医学统计学
医学统计学
医学统计学一、介绍医学统计学是医学领域中一门重要的学科,它通过收集、整理和分析医学数据,为医学研究和临床决策提供科学依据。
医学统计学的主要任务是使用统计方法分析各种医学数据,从中提取有意义的信息,并对结果的可靠性和有效性进行评估。
在医学研究中,医学统计学起着至关重要的作用,帮助研究人员通过数据分析对疾病的发病机制、病理生理过程和治疗效果等进行评估。
二、常见统计方法1. 描述统计学描述统计学是医学统计学的基础,它主要用于对医学数据的数量特征进行描述和总结。
常见的描述统计学方法包括:•平均值:用于描述数据的中心趋势。
•标准差:用于描述数据的离散程度。
•百分位数:用于描述数据的分布情况。
2. 推断统计学推断统计学是医学统计学的核心,它基于样本数据对总体进行推断。
常见的推断统计学方法包括:•假设检验:用于检验研究假设的真实性。
•置信区间:用于估计总体参数的范围。
•方差分析:用于比较多个样本的均值差异。
3. 生存分析生存分析是医学统计学中的一项重要内容,它主要用于研究患者的生存时间和相关因素。
常见的生存分析方法包括:•生存曲线:用于描述患者生存时间的分布情况。
•生存率:用于描述患者在某一时间点存活的概率。
•Cox比例风险模型:用于研究生存时间和危险因素的关系。
三、应用领域医学统计学广泛应用于医学研究和临床实践中,对于评估疾病的风险因素、制定预防策略、确定诊断标准和评估治疗效果等方面都起着至关重要的作用。
以下是医学统计学在不同领域的应用示例:1. 流行病学研究医学统计学在流行病学研究中发挥着重要作用。
通过收集大量的样本数据,并运用相关的统计方法,可以研究疾病的发病规律、危险因素和暴露因素等,为疾病的预防和控制提供科学依据。
2. 临床试验医学统计学在临床试验中的应用也非常重要。
通过对试验组和对照组的数据进行比较分析,可以评估新药物或治疗方法的疗效和安全性,为临床决策提供可靠依据。
3. 医疗质量评估医学统计学可以用于医疗质量评估,通过对不同医疗机构之间的数据进行比较分析,评估医疗服务的质量,为改善医疗质量提供参考。
医学统计学的基本内容
医学统计学的基本内容第一章医学统计学的基本内容第一节医学统计学的含义1、医学统计学定义医学统计学(statistics)作为一门学科的定义是:关于医学数据收集、表达和分析的普遍原理和方法。
2、医学统计学研究方法:通过大量重复观察,发现不确定的医学现象背后隐藏的统计学规律。
3、医学统计推论的基础:在一定条件下,不确定的医学现象发生可能性,即概率。
第二节、统计学的几个重要概念一(资料的类型1、计量资料(数值变量):对每一观察对象用定量的方法,测定某项指标所得的资料。
一般有度量衡单位,每个对象之间有量的区别。
2、计数资料(分类变量):对观察对象按属性或类型分组计数所得的资料。
每个对象之间没有量的差异,只有质的不同。
3、等级资料(有序分类变量):对观察对象按属性或类型分组计数,但各属性或类型之间又有程度的差别。
注意:不同类型的资料采用的统计分析方法不同;三类资料类型可以相互转化。
二、总体根据研究目的所确定的同质的所有观察对象某项变量值的集合1、有限总体:只包括在确定时间、空间范围内的有限个观察对象。
2、无限总体:没有时间、空间范围的限制,观察对象的数量是不确定的,无限的三、样本从总体中随机抽取部分观察对象,其某项变量值的集合。
从总体中随机抽取样本的目的是: 用样本信息来推断总体特征。
四、随机事件可以发生也可以不发生,可以这样发生也可以那样发生的事件。
亦称偶然事件。
五、概率描述随机事件发生可能性大小的数值,记作,,其取值范围0?P?1,一般用小数表示。
,,0,事件不可能发生必然事件(随机事件的特例);,,1,事件必然发生;,?0,事件发生的可能性愈小;,?1,事件发生的可能性愈大六、小概率事件习惯上将,?0.05或,?0.01 的随机事件称小概率事件。
表示某事件发生的可能性很小。
七、参数和统计量参数:总体指标,如总体均数、总体率,一般用希腊字母表示统计量:样本指标,如样本均数、样本率,一般用拉丁字母表示八、学习医学统计学的方法1、重点掌握“四基”:基本知识、基本概念、基本原理和基本方法;2、重视统计方法在实际中应用,重视实习和综合训练;注意学习每种统计方法的应用范围、应用条件,大多数公式只要求了解其意义和使用方法,不用记忆和探究数理推导。
医学统计学(MedicalStatistics)
2. 分类数据(categorical) :
• 变量值表现为按某属性划分的定性类别。清点各 类别个数后得到的资料称计数资料。
• 2)多分类(无序):例:副作用(有重复选 择)
• 3.等级(有序)
• 疗效:痊愈=4、显效=3、有效=2、无效=1
例:105人心脏外科病人心理反应情况
• 心理反应 病例
• 症状
数
• 焦虑
102
• 抑郁
57
• 自我认同紊乱 10
• 恐惧
5
• 合计
174
百分比 反应发生率 (%) (%) 58.6 97.14 32.8 54.28
• 例:病情分级(X1):Ⅰ , Ⅱ,Ⅲ
• 疗效(X2):痊愈、显效、有效、无效
• 病人满意度(X3): 好、中、差
•
人数
50 25 5
数据类型及赋值
• 数据(变量)类型 变量的表现
• 1.计量变量:
血压值:12.3kap
• 2.分类(定性)
• 1)两分类: 疗效:有效=1,无效=0
•
性别:男=1,女=2
六、科研工作的步骤 根据研究的目的
1.研究 设计
设计考虑:
研究对象、 指标、例 数、如何 准确得到 数据。
2.收集 资料
来源:
3.整理 资料
目的:
1.日常工作 记录、病历。
2.专门的调 查和实验。
使资料系 统化,便 于进一步 统计分析
4.分析 资料
方法: 用统计方 法分析资 料,阐述 规律性, 得出结论。
《医学统计学》完整课件
,不损害受试者身心健康。
保护隐私
对受试者个人信息和数据进行严格保 密,防止数据泄露和滥用,确保个人
隐私不受侵犯。
公正选择受试者
遵循公平、公正原则,合理选择受试 者,避免任何形式的歧视和偏见。
数据安全与隐私保护
1 2
数据加密与备份
对医学统计数据进行加密处理,确保数据安全; 同时定期备份数据,防止数据丢失。
医学统计学的应用领域
临床试验
流行病学
在临床试验中,医学统计学用于分析试验 数据,评估治疗效果和安全性。
在流行病学研究中,医学统计学用于分析 疾病分布和影响因素,为预防和控制疾病 提供依据。
公共卫生
生物统计学
在公共卫生领域,医学统计学用于监测和 评估公共卫生状况,制定和评估公共卫生 政策。
在生物统计学中,医学统计学用于研究生 物学数据的分布和变化规律,为生物学研 究和医学研究提供支持。
生存分析中的多因素分析方法
多因素分析方法
考虑多个因素对生存时间的影响,常用方法有Cox比例风险模型和 分层分析等。
Cox比例风险模型
一种半参数模型,用于研究多个因素对生存时间的影响,并给出相 对风险比。
分层分析
将研究对象按照某些特征进行分层,然后在各层内进行统计分析,以 探讨各层内因素对生存时间的影响。
数据整理
对收集到的数据进行整理、核对和分类,确 保数据的规范化和标准化。
数据分析
选择合适的数据分析方法和技术,对数据进 行深入分析和挖掘,得出科学结论。
报告撰写
按照学术规范和要求,撰写研究报告或论文 ,客观地呈现研究结果和结论。
07
医学统计学中的伦理问题与数 据安全
医学统计学
医学统计学(statistics of medicine ):医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。
医学统计工作的基本步骤:1、研究设计2、收集资料3、整理(sorting data)资料4、分析(analysis of data)资料研究单位(unit):研究中的个体(individual),是根据研究目的确定的。
观察单位可以是一个人、一个家庭、一个地区、一个样品、一个采样点等。
变量(variable):研究单位的研究特征。
例如:研究7岁男孩身高的正常值范围变量:身高变量可分为:数值变量和分类变量变量之间可以互相转换。
变量值(value of variable):变量的观察结果大小或属性。
数值变量:变量值是可以定量测量并有数值大小的变量。
分类变量:变量值为变量的属性或类别的变量。
同质(homogeneity):根据研究目的给研究单位确定的相同性质。
注意:同质实质上是指有条件的相同,不是全部相同。
只是一个相对的概念,不是绝对的相同。
变异(variation):同质研究单位中变量值间的差异。
总体(population):是根据研究目的确定的同质研究单位的全体。
更确切地说是同质研究单位某种变量值的集合。
例如:调查某地2002年正常成年男子的红细胞数的正常值范围研究单位:一个人变量:红细胞数同质:同某地、同2002年、同成年男子、同正常。
总体:1)某地所有的正常成年男子2)某地所有的正常成年男子的红细胞数样本(sample):是总体中抽取的有代表性的一部分。
注意:随机抽样(无主观性)参数(parameter):根据总体个体值统计计算出来的描述总体的特征量。
(一般用希腊字母表示)统计量(statistic):根据样本个体值统计计算出来的描述样本的特征量。
(一般用拉丁字母表示)注意:总体参数一般是不知道的统计学抽样研究的目的就是:样本统计量→总体参数误差(error)是指实际观察值与观察真值之差、样本指标与总体指标之差。
医学统计学基本知识
医学统计学基本知识•总体(population)指同质的研究对象中所有观察单位研究指标变量值的集合。
总体通常限定于特定的时间与空间范围之内,且为有限数量的观察单位,称为有限总体;有时总体是假设的,没有时间和空间限制,观察单位数是无限的,称为无限总体。
•样本(sample)医学实践与研究中,要直接研究无限总体通常是不可能的,即使是有限总体,由于人力、物力、时间、条件等限制,要对其中每个观察单位进行研究或观察,有时也是不可能的,也不必要。
而只是从总体中随机抽取部分观察单位,其变量实测值构成样本,目的用样本指标推断总体特征。
这种推断不要经过严谨的实验设计,以样本的可靠性和代表性为基础。
样本的可靠性:主要是使样本中每一观察单位确属同质总体。
样本的代表性:使样本能充分反映总体的实际情况,要求抽样遵循随机化原则,目的是使每个观察单位被抽得的机会相等,避免主观取舍及偏性;还要保证足够的样本量,即保证足够的观察单位个数。
•参数(parameter)统计学上描述总体变量的特征称为参数。
如总体均数、中位数和众数等体参数称为样本指标。
如以样本均数()推算总体均数(m),以样本标准差(s)推算总体标准差(s)等,值得注意的是,选择统计量作为参数估计值时,通常选择无偏、有效且一致的估计量,即对总体变量渐进无偏估计量。
计量资料(measurement data)又称定量资料(quantitative data)或数值变量(numerical variable)资料。
为测定每个观察单位某项指标的大小而获得的资料。
其变量值是定量的,表现为数值大小,一般有度量衡单位。
计数资料(enumeration data)又称定性资料(qualitative data)或无序分类变量(unordered categorical variable)资料。
为将观察单位按某属性或类别分组计数,分组汇总各组观察单位数后而得到的资料。
其变量值是定性的,表现为互不相容的属性或类别,如试验结果的阴阳性,家族史的有无等等。
《医学统计学》完整课件完整版
《医学统计学》完整课件完整版一、教学内容本节课的教学内容来自于《医学统计学》的第五章,主要内容包括:t检验、方差分析、秩和检验。
二、教学目标1. 使学生了解并掌握t检验、方差分析、秩和检验的基本原理和应用。
2. 培养学生运用医学统计学方法分析和解决实际问题的能力。
3. 帮助学生建立正确的统计学思维方式,提高科学研究素养。
三、教学难点与重点1. 教学难点:t检验、方差分析、秩和检验的计算方法和应用。
2. 教学重点:t检验、方差分析、秩和检验的基本原理和操作步骤。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:教材、笔记本、计算器。
五、教学过程1. 实践情景引入:以一项临床试验为例,介绍t检验在医学研究中的应用。
2. t检验:(1)讲解t检验的基本原理和适用条件。
(2)演示t检验的计算过程,并列举实例进行分析。
(3)引导学生通过教材示例,自行完成t检验的计算和分析。
3. 方差分析:(1)介绍方差分析的基本原理和适用条件。
(2)演示方差分析的计算过程,并列举实例进行分析。
(3)引导学生通过教材示例,自行完成方差分析的计算和分析。
4. 秩和检验:(1)讲解秩和检验的基本原理和适用条件。
(2)演示秩和检验的计算过程,并列举实例进行分析。
(3)引导学生通过教材示例,自行完成秩和检验的计算和分析。
六、板书设计板书内容主要包括t检验、方差分析、秩和检验的基本原理、适用条件、计算方法和实例分析。
七、作业设计1. 题目:某临床试验中,研究者比较了两种药物的治疗效果,随机抽取了60名患者,分别给予甲药和乙药治疗,疗程为4周。
治疗结束后,对患者的疗效进行了评价。
假设评价结果如下:甲药组:痊愈20人,显效15人,有效10人,无效5人。
乙药组:痊愈18人,显效12人,有效8人,无效12人。
请运用t检验分析两种药物的治疗效果是否存在显著性差异。
答案:(略)2. 题目:某研究者对某疾病的治疗方法进行了临床试验,随机抽取了80名患者,分别给予甲法和乙法治疗,疗程为6个月。
医学统计学基础
医学统计学基础医学统计学是一门研究医学中数据的收集、分析和解释的科学。
它在医学研究中扮演着至关重要的角色,并且对医学实践和决策具有深远影响。
本文将介绍医学统计学的基本概念、常用的统计方法以及其在医学领域的应用。
一、基本概念1.1 总体与样本在医学统计学中,我们常常需要研究某个感兴趣的群体,这个群体被称为总体。
总体可以是人群中的所有个体,也可以是其他单位,如医院、地区等。
由于总体往往很大,我们无法对其进行全面的研究,因此我们从总体中选取一部分个体进行研究,这部分个体称为样本。
1.2 数据类型医学研究中常见的数据类型包括定性数据和定量数据。
定性数据是描述性质或属性的数据,如性别、病情分类等;定量数据是可度量或计数的数据,如年龄、生命体征等。
了解数据类型对选择合适的统计方法至关重要。
1.3 描述统计学与推断统计学描述统计学用于总结和描述已有数据的特征,如均值、中位数、标准差等。
推断统计学则是通过对样本进行分析,推断总体的特征,并对结果进行估计和推断。
推断统计学可通过假设检验和置信区间来实现。
二、常用统计方法2.1 均值与标准差均值是用来描述一组数据集中趋势的指标,一般用于定量数据。
标准差则衡量了数据的离散程度,即数据的波动情况。
2.2 相关分析相关分析用于研究两个变量之间的关系。
通过计算相关系数,可以了解两个变量是正相关、负相关还是无关。
2.3 生存分析生存分析是用来研究事件发生和持续时间的统计方法。
在医学中,生存分析常用于研究患者的生存时间、复发时间等。
2.4 方差分析方差分析用于比较两个或多个组的均值是否存在显著差异。
它适用于一组分类变量和一个连续变量的比较。
三、医学统计学的应用3.1 临床试验设计与分析临床试验是评价药物疗效的重要手段。
医学统计学在临床试验的设计和分析中起到关键作用,如确定样本量、随机分组、双盲试验等。
3.2 流行病学研究流行病学研究可以揭示疾病的发病原因、预后以及控制策略。
医学统计学的方法可以帮助研究者分析大量数据,确定疾病的危险因素和相关性。
医学统计学知识点总结
知识点1.统计学是应用概率论和数理统计的基本原理和方法,研究数据的搜集、整理、分析、表达和解释的一门学科。
2.医学统计学是应用统计学的基本原理和方法,研究医学及其有关领域数据信息的搜集、整理、分析、表达和解释的一门学科。
3.统计软件包是对资料进行各种统计处理分析的一系列程序的组合。
4.统计工作的基本步骤:研究设计、搜集资料、整理资料和分析资料。
5.科研结果的好坏取决于研究设计的好坏,研究设计是统计工作中的基础和关键,决定着整个统计工作的成败。
6.统计分析包括统计描述和统计推断。
统计描述是对已知的样本(或总体)的分布情况或特征值进行分析表述;统计推断是根据已知的样本信息来推断未知的总体。
7.医学原始资料的类型有:计量资料、计数资料、等级资料。
8.计量资料是用定量的方法对每一个观察单位的某项指标进行测定所得的资料。
9.计数资料是把观察单位按某种属性(性质)或类别进行分组,清点各组观察单位数所得资料。
10.等级资料是把观察单位按属性程度或等级顺序分组,清点各组观察单位数所得资料。
各属性之间有程度的差别。
等级资料的等级顺序不能任意颠倒。
11.同质:是指所研究的观察对象具有某些相同的性质或特征。
12.变异:是同质个体的某项指标之间的差异,即个体变异或个体差异性。
13.总体是根据研究目的确定的同质研究对象的总体。
样本是总体中具有代表性的一部分个体。
14.抽样研究是通过从总体中随机抽取样本,对样本信息进行分析,从而推断总体的研究方法。
抽样误差是由随机抽样造成的样本指标与总体指标之间、样本指标与样本指标之间的差异,其根源在于总体中的个体存在变异性,只要是抽样研究,就一定存在抽样误差,不能用样本的指标直接下结论。
15.统计学的主要任务是进行统计推断,包括参数估计和假设检验。
16.概率是某随机事件发生可能性大小(或机会大小)的数值度量。
概率的取值为0≤P≤1。
小概率事件是指P≤0.05的随机事件。
17.频数表和频数分布图的用途:(1)揭示计量资料的分布类型。
医学统计学的基本内容
四、分析资料(data analysis) : 按设计的要求,根据研究目的和资料的类型,对整理出的基础数据作进一步的计算和统计学处理,并用适当的统计图表表达出来,最后结合专业做出结论。 1. 描述性统计, 2. 统计学推断和对比分析, 3. 相关分析, 4. 统计模型配合(多因素分析)。 统计分析方法要与研究目的及资料类型匹配。有好的原始资料,才有好的统计分析结果。
*
基本要求:
完整,准确,及时。 质量控制:保证统一性、可重复性
01
02
三、整理资料(data sorting): 是对收集到的原始资料去伪存真、分类汇总的过程。 要求:正确表述事物的客观概貌。 1. 对原始资料进行检查和核对。 2. 根据研究目的要求,合理分组。 ①质量分组:即将观察单位按其属性或类别(如性别、职业、疾病分类、婚姻状况等)归类分组; ②数量分组:即将观察单位按数值大小(如年龄大小、血压高低等)分组。 两种分组往往结合使用,质量分组基础上数量分组。 3. 整理与汇总:按分组要求设计整理表,进行手工汇总(划记法或分卡法)或用计算机汇总列表(整理表)。
散点图(scatter diagram):用点的位置表示两变量间的数量关系和变化趋势。
直方图(histogram):是用各矩形的面积表示各组段的频数,各矩形面积的总和为总频数,用以表示连续型资料的频数分布。
纵坐标从0开始
实例数据1
练习
202X
实例数据2
汇报人姓名
二、资料收集 (data collection): 通过合理可靠的手段或渠道获得研究所需的原始数据。是统计分析的基础。 主要来自三方面: 统计报表和报告卡: 例如,疫情报表、医院工作报表等是根据国家规定的报告制度,由医疗卫生机构定期逐级上报的统计报表。传染病和职业病发病报告卡、肿瘤发病及死亡报告卡、出生及死亡报告单等。防止漏报。 2. 日常医疗卫生工作记录 例如,门诊病历、住院病历、健康检查记录、卫生监测记录等。要做到登记完整、准确。 3. 专题调查或实验研究: 一般统计报表和医院病历资料的内容都有局限性,不能完全满足研究的要求。为了进行深入的分析,通常需要采用专题调查或实验研究。
《医学统计学》完全版
《医学统计学》完全版《医学统计学》完全版一、引言医学统计学是医学研究不可或缺的一部分,它为医学工作者提供了科学研究的设计、实施和分析的方法。
医学统计学主要涉及如何收集、整理、分析和解释在医学研究中收集的数据。
本文的目的是为读者提供医学统计学的全面概述,包括基本概念、研究设计、数据整理、假设检验、方差分析、回归分析和生存分析等。
二、医学统计学的基本概念医学统计学的基础知识包括基本概念、统计量和概率。
基本概念包括随机事件、概率、期望值和标准差。
统计量则是指用来描述一组数据的测量值,例如均值、中位数、方差和标准差等。
概率是用来描述某一事件发生的可能性。
三、研究设计研究设计在医学研究中具有举足轻重的地位。
研究设计应明确研究的目的、假设、研究对象、数据收集方法、样本大小和统计分析方法。
实验设计包括随机对照试验、队列研究和病例对照研究等。
四、数据整理数据整理是数据分析的第一步,包括数据的描述和数据质量检查。
数据的描述主要包括均值、中位数、标准差、四分位数等统计量的计算。
数据质量检查则包括数据的完整性、准确性和异常值的检测。
五、假设检验假设检验是医学统计学中的核心内容,它是用来判断样本数据是否来自特定分布或是否具有某种特征。
假设检验主要包括零假设、对立假设、显著性水平和样本分布的确定。
六、方差分析方差分析是一种用来检验两个或多个总体均值是否有显著差异的统计方法。
它适用于具有相同方差和独立性的多元正态分布数据。
七、回归分析回归分析是一种预测方法,它可以用来探索变量之间的关系。
线性回归分析是回归分析中最常用的一种,它通过最小二乘法拟合出最佳直线,以反映自变量和因变量之间的关系。
八、生存分析生存分析是一种用来研究生存数据的统计方法,例如手术后的存活时间、疾病复发的时间等。
生存分析涉及到生存函数的计算、生存时间的估计和影响因素的评估。
九、结论医学统计学是医学研究的重要工具,它为我们提供了从大量数据中提取有价值信息的方法。
医学统计学名词解释
医学统计学名词解释统计学名词解释1.医学统计学(statistics of medicine):是一门用统计学原理和方法,研究医学科研中有关数据的收集、整理和分析的应用科学。
2.总体(population):根据研究目的而确定的同质观察单位的全体。
3.样本(sample):从总体中随机抽得的部分观察单位,其实测值的集合。
4.抽样(sampling):从总体中抽取部分个体的过程。
5.变量(variable):确定总体之后,研究者应对每个观察单位的某项特征进行观察和测量,这种特征能表现观察单位的变异性。
对变量的观测称为变量值(value of variable)或观察值。
6.计量资料(measurements data):又称定量资料或数值变量。
对每个观察单位的某项指标用定量方法测定其数值大小所得的资料。
7.计数资料(enumeration data):又称定性资料或无需分类变量资料。
将观察单位按某种属性或类别分组计数,分组汇总各组观察单位数后而得到的资料。
8.等级资料(ranked data):又称半定量资料或有序分类变量资料。
将观察单位按照某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位后而得到的资料。
9.误差(error):泛指实测值于真实值之差,按其产生原因和性质可粗分为随机误差与非随机误差两大类,后者可分为系统误差与非系统误差两类。
10.抽样误差(sampling error):抽样过程中由于抽样的偶然性而出现的误差。
11.参数(parameter):表总体特征的指标。
12.均数(mean):可用于反映一组呈对称分布的变量值在数量上的平均水平。
13.几何均数(geometric mean):可用于反映一组经对数转换后呈对称分布的变量值在数量上的平均水平。
14.中位数(median)将n个变量值从小到大排列,位置居于中间的那个数。
15.极差(range):也称全距,即最大值和最小值之差。
医学统计学知识点
医学统计学知识点医学统计学是医学中的重要分支,通过对医学数据的收集、整理、分析和解释,帮助医生和研究人员更好地理解疾病的发病规律和治疗效果。
下面将介绍一些医学统计学中常见的知识点。
一、数据类型在医学统计学中,数据通常分为定性数据和定量数据两种类型。
定性数据是指具有类别属性的数据,如性别、疾病类型等;定量数据是指可进行加减乘除等运算的数据,如血压、体重等。
二、描述统计学描述统计学是对收集到的数据进行整理、汇总和描述的过程,包括频数分布、中心趋势和离散程度等指标。
通过描述统计学可以更直观地了解疾病的流行病学特征。
三、推断统计学推断统计学是通过对小样本数据进行推断,得出对总体的推断结论。
常见的方法包括假设检验、置信区间估计和方差分析等。
推断统计学在临床研究和药物试验中有重要应用。
四、生存分析生存分析是研究事件发生时间和生存时间的统计方法,常用于临床预后评估和生存曲线绘制。
生存分析可以帮助医生评估疾病的进展速度和治疗效果。
五、因子分析因子分析是研究多个变量之间的关联性和内在结构的统计方法,常用于疾病危险因素的筛选和分类。
通过因子分析可以揭示疾病的复杂发病机制和影响因素。
六、线性回归线性回归是研究两个或多个变量之间线性关系的统计方法,可用于分析疾病风险因素和疗效预测。
线性回归可以帮助医生更好地控制干预措施,提高治疗效果。
综上所述,医学统计学是医学研究和临床实践中不可或缺的工具,掌握相关知识点可以更好地帮助医生理解和解释医学数据,促进疾病防控和治疗水平的提高。
希望本文介绍的医学统计学知识点能够为医学工作者提供参考和帮助。
感谢阅读!。
《医学统计学》课件完整版
将两个因素(分类变量)分别安排到不同的组内,观察它们对因变量的影响。
方差分析表
列出各组数据的方差、自由度和均方,以及F值和P值。
一因素方差分析
实验设计
将一个因素(分类变量)分别安排到不同的组内,观察它对因变量的影响。
方差分析表
列出各组数据的方差、自由度和均方,以及F值和P值。
05
回归分析
假设检验
单侧检验、双侧检验、方差分析、 回归分析等
假设检验中的样本量计算
样本量计算公式、样本量计算方法 等
03
实验设计与数据分析
实验设计
01
实验设计概述
介绍实验设计的概念、原则和基 本步骤。
02
实验设计的基本要 素
详细介绍实验设计的四个基本要 素,即实验因素、实验单位、实 验效应和实验误差。
03
聚类分析
总结词:分组技术
详细描述:基于数据的相似性或差异性,将 数据分为几个不同的组,组内的数据相似性 尽可能大,而不同组之间的数据相似性尽可
能小。
Logistic回归分析
总结词
二分类技术
详细描述
用于研究一个或多个自变量与二分类因变量的关系,即因变量为二分类的回归分析。
THANKS
谢谢您的观看
实验设计的类型
介绍各种实验设计的类型,包括 完全随机设计、配对设计、析因 设计等。
完全随机设计和数据分析
1 2
完全随机设计
介绍完全随机设计的概念、原则和实施方法。
数据分析方法
详细介绍数据分析的方法,包括描述性统计分 析和推断性统计分析。
3
数据分析步骤
介绍数据分析的步骤,包括数据清洗、数据整 理、数据分析和数据解释。
医学统计学名词解释
1.医学统计学:是以医学理论为指导,借助统计学的原理和方法研究医学现象中的数据搜集、整理、分析和推断的一门综合性学科。
2.变量:是指观察个体的某个指标或特征,统计上习惯用大写拉丁字母表示3.同质:是指事物的性质、影响条件或背景相同或相近。
4.变异:是指同质的个体之间的差异5.总体:总体(population)是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。
总体可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
6.样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
7.参数:参数(paramater)是指总体的统计指标,如总体均数、总体率等。
总体参数是固定的常数。
多数情况下,总体参数是不易知道的,但可通过随机抽样抽取有代表性的样本,用算得的样本统计量估计未知的总体参数。
8.统计量:统计量(statistic)是指样本的统计指标,如样本均数、样本率等。
样本统计量可用来估计总体参数。
总体参数是固定的常数,统计量是在总体参数附近波动的随机变量。
9.随机抽样:随机抽样(random sampling)是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。
随机抽样是样本具有代表性的保证。
10.变异:在自然状态下,个体间测量结果的差异称为变异(variation)。
变异是生物医学研究领域普遍存在的现象。
严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。
11.计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
12.计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医学统计学总结绪论1、随机现象:在同一条件下进行试验,一次试验结果不能确定,而在一定数量的重复试验之后呈现统计规律的现象。
2、同质:统计学中对研究指标影响较大的,可以控制的主要因素。
3、变异:同质基础上各观察单位某变量值的差异。
数值变量:变量值是定量的,由此而构成的资料称为数值变量资料或计量资料,其数值是连续性的,称之为连续型变量。
变量无序分类变量:所分类别或属性之间无顺序和程度上的差异分类变量:定性变量有序分类变量:有顺序和程度上的差异4、总体:根据研究目的确定的同质研究对象中所有观察单位某变量值的集合。
可以分为有限总体和无限总体。
5、样本:是按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
样本代表性的前提:同质总体,足够的观察单位数,随机抽样。
统计学中,描述样本特征的指标称为统计量,描述总体特征的指标称为参数。
6、概率:描述随机事件发生的可能性大小的一个度量。
若P(A)=1,则称A为必然事件;若P(A)=0,则称A为不可能事件;随机事件A的概率为0<P<1.小概率事件:若随机事件A的概率P≤α,则称随机事件A为小概率事件,其统计学意义为:小概率事件在一次随机试验中认为是不可能发生的。
统计描述1、频数分布有两个重要的特征:集中趋势和离散程度。
频数分布有对称分布和偏态分布之分。
后者是指频数分布不对称,集中趋势偏向一侧,如偏向数值小的一侧为正偏态分布,如偏向数值大的一侧为负偏态分布。
2、常用的集中趋势的描述指标有:均数,几何均数,中位数等。
均数:适用于正态或近似正态的分布的数值变量资料。
样本均数用表示,总体均数用μ表示。
几何均数:适用于等比级数资料和对数呈正态分布的资料。
注意观察值中不能有零,一组观察值中不能同时有正值和负值。
中位数:适用于偏态分布资料以及频数分布的一端或两端无确切数据的资料。
3、常用的离散程度的描述指标有:全距,四分位数间距,方差,标准差,变异系数。
全距:任何资料,一组中最大值与最小值的差。
四分位数间距:适用于偏态分布以及分布的一端或两端无确切数据资料。
方差和标准差:正态分布资料。
标准差表示观察值的变异度的大小。
变异系数:比较度量单位不同或均数相差悬殊的两组资料的变异度。
4、标准正态分布:对正态分布的(X-μ)/σ进行u的变换,u=(X-μ)/σ,则正态分布变换为μ=0,σ=1的标准正态分布,亦称u分布。
u被称为标准正态变量或标准正态离差。
两个参数:μ是位置参数,σ是形状参数。
用N(0,1)表示标准正态分布。
常用估计医学参考值范围的方法有:(1)正态分布方法:适用于正态或近似正态分布的资料。
双侧界值:X±uσ/2S 单侧上界:X+uσS,或单侧下界:X-uσS(2)对数正态分布方法:适用于对数正态分布资料。
双侧界值:Lg-1(X lgx±uσ/2S lgx )单侧上界:Lg-1(X lgx +uσS lgx),或单侧下界:Lg-1(X lgx -uσS lgx)(3)百分位数法:用于偏态分布资料以及资料中一端或两端无确切数值的资料。
双侧上界:P2.5和P97.5;单侧上界:P95,或单侧下界:P5参考值范围(%)单侧双侧80 0.842 1.28290 1.282 1.64595 1.645 1.9699 2.326 2.576常用的u值表5、分类变量资料的统计描述:常用相对数指标描述,包括:率,构成比,相对比。
率:说明某现象发生的频率或强度。
(病死率不等于死亡率)构成比:说明某现象内部组成部分所占的比重或分布,常以百分数表示。
相对比:亦称比,是A、B 2个有关指标之比,说明A为B的若干倍或百分之几。
两个指标可以性质相同,也可以性质不同。
应用相对数时的注意事项:1、计算相对数的分母不宜过小;2、分析时不能以构成比代替率;3、对观察单位数不等的几个率,不能直接相加求其平均率;4、比较相对数时应注意其可比性;5、对样本率(或构成比)的比较应遵循随机抽样,并做假设检验。
6、标准化法:标准化的目的在于消除混杂因素对结果的影响,使资料更具有可比性。
其基本思想是:将所比较的两组或多组资料的构成按统一的“标准”调整后,计算标化率,使其更具有可比性。
标准化率的计算方法:亦称标化率,直接法用于已知被标化组的年龄别率,以及已知标准组的年龄别人口数或年龄别人口构成比时;间接法用于已知被标化组的年龄别人口数与发病(死亡)总数,但年龄别率未知,以及已知标准组年龄别发病(死亡)率与总发病(死亡)率时。
通常可从下列3种方法选用标准组:①以两组资料中任一组的年龄别人口数或构成比作为标准组;②以两组资料合并的各年龄组的人口数或构成比作为标准组;③以公认的或便于与他人资料比较的标准作为标准组。
7、统计表:结构:由标题、标目、线条和数字构成。
编制统计表的要求:①标题:概括表的内容,列于表的上方居中,应注明时间和地点;②标目:主语和谓语分别列于横、纵标目,文字简明,层次清楚。
横标目列于表的左侧,通常为被研究的事物,纵标目列于表的上端,为说明横标目的统计指标。
③线条:通常,除表的顶线、底线、纵标目下以及合计上的横线外,其余线条均省去,顶线和底线应略粗些,表的左上角不宜用斜线。
④数字:用阿拉伯数字表示,同一指标的小数位数要一致并对齐,数字暂缺或无数字者分别用“…”或“-”表示,数字为0者要记作“0”,不应空项,为方便核实和分析,应有合计。
⑤备注:一般不列入表内,必要时可用“*”标出,列于表下。
8、统计图:①条图:用于相互对比关系的资料;②圆图与百分条图:适用于百分构成比资料,表示事物各组成部分所占的比重或构成;③线图:用于连续性资料,用于说明事物在时间上的发展变化,或某现象随另一现象而变动的情况;④直方图:表示连续性资料的频数分布;⑤散点图:适用于直线相关分析,说明两个变量间的数量关系和变化趋势。
抽样分布与参数估计抽样研究的目的是用样本信息来推断总体特征,即统计推断,包括两个内容:一是总体参数的估计,二是假设检验。
1、抽样误差:由于变异的存在,抽样研究所造成的样本统计量与总体参数之间的差异或各样本统计量之间的差异称为抽样误差。
常用标准误反映均数抽样误差的大小;用率的标准误σp反映率的抽样误差的大小;用Possion计数的标准误反映其抽样误差的大小。
2、中心极限定理和正态分布推理:从正态分布N(μ,σ2)总体中以固定n随机抽取样本,样本均数的分布仍服从正态分布,即使是从偏态分布总体中随机抽样,只要n足够大,的分布也近似正态分布。
样本均数的均数仍为μ,样本均数的标准差为。
样本均数的抽样误差(简称标准误)是反映均数抽样误差大小的指标。
= 用样本均数S作为σ的估计值,则=3、t分布:将看成变量值,那么可将正态变量进行u变换(u=-μ/σ)后,也可将N(μ,)变换成标准正态分布N(0,1)。
常用s作为σ的估计值,统计量为t,此分布为t分布。
统计量t= t曲线的形态变化与自由度v的大小有关。
v越小,t值越分散,曲线越低平,v逐渐增大时,则t分布逐渐逼近正态分布,当v=无穷大时,t分布即为u分布。
4、总体均数的估计有两种方法:一种是点估计,即用统计量估计总体均数;二是区间估计,亦称可信区间。
(1)σ未知且n小:-tα/2,v sx<μ<+tα/2,v sx(2)σ未知,但n足够大,t分布逼近u分布:-uα/2sx<μ<+uα/2sx(3)σ已知:-uα/2σx<μ<+uα/2σx标准差和标准误的比较标准差标准误S= =表示观察值的变异程度大小估计均数的抽样误差大小计算变异系数CV=100% 估计总体均数可信区间-tα/2,v sx<μ<+tα/2,v sx确定医学参考值的范围进行假设检验计算标准误数值变量资料的假设检验1、假设检验的原理:假设在一次抽样研究中得出了u≥1.96,则P≤0.05,此为小概率事件,依据“小概率事件在一次随机试验中认为是不可能发生的”的定理,可认为此样本不是来自该总体。
2、步骤:①建立假设和确定检验水准;假设有两种,一种是检验假设,常称无效假设或零假设,记为H0,假设样本所代表的总体参数与已知总体参数相等;另一种是备择假设,记为H1,是与H0相联系且对立的假设;检验水准,亦称显著性水准,是判断拒绝或不拒绝H0,也是允许犯Ⅰ型错误的概率,通常用0.05。
②选定检验方法和计算统计量③确定P值,做出推断结论。
P值是指从H0所规定的总体中随机抽样时,获得等于及大于现有样本统计量的概率。
3、t检验:适用于:①样本均数与总体均数比较(σ未知且n<50或n<30);②成组设计的两小样本均数的比较(n1,n2均小于30或50);③配对设计的两样本均数比较。
应用条件:①当样本含量较小(n<50或n<30)时,要求样本来自正态分布总体;②用于成组设计的两样本均数比较时,要求两样本来自总体方差相等的总体。
4、单样本t检验:用于样本均数与已知总体均数的比较,研究目的是推断样本所代表的总体均数μ与已知总体均数μ0有无差别。
统计量t= v=n-15、配对t检验:用于配对设计资料的两均数的比较。
其研究目的是推断某种处理有无作用,或两种处理的效果有无差别。
配对设计类型有3种:①先将受试对象按配比条件配对,然后用随机分组方法将各对中的2个受试对象分别分配到不同的处理组;②同一对象分别接受2种不同处理;③同一对象处理前后。
t= (是差值的样本均数)v=n-16、两样本t检验:用于完全随机设计的两样本均数的比较,两个样本来自两个总体,其研究目的是推断两样本所分别代表的总体均数是否相等。
t=== v=n1+n2-27、单样本u检验:用于样本均数与已知总体均数比较,其研究目的同t检验。
研究目的是推断样本所代表的总体均数μ与已知总体均数μ0有无差别。
其统计量u=8、两样本的u检验:用于完全随机设计的两样本均数的比较,两个样本来自两个总体,其研究目的是推断两样本所分别代表的总体均数是否相等。
其统计量为:u==9、正态性检验和方差齐性检验:资料在做假设检验之前首先应该检验资料是否来自正态总体,并且它们的方差是否齐。
10、两类错误:Ⅰ型错误:拒绝了实际上成立的H0,即样本来自μ=μ0的总体,由于抽样的偶然性,按α=0.05检验水准拒绝了H0,接受H1。
这类在假设检验中拒绝了原本正确的H0的错误称为Ⅰ型错误。
,理论上犯Ⅰ型错误的概率为α,α值得大小视研究目的而定。
通常设α=0.05。
Ⅱ型错误:不拒绝了实际上不成立的H0, 即样本来自μ≠μ0的总体,由于抽样的偶然性,按α=0.05检验水准不拒绝H0,这类在假设检验中不拒绝原本不正确的H0的错误称为Ⅱ型错误。
犯Ⅱ型错误的概率为β,它只有与特定的H1结合起来才有意义。
同时减少α和β的方法是增加样本含量。
1-β称为检验效能或把握度,即两总体确有差别时,按α水准能识别该差别的能力。