最新中科院课件--《现代信号处理的理论和方法》Chapter+1ppt课件

合集下载

现代信号处理方法1_2

现代信号处理方法1_2
但应当指出,并不是所有的时-频分布都 满足表中的所有性质,实际中适用的时-频 分布并非一定要满足所有的性质,应该根据 具体情况进行合理取舍。
1.3.4 核函数的基本性质要求
由(1.3.5)式
( , v)




P(t , f )e j 2 ( vt f ) dtdf Az ( , v) P (t , f )e j 2 ( vt f ) dtdf
则(1.3.1)式化为
1 * 1 j 2f P(t , f ) z (t ) z (t )e d 2 2

(1.3.2)
上式就是著名的Wigner-Ville分布 .

上式是一个双线性变换(双时间信号)。关于 时间t作Fourier反变换
k z (t , ) z (t ) z (t ) 2 2
j 2 ( vt f )
如果时-频分布 p (t , 核函数的性质要求.
P (t , f )e z (u 2 ) z (u 2 )e
*

dtdf
(1.3.5)
j 2vu
du
f )有特定性质要求, 由上式可决定对
互时-频分布定义
两个连续信号 x(t ),y(t )的互时-频分布定义为:
P(t , ) 0
在上面的特性中,边缘特性和非负特性保 证了时-频分布准确反映信号的谱能量、瞬 时功率和总能量。边缘特性可以保证信号的 总体量(平均时间、平均频率、时宽和带宽 等)正确给定。非负性则可以进一步保证分 布的条件期望是切合实际的和物理解释。非 负性和边缘特性一起可以保证时-频分布的 强有限支撑。
2 2 * 1 2 z1 , z2 * 2 1 z2 , z1

现代信号处理基础ppt

现代信号处理基础ppt

( 白 随 机 C ov ( k - n ) 0)
2 E ( m N E [ m N ])


1 N
2

N 1
E { x ( n ) m }
2
1 N
2
n0

n0
N 1
2


2
N
N
2 lim E ( m N E [ m N ]) 0
N
n0
N|m | N
R x ( m ) (1
(有偏、渐进无偏估计) 自相关函数估计的方差
2 D [ R x ( m )] E [ R x ( m ) E { R x ( m )} ]


2
2 E [ R x ( m )] E { R x ( m )}
N 1 2

N 1 N 1 1 2 E x ( n ) m 2 E x ( n ) m x ( k ) m 2 N n0 n0 k 0 n k
N 1
第二章 现代信号处理基础
随机矢量及其统计特性
随机信号的估计评价及估计方法
随机信号通过LTI系统
相关抵消与正交分解
谱分解定理
信号模型参数与功率谱
随机矢量及其统计特性
以3个习题为例: 例1 N维高斯分布随机矢量 x 的均值矢量为 m x ,协方差矩阵 为 。现对 x 作线性变换 B x ,其中B是 N N 阶常数矩 阵,试证明 是高斯分布的。
1
M 2


1 T 1 ex p ( y y ) y 2

最新现代信号处理第1章ppt课件

最新现代信号处理第1章ppt课件
信号是传载信息的物理量,是信息的表现形式。
信号处理的本质是信息的变换和提取。
信息的提取就要借助各种信号获取方法以及信号处理 技术。
信号测量系统和信号处理的工作内容的成本已达到装 备系统总成本的50%-70%。
1.1 现代信号处理的内容和意义
信号处理技术的应用领域:
电子通讯; 机械振动信号的分析与处理; 自动测量与控制工程领域; 语音分析、图像处理与声纳探测; 生物医学工程。
(1.4.4)
R x(y ) x ( t)y ( t)d t x ( t)y ( ,t)
(1.4.5)
内积可视为 x (t与) “基函数”关系紧密度或相似性的一种度量。
1.4 信号处理的内积与基函数
信号的内积与基函数
傅里叶变换是应用最为广泛的信号处理方法,函数 x (t ) 的傅里叶变换为
cn
1 T
T/2 x(t)eintdt
T/ 2
(1.3.6)
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
傅里叶级数具有两个独特的性质:
1、函数 x (t ) 可分解为无限多个互相正交的分量 gn(t):cneint 的和,其中正交是指 g m 与 g n 的内积对所有 mn成立, 即
gm,gn:T 1 T T //2 2gm (t)gn(t)d t0
mn
2、正交分量 或 可用一个简单的基函数
的整数m
或n的膨胀g生m 成,g 线n 性累加逼近任何函数 g1(。t)
x(t) 小波变换中,通过母小波的伸缩和平移生成小波族。
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
第一章 绪论
1.1 现代信号处理的内容和意义 1.2 信号的分类 1.3 非平稳信号处理和信号的正交分解 1.4 信号处理的内积与基函数 1.5 现代信号处理的应用现状与进展

中科院课件---《现代信号处理的理论与方法》课程回顾祥解

中科院课件---《现代信号处理的理论与方法》课程回顾祥解
随机信号 x(t)的k阶矩:
, xk t xt k1
mkx 1, ,k1 Ext xt 1 xt k1
随机信号 x(t)的k阶累积量:
ckx 1, ,k1 cumxt, xt 1, , xt k1
矩和累积量的估计
矩的估计:
mˆ k1
累积量的估计:
谱、双谱和三谱的BBR公式:
Py
2 x
H
H
*
2 x
H 2
By 1,2 3xH 1 H 2 H * 1 2
Ty 1,2,3 4xH 1 H 2 H 3 H * 1 2 3
FIR系统辨识
n
L1
2
2
2
30 1
1
4
6
Lm
5
1
2 c3y n1, n2 3x h k h k n1 h k n2
二次叠加原理

z(t) c1z1(t) c2 z2 (t)

Pz (t,) | c1 |2 Pz1 (t,) | c2 |2 Pz2 (t,) c1c2*Pz1,z2 (t,) c1*c2Pz2,z1 (t,)
式中: Pz1 Pz2
z1(t)和z2(t)的自时频分布;
P 和 分 z1,z2
幅值和相位分别为:
at s2 t sˆ2 t
t
arctan
sˆt st
瞬时频率
❖ 瞬时频率:表征了信号在局部时间点上的瞬态频 率特性,整个持续期上的瞬时频率反映了信号频 率的时变规律。
fi
t
1
2
d dt
arg
zt
1
0 E
'(t) | x(t) |2 dt
➢ 信号的中心频率是其瞬时频率在整个时间轴上的加 权平均。

现代信号与信息处理理论

现代信号与信息处理理论

平方代价函 数可得到最 小均方估计
绝对值代价函 数可得到条件 中位数估计
均匀代价函数 可得到最大后 验概率估计
平均代价为
C c( ˆ(z)) f (z,)dzd
19
2020/2/27
估计理论
➢贝叶斯估计就是使平均代价最小的估计
或等价于 其中令
C c( ˆ(z)) f ( | z) f (z)dzd
现代信号与信息处理方法
1
2020/2/27
课程内容
➢随机信号特性与分析理论 ➢信号检测与估计理论 ➢高阶谱理论 ➢周期谱理论
2
2020/2/27
参考文献
➢ Steven M. Kay 著,罗鹏飞译,《统计信号处理基础 : 估 计与检测理论》,电子工业出版社,2003
➢ 《高阶统计量及其谱分析》,张贤达,清华大学出版社, 2005
1
(z A)2
f (z | A)
exp 2v
2v2

f (A | z) f (z | A) f (A) f (z)
Aˆmap


A0 z
A0
z A0 A0 z A0
z A0
27
2020/2/27
估计理论
估计量
A0
Aˆmap
平均代价<====>均方误差 使平均代价最小等价于使均方误差最小
----最小均方估计
21
2020/2/27
估计理论
C(ˆ | z) ( ˆ)2 f ( | z)d
令 C(ˆ |
ˆ
z)

2
( ˆ)

中科院课件--《现代信号处理的理论和方法》Chapter+2

中科院课件--《现代信号处理的理论和方法》Chapter+2
满足各子集合的并集 I p I,即 I1, I2, , I p 1, 2, , k
mx I 随机信号x t 的k阶矩
cx I 随机信号x t 的k阶累积量
mx
Ip
符号集为I
的矩
p
cx
Ip
符号集为I
的累积量
p
❖ 矩与累积量之间的相互关系:
q
mx I E x1 , , xk cx I p qp1 I p I p1
ln 22
2
由于 ' 2, '' 2, k 0, k 3, 4,
可得高斯变量的各阶累积量为:
0
ckx 2
0
k 1 k 2 k 3, 4,
矩与累积量的转换关系
❖ 集合I={1,2,…,k}的无序、非空、无交连分割
令{ x1,…, xk}是k个随机变量组成的集合,其符号集为I={1,2,…,k}。
cum x1 , , xk cum xi1 , , xik i 1
,ik 是1, , k 的一个排列.
例: c3x m, n c3x n, m c3x n, m n c3x n m, m
c3x m n, n c3x m, n m
c3x m, n m cum x t , x t m, x t n m
第二章 高阶统计和高阶谱方法
❖ 2.1 矩与累积量 ❖ 2.2 矩与累积量的性质 ❖ 2.3 高阶谱 ❖ 2.4 非高斯信号与线性系统 ❖ 2.5 相位估计 ❖ 2.6 系统辨识
2.1 矩与累积量
❖ 引言 ❖ 高阶矩与高阶累积量的定义 ❖ 高斯信号的高阶矩与高阶累积量 ❖ 矩与累积量的转换关系
引言
ln
dk
0
jk

现代信号处理ModernSignalProcessing40页PPT

现代信号处理ModernSignalProcessing40页PPT
凡不是广义平稳的信号
遍历性
若 N li m E 2N 11tN Nx(tt1)Lx(ttk)(t1,L,tk)2 0
则 {x(t)}称 为 均 方 遍 历 信 号 。
2.两个随机信号的二阶统计量
互相关函数
Rxy()@E{x(t)y*(t)}
相同部分相乘(相同符号) 不同(随机)部分相乘 (平均意义上,相互抵消)。
考核方式 习题(11%) 计算机仿真(实验3次,24%) 考试(65%)
第一章 随机信号
本章主要介绍随机信号的基本概念:相关 函数、功率谱密度、两个信号的正交、统计不 相关和统计独立、相干信号以及它们的几个典 型应用。
1.信号分类
信号——信息的载体
连 续 时 间 信 号s(t) t 离 散 时 间 信 号s(k) k为 整 数
▪ 时分多址(TDMA: time-division multiple access): 各个用户的信号波形在时域上无重叠 正交(时域正交)
用户1和用户2之间有一个保护时隙
b
a si
(t)s*j (t)dt
0,
i j
共享:整个频带
正交的两个典型应用(续)
▪ 频分多址(FDMA: frequency-division multiple access): 各个用户的信号波形在频域上无重叠 频域正交
E wi 2 qiHqi
im1
im1
由wi qiHx得:E wi 2 E qiHxxHqi qiHE xxH qi qiHRxqi
正交的两个典型应用(续)
M
最优化: min Em min
q
H i
R
x
q
i
im 1

中科院课件--《现代信号处理的理论和方法》Chapter+1

中科院课件--《现代信号处理的理论和方法》Chapter+1

d3
0 -5 0 1 100 200 300 400
a4
0 -5 0 100 200 300 400
d4
0 -1 0 100 200 300 400
4、 盲信号处理技术


利用系统的输出观测数据,通过某种信号处 理的手段,获取我们感兴趣的有关信息。 盲源分离、盲均衡、盲系统辨识
第一章 信号分析基础
x(n)
↓2
d3(n)
H0(z)
↓2
H1(z)
↓2
H0(z)
↓2
a3(n)
j=1 j=2
H0(z) a2(n)
↓2
信号的二进制分解
j=3
x(t ) sin(2 f1t ) sin(2 f 2t ) sin(2 f3t ) s1 (t ) s2 (t ) s3 (t ) f1 1Hz, f 2 20Hz, f3 40Hz, f s 200 Hz, N 400
x ( n)
v0 (n)
↑M
u0 ( n )
G0(z)
x1 (n)
H1(z) ↓M
v1 (n)
↑M
u1 (n)
G1(z)
xM 1 (n)
HM-1(z) ↓M
vM 1 (n)
↑M
uM 1 (n)
GM-1(z)
ˆ ( n) x
M 通道滤波器组

例 假定要传输如图所示信号x(t),它由两个正弦信号加白噪 声组成。若用数字方法,其传输过程包括对x(t)的数字化、 量化、编码及调制等步骤。若对信号用抽样率fs进行抽样, 每一个抽样数据为16bit,那么其1s数据所需bit数是16fs。对 其抽样信号x(n)作傅里叶变换,频谱如图所示。

第1章 现代信号处理 (1)

第1章  现代信号处理 (1)

ψ 若把ψ (t ) 看成一窗函数, (t / a ) 的宽度将随着的不同而不同, 看成一窗函数, 的宽度将随着的不同而不同, Ψ,由此我们可得到不同的 ( aΩ ) 这也同时影响到频域, 这也同时影响到频域,即 a 对应分析信号的高频部分, 时域分辨率和频域分辨率。 时域分辨率和频域分辨率。 小,对应分析信号的高频部分, a 对应分析信号的低频部分。 大,对应分析信号的低频部分。参数 是沿着时间轴的位 b x 尺度 位移” WTx ( a, b) 尺度- 移,所得结果 是信号 的“(t ) -位移”联合分 它也是时-频分布的一种。 析,它也是时-频分布的一种。
第1章 信号分析基础 章
Cohen时 Cohen时-频分布
C x (t , Ω : g ) =
1 2π
x (u + τ ) x * (u − τ ) g (θ ,τ )e − j (θt +Ωτ −uθ ) dudτdθ 2 2 ∫∫∫
Cohen分布即 式中g (θ , τ )是处在平面的权函数若g (θ , τ )=1,则Cohen分布即 变成Wigner-Ville分布,给定不同的权函数,我们可得到同 变成Wigner-Ville分布,给定不同的权函数, Wigner 分布 的时-频分布,统称为Cohen类时-频分布,简称Cohen类 的时-频分布,统称为Cohen类时-频分布,简称Cohen类, Cohen类时 Cohen
第1章 信号分析基础 章
小波变换
小波变换: 希望找到一个基本函 小波变换:对给定的信号 x (t ) ,希望找到一个基本函 数 ψ (t ) ,并记 ψ (t ) 的伸缩与位移
ψ a,b (t) = 1a ψ ( t −b ) a
x 为一族函数, 为一族函数,(t )和这一族函数的内积

现代信号处理技术-1绪论

现代信号处理技术-1绪论
signals)
滤波:
数字滤波器 滤波器组
4类主要方法 (2/4)
❖ 基于模型的方法
信号产生过程的参数模型
▪ 分析:
线性预测 参数谱估计
▪ 滤波:
最优线性滤波器
维纳滤波器, 卡尔曼滤波器
自适应滤波器
7
3 Methods
4类主要方法 (3/4)
❖ 统计信号处理方法
信号统计模型 贝叶斯估4
2. 信号处理的应用
❖ DSP的两类广泛应用 信号分析
提取有用信息 谱估计,信号建模 分类,检测,预测,模式识别…
信号滤波
提高信号质量 数字滤波器,最优滤波器,自适应滤波器,阵
列滤波器等 噪声消除,均衡,去卷积 …
3. 信号处理方法
❖ 取决于关于对信号本身的知识 ❖ 取决于具体应用
5
3 Methods
• 数字信号处理
• 概率论,随机信号分析
• 线性代数
• 统计信号处理
• 检测与估计
• 信号处理中的小波变换
• 阵列信号处理
•…
技术分类
分析
随机信号
统计过程理论
滤波基于分析 分析通过滤波
11
3 Methods
滤波
技术分类 (2)
12
3 Methods
分析
滤波
谱估计
信号建模
最优滤波
自适应滤波
时间/尺度分 析
Modern digital signal analysis and filtering
Beyesian statistical processing
滤波:
MAP, ML, LS
8
3 Methods
4类主要方法 (4/4)

现代信号与信息处理理论精品文档

现代信号与信息处理理论精品文档

x z / v
26
2019/10/4
估计理论
1 f(A)2A0
0
A0 AA0 其他
f(z|A) 21vexp (z2A v2)2
f(A| z) f(z| A)f(A) f (z)
Aˆmap zA0 A0
z A0 A0 z A0
z A0

2019/10/4
估计理论
估计量
A0
Aˆ m a p
Aˆ m l Aˆ m s
-A0
z 测量值
A0
-A0 估计图形
28
2019/10/4
估计理论
4 最大似然概率估计
例:z=+v
为待估计量,v为零均值 高斯白噪声,方差为2
f (z / )
f(z|)max
f(z/) 21vexp (z2v2)2
A~U(-A0,A0) 噪声为高斯的 v ~ N(0,v2)
1 f(A)2A0
0
A0 AA0 其他
f(z|A) 21vexp (z2A v2)2
f(A| z) f(z| A)f(A) f (z)
25
2019/10/4
估计理论

A ˆm s A f(A |z)d A A f(z|fA () z) f(A )d A A ff((z z||A A ))ff((A A )) d d A A


c(ˆ(z))f(| z)d f(z)dz

C ( ˆ|z)c( ˆ(z))f(|z)d
不同的代价函数得到不同的估计
20
2019/10/4
估计理论
1 最小均方估计 ——采用平方代价函数

现代信号处理

现代信号处理

3. 宽平稳随机过程(广义平稳)
若一个随机过程的数学期望及方差与时间无关, 而其相关函数仅与有关,即我们就称这个随机过 程是广义平稳的。
不难看出,严平稳过程一定是宽平稳过程,反之, 不一定。但对于正态随机过程两者是等价的。后 面,若不加特别说明,平稳过程均指宽平稳过程。
4. 联合宽平稳随机过程 X(m),Y(n)是宽平稳过程 RXY (m, n) RXY ( )
典型:高斯白噪声
2. 移动平均处理
线性处理的过程,通过的是一个有限冲击响应滤波器
2
x[n] b(k)w[n k] k 0
w[n]
b(k )
x[n]
x[n] 1 w[n] 1 w[n 1] 1 w[n 2]
3
3
3
3. 自回归过程处理
P
x[n] a[k]x[n k] w[n] k 1
CXY [m, n] E{( X [m] X [m])(Y[n] Y [n])}
相关系数
X
Y
(m,
n)
CXY (m, n)
X (m)Y (n)
相互独立的X(m),Y(n)必定不相关;反之,不一定。 对于正态随机过程,不相关和独立是等价的。
2.2 平稳随机过程
1. 平稳随机过程在通信领域中占有重要地位。 其重要性来自两个方面:
5.平稳随机过程的各态历经性( 遍历性)
统计平均=时间平均
6.平稳随机过程的自相关函数特性
RX [0] E{( X [n] )} 0
| RX [ ] | RX [0] R RX [k] RX [k]
RXY [k ] RYX [k ]
举例 1. 白噪声 w[n]
特点:不相关,E(w[n])=0,Var (w[n])=

中科院课件-现代数字信号处理

中科院课件-现代数字信号处理

非线性系统基本概念和性质
非线性系统定义
不满足叠加原理的系统,其输出与输入之间呈现非线性关系。
非线性系统性质
包括多值性、非均匀性、非叠加性、稳定性和自激振荡等。
非线性系统分析方法
相平面法、描述函数法、谐波平衡法等。
Volterra级数模型在非线性系统建模中应用
01
Volterra级数模型
一种描述非线性系统输入与输出 关系的数学模型,通过高阶卷积 核表示系统的非线性特性。
滤波器分类
根据选频作用的不同,滤波器可分为低通、高通、带通和带阻滤波器等。
IIR滤波器设计方法和性能评估
IIR滤波器设计方法
IIR滤波器设计的主要方法有模拟滤波器设计法和计算机辅助设计法。模拟滤波器 设计法包括巴特沃斯、切比雪夫和椭圆滤波器等设计方法。计算机辅助设计法则 是利用计算机优化技术来设计滤波器,如最小二乘法、梯度下降法等。
生物医学工程中数字信号处理技术应用
生物信号处理
应用数字信号处理技术对生物电信号(如心电、脑电等)进行处理 和分析,提取生物体生理状态和病理特征。
医学图像处理
通过数字信号处理技术对医学图像(如CT、MRI等)进行去噪、增 强、分割等处理,提高医学图像的清晰度和诊断准确率。
生物信息学
结合数字信号处理技术和生物信息学方法,对生物数据进行高效处理 和分析,挖掘生物数据中的有用信息。
信号调制与解调
通过数字信号处理技术,实现信 号在通信系统中的高效调制与解 调,提高通信质量和数据传输效
率。
信道均衡
利用数字信号处理技术对通信信道 进行均衡处理,消除信道失真和干 扰,提高信号传输的可靠性。
多址技术
应用数字信号处理技术实现多址通 信,如码分多址(CDMA)、时分 多址(TDMA)等,满足多用户同 时通信的需求。

现代信号处理方法1-5

现代信号处理方法1-5

1.5 Wignel-Ville 分布及其应用1.5.1 单分量信号与多分量信号的Ville Wigner -分布特性对于单分量信号,Ville Wigner -分布具有比其它时-频分布更好的时-频聚集性,如图1.5.1是高斯信号时域图及其Ville Wigner -分布图,由图能看出它具有很好时-频集聚性。

但是对于多分量信号,时-频分布的交叉项会产生虚假信号如图1.5.2所示,图1.5.2是两信号之和的时域图及其Ville Wigner -分布,在其右边图中的两信号项中间出现了交叉项。

由图可以看出,对于多分量信号来说,信号项已受到交叉项的严重干扰。

图1.5.1 高斯信号及其Ville Wigner -分布图图1.5.2 两信号之和及其Ville Wigner -分布图另外,考虑到实际信号处理中的信号一般都是含噪的,因此有必要考虑噪声对Ville Wigner -分布的影响。

如图1.5.3所示,图(a )所示的是图1.5.1中的高斯信号加进零均值白噪声后的信号时域图及其Ville Wigner -分布图,在其Ville Wigner -分布图中可以看出尽管原信号含有随机噪声,但Ville Wigner -分布仍能很好的表示其信号项,而随机噪声则在时-频平面上呈点状散开。

在(b )中只对高斯信号的前半部分加随机噪声,由其Ville Wigner -分布图可以看出,尽管信号后半部分没有噪声,但是在整个时-频平面均有随机散开的点状噪声,这说明Ville Wigner -分布是完全有噪的,但它并不会影响信号项的正确识别,这也说明Ville Wigner -分布对噪声具有不敏感性。

图1.5.3(a ) 随机噪声对Ville Wigner -分布的影响图1.5.3(b )Ville Wigner -分布的完全有噪性1.5.2 Wigner-Ville 分布的计算Ville Wigner -分布τττπτd e t z t z f t W f j z 2*)2()2(),(-∞∞--+=⎰ (1.5.1)令f πω2=,则有τττωωτd e t z t z t W j z -∞∞--+=⎰)2()2(),(* (1.5.1)’ 令2τη=,则有ηηηωωηd e t z t z t W j z 2*)()(2),(-∞∞--+=⎰ (1.5.1)’’这里给出利用快速傅立叶变换(FFT )计算Wigner-Ville 分布的方法。

中科院课件--《现代信号处理的理论和方法》Chapter+3

中科院课件--《现代信号处理的理论和方法》Chapter+3

2、 STFT的时间、频率分辨率
由定义可知,STFT实际分析的是信号的局部谱,局部谱的 特性决定于该局部内的信号,也决定于窗函数的形状和长度。
Gt, f
v
g
ut
e j2 fue-j2vudu G
v f
e j 2 v f t
频域加窗G v f :
STFTz (t,
f
)
1、连续短时傅里叶变换的定义
STFTz (t, f )
z
(u
)
g
*
(u
t
)
e-j2
fu
du
z u g*(u t), ej2 fu z u , g(u t)ej2 fu
z u, gt, f (u)
不断地移动t,即不断地移动窗函数g u的中心位置,
取出信号在分析时间点t附近的傅立叶变换(称之为 “局部频谱”)。
STFTz (t, f )
e j2 f0u g(u t)e-j2 fudu G
f f0
e-j2 f f0 t
STFT的频率分辨率由g(u)的频谱G f 的宽度决定。
例1、若g(u) 1,u,则G f f ,则
STFTz (t, f ) Z f
STFT 即减为简单的FT,不能给出任何时间定位信息。
(t)
amn mn (t)
m n
amn (t mT )e j2 nFt
m n
amn
t
g*
t mT
e j 2 nFt dt
t
gm* n
t
dt
t 是g t 的对偶函数, mn t 是gmn t 的对偶Gabor基函数。
Gabor变换与STFT的区别与联系:

中科院课件---《现代信号处理的理论与方法》课程回顾祥解

中科院课件---《现代信号处理的理论与方法》课程回顾祥解
aa
时频分布 : P t,
R t, , e j
WVD :Wx t,
R t, , e j
AF : Ax , v R t, , e jvt
n
EMD : x t ck rn k 1
时频分析
❖ 线性时频分析方法(STFT,Gabor变换,WT) 使用时间和频率的联合函数描述信号的频谱 随时间的变化情况;
《现代信号处理的理论与方法》课程回顾
❖ 信号分析基础 ❖ 时频分析方法 ❖ 高阶统计和高阶谱方法 ❖ 多抽样率信号处理技术 ❖ 盲信号处理技术
解析信号
❖ 对于实信号s(t),它的Hilbert变换为:
sˆt
st ht
st 1
t
1
s
d
t
由此可得解析信号为:
zt st jsˆt ate jt
幅值和相位分别为:
at s2 t sˆ2 t
t
arctan
sˆt st
瞬时频率
❖ 瞬时频率:表征了信号在局部时间点上的瞬态频 率特性,整个持续期上的瞬时频率反映了信号频 率的时变规律。
fi
t
1
2
d dt
arg
zt
1
0 E
'(t) | x(t) |2 dt
➢ 信号的中心频率是其瞬时频率在整个时间轴上的加 权平均。
amn Gabor展开系数; g(t) 母函数;
gmn (t) m, n阶Gabor基函数,它是由g(t)做移位和调制生成的。
❖ Gabor变换与STFT的区别与联系:
➢ STFT的窗函数必须是窄窗,而Gabor变换的窗函数 无此限制,可以将Gabor变换看成是一种加窗的傅 立叶变换,它的适用范围比STFT适用范围更广泛;

现代信号处理的理论和方法》Chapter1PPT课件

现代信号处理的理论和方法》Chapter1PPT课件
这样,表示v0(n), v1(n)所需bit数是20fs/2= 10fs。比原来的 16fs,bit数下降了近40%。
信号的多分辨率分析
对频带的不均匀剖分产生了不同的时间、频率分辨 率,对快变信号需要好的时间分辨率,对慢变信号 需要好的频率分辨率。
d1(n)
H1(z)
↓2
x(n)
d2(n)
a1(n)
现代信号处理的理论与方法
预修课程
概率论与数理统计 信号与系统 数字信号处理 随机过程
课程特点及主要内容
以平稳随机信号处理技术为基础,主要讲授 现代数字信号处理的新理论和新技术。
非平稳随机信号的处理方法; 非高斯信号处理方法; 多抽样率信号处理技术; 盲信号处理技术
成绩评定
课堂作业 40% 闭卷考试 60%
盲源分离、盲均衡、盲系统辨识
第一章 信号分析基础
1.1 随机信号的统计描述 1.2 信号的时间和频率 1.3 信号的时间分辨率和频率分辨率 1.4 信号的时宽和带宽 1.5 信号的分解
1.1.1 信号的分类
信号的分类:
➢ 确定性信号 ➢ 随机信号:
✓ 平稳随机信号 ✓ 非平稳随机信号
1.1.2 随机信号的统计描述
➢均值、均方值和方差:
mx(n)E[X(n)] x(n)pXn(x,n)dx
Dx2(n)E[ X(n)2]
1、高阶统计和高阶谱方法
功率谱只揭示了该随机序列的幅度信息,而 没有反映出其相位信息。要准确描述随机信 号,仅使用二阶统计量是不够的,还要使用 高阶统计量。
2、 时频分析技术
有效地克服了傅里叶变换存在的不足
FT
X(j )x(t),ej t
X (t, ) x(t),t,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x()g*(t)ejdSTFTx(t,)
WT W T x ( a ,) x ( t) ,a ,( t) x ( t)a * ,( t) d t
3、 多抽样率处理技术
信号的子带分解:将信号的频谱均匀或非均匀地分 解成若干部分,每一部分都对应一个时间信号。
x(n)
x0(n)
v0(n)
0
0.2 0.4 0.6 0.8
由于x(n)的能量主要集中在x0(n)即v0(n)中,故对它的每一个 抽样点仍用16bit表示,这样对v0(n),1s数据所需bit数是16fs/2。
由于x1(n)即v1(n)中几乎不包含有用信息,故可用少的bit数来 表示,如用4bit,则v1(n)所需bit数是4fs/2;
这样,表示v0(n), v1(n)所需bit数是20fs/2= 10fs。比原来的 16fs,bit数下降了近40%。
信号的多分辨率分析
对频带的不均匀剖分产生了不同的时间、频率分辨 率,对快变信号需要好的时间分辨率,对慢变信号 需要好的频率分辨率。
d1(n)
H1(z)
↓2
x(n)
d2(n)
a1(n)
盲源分离、盲均衡、盲系统辨识
第一章 信号分析基础
1.1 随机信号的统计描述 1.2 信号的时间和频率 1.3 信号的时间分辨率和频率分辨率 1.4 信号的时宽和带宽 1.5 信号的分解
1.1.1 信号的分类
信号的分类:
➢ 确定性信号 ➢ 随机信号:
✓ 平稳随机信号 ✓ 非平稳随机信号
u0(n)
H0(z)
↓M
↑M
G0(z)
x1(n )
v1 (n )
u1(n)
H1(z)
↓M
↑M
G1(z)
xM 1(n)
vM 1(n) uM 1(n)
HM-1(z)
↓M
↑M
GM-1(z)
xˆ ( n )
M通道滤波器组
例 假定要传输如图所示信号x(t),它由两个正弦信号加白噪 声组成。若用数字方法,其传输过程包括对x(t)的数字化、 量化、编码及调制等步骤。若对信号用抽样率fs进行抽样, 每一个抽样数据为16bit,那么其1s数据所需bit数是16fs。对 其抽样信号x(n)作傅里叶变换,频谱如图所示。
H1(z)
↓2
d3(n)
H0(z)
↓2
H1(z)
↓2
j=1
H0(z)
↓2
a3(n)
j=2 a2(n)
H0(z)
↓2
信号的二进制分解
j=3
x ( t) s in ( 2f1 t) s in ( 2f2 t) s in ( 2f3 t) s 1 ( t) s 2 ( t) s 3 ( t)
f1 1 H z ,f2 2 0 H z ,f3 4 0 H z ,fs 2 0 0 H z ,N 4 0 0
a1(n )
0
d1(n)
100Hz
a2(n)
0
d 2 (n )
/ 2 50Hz
0
a3(n)
d3(n) /4
25Hz
a4(n) d4(n)
0
/ 8 12.5Hz
频带的二进制逐级分解
a4
a3
a2
a1
x(t)
5 0 -5 50 100 200 300 400 0 -5 50 100 200 300 400 0 -5 50 100 200 300 400 0 -5 50 100 200 300 400 0 -5
H 1(z)
0
/2
2
x0(t)
6
1.5
4
1
x1(t)
2
0.5
0
0
-2
-0.5
-4
-1
0
100
200
300
0
100
200
300
Hale Waihona Puke the Spectrum of x0(t)
60 40 20
0 -20
0
0.2 0.4 0.6 0.8
the Spectrum of x1(t)
40 20
0 -20 -40
Linear scale
Real part
Signal in time 1
0
-1 |STFT|2, Lh=48, Nf=192, lin. scale, contour, Thld=5%
1.1.2 随机信号的统计描述
➢均值、均方值和方差:
mx(n)E[X(n)] x(n)pXn(x,n)dx
Dx2(n)E[ X(n)2]
|
x(n)|2pXn
(x,n)dx
x2(n)E[ X(n)mx(n)2]E[| Xn |2]mx2(n)
➢自相关函数与自协方差函数:
rxx(n ,m )E [X n *X m ] xn *xm pX n,X m (xn,n ,xm ,m )d xnd xm
1、高阶统计和高阶谱方法
功率谱只揭示了该随机序列的幅度信息,而 没有反映出其相位信息。要准确描述随机信 号,仅使用二阶统计量是不够的,还要使用 高阶统计量。
2、 时频分析技术
有效地克服了傅里叶变换存在的不足
FT
X(j )x(t),ej t
X (t, ) x(t),t,
STFT x(),gt,()x(),g(t)ej
中科院课件--《现代信号处 理的理论和方法》 Chapter+1
预修课程
概率论与数理统计 信号与系统 数字信号处理 随机过程
课程特点及主要内容
以平稳随机信号处理技术为基础,主要讲授 现代数字信号处理的新理论和新技术。
非平稳随机信号的处理方法; 非高斯信号处理方法; 多抽样率信号处理技术; 盲信号处理技术
co v [X n,X m ]E [(X nm xn)*(X m m xm )]
1. 2.1 信号的时间和频率
X(j) x(t)ejtdt
x(t)21
X(j )ej td
✓ 傅立叶变换不具有时间和频率的“定位”功能
x(n)
ssiinn((12nn)),,
0nN1 1 N1 nN2 1
sin(3n), N2 nN1
5
signal x(t)
0
Spectrum of x(t)
-5 0
60 40 20
0 -20
0
50
100
150
200
250
300
0.1
0.2
0.3
0.4
0.5
fs
x(n)
H0(z)
x 0 ( n ) ↓2
H1(z)
x1 (n )
↓2
u0(n)
fs/2 u1(n)
H 0 ( )
H 1( )
H 0(z)
0 100 200 300 400
d4
d3
d2
d1
x(t)
5
0
-5
10
100 200 300 400
0
-1 50 100 200 300 400
0
-5
50
100 200 300 400
0
-5
10
100 200 300 400
0
-1 0 100 200 300 400
4、 盲信号处理技术
利用系统的输出观测数据,通过某种信号处 理的手段,获取我们感兴趣的有关信息。
相关文档
最新文档