高三数学概率统计知识点归纳复习过程

合集下载

高中数学复习概率统计题型归纳与讲解03 频率分布直方图

高中数学复习概率统计题型归纳与讲解03 频率分布直方图

高中数学复习概率统计题型归纳与讲解专题3频率分布直方图例1.要调查某地区高中学生身体素质,从高中生中抽取100人进行跳高测试,根据测试成绩制作频率分布直方图如图,现从成绩在[120,140)之间的学生中用分层抽样的方法抽取5人,应从[120,130)间抽取人数为b,则()A.a=0.2,b=2B.a=0.025,b=3C.a=0.3,b=4D.a=0.030,b=3【解析】解:由题得10×(0.005+0.035+a+0.020+0.010)=1,所以a=0.030.在[120,130)之间的学生人数为:100×10×0.030=30人,在[130,140)之间的学生人数为:100×10×0.020=20人,在[120,140)之间的学生人数为:100×(10×0.030+0.020)=50人,又用分层抽样的方法在[120,140)之间的学生50人中抽取5人,即抽取比例为:110,所以成绩在[120,130)之间的学生中抽取的人数应,30×110=3,即b=3,故选:D.例2.从某企业生产的某种产品中随机抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组[70,80) [80,90) [90,100) [100,110) 110,120)频数 14 20 36 18 12估计这种产品质量指标值的平均数为(同一组中的数据用该组区间的中点值作代表)( )A .100B .98.8C .96.6D .94.4【解析】解:平均数x →=0.14×75+0.20×85+0.36×95+0.18×105+0.12×115=94.4.故选:D .例3.“新冠肺炎”席卷全球,我国医务工作者为了打好这次疫情阻击战,充分发挥优势,很快抑制了病毒,据统计老年患者治愈率为71%,中年患者治愈率为85%,青年患者治愈率为91%.如果某医院有30名老年患者,40名中年患者,50名青年患者,则估计该医院的平均治愈率是( )A .86%B .83%C .90%D .84%【解析】解:利用求加权平均数的公式解得:30×71%+40×85%+50×91%30+40+50=0.84=84%,故选:D .例4.已知样本数据x 1,x 2,…,x n (n ∈N *)的平均数与方差分别是a 和b ,若y i =﹣2x i +3(i =1,2,…n ),且样本数据y 1,y 2,…,y n 的平均数与方差分别是b 和a ,则a ﹣b =( )A .1B .2C .3D .4【解析】解:由题意得:{−2a +3=b a =4b ,解得:{a =43b =13,故a ﹣b =1, 故选:A .例5.下面定义一个同学数学成绩优秀的标志为:“连续5次考试成绩均不低于120分”.现有甲、乙、丙三位同学连续5次数学考试成绩的记录数据(记录数据都是正整数):①甲同学:5个数据的中位数为127,众数为120;②乙同学:5个数据的中位数为125,总体均值为127;③丙同学:5个数据的中位数为135,总体均值为128,总体方差为19.8.则可以判定数学成绩优秀同学为( )A .甲、乙B .乙、丙C .甲、丙D .甲、乙、丙【解析】解:在①中,甲同学:5个数据的中位数为127,众数为120,所以前三个数为120,120,127,则后两个数肯定大于127,故甲同学数学成绩优秀,故①成立;在②中,5个数据的中位数为125,总体均值为127,可以找到很多反例,如:118,119,125,128,145,故乙同学数学成绩不优秀,故②不成立;在③中,5个数据的中位数为135,总体均值为128,总体方差为19.8设x 1<x 2<x 3<x 4,则丙的方差为15[(x 1﹣128)2+(x 2﹣128)2+(x 3﹣128)2+(x 4﹣128)2+(135﹣128)2]=19.8, ∴(x 1﹣128)2+(x 2﹣128)2+(x 3﹣128)2+(x 4﹣128)2=50,∴(x 1﹣128)2≤50,得|x 1﹣128|≤5,∴x 1≥128﹣5>120,∴丙同学数学成绩优秀,故③成立.∴数学成绩优秀有甲和丙2个同学.故选:C .例6.若数据x 1,x 2,…,x n 的平均数x =3,方差s 2=1,则数据2x 1+3,2x 2+3,…,2x n +3的平均数和方差分别为( )A.6,6B.9,2C.9,6D.9,4【解析】解:由题意若数据x1,x2,…,x n的平均数x=3,方差s2=1,可得x1+x2+…+x n=3n,则:2x1+3+x2+3+…+x n+3=2(x1+x2+…+x n)+3n=9n,所以数据2x1+3,2x2+3,…,2x n+3的平均数为9.又S2=1n[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=1,所以[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=n,所以1n [(2x1+3﹣9)2+(2x2+3﹣9)2+…+(2x n+3﹣9)2]=4n[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=4,则数据2x1+3,2x2+3,…,2x n+3的平均数和方差分别为9,4.故选:D.例7.随着城镇化的不断发展,老旧小区的改造及管理已经引起了某市政府的高度重视,为了了解本市甲,乙两个物业公司管理的小区住户对其服务的满意程度,现从他们所服务的小区中随机选择了40个住户,根据住户对其服务的满意度评分,得到A区住户满意度评分的频率分布直方图和B 区住户满意度评分的频率分布表.B区住户满意度评分的频率分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数4610128(Ⅰ)在图2中作出B区住户满意度评分的频率分布直方图,并通过频率分布直方图计算两区住户满意度评分的平均值及分散程度(其中分散程度不要求计算出具体值,给出结论即可);(Ⅱ)根据住户满意度评分,将住户和满意度分为三个等级:满意度评分低于70分,评定为不满意;满意度评分在70分到89分之间,评定为满意;满意度评分不低于90分,评定为非常满意.试估计哪个地区住户的满意度等级为不满意的概率大?若是要选择一个物业公司来管理老旧小区的物业,从满意度角度考虑,应该选择哪一个物业公司?说明理由.【解析】解:(Ⅰ)作出如图所示的频率分布直方图,B区住户满意度评分的频率分布直方图如图所示A区住户满意度评分的平均值为45×0.1+55×0.2+65×0.3+75×0.2+85×0.15+95×0.05=67.5;B区住户满意度评分的平均值为55×0.1+65×0.15+75×0.25+85×0.3+95×0.2=78.5.通过比较两区住户满意度评分的频率分布直方图可以看出,B区住户满意度评分比较集中,而A 区住户满意度评分比较分散.(Ⅱ)记D表示事件:“A区住户的满意度等级为不满意”,记E表示事件:“B区住户的满意度等级为不满意”,则P(D)=(0.010+0.020+0.030)×10=0.6,P(E)=(0.010十0.015)×10=0.25,所以A区住户的满意度等级为不满意的概率较大.若是要选择一个物业公司来管理老旧小区的物业,从满意度等级为满意来考虑,应该选择乙物业公司来为小区服务,这样的话小区住户满意度会高一些.例8.某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),……第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)求第七组的频率,并完成频率分布直方图;(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【解析】解:(1)由频率分布直方图得第七组的频率为:1﹣(0.004+0.012+0.016+0.030+0.020+0.006+0.004)×10=0.08.完成频率分布直方图如下:(2)用样本数据估计该校的2000名学生这次考试成绩的平均分为:70×0.004×10+80×0.012×10+90×0.016×10+100×0.030×10+110×0.020×10+120×0.006×10+130×0.008×10+140×0.004×10=102.(3)样本成绩属于第六组的有0.006×10×50=3人,样本成绩属于第八组的有0.004×10×50=2人,从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件总数n=C52=10,他们的分差的绝对值小于10分包含的基本事件个数m=C32+C22=4,∴他们的分差的绝对值小于10分的概率p=mn=410=25.例9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准x,用水量不超过x的部分按平价收费,超出x的部分按议价收费.下面是居民月均用水量的抽样频率分布直方图.①求直方图中a的值;②试估计该市居民月均用水量的众数、平均数;③设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;④如果希望85%的居民月均用水量不超过标准x ,那么标准x 定为多少比较合理?【解析】解:①由概率统计相关知识,各组频率之和的值为1,∵频率=(频率/组距)*组距,∴0.5×(0.08+0.16+0.4+0.52+0.12+0.08+0.04+2a )=1,解得:a =0.3,∴a 的值为0.3;②由频率分布直方图估计该市居民月均用水量的众数为2+2.52=2.25(吨),估计该市居民月均用水量的平均数为:0.5(0.25×0.08+0.75×0.16+1.25×0.3+1.75×0.4+2.25×0.52+2.75×0.3+3.25×0.12+3.75×0.08+4.25×0.04)=2.035(吨).③由图,不低于3吨人数所占百分比为0.5×(0.12+0.08+0.04)=12%,∴全市月均用水量不低于3吨的人数为:30×12%=3.6(万);④由频率分布直方图得月均用水量低于2.5吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52)=0.73<85%,月均用水量低于3吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52+0.3)=0.88>85%,∴x=2.5+0.5×0.85−0.730.3×0.5=2.9(吨).例10.如图是某校高三(1)班的一次数学知识竞赛成绩的基叶图(图中仅列出[50,60),[90,100)的数据)和频率分布直方图.(1)求全班人数以及频率分布直方图中的x,y;(2)估计学生竞赛成绩的平均数和中位数(保留两位小数).【解析】解:(1)分数在[50,60)的频率为0.020×10=0.2,由茎叶图知,分数在[50,60)之间的频数为5,所以全班人数为50.2=25(人);分数在[90,100)之间的频数为2,由225=10y,解得y=0.008;又10x=1﹣10×(0.036+0.024+0.020+0.008),解得x=0.012.(2)由频率分布直方图,计算平均数为x=55×0.2+65×0.24+75×0.36+85×0.12+95×0.08=71.4,由0.2+0.24+0.36=0.80,所以中位数在[70,80)内,设中位数为m,则0.20+0.24+(m﹣70)×0.036=0.5,解得m≈71.67,所以中位数约为71.67.例11.某高中数学建模兴趣小组的同学为了研究所在地区男高中生的身高与体重的关系,从若干个高中男学生中抽取了1000个样本,得到如下数据.数据一:身高在[170,180)(单位:cm)的体重频数统计体重(kg)[50,55)[55,60)[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)人数206010010080201010数据二:身高所在的区间含样本的个数及部分数据身高x(cm)[140,150)[150,160)[160﹣170)[170﹣180)[180﹣190)平均体重y(kg)4553.66075(Ⅰ)依据数据一将下面男高中生身高在[170﹣180)(单位:cm)体重的频率分布直方图补充完整,并利用频率分布直方图估计身高在[170﹣180)(单位:cm)的中学生的平均体重;(保留小数点后一位)(Ⅱ)依据数据一、二,计算身高(取值为区间中点)和体重的相关系数约为0.99,能否用线性回归直线来刻画中学生身高与体重的相关关系,请说明理由;若能,求出该回归直线方程;(Ⅲ)说明残差平方和或相关指数R2与线性回归模型拟合效果之间关系.(只需写出结论,不需要计算)参考公式:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nx⋅y∑n i=1x i2−nx2,a=y−b x.参考数据:(1)145×45+155×53.6+165×60+185×75=38608;(2)1452+1552+1652+1752+1852﹣5×1652=1000.(3)663×175=116025,664×175=116200,665×175=116375.(4)728×165=120120.【解析】解:(1)身高在[170,180)的总人数为:20+60+100+100+80+20+10+10=400,体重在[55﹣60)的频率为:60400=0.15,体重在[70﹣75)的频率为:80400=0.2,平均体重为:52.5×0.05+57.5×0.15+62.5×0.25+67.5×0.25+72.5×0.2+77.5×0.05+82.5×0.025+87.5×0.025≈66.4,(2)因为r=0.99→1,线性相关很强,故可以用线性回归直线来刻画中学生身高与体重的相关,x=145+155+165+175+1855=165,y=45+75+60+53.6+66.45=60,b=∑8i=1x i y i−8x⋅y∑8i=1x i2−8x2=38608+175×66.4−5×165×601000=0.728,a=y−b x=60−0.728×165=−60.12,所以回归直线方程为:y=0.728x−60.12,(3)残差平方和越小或相关指数R2越接近于1,线性回归模型拟合效果越好.例12.市政府为了节约用水,调查了100位居民某年的月均用水量(单位:t),频数分布如下:分组[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3)[3,3.5)[3.5,4)[4,4.5]频数4815222514642(1)根据所给数据将频率分布直方图补充完整(不必说明理由);(2)根据频率分布直方图估计本市居民月均用水量的中位数;(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).【解析】解:(1)频率分布直方图如图所示:(2)∵0.04+0.08+0.15+0.22=0.49<0.5,∴中位数为2+0.5−0.490.25×0.5=2.02,(3)由频率分布直方图得平均数为:0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02.例13.某地区100居民的人均用水量(单位:t)的分组的频数如下:[0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2.(1)列出样本的频率分布表;(2)画出频率分布直方图,并根据直方图估计这组数据的众数;(坐标轴单位自定)(3)当地政府制订了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?【解析】解:(1 )分组频数频率[0,0.5 )40.04[0.5,1 )80.08[1,1.5 )150.15[1.5,2 )220.22[2,2.5 )250.25[2.5,3 )140.14[3,3.5 )60.06[3.5,4 )40.04[4,4.5 )20.02(2):频率分布直方图如下图,由图知,这组数据的众数为2.25.(3)人均月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约是有12%的居民月均用水量在3t以上,88%的居民月均用水量在3t以下,因此,政府的解释是正确的.例14.某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如下频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分.【解析】解:(Ⅰ)众数是最高小矩形中点的横坐标,所以众数为m=75(分);(3分)前三个小矩形面积为0.01×10+0.015×10+0.015×10=0.4,∵中位数要平分直方图的面积,∴n=70+0.5−0.40.03=73.3(7分)(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.03+0.025+0.005)*10=0.75所以,抽样学生成绩的合格率是75% (11分)利用组中值估算抽样学生的平均分45•f1+55•f2+65•f3+75•f4+85•f5+95•f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71估计这次考试的平均分是71分.(14分)例15.为应对新冠疫情,重庆市于2020年1月24日启动重大突发公共卫生事件一级响应机制,要求市民少出门,少聚集,于是快递业务得到迅猛发展.为满足广大市民的日常生活所需,某快递公司以优厚的条件招聘派送员,现给出了两种日薪薪酬方案,甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪150元,每日前55单没有奖励,超过55单的部分每单奖励10元.(Ⅰ)请分别求出这两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;(Ⅱ)根据该公司所有派送员10天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:日均派送单数5054565860频数(天)23221回答下列问题:①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出这10天中甲、乙两种方案的日薪X的平均数及方差;②结合①中的数据,根据统计学的思想,若你去应聘派送员,选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:172=289,372=1369)【解析】解:(1)甲方案,y =100+n ;乙方案,y ={150,n ≤5510n −400,n >55.(2),①甲方案中,根据已知表格可计算出日平均派送单数为2×50+3×54+2×56+2×58+6010=55,方差为0.2×(50﹣55)2+0.3×(54﹣55)2+0.2×(56﹣55)2+0.2×(58﹣55)2+0.1×(60﹣55)2=9.8,所以,由(1)中变量之间的关系,可以指,甲方案的日薪X 的平均数为155,方差为9.8. 乙方案中,日薪X 的平均数为[5×150+160×2+180×2+200]×0.1=163,日薪方差为0.5×(150﹣163)2+0.2×(160﹣163)2+0.2×(180﹣163)2+0.1×(200﹣163)2=213.4.(3)若去应聘派送员,我会选择乙方案,从平均数的角度来看,乙方案的平均薪酬更高,同时更有激励作用.例16.2019年起,全国地级及以上城市全面启动生活垃圾分类工作,垃圾分类投放逐步成为居民的新时尚.为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收垃圾、有害垃圾和其他垃圾四类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了某市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱 “可回收垃圾”箱 “有害垃圾”箱“其他垃圾”箱厨余垃圾 300 70 30 80 可回收垃圾 30 210 30 30 有害垃圾 20 20 60 20 其他垃圾10201060(1)分别估计厨余垃圾和有害垃圾投放正确的概率;(2)假设厨余垃圾在“厨余垃圾”箱、“可回收垃圾”箱、“有害垃圾”箱、“其他垃圾”箱的投放量分别为a,b,c,d,其中a>0,a+b+c+d=800.当数据a,b,c,d的方差s2最大时,写出a,b,c,d的值(结论不要求证明),并求此时s2的值.【解析】解:(1)根据题意,厨余垃圾共300+70+30+80=480吨,其中投放正确的有300吨,则厨余垃圾投放正确的概率P1=300480=58,有害垃圾共20+20+60+20=120吨,其中投放正确的有60吨,则害垃圾投放正确的概率P2=60120=12;(2)根据题意,厨余垃圾在四种垃圾箱的投放量分别为a,b,c,d,其中a>0,a+b+c+d=800,则其平均数x=8004=200,则其方差S2=14[(a﹣200)2+(b﹣200)2+(c﹣200)2+(d﹣200)2],当a=600,b=c=d=0时,s2最大,而x=a+b+c+d4=200,此时s2=14[(600﹣200)2+(0﹣200)2+(0﹣200)2+(0﹣200)2]=120000例17.某市教育局为了解全市高中学生在素质教育过程中的幸福指数变化情况,对8名学生在高一,高二不同学习阶段的幸福指数进行了一次跟踪调研.结果如表:学生编号12345678高一阶段幸福指数9593969497989695学生编号12345678高二阶段幸福指数9497959695949396(1)根据统计表中的数据情况,分别计算出两组数据的平均值及方差;(2)请根据上述结果,就平均值和方差的角度分析,说明在高一,高二不同阶段的学生幸福指数状况,并发表自己观点.【解析】解:(1)8名学生在高一阶段的幸福指数的平均数为:x=18(95+93+96+94+97+98+96+95)=95.5,方差为:S12=18∑8i=1(x i−x1)2=2.25,8名学生在高二阶段的幸福指数的平均数为:y=18(94+97+95+96+95+94+93+96)=95,方差为:S22=18∑8i=1(y i−y)2=1.5;(2)①∵x>y,∴可以认为这8名学生在高一的平均幸福指数大于在高二的平均幸福指数,②∵S12>S22,∴可以认为这8名学生在高二的幸福指数的稳定性大于在高一的幸福指数的稳定性.例18.2020年1月,教育部《关于在部分高校开展基础学科招生改革试点工作的意见》印发,自2020年起,在部分高校开展基础学科招生改革试点(也称“强基计划”).强基计划聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.新材料产业是重要的战略性新兴产业,如图是我国2011﹣2019年中国新材料产业市场规模及增长趋势图.其中柱状图表示新材料产业市场规模(单位:万亿元),折线图表示新材料产业市场规模年增长率(%).(1)求从2012年至2019年,每年新材料产业市场规模年增长量的平均数(精确到0.1);(2)从2015年至2019年中随机挑选两年,求两年中至少有一﹣年新材料产业市场规模年增长率超过20%的概率;(3)由图判断,从哪年开始连续三年的新材料产业市场规模的方差最大.(结论不要求证明)【解析】解:(1)从2012年起,每年新材料产业市场规模的年增加值依次为:0.3,0.2,0.3,0.5,0.6,0.4,0.8,0.6,(单位:万亿元),∴年增加的平均数为:0.3+0.2+0.3+0.5+0.6+0.4+0.8+0.68=0.5万亿元.(2)设A表示事件“从2015年至2019年中随机挑选两个,两年中至少有一年新材料产业市场规模增长率超过20%”,依题意P(A)=1−C22C52=910.(3)从2017年开始连续三年的新材料产业市场规模的方差最大.。

高三统计概率部分知识点

高三统计概率部分知识点

高三统计概率部分知识点统计和概率是高中数学中的重要内容,它们在实际生活和其他学科中有着广泛的应用。

在高三阶段,学生需要掌握统计和概率的基本概念、计算方法以及实际问题的解决思路。

本文将介绍高三统计概率部分的知识点,帮助学生理解和掌握相关内容。

一、统计学基本概念1. 总体和样本:总体是指研究对象的全体,样本是从总体中选取的一部分个体。

2. 参数和统计量:参数是对总体的数值特征的度量,统计量是对样本的数值特征的度量。

3. 随机抽样:从总体中按照一定的方法和规则选取样本的过程。

二、统计图表的应用1. 频数分布表和频数分布图:将数据按照一定区间范围划分并统计每个区间的数据个数,然后通过表格和直方图等图表形式展示。

2. 饼状图:用于表示各个部分在整体中的比例关系。

3. 折线图和曲线图:用于表示连续变量的变化趋势和相应的关系。

三、概率基本概念1. 随机事件和样本空间:随机事件是指在一次试验中可能发生的结果,样本空间是指所有可能结果的集合。

2. 事件的概率:事件A发生的概率,记作P(A),是指事件A在总体中出现的可能性大小。

3. 事件的互斥和独立:互斥事件是指两个事件不可能同时发生,独立事件是指两个事件的发生与否互不影响。

四、概率计算方法1. 等可能原则:对于所有基本事件来说,每个事件发生的可能性是相等的。

2. 事件的概率计算:对于等可能事件,事件A发生的概率等于事件A的样本数除以样本空间的样本数。

3. 事件的并、交和差:事件的并是指两个事件至少有一个发生的情况,事件的交是指两个事件同时发生的情况,事件的差是指一个事件发生而另一个事件不发生的情况。

五、统计推理的应用1. 抽样分布:通过对多个相同样本容量的抽样进行统计,得到统计量的分布,从而进行统计推断。

2. 置信区间估计:通过样本统计量对总体参数进行估计,并给出参数真值可能存在的范围。

3. 假设检验:对于某个假设进行检验,判断其在给定显著性水平下的可接受性。

六、实际问题解决思路1. 了解问题:明确问题涉及的统计和概率知识点,并理解问题中的条件和要求。

(完整版)高三数学概率统计知识点归纳

(完整版)高三数学概率统计知识点归纳

概率统计知识点归纳平均数、众数和中位数平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明.一、正确理解平均数、众数和中位数的概念平均数平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.2.众数在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势.3.中位数中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的.二、注意区别平均数、众数和中位数三者之间的关系平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题.三、能正确选用平均数、众数和中位数来解决实际问题由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题.极差、方差、标准差极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.极差一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.二、方差方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x1、x2、x3、…、xn 的平均数为x ,则该组数据方差的计算公式为:])()()[(1222212x x x x x x n S n -++-+-=Λ.三、标准差在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差.即标准差=方差.四、极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.一、 随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。

[数学]高三文科数学概率复习课

[数学]高三文科数学概率复习课

1. “一个骰子掷一次得到6的概率是
1 6
,这说明一个骰子掷6次会出现一
1
次6”,这种说法对吗?请说明你的理由. 解析:这种说法是不对的.虽然每次掷骰子出现6点的概率是 6,但连续
掷6次骰子不一定会1,2,3,4,5,6各出现一次,可能出现某个数的次数多
一些,其他的数少一些,这正好体现了随机事件发生的随机性.但随着试 验次数的增加,出现1,2,3,4,5,6各数的频率大约相等,即都为试验次数 的
1
女孩 P
2
2002
2003 2004 2005 2006 5年总计
0.516
0.518 0.515 0.518 0.516 0.517
0.484
0.482 0.485 0.482 0.484 0.483
2. 某批乒乓球产品质量检查结果如下表所示: 抽取球数n 50 100 200 500 1000 2000
题型二
随机事件的概率问题
例2某地区近5年出生婴儿的调查表如下:
出生数 出生年份 2002 男孩 m
1
共计n=
2
出生频率 男孩 P
1
女孩 m
m m
1
2
女孩 P
2
52807
49473
102280
2003
2004 2005 2006 5年总计
51365
49698 49654 48243 251767
47733
概率复习课
第三章
第1课时
基础梳理
1. 事件 (1)必然事件:
概率
随机事件的概率
在条件S下, 一定会发生的事件,叫做相对于条件S的必然事件. (2) 不可能事件: 在条件S下, 一定不会发生 的事件,叫做相对于条件S的不可能事件. (3) 确定事件: 必然事件与不可能事件 统称为相对于条件S的确定事件. (4) 随机事件 在条件S下, 可能发生也可能不发生 的事件,叫做相对于条件S的随机事件.

高三数学统计和概率知识点

高三数学统计和概率知识点

高三数学统计和概率知识点一、统计学概述统计学是一门研究数据收集、整理、分析和解读的学科。

它在各个领域中都扮演着至关重要的角色,尤其对于高三数学考试来说,统计学知识点是必须要掌握的。

二、数据收集与整理1. 定义和分类数据:定量数据是可以被表示为数字的数据,而定性数据则是描述性的,无法用数字来表示。

在统计学中,我们将数据分为了这两类。

2. 数据的收集方法:数据的收集可以通过问卷调查、实验、观察等方法进行。

在收集数据时,需要注意样本的大小和样本的抽样方式,以确保数据的准确性和可靠性。

3. 数据的整理:数据整理常用的方法有频数表和统计图表。

频数表可以将数据进行分类,并计算每个类别的频数,统计图表则是以图形的方式展示数据的分布情况,如条形图、饼图等。

三、描述统计量1. 极差和百分位数:极差是最大值与最小值之差,而百分位数则是将样本按大小排序后,将其划分为百分之几的位置值。

2. 平均数和中位数:平均数是将所有数据相加后除以数据个数得到的结果,而中位数则是将数据从小到大排序后,位于中间的数值。

3. 方差和标准差:方差反映了数据的离散程度,标准差则是方差的平方根。

四、概率1. 事件和概率:在概率理论中,事件是一次随机试验的结果,而概率则是事件发生的可能性。

概率的计算可以通过频率法、古典概型和几何概型等方法进行。

2. 事件的关系:概率的运算包括交、并、差和补等操作。

交表示两个事件同时发生,并表示两个事件中至少一个发生,差表示一个事件发生而另一个事件不发生,补表示一个事件不发生。

3. 条件概率:条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。

条件概率的计算可以利用贝叶斯公式进行。

4. 独立事件:两个事件相互独立意味着它们的发生互不影响。

五、概率模型1. 离散型随机变量:离散型随机变量的取值有限且可数,常见的概率分布有二项分布和泊松分布。

2. 连续型随机变量:连续型随机变量的取值是无限的,通常使用概率密度函数来描述其分布,常见的概率分布有正态分布和指数分布。

高三条件概率知识点总结

高三条件概率知识点总结

高三条件概率知识点总结高中数学中的概率是一个重要的章节,而条件概率是其中的一个核心知识点。

在高三阶段,学生们需要对条件概率进行全面的学习和理解。

本文将从条件概率的定义和性质、条件概率的计算方法、条件概率的应用等方面对这一知识点进行总结和归纳。

一、条件概率的定义和性质条件概率是指在事件B已经发生的条件下,事件A发生的概率。

用数学符号表示为P(A|B)。

条件概率的定义和性质需要我们对概率的基本概念有一定的了解。

条件概率的定义可以表示为:P(A|B) = P(AB) / P(B)。

其中,P(B) ≠ 0。

条件概率的性质有以下几个方面:互斥性、非互斥性、独立性和非独立性。

互斥性是指在两个事件的发生过程中,其中一个事件的发生将排除另一个事件的发生。

非互斥性则相反。

独立性是指两个事件的发生与否不会相互影响,而非独立性则表示相反的情况。

二、条件概率的计算方法条件概率的计算主要有两种方法:频率法和几何法。

频率法是根据历史数据或实验结果来计算条件概率。

几何法则是通过几何图形进行计算。

在使用频率法计算条件概率时,我们需要先进行事件的分类和计数,然后使用P(A|B) = N(A∩B) / N(B)的公式进行计算。

其中,N(A∩B)表示A和B同时发生的次数,N(B)表示事件B发生的总次数。

几何法则是通过事件发生的几何图形进行计算。

可以通过画出事件A和B在样本空间中的区域,来计算两个事件之间的重叠面积。

通过求出重叠面积与事件B的面积之比,即可得到条件概率。

三、条件概率的应用条件概率在实际生活中有着广泛的应用。

其中一个经典的应用是贝叶斯定理。

贝叶斯定理是一种根据已知的结果来推断事件的概率的方法。

在实际应用中,我们通常会通过贝叶斯定理来进行医学诊断、市场预测等方面的分析。

另一个应用是在赌博游戏中的运用。

比如,在扑克牌游戏中,根据已知的手牌和公共牌,可以通过条件概率来计算自己手中牌型的概率,从而根据概率来做出合理的决策。

此外,条件概率还可以应用于信息论和统计学等领域。

人教版高三数学复习知识点总结(2篇)

人教版高三数学复习知识点总结(2篇)

人教版高三数学复习知识点总结高中数学是一门关于数与形的科学,是培养学生逻辑思维和分析问题能力的重要学科。

在高三阶段,数学的学习内容相对较多,需要对前几年的数学知识进行深入的复习和巩固。

接下来,我将对人教版高三数学的复习知识点进行总结,帮助学生们进行整理和复习。

一、函数与方程1. 二次函数- 二次函数的概念与性质- 图像的性质(开口方向、对称轴等)- 平移、伸缩与翻折- 二次函数的一般式、顶点式、交点式- 判别式与根的性质- 解二次不等式- 二次函数与其他函数的关系(函数的复合、反函数等)2. 指数和对数函数- 指数函数和对数函数的概念与性质- 指数函数和对数函数的图像特点- 指数幂的性质和运算法则- 对数运算的性质和运算法则- 指数方程和指数不等式的解法- 对数方程和对数不等式的解法3. 三角函数- 弧度制与角度制的换算- 三角函数的图像与周期性- 三角函数的基本关系式与恒等式- 三角函数的运算性质与运算法则- 三角函数方程与三角函数不等式的解法- 解三角形的实际问题4. 高次方程和不等式- 一元高次方程的解法- 二元高次方程的解法- 一元高次不等式的解法- 二元高次不等式的解法- 高次方程和不等式的应用(实际问题的建立和解决)二、数列与数学归纳法1. 等差数列- 等差数列的概念与性质- 等差数列的通项公式和前n项和公式- 等差数列特殊求和公式的推导和应用- 等差数列简单应用(等差中项、等差平均项等)2. 等比数列- 等比数列的概念与性质- 等比数列的通项公式和前n项和公式- 等比数列特殊求和公式的推导和应用- 等比数列简单应用(等比中项、等比平均项等)3. 等差数列与等比数列的综合应用- 等差数列与等比数列的综合应用(数列的运算、数列的混合应用)4. 数学归纳法- 数学归纳法的基本思想与步骤- 数学归纳法与数列的联系- 数学归纳法的简单应用(证明不等式、性质等)三、三角恒等变换1. 三角函数的基本关系式与恒等式- 三角函数的基本关系式(同角三角函数值之间的关系)- 三角函数的恒等变换(三角函数的和差化积、积化和差等)2. 三角恒等式的证明- 三角恒等式的证明方法和技巧- 三角恒等式的应用(证明不等式、求解方程等)四、数学推理与解题方法1. 数学证明- 数学证明的基本思路和方法- 数学证明的常用技巧(对称性、反证法、递推关系等)2. 数学建模与解题方法- 数学建模的基本流程和方法- 数学建模中的常用工具(函数图像、数列和方程)3. 解决问题的思维方法与策略- 解决数学问题的思维方法(逻辑推理、归纳演绎等)- 解决数学问题的策略(抽象化、归纳思考、逆向思维等)以上是人教版高三数学复习知识点的总结,希望能够对同学们的复习提供帮助。

高中概率统计知识点_高三概率知识点总结范文

高中概率统计知识点_高三概率知识点总结范文

《高中概率统计知识点总结》高中概率统计是数学中的重要组成部分,它不仅在高考中占据着重要的地位,而且在实际生活中也有着广泛的应用。

本文将对高中概率统计的知识点进行全面总结,帮助高三学生更好地掌握这部分内容。

一、随机事件与概率1. 随机事件随机事件是在一定条件下可能发生也可能不发生的事件。

必然事件是在一定条件下必然发生的事件,不可能事件是在一定条件下不可能发生的事件。

2. 概率的定义概率是对随机事件发生可能性大小的度量。

对于一个随机事件A,它的概率 P(A)满足0≤P(A)≤1。

当 P(A)=1 时,事件 A 为必然事件;当 P(A)=0 时,事件 A 为不可能事件。

3. 概率的基本性质(1)概率的加法公式:对于任意两个互斥事件 A 和 B,P(A∪B)=P(A)+P(B)。

(2)对立事件的概率:若事件 A 的对立事件为\(\overline{A}\),则 P(A)+P(\(\overline{A}\))=1。

二、古典概型1. 古典概型的特点(1)试验中所有可能出现的基本事件只有有限个。

(2)每个基本事件出现的可能性相等。

2. 古典概型的概率计算公式如果一次试验中共有 n 个基本事件,事件 A 包含其中的 m 个基本事件,则事件 A 的概率 P(A)=\(\frac{m}{n}\)。

三、几何概型1. 几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个。

(2)每个基本事件出现的可能性相等。

2. 几何概型的概率计算公式一般地,在几何区域 D 中随机地取一点,记事件“该点落在其内部一个区域 d 内”为事件 A,则事件 A 发生的概率P(A)=\(\frac{d 的测度}{D 的测度}\)。

这里测度可以是长度、面积、体积等。

四、互斥事件与独立事件1. 互斥事件若事件 A 与事件 B 不能同时发生,则称事件 A 与事件 B 为互斥事件。

互斥事件的概率加法公式为P(A∪B)=P(A)+P(B)(A、B 互斥)。

高考数学一轮总复习统计与概率应试技巧整理

高考数学一轮总复习统计与概率应试技巧整理

高考数学一轮总复习统计与概率应试技巧整理一、引言在高考数学考试中,统计与概率是一个重要的考点,也是一些学生容易出现困惑的部分。

为了帮助同学们更好地复习和备考,本文将整理一些高考数学统计与概率的应试技巧。

二、基础知识梳理在复习统计与概率前,要先掌握相关的基础知识。

常见的统计与概率的基础知识包括:事件的概念、随机事件的概念、样本空间与事件的关系、频率与概率的概念、设备的概念等。

掌握这些基础知识是理解后续内容的基础。

三、常见概念与公式1. 概率的基本性质在复习概率时,要了解概率的基本性质。

例如,概率是介于0和1之间的实数,所有样本点的概率之和为1等。

2. 条件概率条件概率是统计与概率中的重要概念,也是高考考点中常见的一部分。

复习时,要掌握条件概率的计算方法和应用,包括乘法定理和全概率公式等。

3. 事件的运算了解事件的运算是复习统计与概率的关键。

在考试中,往往需要对事件进行求交集、求并集、求补集等运算。

复习时,要熟练掌握这些运算的方法,并能够灵活应用。

4. 离散型随机变量与概率分布在统计与概率中,离散型随机变量是一个重要的概念。

复习时,要了解离散型随机变量的概念及其概率分布函数,包括分布列、累积分布函数等。

5. 连续型随机变量与概率密度函数与离散型随机变量类似,连续型随机变量也是一个重要的概念。

复习时,要了解连续型随机变量的概念及其概率密度函数,包括密度函数的性质、分布函数的计算等。

6. 统计图表的应用在高考数学中,统计图表的应用经常出现。

复习时,要熟悉各种统计图表的类型、特点和应用场景,包括条形图、折线图、饼图、散点图等。

四、解题技巧与策略1. 增强计算能力统计与概率涉及到大量的计算,而高考数学试卷的时间是有限的。

因此,提高计算速度和准确性是非常重要的。

可以通过多做一些练习题、刷一些真题来提升计算能力。

2. 理解题意,理顺思路在解决统计与概率的题目时,往往需要理解题意,抓住关键信息,进行问题分析。

然后,根据问题的要求,选择合适的方法和技巧来求解。

数学高三概率与统计知识点

数学高三概率与统计知识点

数学高三概率与统计知识点概率与统计是高中数学中的一门重要课程,也是数理统计学的基础。

在高三学习中,学生需要掌握一定的概率与统计的知识点,以应对相关的考试和应用问题。

在这篇文章中,我们将介绍数学高三概率与统计的主要知识点。

一、概率概率是一种描述事件发生可能性的数值,通常用一个介于0到1之间的数来表示。

1. 样本空间和事件在概率理论中,我们将所有可能结果组成的集合称为样本空间,通常用S表示。

而事件则是样本空间的一个子集,用A、B、C等来表示。

2. 概率的定义与性质概率的定义有两种,一种是古典概型下的概率定义,另一种是频率定义。

在古典概型下,若事件A在样本空间S中的元素个数为n(A),样本空间中的元素个数为n(S),则事件A发生的概率定义为P(A)=n(A)/n(S)。

在频率定义下,事件A发生的概率定义为P(A)=lim(n→∞)(n(A)/n),其中n表示试验的次数。

概率具有以下性质:a) 非负性:对于任意事件A,有P(A)≥0;b) 规范性:P(S)=1,即样本空间发生的概率为1;c) 加法定理:对于两个互不相容的事件A和B,有P(A∪B)=P(A)+P(B);d) 减法定理:对于两个事件A和B,有P(A-B)=P(A)-P(A∩B)。

3. 条件概率条件概率是指事件B已经发生的条件下,事件A发生的概率,用P(A|B)表示。

条件概率的计算公式为P(A|B)=P(A∩B)/P(B)。

4. 独立事件如果事件A和事件B满足P(A∩B)=P(A)P(B),则称事件A和事件B是独立事件。

独立事件之间的乘法定理为P(A∩B)=P(A)P(B)。

二、统计统计是通过对一组数据的观察、整理、分析和总结,以获得有关规律和结论的方法。

在高三数学中,统计常常与概率结合起来,进行数据分析和推断。

1. 数据的收集与整理统计学中,数据的收集与整理是非常重要的一步。

数据可以通过实地调查、问卷调查、实验等方式获得,然后将数据进行整理,可以采用表格、图表等形式,以便更好地进行分析和推断。

高三数学高考第一轮复习课件:概率与统计

高三数学高考第一轮复习课件:概率与统计

第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 能力提升 能力提升
3.本部分内容主要包括随机变量的概念及其分布列,离 散型随机变量的均值和方差,正态分布.从近几年的高考观 察,这部分内容有加强命题的趋势.注意以实际情景为主, 建立合适的分布列,通过均值和方差解决实际问题.
第十一单元 │ 使用建议
使用建议
1.复习中要注意 (1)全面复习,加强基础,注重应用. (2)本单元主要的数学思使用想建有议:化归思想,比较分类思想, 极限思想和模型化思维方法.学习时应注意发散思维和逆向 思维,通过分类分步把复杂问题分解,恰当地应用集合观点、 整体思想,从全集、补集等入手,使问题简化.
第68讲│ 编读互动
第68讲 │ 知识要点 知识要点
第68讲 │ 知识要点
第68讲 │ 知识要点
第68讲 │ 双基固化 双基固化
第68讲 │68讲 │ 双基固化
第68讲 │ 双基固化
第68讲 │ 双基固化
第68讲 │ 双基固化
第68讲 │ 双基固化
第67讲 │ 双基固化
第67讲 │ 能力提升 能力提升
第67讲 │ 能力提升
第67讲 │ 能力提升
第67讲 │ 能力提升
第67讲 │ 能力提升
第67讲 │ 规律总结 规律总结
第67讲 │ 规律总结
第68讲 │ 离散型随机变量的期望与方差

数学高三概率与统计章节重点知识梳理与习题攻略

数学高三概率与统计章节重点知识梳理与习题攻略

数学高三概率与统计章节重点知识梳理与习题攻略概率与统计是高中数学中的重要章节,也是高考中的热点内容。

精通概率与统计对于学生提高数学成绩、应对高考至关重要。

为此,本文将对高三概率与统计章节的重点知识进行梳理,并提供习题攻略,帮助学生更好地掌握这一知识点。

一、基本概念1.事件与样本空间在概率与统计中,我们需要了解事件和样本空间的概念。

事件是指一个我们感兴趣的结果或者结果的集合,而样本空间是所有可能结果的集合。

2.概率概率是指某个事件发生的可能性大小。

常见的概率有经典概率、几何概率和统计概率等。

3.条件概率条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。

它可以用公式表示为:P(B|A) = P(A∩B)/P(A)。

4.互斥事件与独立事件互斥事件是指两个事件不能同时发生的情况,独立事件是指两个事件的发生不会相互影响。

二、概率计算方法1.加法原理与乘法原理加法原理是指计算两个事件至少发生一个的概率。

乘法原理是指计算两个事件同时发生的概率。

2.全概率公式和贝叶斯定理全概率公式是指在一组互斥事件的基础上计算某个事件的概率。

贝叶斯定理是指在已知某个事件发生的条件下计算另一个事件发生的概率。

三、随机变量与概率分布1.随机变量随机变量是指随机试验结果的某个函数,它可以是离散型随机变量或连续型随机变量。

2.离散型随机变量的概率分布离散型随机变量的概率分布可以用概率函数、分布列和累积分布函数来表示。

3.连续型随机变量的概率密度函数和分布函数连续型随机变量的概率密度函数和分布函数可以用来描述其取值的概率。

四、常见的概率分布1.二项分布与泊松分布二项分布是指在一系列独立的、相同概率的伯努利试验中,成功次数的概率分布。

泊松分布是指在一个固定时间或空间内,随机事件发生的概率分布。

2.正态分布正态分布是指在自然界种种现象中,满足特定条件的随机变量的概率分布。

它是统计学中最重要的分布之一。

五、统计推断1.抽样与抽样分布抽样是指从总体中选取个体(样本),通过对样本的统计量进行分析推断出总体特征。

高中数学统计知识点高中数学概率与统计

高中数学统计知识点高中数学概率与统计

高中数学统计知识点高中数学概率与统计
高中数学统计知识点包括以下内容:
1. 数据的收集和整理:包括原始数据的收集和整理,如问卷调查、实验结果等。

2. 描述统计:用于对数据进行总结和描述的方法,包括平均数、中位数、众数、极差、标准差等。

3. 概率:研究随机事件发生的可能性的数学分支,包括基本概念、概率的计算方法和
性质。

4. 概率分布:描述随机变量取值与相应概率的分布,包括离散型随机变量和连续型随
机变量的分布。

5. 统计推断:从样本数据中推断总体的特征的方法,包括点估计和区间估计。

6. 假设检验:用于推断总体参数的假设检验方法,包括单样本检验、双样本检验和相
关性检验等。

7. 相关分析:研究两个或多个变量之间关系的方法,包括相关系数和回归分析等。

8. 抽样调查:从总体中随机选择样本进行调查和统计分析的方法,包括简单随机抽样、系统抽样和分层抽样等。

以上是高中数学概率与统计的主要知识点,通过掌握这些知识,可以进行数据的整理
和分析,并进行相关的统计推断和假设检验。

高三数学第一轮复习 第十二章《概率和统计》课件

高三数学第一轮复习 第十二章《概率和统计》课件

• 探究2 等可能事件的概率,首先要弄清楚试验结果是不 是“等可能”,其次要正确求出基本事件总数和事件A所 包含的基本事件的个数.
• 思考题2 某汽车站每天均有3辆开往省城济南的分为上、 中、下等级的客车,某天袁先生准备在该汽车站乘车前 往济南办事,但他不知道客车的车况,也不知道发车顺 序.为了尽可能乘上上等车,他采取如下策略:先放过 一辆,如果第二辆比第一辆好则上第二辆,否则上第三 辆.那么他乘上上等车的概率为__________.
4.一个坛子里有编号 1,2,…,12 的 12 个大小相同
的球,其中 1 到 6 号球是红球,其余的是黑球,若从中
任取两个球,则取到的都是红球,且至少有 1 个球的号
码是偶数的概率为( )
1
1
A.22
B.11
3
2
C.22
D.11
解析 分类:一类是两球号均为偶数且为红球,有 C32 种取法;另一类是两球号码是一奇一偶有 C31C31 种取 法
• 思考题1 掷两颗均匀的普通骰子,两个点数和为x(其中 x∈N*).
• ①记事件A:x=5,写出事件A包含的基本事件,并求P(A);
• ②求x≥10时的概率.
• 【分析】 每一次试验得到的是两颗骰子的点数,所以 每一个基本事件都对应着有序数对.
【解析】 ①每次试验两颗骰子出现的点数分别记为
m、n
最短路线的概率是( )
1
1
A.2
B.3
1
1
C.5
D.6
解析 基本事件,等可能事件的概率. • 答案n=3D×2=6,m=1. ∴P(A)=16.
• 3则.剩有下五两答个个案数数字字1130都、是2、奇3数、的4、概5率中是,_若__随__机__取__出__三_(个结数果字用, 数值表示解)析. 任取的三个数字中有 2 个偶数,1 个奇数,

高三数学知识点统计概率

高三数学知识点统计概率

高三数学知识点统计概率统计概率是高三数学中的重要知识点之一,它通过对统计数据进行分析和计算,帮助我们了解事件发生的概率。

下面将从基本概念、概率计算方法和应用实例三个方面进行介绍。

一、基本概念概率是指某一事件在相同条件下发生的可能性大小。

在统计学中,常用的概率计算方法包括频率概率和几何概率两种。

1.1 频率概率频率概率是通过统计大量实验结果得到的概率。

它的计算公式为:事件发生次数/总实验次数。

1.2 几何概率几何概率是通过计算事件所占的样本空间的面积或体积得到的概率。

它的计算公式为:事件发生的可能结果数/总可能结果数。

二、概率计算方法在统计概率的计算中,常用的方法有加法法则、乘法法则和条件概率。

2.1 加法法则加法法则用于计算两个事件中至少发生一个事件的概率。

当两个事件互斥时(即两个事件不可能同时发生),可以直接使用加法法则计算:P(A∪B) = P(A) + P(B)。

2.2 乘法法则乘法法则用于计算两个事件同时发生的概率。

当两个事件独立时(即一个事件的发生不影响另一个事件的发生),可以直接使用乘法法则计算:P(A∩B) = P(A) × P(B)。

2.3 条件概率条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。

条件概率的计算公式为:P(A|B) = P(A∩B) / P(B)。

三、应用实例统计概率在实际生活中有广泛的应用,下面以两个常见的例子介绍其应用。

3.1 投掷骰子假设我们有一枚均匀的六面骰子,每个面上的点数为1~6。

现在我们想知道投掷一次骰子后,点数为偶数的概率是多少。

根据频率概率,我们可以进行一系列实验,统计出点数为偶数的次数,再除以总实验次数,就可以得到概率。

根据几何概率,点数为偶数的可能结果数为3,总可能结果数为6,因此概率为1/2。

3.2 抽奖活动某个电商平台举办了一个抽奖活动,奖品包括一等奖、二等奖和三等奖。

现在我们想知道抽奖时至少抽到二等奖的概率是多少。

34:概率高三复习数学知识点总结(全)

34:概率高三复习数学知识点总结(全)

概率1.随机事件的概率(1)必然事件:在一定条件下,必然会发生的事件;(2)不可能事件:在一定条件下,肯定不会发生的事件;(3)随机事件:在一定条件下,可能发生也可能不发生的事件.(4)随机事件的概率:对于给定的随机事件,A 在大量重复进行同一试验时,事件A 发生的频率n m会在某个常数附近摆动并趋于稳定,我们把这个常数常数称为随机事件A 的概率,记作).(A P 注:由定义可知,1)(0≤≤A P 必然事件的概率是1,不可能事件的概率是0.2.事件的关系与运算定义符号表示包含关系如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B )相等关系若A ⊆B 且B ⊆A A =B并事件(和事件)若某事件发生当且仅当事件A 发生或事件B 发生,称此事件为事件A 与事件B 的并事件(或和事件)A ∪B (或A +B )交事件(积事件)若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件)A ∩B (或AB )互斥事件若A ∩B 为不可能事件(A ∩B =∅),则称事件A 与事件B 互斥A ∩B =∅对立事件若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件A ∩B =∅,P(A)+P(B)=13.古典概型(列举法)(1)古典概型的两大特点:①所有的基本事件只有有限个;②每个基本事件的发生都是等可能的.(2)古典概型的概率计算公式:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是.1n 如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为.)(nmA P =例1-1【2020全国I 文】设O 为正方形ABCD 的中心,在D CB A O ,,,,中任选三点,则取到三点共线的概率为()A.51B.52 C.21 D.54例1-2【2016全国I 文】为美化环境,从红、黄、白、紫4种颜色的花中任取2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.31 B.21 C.32 D.65例1-3【2016江苏高考】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.答:1-1:A ;1-2:C;1-3:65.4.互斥事件和对立事件(1)互斥事件:不能同时发生的两个事件叫做互斥事件.一般地,如果事件n A A A ,,,21 中的任意两个都是互斥事件,则称事件n A A A ,,,21 彼此互斥.(2)互斥事件概率公式:如果事件B A ,互斥,那么事件B A +发生(注:B A +表示事件B A ,至少有一个发生)的概率,等于事件B A ,分别发生的概率的和,即).()()(B P A P B A P +=+推广:一般地,若n A A A ,,,21 彼此互斥,那么).()()()(2121n n A P A P A P A A A P +++=+++ 注:若A,B 不互斥,则).()()()(B A P B P A P B A P -+=(3)对立事件:如果两个互斥事件必有一个发生,那么称这两个事件为对立事件.事件A 的对立事件记为.A (4)对立事件的概率公式:).(1)(A P A P -=注:“至多”,“至少”的问题考虑反面(对立事件)往往比较简单.例2-1:某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56% C.46% D.42%例2-2:将一枚骰子连续抛掷两次,至少有一次向上的点数为1的概率是.答:2-1:C;2-2:.36115.事件的独立性(1)条件概率:一般地,对于两个事件A 和,B 在已知事件B 发生的条件下事件A 发生的概率,称为事件B 发生的条件下事件A 的条件概率,记为).|(B A P 概率的乘法公式:).()|()(B P B A P AB P =注:事件AB 表示事件A 和事件B 同时发生.(2)事件的独立性①定义:一般地,若事件B A ,满足)()|(A P B A P =(即事件B 发生不影响事件A 发生的概率),则称事件B A ,独立.②性质:若事件B A ,相互独立,则事件A 与B ,A 与,B A 与B 都相互独立.③公式:事件B A ,相互独立的充要条件是).()()(B P A P AB P =④推广:若n A A A ,,,21 相互独立,则这n 个事件同时发生的概率为).()()()(2121n n A P A P A P A A A P =⑤区别:独立事件与互斥事件的根本区别在于是否能同时发生,如果不能那是互斥事件,如果能再满足)()()(B P A P AB P =则为独立事件.注:求条件概率的两个思路:思路一:缩减样本空间法计算条件概率,如求P (A |B ),可分别求出事件B ,AB 包含的基本事件的个数,再利用公式P (A |B )=n (AB )n (B )计算;思路二:直接利用公式计算条件概率,即先分别计算出P (AB ),P (B ),再利用公式P (A |B )=P (AB )P (B )计算.(3)全概率公式设n A A A ,,,21 是一组两两互斥的事件,,21Ω=n A A A 且,0)(>i A P ,,,2,1n i =则对任意的事件,Ω⊆B 有∑==ni i i A B P A P B P 1).|()()(我们称上面的公式为全概率公式.全概率公式是概率论中最基本的公式之一.6.离散型随机变量及其概率分布(1)随机变量:一般地,如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,通常用大写拉丁字母Z Y X ,,(或小写的希腊字母ξ,η,ζ)等表示,而用小写拉丁字母z y x ,,(加上适当下标)等表示随机变量可能的取值.(2)离散型随机变量的概率分布:一般地,假定随机变量X 有n 个不同的取值,它们分别是1x ,2x ,…,n x ,且()i i P X x p ==,1,2,,i n =⋅⋅⋅,①则称①为随机变量X 的概率分布列,简称为X 的分布列.也可以将①用表的形式来表示.X 1x 2x …nx P1p 2p …np 我们将表称为随机变量X 的概率分布表.它和①都叫做随机变量X 的概率分布.注:①),,2,1(0n i p i =≥;②121=+++n p p p ;③求随机变量的概率分布的步骤:1.确定X 的可能取值(1,2,)i x i =…;2.求出相应的概率()i i P X x p ==;3.列成表格的形式.7.常见离散型随机变量的概率分布(1)两点分布(0-1分布)若随机变量X 服从两点分布,即其分布列为X01P p-1p 则,)(p X E =).1()(p p X D -=(2)超几何分布一批产品共N 件,其中有M 件次品,任取n 件,其中恰有X 件次品,则事件}{r X=发生的概率为()r n r M N MnN C C P X r C --==,0,1,2,,r m = ,其中{}min ,m n M =,称X 服从超几何分布,记为),,,(~N M n H X 并将()r n r M N MnNC C P X r C --==记为).,,;(N M n r H X 01…mP00n M N Mn NC C C --11n M N Mn NC C C --…m n m M N Mn NC C C --则N nM X E =)(;)1())(()(2---=N N n N M N nM X D (了解).8.二项分布(1)n 次独立重复试验(伯努利试验)一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 和,A 每次试验中.0)(>=p A P 我们将这样的试验称为n 次独立重复试验,也称为伯努利试验.(2)二项分布一般地,在n 次独立重复试验中,设事件A 发生的次数为,X 在每次试验事件A 发生的概率均为,p 那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为),2,1,0()1()(n k p p C k X P k n kk n =-==-.此时称随机变量X 服从参数为p n ,的二项分布,记作).,(~p n B X(3)均值与方差若),,(~p n B X 则np x E =)(,).1()(p np x V -=注:超几何分布与二项分布的区别与联系(1)区别:是否有放回是两个的本质区别,有放回是二项分布,无放回是超几何分布;(2)联系:当总体容量较大时如流水线上,也可以用二项分布近似超几何分布.9.离散型随机变量的均值与方差(1)一般地,若离散型随机变量X 的概率分布为X 1x 2x…nx P1p 2p …np 其中,1,,,2,1,021=+++=≥n i p p p n i p 则有如下公式1.均值(数学期望):.)(2211n n p x p x p x X E ++==μ它反映了离散型随机变量取值的平.均水平....注:对于连续型变量通常取“组中值”来代替i x 计算期望.2.方差:.)()()()(22221212n n p x p x p x X V μμμσ-++-+-== (方差也可以用V(x)表示),它刻画了随机变量X 与其均值E (X )的平均偏离程度........3.标准差:.)(X V =σ注:随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度.方差或标准差越小,随机变量偏离于均值的平均程度就越小,稳定性就越好.(2)均值和方差的性质若随机变量b aX Y +=(b a ,为常数),则,)()(b X aE Y E +=).()(2X V a Y V =10.正态分布(1)正态曲线函数,21)(222)(σμπσ--=x e x f 其中实数μ和σ为参数(σ>0,μ∈R).我们称函数)(x f 的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x 轴上方,与x 轴不相交;当x 无限增大时,曲线无限接近x 轴.②曲线是单峰的,它关于直线μ=x 对称;③曲线在μ=x 处达到峰值1σ2π;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示①若随机变量X 的概率分布密度函数为,21)(222)(σμπσ--=x e x f 则称随机变量X 服从正态分布,则记作),(~2σμN X .其中,参数μ反映了正态分布的集中位置,σ反映了随机变量的分布相对于均值μ的离散程度,此时=)(X E μ,=)(X D 2σ.特别地,当10==σμ,时,称随机变量X 服从标准正态分布,记作X~N (0,1).②若),,(~2σμN X 则如图所示,X 取值不超过)(x X P ≤为图中区域A 的面积,而)(b X a P ≤≤为区域B的面积.(4)正态总体在三个特殊区间内取值的概率值①P(μ-σ<X ≤μ+σ)=0.6826;②P(μ-2σ<X ≤μ+2σ)=0.9544;③P(μ-3σ<X ≤μ+3σ)=0.9974.注:在实际应用中,通常认为服从正态分布),(2σμN 的随机变量X 只取]3,3[σμσμ+-之间的值,这在统计学中称为σ3原则.在次区间以外取值的概率只有0.0026,通常认为这种情况几乎不可能发生.【解题规范】【2014江苏高考】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同。

高三数学概率专题复习

高三数学概率专题复习

概率专题复习1.某临时车站;每天有3辆开往上海的分为上、中、下等级的客车;一天赵先生准备在该临时车站乘车前往上海办事;但他不知道客车的车况;也不知道发车顺序;为了尽可能乘上上等车;他采取如下策略:先放弃第一辆;如果第二辆比第一辆好则上第二辆;否则上第三辆;那么他乘上上等车的概率为多少?2.某种电路开关闭合后;会出现红灯或绿灯闪动;已知开关第一次闭合后;出现红灯和出现绿灯的概率都是21。

从开关第二次闭合起;若前次出现红灯;则下一次出现红灯的概率是31;出现绿灯的概率是32;若前次出现绿灯;则下一次出现红灯的概率是53;出现绿灯的概率是52。

问: (1) 第二次闭合后出现红灯的概率是多少?(2) 三次发光中;出现一次红灯;两次绿灯的概率是多少?3.有一批食品出厂前;要进行五项指标抽检;如果有两项指标不合格;则这批食品不能出厂。

已知每项指标抽检是相互独立的;且每项抽检出现不合格的概率都是0.2。

(1) 求这批食品不能出厂的概率;(保留三位有效数字)(2) 求直至五项指标全部检验完毕;才能确定这批食品是否出厂的概率。

(保留三位有效数字)4.甲乙两足球队苦战90分钟踢成平局;加时30分钟仍成平局;现决定各派5名队员;每人射一个点球决定胜负;设甲乙两足球队每个队员的点球命中率都为0.5。

(1) 不考虑乙队;求甲队仅有3名队员点球命中;且其中恰有2名队员连续命中的概率;(2) 求甲乙两队各射5个点球后;再次出现平局的概率。

5.高三(1)班、高三(2)班已各选出3名学生组成代表队;进行羽毛球比赛;比赛规则是:① 按“单打、双打、单打”顺序进行三局比赛;② 代表队中每名队员至少参加一局比赛;不得参加两局单打比赛; ③ 先胜两局的队获胜;比赛结束。

已知每局比赛双方胜出的概率均为21。

(1) 根据比赛规则;高三(1)班代表队共可排出多少种不同的出场阵容?(2) 高三(1)班代表队连胜两局的概率是多少?(3) 高三(1)班代表队至少胜一局的概率是多少?6.某省羽毛球队与市羽毛球队举行单打对抗比赛;省队获胜的概率为0.6;现在双方商量对抗赛的方式;提出了两种方案:①双方各出3人;②双方各出5人。

高三数学第十二章-概率与统计知识点归纳

高三数学第十二章-概率与统计知识点归纳

高中数学知识点第十二章-概率与统计考试内容:抽样方法.总体分布的估计. 总体期望值和方差的估计. 考试要求:(1)了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样.(2)会用样本频率分布估计总体分布. (3)会用样本估计总体期望值和方差.§12. 概率与统计 知识要点一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x xξ取每一个值),2,1(1Λ=i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列.有性质①Λ,2,1,01=≥i p ; ②121=++++ΛΛi p p p .注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0Λ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B (n ·p ),其中n ,p 为参数,并记p)n b(k;qp C kn kkn⋅=-.⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A AP(k)P(ξk 1k 21-==Λ.根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-==Λ),3,2,1(1Λ==-k p q k 于是得到随机变量ξ的概率分布列.我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中Λ3,2,1.1=-=k p q5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0C C C k)P(ξnNk n MN k M -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C r m =,则k 的范围可以写为k=0,1,…,n.〕⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n ≤a+b ),则次品数ξ的分布列为n.,0,1,k CC C k)P(ξnba kn bk a Λ=⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有n b a )(+个可能结果,等可能:k)(η=含kn k k n ba C -个结果,故n ,0,1,2,k ,)ba a (1)b a a (C b)(a ba C k)P(ηkn k k n nkn k k n Λ=+-+=+==--,即η~)(b a a n B +⋅.[我们先为k个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样. 二、数学期望与方差.1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为则称ΛΛ++++=n n p x p x p x E 2211ξ为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平. 2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身. ②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ.⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1) ⑷二项分布:∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξ 其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率)3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()(Λ===k p x P k k ξ时,则称ΛΛ+-++-+-=n n p E x pE x p E x D 2222121)()()(ξξξξ为ξ的方差.显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:=ξD 其分布列为p P ==)1(ξ⑶两点分布:pq D =ξ 其分布列为:(+ q = 1)⑷二项分布:npq D =ξ ⑸几何分布:2p q D =ξ5. 期望与方差的关系.⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)( ⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E .三、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线b x =所围成的曲边梯形的面积图像的函数)(x f 是必然事件,故密度曲线与x 轴所夹部分面积等于1.2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:222)(21)(σμσπ--=x ex f . (σμ,,R x ∈为常数,且0φσ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E .⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称.③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近. ⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=-ππx ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤π.注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有5.0)(φx Φ.比如5.00793.0)5.0(π=-Φσμ则σμ-5.0S 阴=0.5S a =0.5+S如图.⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.4.⑴“3σ”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设.⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为99.7% 亦即落在)3,3(σμσμ+-之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).。

高中数学知识点总结:概率与统计

高中数学知识点总结:概率与统计

高中数学知识点总结:概率与统计【】到了高三总复习的时候发现有许多的数学知识点还没有理解,而这些知识点往往就是必考的知识点,欢迎同学们来到精品的高三数学知识点频道参考高中数学知识点总结,祝愿大家都能有个好成绩!概率与统计(文)命题趋势预测:高考对概率与统计内容的考查,往往以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向。

概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,高考概率统计应用题多数省份出现在解答题前三题的位置,可见概率统计在高考中属于中档题。

在今年的高考中,可能涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合。

概率与统计(理)命题趋势预测:我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。

特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。

知道“是这样”,就是讲不出“为什么”。

根本原因还是无“米”下“锅”。

于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。

所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。

要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率统计知识点归纳
平均数、众数和中位数
平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明.
一、正确理解平均数、众数和中位数的概念
1.平均数平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.
2.众数在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势.
3.中位数中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的.
二、注意区别平均数、众数和中位数三者之间的关系
平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题.
三、能正确选用平均数、众数和中位数来解决实际问题
由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题.
极差、方差、标准差
极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.
一、极差
一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.
二、方差
方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.
求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x 1、x 2、x 3、…、x n 的平均数为x ,则该组数据方差的计算公式为:
])()()[(1222212x x x x x x n
S n -++-+-=Λ. 三、标准差
在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差.
即标准差=方差.
四、极差、方差、标准差的关系
方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.
一、 随机事件的概率
1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。

2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。

3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。

4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。

7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。

认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。

二、 概率的基本性质
1、事件的关系与运算
(1)包含。

对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A ⊇⊆或A B)。

不可能事件记作∅。

(2)相等。

若B A A B ⊇⊇且,则称事件A 与事件B 相等,记作A=B 。

(3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。

(4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。

(5)事件A 与事件B 互斥:A B I 为不可能事件,即=A B ∅I ,即事件A 与事件B 在任何一次试验中并不会同时发生。

(6)事件A 与事件B 互为对立事件:A B I 为不可能事件,A B U 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。

2、概率的几个基本性质
(1)0()1P A ≤≤.
(2)必然事件的概率为1.()1P E =.
(3)不可能事件的概率为0. ()0P F =.
(4)事件A 与事件B 互斥时,P(A U B)=P(A)+P(B)——概率的加法公式。

(5)若事件B 与事件A 互为对立事件,,则A B U 为必然事件,()1P A B =U .
三、古典概型
1、基本事件的特点:(1)任何两个事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。

2、古典概型:(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件出现的可能性相等。

具有这两个特点的概率模型称为古典概型。

3、公式:()=A P A 包含的基本事件的个数基本事件的总数
四、几何概型
1、几何概型:每个事件发生的概率只有与构成该事件区域的长度(面积或体积)成比例的概率模型。

2、几何概型中,事件A 发生的概率计算公式:
()P A =构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)
三类概率问题的求解策略
对于一个概率题,我们首先要弄清它属于哪一类型的概率,因为不同的类型需要采取不同类型的概率公式和求解方法;其次,要审清题意,注意问题中的关键语句,因为这些关键语句往往蕴含着解题的思路和方法。

一、可能性事件概率的求解策略
对于可能性事件的概率问题,利用概率的古典定义来求可能性事件的概率时,应注意按下列步骤进行:求出基本事件的总个数n;②求出事件A 中包含的基本事件的个数m;③求出事件A 的概率,即n m A P =
)( 二、互斥事件概率的求解策略
对于互斥事件的概率问题,通常按下列步骤进行:①确定众事件彼此互斥;②众事件中有一个发生;先求出众事件分别发生的概率,然后再求其和。

对于某些复杂的互斥事件的概率问题,一般应考虑两种方法:一是“直接法”,将所求事件的概率化成一些彼此互斥的事件的概率的和;二是用“间接法”,即先求出此事件的对立事件的概率)(A P ,再用)(1)(A P A P -=求出结果。

三、相互独立事件同时发生的概率的求解策略
对于相互独立事件同时发生的概率问题,其求解的一般步骤是:①确定众事件是相互独立的;②确定众事件会同时发生;③先求每个事件发生的概率,再求它们的积。

概率的计算方法
一、公式法 利用公式P =(随机事件)随机事件可能出现的结果数随机事件所有可能出现的结果数就可以计算随机事件的概
率,这里1=(必然事件)P ,0=(不可能事件)P ,
如果A 为不确定事件,那么0<)(A P <1.
二、列表法
例.如果每组3张牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少?
解:利用列表法:
列表中两次出现1,2,3点的可能性相同,因而共有9中可能,而牌面数字和等于4的情况有(1,3),(2,2),(3,1),3中可能,所以牌面数字和等于4
的概率等于93,即3
1. 三、树状图法
如上题的另一中解法,就利用用树状图法来解:
总共9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于43 1 1 1 2 2 2 3 (4) (5) (4) 开始
2 1
3 3 (2) (3) (3) (4) (5) (6)
的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为等于93,即3
1. 四、面积法
几何概型的概率的求解方法往往与面积的计算相结合
例.如图,矩形花园ABCD ,AB 为4米,BC 为6米,小鸟任意落下,则小鸟落在阴影区的概率是多少?
解:矩形面积为:4×6=24(米2),
阴影部分面积为:126421
=⨯⨯(米2),
21
2412==(小鸟落在阴影区)P .
A B C D。

相关文档
最新文档