小学奥数_几何五大模型(鸟头模型)
小学五六年级奥数学竞赛五大模型——共边模型、鸟头模型
大海传功等积变形五大模型——共边模型、鸟头模型共角模型(鸟头模型)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
1.两个三角形,如果底边相等,高也相等,那么它们的面积相等。
拓展:夹在一组平行线间的同底三角形面积相等。
2.两个三角形,如果底相等,一个的高是另一个的n倍,那么它的面积也是另一个的n倍;两个三角形,如果高相等,一个的底是另一个的n倍,那么它的面积也是另一个的n倍。
DAE D EADD AE EAB C B C B CB如图,S:S (AB AC):(AD AE)△ABC△ADEC【例1】(★★)【例2】(★★★)如图,在梯形ABCD中,三角形ABE的面积为4.6平方厘米,BE=EF=FD,求三角形ABF、CDF、ABD、ACD的面积。
如图,由面积分别为2、3、5、7的四个三角形拼成一个大三角形,已知:S△ADE 2,S△AEC 5,S△BDF 7,S△BCF 3,那么三角形BEF的面积为___________。
1如图,在角MON的两边上分别有A、C、E及B、D、F六个点,并且△OAB、△ABC、△ BCD、△CDE、△DEF的面积都等于1,则△DCF的面积等于。
等腰△ABC中,AB=AC=12cm,BD、DE、EF、FG把它的面积5等分,求AF、FD、DC、AG、GE、EB的长。
【例5】(★★★)【例6】(★★★★)已知四边形ABCD、BEFG、CHIJ为正方形,正方形ABCD边长为10,正方形BEFG边长为6,求阴影部分的面积。
E、M分别为直角梯形ABCD两边上的点,且DQ、CP、ME彼此平行,若 AD=5, BC=7,AE=5 , EB=3。
求阴影部分的面积。
2已知△DEF的面积为7 平方厘米,BE=CE,AD=2BD,CF=3AF,求△ABC 的面积。
1如图,在△ABC中,延长AB至D,使BD=AB,延长BC至E,使CE BC,2 F是AC的中点,若△ABC的面积是2,则△DEF的面积是多少?大海点睛大海点睛一、本讲重点知识回顾等积变形边比=面积比二、本讲经典例题例2,例3,例5,例7,例8共角模型(鸟头模型)如图, △ABC△ADE3。
小学奥数_几何五大模型(鸟头模型)讲解学习
模型二 鸟头模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上如图 2), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCB A图⑴ 图⑵【例 1】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBAEDCBA【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===⨯⨯△△,::4:7(45):(75)ABE ABC S S AE AC ===⨯⨯△△,所以:(24):(75)ADE ABC S S =⨯⨯△△,设8ADE S =△份,则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 .【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那三角形等高模型与鸟头模型么三角形ABC 的面积是多少?EDC B AA B C DE【解析】 连接BE .∵3EC AE = ∴3ABC ABE S S =V V 又∵5AB AD =∴515ADE ABE ABC S S S =÷=÷V V V ,∴1515ABC ADE S S ==V V .【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E DCBAA BCDE甲乙【解析】 连接AD .∵3BE =,6AE =∴3AB BE =,3ABD BDE S S =V V 又∵4BD DC ==,∴2ABC ABD S S =V V ,∴6ABC BDE S S =V V ,5S S =乙甲.【例 2】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBA EDCBA【解析】 连接BE ,::2:5(23):(53)ADE ABE S S AD AB ===⨯⨯△△[]::3:(32)(35):(32)5ABE ABC S S AE AC ==+=⨯+⨯△△,所以[]:(32):5(32)6:25ADE ABC S S =⨯⨯+=△△,设6ADE S =△份,则25ABC S =△份,12ADE S =△平方厘米,所以1份是2平方厘米,25份就是50平方厘米,ABC △的面积是50平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比【例 3】 如图所示,在平行四边形ABCD 中,E 为AB 的中点,2AF CF =,三角形AFE (图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?【解析】 连接FB .三角形AFB 面积是三角形CFB 面积的2倍,而三角形AFB 面积是三角形AEF 面积的2倍,所以三角形ABC 面积是三角形AEF 面积的3倍;又因为平行四边形的面积是三角形ABC 面积的2倍,所以平行四边形的面积是三角形AFE 面积的326⨯=()倍.因此,平行四边形的面积为8648⨯=(平方厘米).【例 4】 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FED CBA【解析】 :():()(11):(23)1:6BDE ABCS S BD BE BA BC =⨯⨯=⨯⨯=△△,:():()(13):(24)3:8CEF ABC S S CE CF CB CA =⨯⨯=⨯⨯=△△:():()(21):(34)1:6ADF ABC S S AD AF AB AC =⨯⨯=⨯⨯=△△设24ABC S =△份,则4BDE S =△份,4ADF S =△份,9CEF S =△份,244497DEF S =---=△份,恰好是7平方厘米,所以24ABC S =△平方厘米【例 5】 如图,三角形ABC 的面积为3平方厘米,其中:2:5AB BE =,:3:2BC CD =,三角形BDE 的面积是多少?AB EC DDC EB A【解析】 由于180ABC DBE ︒∠+∠=,所以可以用共角定理,设2AB =份,3BC =份,则5BE =份,325BD =+=份,由共角定理:():()(23):(55)6:25ABC BDE S S AB BC BE BD =⨯⨯=⨯⨯=△△,设6ABC S =△份,恰好是3平方厘米,所以1份是0.5平方厘米,25份就是250.512.5⨯=平方厘米,三角形BDE 的面积是12.5平方厘米【例 6】 (2007年”走美”五年级初赛试题)如图所示,正方形ABCD 边长为6厘米,13AE AC =,13CF BC =.三角形DEF 的面积为_______平方厘米.A【解析】 由题意知13AE AC =、13CF BC =,可得23CE AC =.根据”共角定理”可得,():():()12:(33)2:9CEF ABC S S CF CE CB AC =⨯⨯=⨯⨯=△△;而66218ABC S =⨯÷=△;所以4CEF S =△;同理得,:2:3CDE ACD S S =△△;,183212CDE S =÷⨯=△,6CDF S =△ 故412610DEF CEF DEC DFC S S S S =+-=+-=△△△△(平方厘米).【例 7】 如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使3AF AC =,求三角形DEF 的面积.F EDCB AABCDEF【解析】 (法1)本题是性质的反复使用.连接AE 、CD . ∵11ABC DBC S S =V V ,1ABC S =V , ∴S 1DBC =V .同理可得其它,最后三角形DEF 的面积18=. (法2)用共角定理∵在ABC V 和CFE V 中,ACB ∠与FCE ∠互补, ∴111428ABC FCE S AC BC S FC CE ⋅⨯===⋅⨯V V . 又1ABC S =V ,所以8FCE S =V . 同理可得6ADF S =V ,3BDE S =V .所以186318DEF ABC FCE ADF BDE S S S S S =+++=+++=V V V V V .【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EFHGA B CD EF【解析】 连接AC 、BD .根据共角定理∵在ABC △和BFE △中,ABC ∠与FBE ∠互补,∴111133ABC FBE S AB BC S BE BF ⋅⨯===⋅⨯△△. 又1ABC S =△,所以3FBE S =△.同理可得8GCF S =△,15DHG S =△,8AEH S =△.所以8815+3+236EFGH AEH CFG DHG BEF ABCD S S S S S S =++++=++=△△△△.所以213618ABCD EFGH S S ==.【例 9】 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.H GFED CB AA B CDEFGH【解析】 连接BD .由共角定理得:():()1:2BCD CGF S S CD CB CG CF =⨯⨯=△△,即2CGF CDB S S =△△同理:1:2ABD AHE S S =△△,即2AHE ABD S S =△△所以2()2AHE CGF CBD ADB ABCD S S S S S +=+=△△△△四边形 连接AC ,同理可以得到2DHG BEF ABCD S S S +=△△四边形5AHE CGF HDG BEF EFGH ABCD ABCD S S S S S S S =++++=△△△△四边形四边形四边形所以66513.2ABCD S =÷=四边形平方米【例 10】 如图,将四边形ABCD 的四条边AB 、CB 、CD 、AD 分别延长两倍至点E 、F 、G 、H ,若四边形ABCD 的面积为5,则四边形EFGH 的面积是 .A B CD E F GHA B CD EF GH【解析】 连接AC 、BD .由于2BE AB =,2BF BC =,于是4BEF ABC S S ∆∆=,同理4HDG ADC S S ∆∆=.于是444BEF HDG ABC ADC ABCD S S S S S ∆∆∆∆+=+=.再由于3AE AB =,3AH AD =,于是9AEH ABD S S ∆∆=,同理9CFG CBD S S ∆∆=. 于是999AEH CFG ABD CBD ABCD S S S S S ∆∆∆∆+=+=.那么491260EFGH BEF HDG AEH CFG ABCD ABCD ABCD ABCD ABCD S S S S S S S S S S ∆∆∆∆=+++-=+-==.【例 11】如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少?A BCDEF【解析】 ∵在ABC △和CFE △中,ACB ∠与FCE ∠互补,∴224111ABC FCE S AC BC S FC CE ⋅⨯===⋅⨯△△. 又2ABC S =V ,所以0.5FCE S =V . 同理可得2ADF S =△,3BDE S =△.所以20.532 3.5DEF ABC CEF DEB ADF S S S S S =++-=++-=△△△△△【例 12】如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =.求FGS S V .SGF E DCBA【解析】 本题题目本身很简单,但它把本讲的两个重要知识点融合到一起,既可以看作是”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”的反复运用,也可以看作是找点,最妙的是其中包含了找点的3种情况.最后求得FGS S △的面积为4321115432210FGS S =⨯⨯⨯⨯=△.【例 13】 如图所示,正方形ABCD 边长为8厘米,E 是AD 的中点,F 是CE 的中点,G 是BF 的中点,三角形ABG 的面积是多少平方厘米?ABCD EF GABCDEF G【解析】 连接AF 、EG .因为218164BCF CDE S S ==⨯=△△,根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”8AEF S =V ,8EFG S =V ,再根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”,得到16BFC S =V ,32ABFE S =,24ABF S =V ,所以12ABG S =V 平方厘米.【例 14】四个面积为1的正六边形如图摆放,求阴影三角形的面积.【解析】 如图,将原图扩展成一个大正三角形DEF ,则AGF ∆与CEH ∆都是正三角形.假设正六边形的边长为为a ,则AGF ∆与CEH ∆的边长都是4a ,所以大正三角形DEF 的边长为4217⨯-=,那么它的面积为单位小正三角形面积的49倍.而一个正六边形是由6个单位小正三角形组成的,所以一个单位小正三角形的面积为16,三角形DEF 的面积为496.由于4FA a =,3FB a =,所以AFB ∆与三角形DEF 的面积之比为43127749⨯=.同理可知BDC ∆、AEC ∆与三角形DEF 的面积之比都为1249,所以ABC ∆的面积占三角形DEF 面积的1213134949-⨯=,所以ABC ∆的面积的面积为4913136496⨯=.【巩固】已知图中每个正六边形的面积都是1,则图中虚线围成的五边形ABCDE 的面积是 .B DCEA【解析】 从图中可以看出,虚线AB 和虚线CD 外的图形都等于两个正六边形的一半,也就是都等于一个正六边形的面积;虚线BC 和虚线DE 外的图形都等于一个正六边形的一半,那么它们合起来等于一个正六边形的面积;虚线AE外的图形是两个三角形,从右图中可以看出,每个三角形都是一个正六边形面积的16,所以虚线外图形的面积等于11132363⨯+⨯=,所以五边形的面积是12103633-=.。
小学奥数几何五大模型鸟头模型.
三角形等高模型与鸟头模型模型二鸟头模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角 )两夹边的乘积之比.如图在△ABC中,D,E分别是AB,AC上的点如图⑴(或D在BA的延伸线上,E在AC上如图2),则S△ABC:S△ADE(AB AC):(AD AE)ADADEEB C B C图⑴图⑵【例1】如图在△ABC中,D,E分别是AB,AC上的点,且AD:AB2:5,AE:AC4:7,S△ADE16平方厘米,求△ABC的面积.AAD DE EB C B C【分析】连结BE,S△ADE:S△ABE AD:AB2:5(24):(54),S△ABE:S△ABC AE:AC4:7(45):(75),所以S△ADE:S△ABC(24):(75),设S△ADE8份,则△35份,△16平方厘米,所以1份是2平方厘米,35份就是70平方厘米,△ABC的SABC SADE面积是平方厘米.由此我们获得一个重要的共角定理:共角三角形的面积比等于(相70定理,对应角等角或互补角)两夹边的乘积之比.page1of7【坚固】如图,三角形ABC中,AB是AD的5倍,AC是AE的3倍,假如三角形ADE的面积等于1,那么三角形ABC的面积是多少?A ADE D EB CB C【分析】连结BE.∵EC3AE∴S ABC3S ABE又∵AB5AD∴S ADE S ABE5 S ABC 15,∴S ABC15S ADE15.【坚固】如图,三角形ABC被分红了甲(暗影部分)、乙两部分,BD DC 4,BE 3,AE6,乙部分面积是甲部分面积的几倍?A AEB甲【分析】连结AD.∵BE3,AE6∴AB3BE,SABD乙E乙甲C B CD D3S BDE又∵BD DC4,∴S ABC2S ABD,∴S ABC6S BDE,S乙5S甲.【例2】如图在△ABC中,D在BA的延伸线上,E在AC上,且AB:AD5:2,AE:EC3:2,S△ADE12平方厘米,求△ABC的面积.D DA AEEB C B C【分析】连结BE,S△ADE:S△ABE AD:AB2:5(23):(53)S△ABE:S△ABC AE:AC3:(32)(35):(32)5,所以S△ADE:S△ABC(32):5(32)6:25,设S△ADE6份,则S△ABC25份,S△ADE12平方厘米,所以1份是2平方厘米,25份就是50平方厘米,△ABC的面积是50平方厘米.由此我们获得一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比【例3】以以下图,在平行四边形ABCD中,E为AB的中点,AF2CF,三角形AFE(图中暗影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?page2of7D CFAEB【分析】连结FB .三角形AFB 面积是三角形CFB 面积的 2倍,而三角形 AFB 面积是三角形 AEF 面积的2倍,所以三角形ABC 面积是三角形 AEF 面积的3倍;又因为平行四边形的面积是三角形 ABC 面积的2倍,所以平行四边形的面积是三角形AFE面积的(32) 6倍.所以,平行四边形的面积为648(平方厘米).【例 4】已知△DEF 的面积为7平方厘米,BE CE,AD2BD,CF 3AF ,求△ABC 的面积.AFDBCE【分析】S △BDE :S △ABC(BD BE):(BABC)(1 1):(2 3) 1:6,S△CEF:S△ABC(CE CF):(CBCA)(1 3):(2 4) 3:8S △ADF :S △ABC(AD AF):(AB AC)(21):(3 4)1:6设△ ABC 24份,则 △BDE 4份,△ 4份,△ CEF 9份,△24 4 497份,恰巧是7S S S ADFSS DEF平方厘米,所以S △ABC 24平方厘米【例 5】如图,三角形ABC 的面积为 3平方厘米,此中 AB:BE2:5,BC:CD3:2 ,三角形BDE 的面积是多少?ABEABEC CDD【分析】因为ABC DBE 180,所以能够用共角定理,设 AB2份,BC3份,则BE5份,BD 3 25份,由共角定理 S △ABC :S △BDE (AB BC):(BE BD)(23):(55)6:25,设S△ABC6份,恰巧是 3平方厘米,所以1份是0.5平方厘米,25份就是250.5 12.5平方厘米,三角形BDE 的面积是12.5 平方厘米【例 6】(2007年”走美”五年级初赛试题)以以下图,正方形ABCD 边长为6厘米,AE1AC ,CF1BC .三角形DEF 的面积为_______平方厘米.3 3ADEBF Cpage3of7【分析】由题意知AES △CEF :S △ABC11 2AC .依据”共角定理”可得,AC 、CFBC ,可得CE333(CFCE):(CB AC)12:(3 3)2:9;而△ABC662 18;所以△CEF4;SS同理得,S △CDE :S △ACD 2:3;,S △CDE 18 3212,S △CDF 6故△ △ △ △4 126 10(平方厘米).S DEF S CEF S DEC S DFC【例 7】如图,已知三角形 ABC 面积为1 ,延伸AB 至D ,使BDAB ;延伸BC 至E ,使CE2BC ;延伸CA 至F ,使AF 3AC ,求三角形DEF 的面积.FFA EAEBCBCDD【分析】(法1)此题是性质的频频使用.连结AE 、CD .S ABC 11 ,∵,S ABCS DBC 1∴S DBC1.同理可得其他,最后三角形 DEF 的面积18.(法2)用共角定理∵在 ABC 和CFE 中,ACB 与FCE 互补,S ABC AC BC 1 11∴FC CE 4 2.SFCE8又S ABC1,所以S FCE 8 .同理可得S ADF 6,S BDE3.所以S DEF S ABCSFCESADFSBDE 186318.【例 8】如图,平行四边形ABCD ,BE AB ,CF 2CB ,GD 3DC ,HA 4AD ,平行四边形ABCD 的面积是2,求平行四边形 ABCD 与四边形 EFGH 的面积比.HHA B EABEGDCGDCFF【分析】连结AC 、BD .依据共角定理∵在△ABC 和△BFE 中, ABC 与 FBE 互补,S△ABC AB BC 1 1 1.∴BE BF 1 3 3S△FBE又S △ABC 1,所以S △FBE 3.同理可得S△GCF8,S △DHG 15,S △AEH 8.page4of7所以S EFGH S△AEH S△CFG S△DHG S△BEF S ABCD8815+3+236.SABCD21所以36.SEFGH18【例9】如图,四边形EFGH的面积是66平方米,EAAB,CB BF,DC CG,HD DA,求四边形ABCD 的面积.H HD C GDC GA BF A BFE E【分析】连结BD.由共角定理得S△BCD:S△CGF(CDCB):(CG CF)1:2,即S△CGF2S△CDB同理S△ABD:S△AHE1:2,即S△AHE2S△ABD所以S△AHE S△CGF2(S△CBDS△ADB)2S四边形ABCD连结AC,同理能够获得S△DHG S△BEF2S四边形ABCDS四边形EFGH S△AHES△CGFS△HDGS△BEFS四边形ABCD5S四边形ABCD所以S四边形ABCD66513.2平方米【例10】如图,将四边形ABCD的四条边AB、CB、CD、AD分别延伸两倍至点E、F、G、H,若四边形ABCD的面积为5,则四边形EFGH的面积是.F FE B A E B AG C GCD DH H【分析】连结AC、BD.因为BE2AB,BF2BC,于是S BEF4S ABC,同理S HDG4S ADC.于是S BEF S HDG4S ABC4S ADC4S ABCD.再因为AE3AB,AH3AD,于是S AEH9S ABD,同理S CFG9S CBD.于是S AEH S CFG9S ABD9S CBD9S ABCD.那么S EFGH S BEF S HDG S AEH S CFG S ABCD4S ABCD9S ABCD S ABCD12S ABCD60.【例11】如图,在△ABC中,延伸AB至D,使BD AB,延伸BC至E,使CE 1,F是AC的BC中点,若△ABC的面积是2,则△DEF的面积是多少?2AFB C ED【分析】∵在△ABC和△CFE中,ACB与FCE互补,page5of7∴S△ABC AC BC224.S△FCE FC CE111又S ABC2,所以S FCE0.5.同理可得S△ADF2,S△BDE3.所以S△DEF S△ABC S△CEF S△DEB S△ADF20.5323.5【例12】如图,S△ABC1,BC5BD,AC4EC,DG GS SE,AF FG.求S FGS.AFG SEB CD【分析】此题题目自己很简单,但它把本讲的两个重要知识点交融到一同,既能够看作是”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”的频频运用,也能够看作是找点,最妙的是此中包括了找点的3种状况.最后求得S△432111.FGS的面积为△S FGS4322105【例13】以以下图,正方形ABCD边长为8厘米,E是AD的中点,F是CE的中点,G是BF的中点,三角形ABG的面积是多少平方厘米?A ED AEDF FB GC BGC【分析】连结AF、EG.因为S△BCF1216,依据”当两个三角形有一个角相等或互补时,这两个三角形的面积S△CDE84比等于夹这个角的两边长度的乘积比”SAEF8,S EFG8,再依据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”,获得S BFC16,S ABFE32,SABF24,所以S ABG12平方厘米.【例14】四个面积为1的正六边形如图摆放,求暗影三角形的面积.F HA EBG CD【分析】如图,将原图扩展成一个大正三角形DEF,则AGF与CEH都是正三角形.假定正六边形的边长为为a,则AGF与CEH的边长都是4a,所以大正三角形DEF的边长为4 2 1 7,那么它的面积为单位小正三角形面积的49倍.而一个正六边形是由6个单位小正三角page6of7形构成的,所以一个单位小正三角形的面积为1,三角形DEF 的面积为49.66因为FA 4a ,FB3a ,所以AFB 与三角形DEF 的面积之比为4 3 12.77 49同理可知BDC 、AEC 与三角形DEF 的面积之比都为12,所以ABC 的面积占三角形DEF 面积49的112 313,所以ABC 的面积的面积为 49 13 13.49 49649 6【坚固】已知图中每个正六边形的面积都是 1,则图中虚线围成的五边形 ABCDE 的面积是.EA DB C【分析】从图中能够看出,虚线AB 和虚线CD 外的图形都等于两个正六边形的一半,也就是都等于一个正六边形的面积;虚线BC 和虚线DE 外的图形都等于一个正六边形的一半,那么它们合起来等于一个正六边形的面积;虚线AE 外的图形是两个三角形,从右图中能够看出,每个三角形都是一个正六边 形面积的 1,所以虚线外图形的面积等于 1 3 1 2 31,所以五边形的面积是10 3162.6 6 333精选文档page7of7。
小学奥数几何五大模型
(4)相似模型1、相似三角形:形状相同、大小不相等的两个三角形相似;2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
3、相似三角形性质:①相似三角形的一切对应线段(对应高、对应边)的比等于相似比;②相似三角形周长的比等于相似比;③相似三角形面积的比等于相似比的平方。
相似模型大致分为金字塔模型、沙漏模型这两大类,注意这两大类中都含有DE BC ∥。
(一)金字塔模型 (二) 沙漏模型结论:因为DE BC ∥,所以ADE ABC △∽△,则①AD AE DE==;②22::ADE ABC S S AD AB =△△。
②::ABO BCO S S AE EC =△△;ED C BA E DCB A③::ACO BCO S S AF FB =△△。
二、五大模型经典例题详解 (1)等积变换模型例1、图中的E F G 、、分别是正方形ABCD 三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是多少?GFE D CBA解析:把另外三个三等分点标出之后,正方形的3条边AB BC CD 、、就被分成了相等的三段。
把点H 和这些分点、正方形的顶点连接,这样就把整个正方形分割成了9个形状各不相同的三角形,同时我们把空白部分的6个三角形按顺时针标记1~6。
这9个三角形的底边都是正方形边长的三分之一;阴影部分被分割成了其中的3个三角形。
根据等积变换模型可知,CD 边上的阴影三角形的面积与第1、2个三角形相等;BC 边上的阴影三角形与第3、4个三角形相等;AB 边上的阴影三角形与第5、6个三角形相等。
因此,阴影面积是空白面积的二分之一,是正方形面积的三分之一,即:12×12÷3=48。
例2、如图所示,Q E P M 、、、分别为直角梯形ABCD 两边AB CD 、上的点,且DQ CP ME 、、彼此平行,已知5753AD BC AE EB ====、、、,求阴影部分三角形PQM 的面积。
小学奥数--几何--五大模型--鸟头模型(共角定理)
例:1 已知三角形 ADE 的面积是 1,AD:AB=2:3,AE:AC=1:4,求三角形 AED 的面积 2 已知三角形 ABC 的面积是 9,AD:AB=1:2,AE:EC=1:1,求三角形 AED 的面积
分析:(1)由鸟头定理: S△ADE
=
AD ×
AE
=
211
× =,
∴ S△ ABCD =
2S △ ABC
= 1:18
S△EFGH (8 + 3 + 8 + 15 + 2)S△ABC
∴ S△HAE = 8S△ ABD ∴ S△FAD = 3S△ ABC ∴ S△HAE = 8S△BCD
∴ S△HAE = 8S△ ADC
超常挑战
分析:图中每相邻两个正方形和其间夹着的两个三角形都是“X 型”鸟头。
方厘米,求 △ABC 的面积.
2 (2005 年第 11 届迎春杯试题)三角形 ABC 被线段 DE 分成三角形 BDE 和四边形 ACDE 两部分,问:
三角形 BDE 的面积是四边形 ACDE 面积的几分之几?
第5页共8页
2011 年 秋季 五年级
第三讲 三角形中的模型(一)
周艳丽
3 图中三角形 ABC 的面积是 180 平方厘米, D 是 BC 的中点, AD 的长是 AE 长的 3 倍, EF 的长是 BF 长
的 3 倍.那么三角形 AEF 的面积是多少平方厘米?
4 如图,将四边形 ABCD 的四条边 AB 、 CB 、 CD 、 AD 分别延长两倍至点 E 、 F 、 G 、 H ,若四边形 ABCD
的面积为 5,则四边形 EFGH 的面积是
.
学案—尖子班 1 已知四边形 ABCD 中,CD=3DF,AE=3ED,三角形 BFC 的面积是 6,四边形 BEDF 的面积为 7,求大四
小学几何五大模型
鸟头模型,是平面图形中常用的五个模型之一,其特点是通过边与面积的关系来解决问题。
对于初学者来说,最重要的是理解什么是鸟头模型并熟记它的特征。
一、鸟头模型的相关知识1.定义:两个三角形中有一个角相等或互补(相加等于180度),这两个三角形就叫共角三角形。
这个模型就叫鸟头模型。
其中存在的比例关系就叫做共角定理。
2.核心:比例模型有:二、鸟头模型的原理剖析三、鸟头模型的方法运用鸟头模型解题四部曲:第一步:观察:图中是否有鸟头模型第二步:构造:鸟头模型第三步:假设:线段长度或图形面积第四步:转化:将假设的未知数转化到鸟头模型中计算例1:如图,已知AD:BD=2:3 ,AE:EC=3:1,三角形ADE的面积是6平方厘米,求三角形ABC的面积?第一步:标条件第二步:确定等角位置 A小夹边AD×AE(小夹边指的是:小三角形夹着等角A的两边)大夹边AB×AC第三步:利用鸟头模型结论S△ADE:S△ABC=小夹边乘积:大夹边乘积=(2×3):(5×4)=6:20=3:103:10的意思是:三角形ADE的面积是3份,三角形ABC的面积是10份。
第四步:先除后乘算面积三角形ADE的面积是6平方厘米,对应3份,6÷3=2平方厘米/份;所求三角形 ABC的面积是10份,2×10=20 平方厘米。
例2:如图,已知BC:CD=5:2,AE:EC=1:1,三角形ABC的面积是20平方厘米,求三角形CDE的面积?第一步:标条件第二步:确定补角位置 C小夹边CD×CE(小夹边指的是:小三角形夹着补角C的两边)大夹边CA×CB第三步:利用鸟头模型结论S△CDE:S△ABC=小夹边乘积:大夹边乘积=(2×1):(2×5)=2:10=1:51:5的意思是:三角形CDE的面积是1份,三角形ABC的面积是5份。
第四步:先除后乘算面积三角形ABC的面积是20平方厘米,对应5份,20÷5=4 平方厘米/份;所求三角形 CDE的面积是1份,4×1=4平方厘米。
小学奥数之几何五大模型
一、等积变换模型⑴等底等高的两个三角形面积相等; 其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。
如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半; 二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
梯形中比例关系(“梯形蝴蝶定理”) ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。
四、相似模型相似三角形性质:金字塔模型 沙漏模型①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。
小学奥数之几何五大模型
一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。
如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于及它等底等高的平行四边形面积的一半;五大模型1S 2S二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系及四边形内的三角形相联系;另一方面,也可以得到及面积对应的对角线的比例关系。
梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。
四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),及相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。
小学奥数-几何五大模型(鸟头模型)讲课教案
模型二 鸟头模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上如图 2), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCB A图⑴ 图⑵【例 1】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBAEDCBA【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===⨯⨯△△,::4:7(45):(75)ABE ABC S S AE AC ===⨯⨯△△,所以:(24):(75)ADE ABC S S =⨯⨯△△,设8ADE S =△份,则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 .【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那三角形等高模型与鸟头模型么三角形ABC 的面积是多少?EDC B AA B C DE【解析】 连接BE .∵3EC AE = ∴3ABC ABE S S = 又∵5AB AD =∴515ADE ABE ABC S S S =÷=÷,∴1515ABC ADE S S ==.【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E DCBAA BCDE甲乙【解析】 连接AD .∵3BE =,6AE =∴3AB BE =,3ABD BDE S S = 又∵4BD DC ==,∴2ABC ABD S S =,∴6ABC BDE S S =,5S S =乙甲.【例 2】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBA EDCBA【解析】 连接BE ,::2:5(23):(53)ADE ABE S S AD AB ===⨯⨯△△[]::3:(32)(35):(32)5ABE ABC S S AE AC ==+=⨯+⨯△△,所以[]:(32):5(32)6:25ADE ABC S S =⨯⨯+=△△,设6ADE S =△份,则25ABC S =△份,12ADE S =△平方厘米,所以1份是2平方厘米,25份就是50平方厘米,ABC △的面积是50平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比【例 3】 如图所示,在平行四边形ABCD 中,E 为AB 的中点,2AF CF =,三角形AFE (图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?【解析】 连接FB .三角形AFB 面积是三角形CFB 面积的2倍,而三角形AFB 面积是三角形AEF 面积的2倍,所以三角形ABC 面积是三角形AEF 面积的3倍;又因为平行四边形的面积是三角形ABC 面积的2倍,所以平行四边形的面积是三角形AFE 面积的326⨯=()倍.因此,平行四边形的面积为8648⨯=(平方厘米).【例 4】 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FED CBA【解析】 :():()(11):(23)1:6BDE ABCS S BD BE BA BC =⨯⨯=⨯⨯=△△,:():()(13):(24)3:8CEF ABC S S CE CF CB CA =⨯⨯=⨯⨯=△△:():()(21):(34)1:6ADF ABC S S AD AF AB AC =⨯⨯=⨯⨯=△△设24ABC S =△份,则4BDE S =△份,4ADF S =△份,9CEF S =△份,244497DEF S =---=△份,恰好是7平方厘米,所以24ABC S =△平方厘米【例 5】 如图,三角形ABC 的面积为3平方厘米,其中:2:5AB BE =,:3:2BC CD =,三角形BDE 的面积是多少?AB EC DDC EB A【解析】 由于180ABC DBE ︒∠+∠=,所以可以用共角定理,设2AB =份,3BC =份,则5BE =份,325BD =+=份,由共角定理:():()(23):(55)6:25ABC BDE S S AB BC BE BD =⨯⨯=⨯⨯=△△,设6ABC S =△份,恰好是3平方厘米,所以1份是0.5平方厘米,25份就是250.512.5⨯=平方厘米,三角形BDE 的面积是12.5平方厘米【例 6】 (2007年”走美”五年级初赛试题)如图所示,正方形ABCD 边长为6厘米,13AE AC =,13CF BC =.三角形DEF 的面积为_______平方厘米.A【解析】 由题意知13AE AC =、13CF BC =,可得23CE AC =.根据”共角定理”可得,():():()12:(33)2:9CEF ABC S S CF CE CB AC =⨯⨯=⨯⨯=△△;而66218ABC S =⨯÷=△;所以4CEF S =△;同理得,:2:3CDE ACD S S =△△;,183212CDE S =÷⨯=△,6CDF S =△ 故412610DEF CEF DEC DFC S S S S =+-=+-=△△△△(平方厘米).【例 7】 如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使3AF AC =,求三角形DEF 的面积.F EDCB AABCDEF【解析】 (法1)本题是性质的反复使用.连接AE 、CD . ∵11ABC DBC S S =,1ABC S =, ∴S 1DBC =.同理可得其它,最后三角形DEF 的面积18=.(法2)用共角定理∵在ABC 和CFE 中,ACB ∠与FCE ∠互补, ∴111428ABC FCE S AC BC S FC CE ⋅⨯===⋅⨯. 又1ABCS=,所以8FCES=.同理可得6ADFS =,3BDES=.所以186318DEFABCFCEADFBDESS SS S=+++=+++=.【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EFHGA B CD EF【解析】 连接AC 、BD .根据共角定理∵在ABC △和BFE △中,ABC ∠与FBE ∠互补,∴111133ABC FBE S AB BC S BE BF ⋅⨯===⋅⨯△△. 又1ABC S =△,所以3FBE S =△.同理可得8GCF S =△,15DHG S =△,8AEH S =△.所以8815+3+236EFGH AEH CFG DHG BEF ABCD S S S S S S =++++=++=△△△△.所以213618ABCD EFGH S S ==.【例 9】 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD的面积.H GFED CBAA BCDEFGH【解析】 连接BD .由共角定理得:():()1:2BCD CGF S S CD CB CG CF =⨯⨯=△△,即2CGF CDB S S =△△同理:1:2ABD AHE S S =△△,即2AHE ABD S S =△△所以2()2AHE CGF CBD ADB ABCD S S S S S +=+=△△△△四边形 连接AC ,同理可以得到2DHG BEF ABCD S S S +=△△四边形5AHE CGF HDG BEF EFGH ABCD ABCD S S S S S S S =++++=△△△△四边形四边形四边形所以66513.2ABCD S =÷=四边形平方米【例 10】 如图,将四边形ABCD 的四条边AB 、CB 、CD 、AD 分别延长两倍至点E 、F 、G 、H ,若四边形ABCD 的面积为5,则四边形EFGH 的面积是 .A B CD E F GHA B CD EF GH【解析】 连接AC 、BD .由于2BE AB =,2BF BC =,于是4BEF ABC S S ∆∆=,同理4HDG ADC S S ∆∆=.于是444BEF HDG ABC ADC ABCD S S S S S ∆∆∆∆+=+=.再由于3AE AB =,3AH AD =,于是9AEH ABD S S ∆∆=,同理9CFG CBD S S ∆∆=. 于是999AEH CFG ABD CBD ABCD S S S S S ∆∆∆∆+=+=.那么491260EFGH BEF HDG AEH CFG ABCD ABCD ABCD ABCD ABCD S S S S S S S S S S ∆∆∆∆=+++-=+-==.【例 11】如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少?A BCDEF【解析】 ∵在ABC △和CFE △中,ACB ∠与FCE ∠互补,∴224111ABC FCE S AC BC S FC CE ⋅⨯===⋅⨯△△. 又2ABCS=,所以0.5FCES=.同理可得2ADF S =△,3BDE S =△.所以20.532 3.5DEF ABC CEF DEB ADF S S S S S =++-=++-=△△△△△【例 12】如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =.求FGSS.SGF E DCBA【解析】 本题题目本身很简单,但它把本讲的两个重要知识点融合到一起,既可以看作是”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”的反复运用,也可以看作是找点,最妙的是其中包含了找点的3种情况.最后求得FGS S △的面积为4321115432210FGS S =⨯⨯⨯⨯=△.【例 13】 如图所示,正方形ABCD 边长为8厘米,E 是AD 的中点,F 是CE 的中点,G 是BF 的中点,三角形ABG 的面积是多少平方厘米?ABCD EF GABCDEF G【解析】 连接AF 、EG .因为218164BCF CDE S S ==⨯=△△,根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”8AEF S =,8EFG S =,再根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”,得到16BFCS =,32ABFE S =,24ABFS=,所以12ABGS=平方厘米.【例 14】四个面积为1的正六边形如图摆放,求阴影三角形的面积.【解析】 如图,将原图扩展成一个大正三角形DEF ,则AGF ∆与CEH ∆都是正三角形.假设正六边形的边长为为a ,则AGF ∆与CEH ∆的边长都是4a ,所以大正三角形DEF 的边长为4217⨯-=,那么它的面积为单位小正三角形面积的49倍.而一个正六边形是由6个单位小正三角形组成的,所以一个单位小正三角形的面积为16,三角形DEF 的面积为496.由于4FA a =,3FB a =,所以AFB ∆与三角形DEF 的面积之比为43127749⨯=.同理可知BDC ∆、AEC ∆与三角形DEF 的面积之比都为1249,所以ABC ∆的面积占三角形DEF 面积的1213134949-⨯=,所以ABC ∆的面积的面积为4913136496⨯=.【巩固】已知图中每个正六边形的面积都是1,则图中虚线围成的五边形ABCDE 的面积是 .B DCEA【解析】 从图中可以看出,虚线AB 和虚线CD 外的图形都等于两个正六边形的一半,也就是都等于一个正六边形的面积;虚线BC 和虚线DE 外的图形都等于一个正六边形的一半,那么它们合起来等于一个正六边形的面积;虚线AE外的图形是两个三角形,从右图中可以看出,每个三角形都是一个正六边形面积的16,所以虚线外图形的面积等于11132363⨯+⨯=,所以五边形的面积是12103633-=.8、这个世界并不是掌握在那些嘲笑者的手中,而恰恰掌握在能够经受得住嘲笑与批忍不断往前走的人手中。
六年级奥数专题-4几何五大模型-鸟头模型
几何五大模型——鸟头模型一两点都在边上:鸟头定理:(现出“鸟头模型”。
然后按一下出现一个鸟头,勾勒出鸟头的轮廓,出现如图的鸟头几何模型。
最后真实的鸟头隐去,只留下几何模型。
最后按一下,出公式。
)S_ADXAE△ADE二SABXAC△ABC二一点在边上,一点在边的延长线上SCDXCE△CDE二SBCXAC△ABC(2)如图在△ABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,A ADE的面积是12平方厘米,求△ABC的面积。
V:例3已知ADEF的面积为12平方厘米,BE=CE,AD=2BD,CF=3AF,求厶ABC的面积。
例6 如图,过平行四边形ABCD 内的一点P 作边AD 、BC 的平行线EF 、GH ,若APBD 的面积B H C1.如下左图,在△ABC中,D、E分别是BC、AB的三等分点,且△ABC的面积是54,求A CDE的面积。
12.如图,长方形ABCD的面积是1,M是AD边的中点,N在AB边上,且AN=-BN.那2 么,阴影部分的面积等于.BC图13.如图以△ABC的三边分别向外做三个正方形ABIH、ACFG、BCED,连接HG、EF、ID,又得到三个三角形,已知六边形DEFGHI的面积是力平方厘米,三个正方形的面积分别是9、16、36平方厘米,则三角形ABC的面积是多少?4.如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。
5.把四边形ABCD的各边都延长2倍,得到一个新的四边形EFGH o如果ABCD的面积是5平方厘米,则EFGH的面积是多少?。
小学奥数之几何五大模型
一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。
如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;五大模型1S 2S二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。
四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。
六年级奥数专题-4几何五大模型——鸟头模型
几何五大模型——鸟头模型一 两点都在边上:鸟头定理:(现出“鸟头模型”。
然后按一下出现一个鸟头,勾勒出鸟头的轮廓,出现如图的鸟头几何模型。
最后真实的鸟头隐去,只留下几何模型。
最后按一下,出公式。
)△ADE △ABC S AD ×AE =S AB ×ACE DC BA二 一点在边上,一点在边的延长线上: △CDE △ABC S CD ×CE =S BC ×AC本讲要点例1如图,AD=DB ,AE=EF=FC ,已知阴影部分面积为5平方厘米,△ ABC的面积是平方厘米.例2例2 (1)如图在△ABC中,D、E分别是AB,AC上的点,且AD:AB=2:5, AE:AC=4:7,△ABC 的面积是16平方厘米,求△ABC的面积。
(2)如图在△ABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE 的面积是12平方厘米,求△ABC的面积。
已知△DEF 的面积为12平方厘米,BE=CE,AD=2BD,CF=3AF,求△ABC 的面积。
三角形ABC 面积为1,AB 边延长一倍到D ,BC 延长2倍到E ,CA 延长3倍到F ,问三角形DEF 的面积为多少?FE DC BA例4例3长方形ABCD 面积为120,EF 为AD 上的三等分点,G 、H 、I 为DC 上的四等分点,阴影面积是多大?如图,过平行四边形ABCD 内的一点P 作边AD 、BC 的平行线EF 、GH ,若PBD 的面积为8平方分米,求平行四边形PHCF 的面积比平行四边形PGAE 的面积大多少平方分米?例6例51. 如下左图,在ABC △中,D 、E 分别是BC 、AB 的三等分点,且ABC △的面积是54,求CDE △的面积。
2. 如图,长方形ABCD 的面积是1,M 是AD 边的中点,N 在AB 边上,且12AN BN.那么,阴影部分的面积等于 .AB CD M N 图1家庭作业 B3. 如图以ABC △的三边分别向外做三个正方形ABIH 、ACFG 、BCED ,连接HG 、EF 、ID ,又得到三个三角形,已知六边形DEFGHI 的面积是77平方厘米,三个正方形的面积分别是9、16、36平方厘米,则三角形ABC 的面积是多少?IHG FE DC B A4.5. 如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使3AF AC =,求三角形DEF 的面积。
小学奥数 几何五大模型(鸟头模型)学生版
模型二 鸟头模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上如图 2),则:():()ABCADES S AB AC AD AE =⨯⨯△△EDCBAEDCB A图⑴ 图⑵如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADES =△平方厘米,求ABC △的面积.EDCBAEDCBA三角形等高模型与鸟头模型【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?EDCBAABCD E【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E DCBAABCDE甲乙如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADES=△平方厘米,求ABC △的面积. ED CBAEDCBA如图所示,在平行四边形ABCD 中,E 为AB 的中点,2AF CF =,三角形AFE (图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?。
小学几何五大模型
鸟头模型,是平面图形中常用的五个模型之一,其特点是通过边与面积的关系来解决问题。
对于初学者来说,最重要的是理解什么是鸟头模型并熟记它的特征。
一、鸟头模型的相关知识1.定义:两个三角形中有一个角相等或互补(相加等于180度),这两个三角形就叫共角三角形。
这个模型就叫鸟头模型。
其中存在的比例关系就叫做共角定理。
2.核心:比例模型有:二、鸟头模型的原理剖析三、鸟头模型的方法运用鸟头模型解题四部曲:第一步:观察:图中是否有鸟头模型第二步:构造:鸟头模型第三步:假设:线段长度或图形面积第四步:转化:将假设的未知数转化到鸟头模型中计算例1:如图,已知AD:BD=2:3,AE:EC=3:1,三角形ADE的面积是6平方厘米,求三角形ABC的面积第一步:标条件第二步:确定等角位置A小夹边AD×AE(小夹边指的是:小三角形夹着等角A的两边)大夹边AB×AC第三步:利用鸟头模型结论S△ADE:S△ABC=小夹边乘积:大夹边乘积=(2×3):(5×4)=6:20=3:103:10的意思是:三角形ADE的面积是3份,三角形ABC的面积是10份。
第四步:先除后乘算面积三角形ADE的面积是6平方厘米,对应3份,6÷3=2平方厘米/份;所求三角形ABC的面积是10份,2×10=20平方厘米。
例2:如图,已知BC:CD=5:2,AE:EC=1:1,三角形ABC的面积是20平方厘米,求三角形CDE的面积第一步:标条件第二步:确定补角位置C小夹边CD×CE(小夹边指的是:小三角形夹着补角C的两边)大夹边CA×CB第三步:利用鸟头模型结论S△CDE:S△ABC=小夹边乘积:大夹边乘积=(2×1):(2×5)=2:10=1:51:5的意思是:三角形CDE的面积是1份,三角形ABC的面积是5份。
第四步:先除后乘算面积三角形ABC的面积是20平方厘米,对应5份,20÷5=4平方厘米/份;所求三角形CDE的面积是1份,4×1=4平方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模型二鸟头模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上如图 2), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图⑴ 图⑵【例 1】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===⨯⨯△△,::4:7(45):(75)ABE ABC S S AE AC ===⨯⨯△△,所以:(24):(75)ADE ABC S S =⨯⨯△△,设8ADE S =△份,则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 .【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?【解析】 连接BE .∵3EC AE = ∴3ABC ABE S S = 又∵5AB AD =∴515ADE ABE ABC S S S =÷=÷,∴1515ABC ADE S S ==.【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?【解析】 连接AD .∵3BE =,6AE =∴3AB BE =,3ABD BDE S S = 又∵4BD DC ==,∴2ABC ABD S S =,∴6ABC BDE S S =,5S S =乙甲. 【例 2】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.【解析】 连接BE ,::2:5(23):(53)ADE ABE S S AD AB ===⨯⨯△△[]::3:(32)(35):(32)5ABE ABC S S AE AC ==+=⨯+⨯△△,所以[]:(32):5(32)6:25ADE ABC S S =⨯⨯+=△△,设6ADE S =△份,则25ABC S =△份,12ADE S =△平方厘米,所以1份是2平方厘米,25份就是50平方厘米,ABC △的面积是50平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比【例 3】 如图所示,在平行四边形ABCD 中,E 为AB 的中点,2AF CF =,三角形AFE (图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?【解析】 连接FB .三角形AFB 面积是三角形CFB 面积的2倍,而三角形AFB 面积是三角形AEF 面积的2倍,所以三角形ABC 面积是三角形AEF 面积的3倍;又因为平行四边形的面积是三角形ABC 面积的2倍,所以平行四边形的面积是三角形AFE 面积的326⨯=()倍.因此,平行四边形的面积为8648⨯=(平方厘米).【例 4】 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.【解析】:():()(11):(23)1:6BDE ABC S S BD BE BA BC =⨯⨯=⨯⨯=△△,:():()(13):(24)3:8CEF ABC S S CE CF CB CA =⨯⨯=⨯⨯=△△:():()(21):(34)1:6ADF ABC S S AD AF AB AC =⨯⨯=⨯⨯=△△三角形等高模型与鸟头模型设24ABC S =△份,则4BDE S =△份,4ADF S =△份,9CEF S =△份,244497DEF S =---=△份,恰好是7平方厘米,所以24ABC S =△平方厘米【例 5】 如图,三角形ABC 的面积为3平方厘米,其中:2:5AB BE =,:3:2BC CD =,三角形BDE 的面积是多少?【解析】 由于180ABC DBE ︒∠+∠=,所以可以用共角定理,设2AB =份,3BC =份,则5BE =份,325BD =+=份,由共角定理:():()(23):(55)6:25ABC BDE S S AB BC BE BD =⨯⨯=⨯⨯=△△,设6ABC S =△份,恰好是3平方厘米,所以1份是0.5平方厘米,25份就是250.512.5⨯=平方厘米,三角形BDE 的面积是12.5平方厘米【例 6】 (2007年”走美”五年级初赛试题)如图所示,正方形ABCD 边长为6厘米,13AE AC =,13CF BC =.三角形DEF 的面积为_______平方厘米.【解析】 由题意知13AE AC =、13CF BC =,可得23CE AC =.根据”共角定理”可得,():():()12:(33)2:9CEF ABC S S CF CE CB AC =⨯⨯=⨯⨯=△△;而66218ABC S =⨯÷=△;所以4CEF S =△;同理得,:2:3CDE ACD S S =△△;,183212CDE S =÷⨯=△,6CDF S =△故412610DEF CEF DEC DFC S S S S =+-=+-=△△△△(平方厘米).【例 7】 如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使3AF AC =,求三角形DEF 的面积.【解析】 (法1)本题是性质的反复使用.连接AE 、CD . ∵11ABC DBC S S =,1ABC S =, ∴S 1DBC =.同理可得其它,最后三角形DEF 的面积18=.(法2)用共角定理∵在ABC 和CFE 中,ACB ∠与FCE ∠互补, ∴111428ABC FCE S AC BC S FC CE ⋅⨯===⋅⨯. 又1ABCS=,所以8FCES=.同理可得6ADFS =,3BDES =.所以186318DEF ABC FCE ADF BDE S S S S S =+++=+++=.【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.【解析】 连接AC 、BD .根据共角定理∵在ABC △和BFE △中,ABC ∠与FBE ∠互补,∴111133ABC FBE S AB BC S BE BF ⋅⨯===⋅⨯△△. 又1ABC S =△,所以3FBE S =△.同理可得8GCF S =△,15DHG S =△,8AEH S =△.所以8815+3+236EFGH AEH CFG DHG BEF ABCD S S S S S S =++++=++=△△△△.所以213618ABCD EFGH S S ==.【例 9】 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.【解析】 连接BD .由共角定理得:():()1:2BCD CGF S S CD CB CG CF =⨯⨯=△△,即2CGF CDB S S =△△同理:1:2ABD AHE S S =△△,即2AHE ABD S S =△△所以2()2AHE CGF CBD ADB ABCD S S S S S +=+=△△△△四边形 连接AC ,同理可以得到2DHG BEF ABCD S S S +=△△四边形 所以66513.2ABCD S =÷=四边形平方米【例 10】如图,将四边形ABCD 的四条边AB 、CB 、CD 、AD 分别延长两倍至点E 、F 、G 、H ,若四边形ABCD 的面积为5,则四边形EFGH 的面积是 .【解析】 连接AC 、BD .由于2BE AB =,2BF BC =,于是4BEF ABC S S ∆∆=,同理4HDG ADC S S ∆∆=. 于是444BEF HDG ABC ADC ABCD S S S S S ∆∆∆∆+=+=.再由于3AE AB =,3AH AD =,于是9AEH ABD S S ∆∆=,同理9CFG CBD S S ∆∆=. 于是999AEH CFG ABD CBD ABCD S S S S S ∆∆∆∆+=+=.那么491260EFGH BEF HDG AEH CFG ABCD ABCD ABCD ABCD ABCD S S S S S S S S S S ∆∆∆∆=+++-=+-==.【例 11】 如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少?【解析】 ∵在ABC △和CFE △中,ACB ∠与FCE ∠互补,∴224111ABC FCE S AC BC S FC CE ⋅⨯===⋅⨯△△. 又2ABCS=,所以0.5FCES=.同理可得2ADF S =△,3BDE S =△.所以20.532 3.5DEF ABC CEF DEB ADF S S S S S =++-=++-=△△△△△【例 12】 如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =.求FGS S . 【解析】 本题题目本身很简单,但它把本讲的两个重要知识点融合到一起,既可以看作是”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”的反复运用,也可以看作是找点,最妙的是其中包含了找点的3种情况.最后求得FGS S △的面积为4321115432210FGS S =⨯⨯⨯⨯=△.【例 13】 如图所示,正方形ABCD 边长为8厘米,E 是AD 的中点,F 是CE 的中点,G 是BF 的中点,三角形ABG 的面积是多少平方厘米?【解析】 连接AF 、EG .因为218164BCF CDE S S ==⨯=△△,根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”8AEF S =,8EFG S =,再根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”,得到16BFCS=,32ABFE S =,24ABF S =,所以12ABG S =平方厘米.【例 14】 四个面积为1的正六边形如图摆放,求阴影三角形的面积. 【解析】 如图,将原图扩展成一个大正三角形DEF ,则AGF ∆与CEH ∆都是正三角形.假设正六边形的边长为为a ,则AGF ∆与CEH ∆的边长都是4a ,所以大正三角形DEF 的边长为4217⨯-=,那么它的面积为单位小正三角形面积的49倍.而一个正六边形是由6个单位小正三角形组成的,所以一个单位小正三角形的面积为16,三角形DEF 的面积为496.由于4FA a =,3FB a =,所以AFB ∆与三角形DEF 的面积之比为43127749⨯=.同理可知BDC ∆、AEC ∆与三角形DEF 的面积之比都为1249,所以ABC ∆的面积占三角形DEF 面积的1213134949-⨯=,所以ABC ∆的面积的面积为4913136496⨯=.【巩固】已知图中每个正六边形的面积都是1,则图中虚线围成的五边形ABCDE 的面积是 . 【解析】 从图中可以看出,虚线AB 和虚线CD 外的图形都等于两个正六边形的一半,也就是都等于一个正六边形的面积;虚线BC 和虚线DE 外的图形都等于一个正六边形的一半,那么它们合起来等于一个正六边形的面积;虚线AE 外的图形是两个三角形,从右图中可以看出,每个三角形都是一个正六边形面积的16,所以虚线外图形的面积等于11132363⨯+⨯=,所以五边形的面积是12103633-=.。