:学生宿舍有12间,参加军训的学生有96人.31.(2019春•普陀区期中)“六一”儿童节,学校向每个班级分发气球布置教室.如果每个班分20个气球,则多了130个;如果每个班分25个气球,则正好分完.一共有几个班级?一共有几个气球?【解答】解:130÷(25﹣20)=130÷5=26(个)20×26+130=650(个)答:一共有26个班级,共用650个气球.32.(2019•江西模拟)全班同学站队排成若干行,若每行14人则多5人,若每行17人则少4人.共有多少名同排成几行?【解答】解:(5+4)÷(17﹣14)=9÷3=3(行),14×3+5=47(人),答:共有47名同排成3行.33.(2018•雨花区)育才小学学生乘汽车去春游,如果每车坐65人,则有15人不能乘车.如果每车多坐5人,恰好多余一辆车.有多少个学生去春游?【解答】解(15+65+5)÷5=85÷5=17(辆)65×17+15=1105+15=1120(人)答:一共有1120个学生去春游.34.(2018秋•绿园区月考)聪聪打算读一本故事书,如果每天读10页,还少28页;如果每天读6页,还多20页没读完,你能算出全书共有多少页吗?【解答】解:(28+20)÷(10﹣6)=48÷4,=12(天).12×10﹣28=120﹣28,=92(页).答:共有92页.35.(2018秋•通川区期中)小明去体育用品专卖店买乒乓球,买10个还差8.9元,买5个还剩1.6元,小明有多少钱?【解答】解:单价:(8.9+1.6)÷(10﹣5),=10.5÷5,=2.1(元);共有:2.1×10﹣8.9=12.1(元);答:小明有12.1元.36.(2019秋•广饶县期末)学校为新生分配宿舍,每个房间住3人,则有23人安排不进去,如果每个房间住5人,则空出3个房间.学校现有多少间宿舍?【解答】解:(23+5×3)÷(5﹣3)=(23+15)÷2=38÷2=19(间)答:学校有19间宿舍.37.(2019•衡水模拟)一种商品随季节出售,如果按现价降低10%,每件仍可盈利200元;如果按现价降低20%,则每件亏损220元.这种商品每件的进价是多少元?【解答】解:(200+220)÷(20%﹣10%)=420÷10%=4200(元)4200×(1﹣10%)﹣200=4200×90%﹣200=3780﹣200=3580(元)答:这种商品每件的进价是3580元.38.(2019•天津模拟)学校分配寝室.如果每间住6人,还有20人没有床位,如果每间住8人,正好住满.学生宿舍有多少间寝室?【解答】解:20÷(8﹣6)=20÷2=10(间)答:学生宿舍有10间寝室.39.(2019•江西模拟)神童幼儿园里买来一些玩具,如果每班分8个玩具,就多出2个玩具,如果每班分10个玩具,就少12个玩具,幼儿园里有多少个班?【解答】解:(2+12)÷(10﹣8),=14÷2,=7(个),答:幼儿园有7个班.40.(2019•北京模拟)李师傅做一批零件,如果他平均每天做24个,将比计划推迟一天完成,如果他平均每天做40个,将比计划提前一天完成,为了按计划完成,他平均每天要做多少个零件?【解答】解:①规定时间为(24×1+40×1)÷(40﹣24),=64÷16,=4(天);②按时完成每天做24×(4+1)÷4,=120÷4,=30(个).答:他平均每天要做30个零件.。

小升初数学冲刺训练盈亏问题全国版

小升初数学冲刺训练盈亏问题全国版

小升初数学冲刺训练盈亏问题全国版
【思想规律】
两次分配的结果差÷两次分配数差=人数
或,由于参与分配的总人数不变,参与分配的物品总数不变,因此,可依据第一种分法的人数=第二种分法的人数
第一种分法物品总数=第二种分法物品总数,列出方程来解。

【重点点拨】
例1、一批树苗,假设每人种树苗,那么缺少3棵;假设每人种7棵,那么有4棵没人种。

求参与种树的人数是多少人?这批树苗共有多少棵?
例2、幼儿园教员把一堆苹果分给小冤家,假设每人分6个,那么少10个;每人分4个,还多2个。

有多少个小冤家?有多少个苹果?
例3、学校布置重生住宿,假定每间宿舍住6人,那么多出34人;假定每间宿舍住7人,那么多出4间宿舍,求住宿的先生和宿舍各有多少?
例4、先生分练习本,其中两团体每人分6本,其他每人分4本,那么多2本;假设有一个先生分8本,其他每人分6本,那么缺乏18本。

先生有多少人?练习本有多少本?
例5、一工人加工一批机器零件,限期完成。

他方案每小时做10个,还差3个零件完成义务每小时做11个,恰恰限期内完成了义务。

他加工的零件是多少个?限几小时完成?
例6、小红家买来一篮橘子分给全家人,假设每人3只那么多了5只,假设其中二人每人分2只,蓝丰生化每人分4只那么多1只,小红家买来多少只橘子?小红家共有多少人?
例7、在一次大扫除中,教员分配假定干人擦玻璃,假设其中二人各擦4块,其
他每人擦5块,那么余22块;假设每人擦7块,正好擦完。

求擦玻璃的人数和玻璃的块数。

小学数学公式盈亏问题公式(附例题)

小学数学公式盈亏问题公式(附例题)

小学数学公式盈亏问题公式(附例题)小学数学公式盈亏问题公式(附例题)盈亏问题公式(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。

小学盈亏问题口诀及解题方法(含经典应用题及答案)【口诀】:全盈全亏,大的减去小的;一盈一亏,盈亏加在一起。

除以分配的差,结果就是分配的东西或者是人。

例1:小朋友分桃子,每人10个少9个;每人8个多7个。

求有多少小朋友多少桃子?一盈一亏,则公式为:(9+7)/(10-8)=8(人),相应桃子为8×10-9=71(个)例2:士兵背子弹。

每人45发则多680发;每人50发则多200发,多少士兵多少子弹?全盈问题。

大的减去小的,则公式为:(680-200)/(50-45)=96(人)则子弹为96×50+200=5000(发)。

例3:学生发书。

每人10本则差90本;每人8本则差8本,多少学生多少书?盈亏问题1:数学竞赛获奖的同学中,若增加2名男生,减少1名女生,则男、女生人数同样多;若减少1名男生,增加1名女生,则男生人数是女生人数的一半,求获奖的同学中男、女生各有多少人?2:小明用一根绳子去测量井深,他把绳子两折来量,还高出井口60厘米;他把绳子三折来量,离井口还差40厘米。

求井深和绳长?例1:每猴4个桃,还剩10个桃;每猴5个桃,缺了5个桃子。

例2:每猴3个桃,还剩25个桃;每猴4个桃,剩10个桃子。

例3:每猴5个桃,还少5个桃;每猴6个桃,少20个桃子。

例4:小朋友们去划船,如果增加1条船,每条船上正好坐4人;如果减少1条船,正好每条船上坐6人,一共有学生多少人?原计划坐几条船?例5:军队分配宿舍,如果每间住3人,则多出20人;如果每间住6人,余下2人可以每人各住一个房间,现在每间住10人,可以空出多少个房间?例6:元旦快到了,学而思学校的少先队员去摆花盆。

如果每人摆5盆花,还有3盆没人摆;如果其中2人摆4盆,其余的人各摆6盆,这些花盆正好摆完,问有多少少先队员参加摆花盆活动,一共摆多少花盆?盈亏问题精讲何为盈亏?在我们分东西时,比如给猴子分桃时,可能不够,也可能会剩下。

(32)小升初盈亏问题

(32)小升初盈亏问题

(2)两亏:(大亏-小亏)÷两次分配差=参加分配总人数
(3)一盈一亏:(盈+亏)÷两次分配差=参加分配总人数
(4)一盈一尽:盈÷两次分配差=参加分配总人数
(5)一亏一尽:亏÷两次分配差=参加分配总人数
直接计算型盈亏问题
1、六年级一班少先队员参加学校搬砖劳动。如
果每人搬4块砖,还剩7块;如果每人搬5块,则
少2块砖。这个班少先队有几个人?要搬的砖共 有多少块?
2、学校新买来一批书,将它们分给几位老师
,如果每人发10本,还差9本,每人发9本,还 差2本,请问有多少老师?多少本书?
3、猫妈妈给小猫分鱼,每只小猫分10条鱼,就
多出8条鱼,每只小猫分11条鱼则正好分完,那
么一共有多少只小猫?猫妈妈一共有多少条鱼?
3、王老师将一叠练习本分给第一小组同学, 每人分7本还多7本,如果每人分9本,那么有 一个同学分不到。请算一算,第一小组有几个 同学?这叠练习本有多少本?
4、某校乒乓球队有若干名学生,如果少一名 女生,增加一名男生,则男生为总数的一半; 如果少一名男生,增加一名女生,则男生为女 生人数的一半。乒乓球队共有多少名学生?
课堂练习
1、老师把一些苹果分给小朋友。如果每人分 一个,还剩下8个苹果;如果每人分2个,那么 还少2个苹果。一共有多少个小朋友?多少个 苹果?
2、王华用自己仅存的漆包线在磁棒上绕线圈, 当他绕了80圈时,测得余线长15.28厘米,于是 想改绕90圈,却发现缺少22.4厘米的漆包线,王 华的漆包线有多长?所用的磁棒的半径是多少?
盈亏问题
含义
根据一定的人数,分配一定的物品,在两次分配 中,一次又余(盈),一次不足(亏),或两次 都有余,或两次都不足,求人数或物品数,这类 应用题叫作盈亏问题。

盈亏 问 题小升初

盈亏 问 题小升初

第9讲盈亏问题一、基础知识1、盈亏问题就是把一定的总数,分配给一定的对象,由于每份数分法不同,导致分后结果有盈(多)有亏(少)的一种典型应用题。

解题关键:解决盈亏问题,往往先用结果的相差数除以每份的相差数,求出对象的数量,进一步求出分配的总数。

所以在讲解时,不要刻意区分这三类基本题型,而应引导学生牢牢抓住两种分法上总的相差数和每次相差数2、盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意1.条件转换 2.关系互换二、典型例题模块一、盈亏基本例题例1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人要搬的砖共有多少块例2、猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多只.例3、某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?板块二、条件关系转换型盈亏问题例4、猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫猫妈妈一共有多少条鱼例5、甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸例6、王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;苹果每人分7个,少5个.问有多少个小朋友多少个苹果和桔子例7、学校为新生分配宿舍.每个房间住3人,则多出23人;每个房间住5人,则空出3个房间.问宿舍有多少间新生有多少人例8、幼儿园老师买了同样多的巧克力、奶糖和水果糖.她发给每个小朋友2块巧克力,7块奶糖和8块水果糖.发完后清点一下,水果糖还剩15块,而巧克力恰好是奶糖的3倍.那么共有_____________个小朋友.随堂练习:1、一盒咖啡中有若干袋,一包方糖中有若干块.小唐喝前两盒咖啡时每袋咖啡都放3块方糖,结果共用了1包方糖和第2包中的24块;小唐喝后三盒咖啡时每袋咖啡都只放1块方糖,最后第3包方糖还剩下36块,那么每盒咖啡有多少袋2、有若干盒卡片分给一些小朋友,如果只分一盒,每人至少可以得到7张;如果每人分8张卡片,则还缺少5张.现在把所有卡片都分完,每人分到60张,而且还多出4张.问:共有多少个小朋友3、有若干个苹果和若干个梨.如果按每1个苹果配2个梨分堆,那么梨分完时还剩2个苹果;如果按每3个苹果配5个梨分堆,那么苹果分完时还剩1个梨.苹果和梨各有多少个?4、幼儿园老师给小朋友分糖果.若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块.那么糖果最多有多少块5、有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问第二组有多少人6、“六一”儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等.花球原价1元钱2个,白球原价1元钱3个.因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球7、四(2)班在这次的班级评比中,获得了“全优班”的称号.为了奖励同学们,班主任刘老师买了一些铅笔和橡皮.刘老师把这些铅笔和橡皮分成一小堆一小堆,以便分给几位优秀学生.如果每堆有1块橡皮2支铅笔,铅笔分完时橡皮还剩5块;如果每堆有3块橡皮和5支铅笔,橡皮分完时还剩5支铅笔.那么,刘老师一共买了多少块橡皮?多少支铅笔?8、工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个9、学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍10、实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生巩固练习:1、幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。

小升初数学盈亏问题应用题

小升初数学盈亏问题应用题

盈亏问题应用题是指一类具有特定数量关系的数学问题,通常涉及一定数量的资源(如食物、时间、人力等)和特定条件下如何分配这些资源,使得资源能够得到最优利用。

盈亏问题应用题的基本公式为:
平均数公式:全体数量之和÷数量个数= 平均数
分配公式:每份数量= 平均数÷份数
盈亏公式:盈亏数= (平均数×份数) -分配数
盈亏问题的解法:盈亏问题的解法是利用盈亏公式,先求出平均数,再求出份数和分配数。

以下是一些小升初数学盈亏问题应用题的例子:
食品店有一批苹果,如果每个苹果卖1元,可以盈利10%;如果每个苹果卖0.8元,可以亏损20%。

请问每个苹果的成本是多少?
某公司有1000件产品,需要分配给5个销售代表。

如果每个销售代表需要至少销售200件产品,那么如何分配产品才能使得所有销售代表的销售量都相等?
一家餐厅有10个员工,每天需要工作8小时。

如果每小时需要支付员工工资10元,那么每天需要支付多少工资?
一家服装店有100件衣服,如果每件衣服售价为100元,可以盈利20%。

如果每件衣服售价为80元,可以亏损25%。

请问这件衣服的成本是多少?
一家医院有10个床位,需要安排病人入住。

如果每个病人需要
占用一个床位,那么如何安排病人才能使得所有床位都得到充分利用?。

2017小升初数学盈亏问题基本题型_知识点总结

2017小升初数学盈亏问题基本题型_知识点总结

2017小升初数学盈亏问题基本题型_知识点总结
小升初是每位家长和孩子人生的转折,为了帮助考生更好的备考小升初数学,下面为大家分享小升初数学盈亏问题公式,希望对大家有帮助!
小升初数学盈亏问题公式
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于
分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。

基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。

基本题型:
①一次有余数,另一次不足;
基本公式:总份数=(余数+不足数)÷两次每份数的差
②当两次都有余数;
基本公式:总份数=(较大余数一较小余数)÷两次每份数的差
③当两次都不足;
基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差
基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

以上是为大家分享的小升初数学盈亏问题公式,希望能够切实的帮助到大家,同时祝大家能够顺利进入理想的重点中学!。

小升初数学思维拓展典型应用题专项讲义 专题11-盈亏问题

小升初数学思维拓展典型应用题专项讲义 专题11-盈亏问题

专题11-盈亏问题小升初数学思维拓展典型应用题专项训练(知识梳理+典题精讲+专项训练)1、把若干物体平均分给一定数量的对象,并不是每次都能正好分完.如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏.凡是研究盈和亏这一类算法的应用题就叫盈亏问题.2、解盈亏问题的公式。

一盈一亏的解法:(盈数+亏数)÷两次每人分配数的差双盈的解法:(大盈-小盈)÷两次每人分配数的差双亏的解法:(大亏-小亏)÷两次每人分配数的差.【典例一】小红给房里的人分饼干,如果其中3人每人分4块,其余每人分2块,还多出4块.如果其中2人分6块,其余每人分3块,则缺12块.问房间里有多少人?【分析】如果其中有3个人每人分4块,其余每人分2块,就多了4块糖,也就是如果每人都分2块,就多了3×(4-2)+4=10块糖;如果其中2人分6块,其余每人分3块,则缺12块,即如果每人都分3块的话,则缺12-2×(6-3)=6块;即盈10,亏6,两次分配的差为3-2,则共有(10+6)÷(3-2)=16人.【解答】解:[3×(4-2)+4]+[12-2×(6-3)]=[6+4]+[12-6],=10+6,=16(块);16÷(3-2),=16÷1,=16(人);答:房间内共有16人.【点评】由于两次分配的数量不统一,因此据已知条件将每次分配的数量统一后,算出盈与亏是完成本题的关键.【典例二】用绳子量洞深。

把绳子折成2折来量,洞外余5米;把绳子折成3折来量,洞外余1米。

绳子和洞深各多少米?【分析】把绳子折成2折来量,洞外余5米,绳子共余52⨯⨯米;把绳子折成3折来量,洞外余1米,绳子共余13米,设洞深x米,根据绳长一定列方程解答。

【解答】解:设洞深x米,得:x x+⨯=+⨯313252+=+x x33210x x+-=+-3332103-=327x xx=7⨯+=(米)3(71)24答:绳长24米,洞深7米。

小升初专题 第25讲 盈亏问题与鸡兔同笼

小升初专题 第25讲 盈亏问题与鸡兔同笼

盈亏问题基本关系式:1)一盈一足:总人数= 盈÷分配差2)一盈一亏:总人数=(盈+亏)÷分配差3)双盈:总人数=(大盈-小盈)÷分配差4)双亏:总人数=(大亏-小亏)÷分配差5)一亏一足:总人数= 亏÷分配差鸡兔同笼公式:1)解法1:(兔脚数×总只数-总脚数)÷(兔脚数-鸡脚数)=鸡的只数总只数-鸡的只数=兔的只数2)解法2:(总脚数-鸡脚数×总只数)÷(兔脚数-鸡脚数) =兔的只数总只数-兔的只数=鸡的只数3)解法3:总脚数÷2—总头数=兔的只数总只数—兔的只数=鸡的只数一、解答题1.有一些画片,如果平均分给3个同学,还余1张;如果平均分给5个同学,还余3张;如果平均分给4个同学,则少2张。

试问这些画片至少有多少张?2.一群小孩去赶集,半路买了一堆梨,一人两个多一个,一人五个少五个,请问几个小孩几个梨?第25讲盈亏问题与鸡兔同笼3.在六年级二班的阅读课上王老师将一些图书分给学生,如果每人分4本,则剩余12本,如果每人分5本,则还缺30本,那么该班有多少名学生?一共有多少本图书?4.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。

现在有这三种昆虫共16只,共有110条腿和14对翅膀。

问:每种昆虫各有几只?5.小朋友们去划船,大船可以坐10人,小船坐6人,小朋友们共租了15只船,已知乘大船的人比乘小船的人多22人,问:大船几只?小船几只?6.某学校给住校学生安排宿舍,每间住4人,剩3人无房间住,如果每间住6人,则有4间房无人住,且还有一间宿舍多余了3个床位.请问学校的宿舍有多少间?住宿的学生又有多少名?7.春节前夕,一个富翁向乞丐施舍一笔钱财,开始他准备给每人100元,结果剩350元。

他决定每人多给20元,这时从其他地方又闻讯赶来了5个乞丐,如果他们每个人拿到的钱也和其他乞丐一样多,富翁还需要再增加550元。

小升初系列-小学数学公式大全——盈亏问题公式

小升初系列-小学数学公式大全——盈亏问题公式

小学数学公式大全——盈亏问题公式小学数学公式大全——盈亏问题公式盈亏问题公式(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。

例如,“小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友和多少个桃子?”解(7+9)÷(10-8)=16÷2=8(个)………………人数10×8-9=80-9=71(个)………………………桃子或8×8+7=64+7=71(个)(答略)(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。

例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。

问:有士兵多少人?有子弹多少发?”解(680-200)÷(50-45)=480÷5=96(人)45×96+680=5000(发)或50×96+200=5000(发)(答略)(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。

例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。

有多少学生和多少本本子?”解(90-8)÷(10-8)=82÷2=41(人)10×41-90=320(本)(答略)(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。

(例略)(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数。

(例略)盈亏问题公式(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。

例如,“小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友和多少个桃子?”解(7+9)÷(10-8)=16÷2=8(个)………………人数10×8-9=80-9=71(个)………………………桃子或8×8+7=64+7=71(个)(答略)(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。

小升初数学专题4盈亏问题(原卷版)

小升初数学专题4盈亏问题(原卷版)

小升初数学专题4:从课本到奥数盈亏问题(原卷版)基本概念盈亏问题是把一定数量的物品平均分给一定数量的人,由于物品和人数都未知,仅仅已知在两次分配中一次是盈(有余),一次是亏(不足);或者两次都盈余,或者两次都亏的数量时,求参加分配的物品总量及人员总数。

基本数量关系(盈+亏)÷(两次分得之差)=人数;(大盈小盈)÷(两次分得之差)=人数;(大亏小亏)÷(两次分得之差)=人数。

主要类型基本的盈亏问题类型1:“盈+亏”型1.高新区小学六(2)班的同学集体买了一个足球,如果每人拿2.5元钱,则少4元钱;如果每人拿2.8元钱,则多8元钱。

六(2)班一共有多少人?足球单价是多少元?2.幼儿园老师给小朋友分糖果,若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块。

那么糖果最多有多少块?类型2:“盈+盈”型3.用一根绳子测量一口井的深度:若把绳子折成3折后垂到井底,则绳子的长度超过井口4米;若把绳子折成4折后垂到井底,则绳子的长度超过井口1米。

求井的深度和绳子的长度各是多少米?4.一位老师给学生分糖果,如果每人分4粒就多9粒;如果每人分5粒正好分完。

有多少位学生?共多少粒糖果?类型3:“亏+亏”型5.王老师去买儿童小提琴,若买7把,则所带的钱差 110元;若买5把,则所带的钱还差 30 元。

儿童小提琴多少钱一把?王老师带了多少钱?6.实验小学买来一批小足球分给各班:如果每班分4个,就差66个;如果每班分2个,则正好分完。

实验小学一共有多少个班?买来多少个足球?拓展的盈亏问题类型4:盈亏问题在长方形面积中的拓展7.一个长方形菜园,如果把宽改成30米,长不变,那么它的面积减少500平方米;如果使宽为52米,长不变,那么它的面积比原来增加600平方米,原来的长是多少米?面积是多少平方米?类型5:盈亏问题在复杂分配中的拓展8.妈妈买来一篮橘子分给全家人,如果其中两人各分4个,其余人每人分2个,则多4个;如果其中一人分6个,其余人每人分4个,则少12个,妈妈买来橘子多少个?全家共有多少人?9.有若干个苹果和若干个梨,如果按每1个苹果配2个梨分堆,那么梨分完时还剩2个苹果;如果按每3个苹果配5个梨分堆,那么苹果分完时还剩1个梨。

小升初数学盈亏问题:原来除了比较法还可以这么解

小升初数学盈亏问题:原来除了比较法还可以这么解

小升初数学盈亏问题:原来除了比较法还可以这么解盈亏问题经典模型:今共有某物,人出 a1,盈 b1;人出 a2,不足 b2。

问人数、物数各有多少?假设人数为 x,则 a1x+ b1= a2x- b2;这是方程法解盈亏问题的关键。

例 1、将蜜柑若干分给儿童若干人,若每人 5 个则不足 2 个;若每入 4 个则尚余 3 个。

求儿童人数和蜜柑数。

【解答】设有儿童 x 人,依题意列出方程:5x-2=4x+3x=5蜜柑数:5×5-2=23(个)答:儿童 5 人,蜜柑 23 个。

例 2、李师傅加工一批零件,如果每天做 50 个,要比原计划晚 8 天完成;如果每天做 60 个,就可以提前 5 天完成,这批零件共有多少个?【解答】设原计划生产天数为 x 天,依题意列出方程:(x+8)×50=(x-5)×6050x+400=60x-30010x=700x=70零件数:(70+8)×50=3900(个)答:这批零件共有 3900 个。

例3、有一群小朋友分一堆苹果,如果每人分5 个,就会剩下4 个苹果,这时走了 3 个小朋友,则每人分 6 个还会剩 4 个,那么原来一共有多少个苹果?【解答】设原有小朋友 x 人,依题意列出方程:5x+4=6(x-3)+45x+4=6x-14x=18所以,苹果的总数是18×5+4=94(个)答:原来一共有 94 个苹果。

例 4、学生搬一堆砖,每人搬 k 块,还剩 14 块,若每人搬 9 块,最后一人只搬 6 块。

参加搬砖的学生共有多少人?这堆砖有多少块?【解答】设参加搬砖的学生共有 x 人,依题意列出方程:kx+14=9x-3(9-k)x=17我们依k 的正整数值进行讨论,其中人数x 也是正整数。

由于(9-k)为正整数,因为17 是质数,由9-k=17→k=-8 不合题意,所以9-k=1,此时 k=8,相应的 x=17。

这堆砖为8×17+14=150(块)答:参加搬砖的学生共有 17 人,这堆砖有 150 块。

小升初数学专项复习课件(通用版)第八讲 盈亏问题(课件)

小升初数学专项复习课件(通用版)第八讲   盈亏问题(课件)

二、典例精讲
例二:(“一亏一尽”题型) 饲养员将一筐香蕉分给猴子吃,每只猴子分到的香蕉一样多。 如果分给4只猴子,一筐 香蕉刚好分完;如果分给6只猴子,就会少12根香蕉。请问每只猴子分到几根香蕉?一 共有多少根香蕉? 解析: 一亏一尽类:亏数÷两次分得之差=人数 每只猴子分到: 12÷(6-4)=6 (根) 香蕉总数: 6x4=24 (根)或6x6-12=24 (根) 答:每只猴子分到6根香蕉;一共有24根香蕉。
3.光明小学新买来一批书,将他们分给几位老师,如果每人发10本,还差9本,每人发9本, 还差2本。请问有多少老师?多少本书? 本题属于两次皆亏题型。 (9-2)÷(10-9)=7(人) 7×10+9=79(本) 答:有7名老师,79本书。
三、基础训练
4.有一个班的同学去划船,他们算一下,如果增加一条船,正好每条船坐9人,如果减少一 条船,正好每条船坐12人。问这个班共有多少人同学? 本题属于一盈一亏问题。 (12+9) ÷(12-9) =21÷3 =7(人) 9×(7+1)=72(人) 答:这个班共有72人。
2
典例精讲
Part Two
二、典例精讲
例一:(“一盈一尽”题型) 小芳在街边买豆包,她发现自己带的钱如果买7个豆包就刚好花完。为了省下一些钱, 她只买了5个豆包,这样她还剩下4元钱。1个豆包的价钱是多少元钱?小芳带了多少元 钱? 解析: 一盈一尽类:盈数÷两次分得之差=人数 1个豆包的价钱: 4÷ ( 7-5)=2 (元) 小芳带的总钱数: 2x7=14(元)或2x5+4=14 (元) 答:1个豆包的价钱是2元钱,小芳带了14元。
二、典例精讲
例三:(“一盈一亏”题型) 老师给同学们分糖果,如果每人分4个,则余下17个;如果每人分7个,则缺少10个。那 么一共有多少名学生?老师准备了多少个糖果? 解析: 一盈一亏类: (盈+亏) ÷两次分得之差=人数 学生人数:(17+10)÷(7-4)=9(名) 糖果:4x9+17= 53 (个)或7x9-10=53 (个) 答:一共有9名学生;老师准备了53个糖果。

2017小升初数学应用题分析:盈亏问题

2017小升初数学应用题分析:盈亏问题

2017小升初数学应用题分析:盈亏问题盈亏问题:是在等分除法的基础上发展起来的。

他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。

解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。

解题规律:总差额÷每人差额=人数
总差额的求法可以分为以下四种情况:
第一次多余,第二次不足,总差额=多余+不足
第一次正好,第二次多余或不足,总差额=多余或不足
第一次多余,第二次也多余,总差额=大多余-小多余
第一次不足,第二次也不足,总差额=大不足-小不足
例参加美术小组的同学,每个人分的相同的支数的色笔,如果小组10人,则多25支,如果小组有12人,色笔多余5支。

求每人分得几支?共有多少支色铅笔?
分析:每个同学分到的色笔相等。

这个活动小组有12人,比10人多2人,而色笔多出了(25-5)=20支,2个人多出20支,一个人分得10支。

列式为(25-5)÷(12-10)=10(支)10×12+5=125(支)。

精心整理,仅供学习参考。

2017小升初数学复习:盈亏问题_知识点总结

2017小升初数学复习:盈亏问题_知识点总结

2017小升初数学复习:盈亏问题_知识点总结
什么叫利率?
利率又称利息率,表示一定时期内利息量与本金的比率,通常用百分比表示,按年计算则称为年利率。

计算公式:
利息率= 利息量÷ 本金÷时间×100%
按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义.
一般地,一批物品分给一定数量的人,第一种分配方法有多余的物品(盈),第二种分配方法则不足(亏),当两种分配方法相差n个物品时,那就有:
盈数+亏数= 人数×n ,这是关于盈亏问题很重要的一个关系式。

解盈亏问题的窍门可以用下面的公式来概括:
(盈+亏)÷两次分得之差=人数或单位数,
(盈-盈)÷两次分得之差=人数或单位数,
(亏-亏)÷两次分得之差= 人数或单位数。

解盈亏问题的关键是要找到:什么情况下会盈,盈多少?什么情况下”亏”,”亏”多少?找到盈亏的根源和几次盈亏结果不同的原因。

另外在解题后,应进行验算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017小升初数学盈亏问题:盈亏问题
盈亏问题
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于
分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。

基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。

基本题型:
①一次有余数,另一次不足;
基本公式:总份数=(余数+不足数)÷两次每份数的差
②当两次都有余数;
基本公式:总份数=(较大余数一较小余数)÷两次每份数的差
③当两次都不足;
基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

数学是一门重要的基础课程,以上是为大家分享的小升初数学盈亏问题知识点,希望能够切实的帮助到大家,同时祝大家能够顺利进入理想的重点中学!
精心整理,仅供学习参考。

相关文档
最新文档