三元一次方程组优秀课件

合集下载

八年级数学上册教学课件《三元一次方程组》

八年级数学上册教学课件《三元一次方程组》

类似于二元一次方程组,可以得到下边的方程组:
x y z 23
x
y
1
2x y z 20
思考 这个方程组和前面学过 的二元一次方程组有什么区 别和联系,又如何求解?
探究新知
5.8 三元一次方程组
观察方程x+y+z=23 和2x+y-z=20 1.它们有什么共同特点?
它们都含有三个未知数,并且所含未知数 的项的次数都是1; 2.类比二元一次方程,你能说出这两个方 程是什么方程吗?
依题意,得
x y z 51 4x 8y 5z 300 x y 2z 67
x 15
解得:
y
20
z 16
答:安排15公顷种水稻,20公顷种棉花,16公顷种蔬菜.
连接中考
5.8 三元一次方程组
小明妈妈到文具店购买三种学习用品,其单价分别为2元、4元、6 元,购买这些学习用品需要56元,经过协商最后以每种单价均下调 0.5元成交,结果只用了50元就买下了这些学习用品,则小明妈妈的 购买方法有( D )
x y z 23, ①
x
y
1,

2x y z 20.③
能不能像以前一样“消元”, 把“三元”化成“二元”呢?
探究新知
x y z 23, ①

解方程组
x
y
1,

2x y z 20.③
5.8 三元一次方程组
类似二元一次方程组 的“消元”,把“三 元”化成“二元”.
解:由方程②得x=y+1④,把④分别代入①③得
10y 5z 0.

⑤+④,得
5x 5y 10z 35,

10y 30z 70, ④

三元一次方程组课件ppt

三元一次方程组课件ppt

5x-4y-29z=0
5.已知
并且Z≠0,求x:y的值.
X-3y+3z=0
解:把字母z当成已知数,则原方程可变形为 5x-4y=29z x-3y=-3z
x=9z 解这个方程组,得
y=4z
∴x:y=9:4
6.己知:
3x - 4y - 5z x + 2y -15z
= =
0 0
(x , y , z?0)

x+y+z=17

x-y=2

y-z=3

x+y+z=17

②+③,得
x+2y=20 ④
①与④组成方程组
x-y=2
x+2y=20
解这个方程组,得
x=8 y=6
x=8
∴ y=6
z=3
把y=6代入②,得 6-z=3
所以z=3
解三元一次方程组的步骤:
①利用代入法或加减法,消去一个未知数, 得出一个二元一次方程组;
x + y + z = 33 x - y = 2 2x + z - y = 24
三元一次方程组 消元
二元一次方程组
消元 一元一次方程
代入消元法和加减消元法
x + y + z = 33 ①
x - y = 2

2x &#y 2 ④
把④代入①得: y 2 y z 33
x + y + z = 30 化简,得 x = 5z
y = 4z
解这个方程组,得
x = 15 y = 12 z = 3
答:甲种零件生产15天,乙种零件生产 12天,丙种零件生产3天.
x(x + y + z) = 9

人教版初一数学 8.8.4 三元一次方程组的解法PPT课件

人教版初一数学 8.8.4 三元一次方程组的解法PPT课件
= . ③
探究新知
用代入消元法解
+ + = ,
将③代入①,②,得ቊ
+ + = .
+ = ,
= ,
即ቊ
解得ቊ
代入①得出x=8.
+ = ,
ቐ = ,
探究新知
消元思想
解三元一次方程组的基本思路:
2.七彩作业.
例3:若|a-b-1|+(-2+) +2|c-b|=0,求a,b,
c的值.
解析:本题考查非负数性质的综合应用,要使等式成立必须
使每个非负数都为0.
探究新知
解:因为三个非负数的和等于0,所以每个非负数都为0.
− − = ,
= −,
可得方程组ቐ − + = ,解得ቐ = −,
求1元、2元和5元的纸币各多少张?
设1元、2元、5元的纸币分别
为x张、y张、z张
x+y+z=12

x+2 y+5 z=22

x=4 y

这样的方程组我们叫它什么呢,该怎样解呢?
探究新知
学生活动一【一起探究】
+ + = ,
三元一次方程组ቐ + + = ,
= .
3.在知识的学习过程中,感受事物之间的相互联系.
学习重难点
学习重点:解三元一次方程组的基本思路,会解
三元一次方程组.
学习难点:会选择适当的方法消元并熟练解三元
一次方程组.
回顾复习
问题1:二元一次方程组的概念?
方程组中含有两个未知数,含有每个未知数的项
的次数都是1,并且一共有两个方程,像这样的方程

简单的三元一次方程组ppt课件

简单的三元一次方程组ppt课件
所以原方程组的解为
易错:
错因:解三元一次方程组时,由于粗心漏乘常数项. 易错警示:在给方程变形时一定要注意,在方程两边同时乘一个常数时, 注意不要漏乘任何一项.
-13-
6.4 简单的三元一次方程组*
[题型探究]
■题型一 三元一次方程组与非负数性质的综合
例1 若
,求 x-y-z 的值.
解析:根据非负数的性质列出三元一次方程组,即可求得 x,y,z 的值,
所以原方程组的解为
把 x=a,y=2a,z=3a 代入 x-2y+3z=-10,得 a-2× 2a+3×3a=-10, 解
得 a=
.
题型解法:当方程组中三个方程的未知数的系数都相同时,可以将三个方 程相加,再分别减去每个方程,即可求出方程组的解.
-16-
6.4 简单的三元一次方程组*
[方法总结]
■灵活求解三元一次方程组 解三元一次方程组时,先仔细观察每个方程中同一个未知数的系数的特点,
然后代入 x-y-z 中即可.
答案:解:因为

所以 x-y-z=1.5-(-3)-(-1)=5.5. 题型解法:如果几个非负数的和为 0,那么每一个非负数都是 0.利用非 负数的这条性质可以建立方程组,进而求出有关字母的取值.
-14-
6.4 简单的三元一次方程组*
■题型二 利用三元一次方程组的解求未知字母的值
解法二(参数法):由①②,得 x∶y∶z=3∶4∶5. 设 x=3k,y=4k,z=5k,并代入③, 得 3k+4k+5k=36, 解得 k=3, 所以 x=9,y=12,z=15, 所以原方程组的解为
-20-
6.4 简单的三元一次方程组 *
▍考点集训/夯实基础

沪科版七年级上册.2三元一次方程组及其解法课件

沪科版七年级上册.2三元一次方程组及其解法课件

X+y=1
z=1
三个一次方程
三个未知数
共有三未知数
下列方程组不是三元一次方程组的是 ( A)
3x+y+z=2 3x+y+z=2 x+y=20
A. 2xyz=3 B. y=3
C. y+z=19
X+y-z=1
X+y=1
X+z=21
未知数项的次数为1
二元一次方程组的解法
(1)回顾解二元一次方程组的思路。
解方程组:
x+y+2z =3
(1) -2x-y+z=-3 x+2y-4z=-5
2x-y+3z=1
(2) 2x+2z=6 4x+2y+5z=4
x+y+z =3
(3) -2x-2y-3z=-7 3x+4y+3z=10
你可以更快的解 (2)(3)?
课堂小结
三 元 一 次 方 程 组 及 其 解 法
概念
解法 步骤
由三个一次方程组成的 含三个未知数的方程组, 叫做三元一次方程组.
通过代入或是加减进行消元, 将三元转化为二元,使得三 元一次方程组转化为解二元 一次方程组,进而转化为解 一元一次方程.
方程组叫做二三元一次方程组.
3x+y=2 2x-y=3
3x+y+z=2 2x-y+z=3
X+y-z=1
三元一次方程组
1.三个一次方程 (1)三个方程 (2)每个方程的未知数项的次数是1
2.三个未知数 3.整式方程
下列方程组是三元一次方程组的是 ( c)
3x+y+z=2 3x+y=2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档