认识一元一次方程认识一元一次方程优秀课件
合集下载
《认识一元一次方程》一元一次方程PPT(第1课时)
6.写出一个解为x=3的方程: x-3=0( 答案不唯一 ) .
7.已知一元一次方程3( 2y+1 )=5y+11,请你判断y=6是否为这个方程的解?y=8呢?
解:把y=6代入方程中,左边=3×( 2×6+1 )=3×13=39,右边=5×6+11=41.因为左边≠右边,
所以y=6不是该方程的解.
把y=8代入方程中,左边=3×( 2×8+1 )=51,右边=5×8+11=51.因为左边=右边,所以y=8是
10.小明根据方程 13+x= ( x+39 )编写了一道应用题,请你把空缺的
2
部分补充完整.
小明今年13岁,他妈妈 今年39岁 .问经过几年后,小明的年龄将是妈妈年龄的一半.( 设经
过x年 )
11.( 原创 )对于有理数a,b,规定一种新运算:a*b=ab+b.例如,2*3=2×3+3=9.有下列结论:①
( -3 )*4=-8;②a*b=b*a;③x=5是方程( x-4 )*3=6的解; ④( 4*3 )*2=32.其中正确的结论是
①③④ .( 填序号 )
12.已知方程( 2m-4 )x2+x3n-5-8=0是关于x的一元一次方程,求m,n的值.
解:由题意,得2m-4=0,3n-5=1.解得m=2,n=2.
第五章 一元一次方程
认识一元一次方程
第1课时
第五章
第1课时 一元一次方程
知识要点基础练
综合能力提升练
拓展探究突破练
知识点1 一元一次方程的定义
1.下列方程是一元一次方程的是( D )
A.2x-y=0
B.x2-x=1
C.xy-3=5
D.x+1=2
7.已知一元一次方程3( 2y+1 )=5y+11,请你判断y=6是否为这个方程的解?y=8呢?
解:把y=6代入方程中,左边=3×( 2×6+1 )=3×13=39,右边=5×6+11=41.因为左边≠右边,
所以y=6不是该方程的解.
把y=8代入方程中,左边=3×( 2×8+1 )=51,右边=5×8+11=51.因为左边=右边,所以y=8是
10.小明根据方程 13+x= ( x+39 )编写了一道应用题,请你把空缺的
2
部分补充完整.
小明今年13岁,他妈妈 今年39岁 .问经过几年后,小明的年龄将是妈妈年龄的一半.( 设经
过x年 )
11.( 原创 )对于有理数a,b,规定一种新运算:a*b=ab+b.例如,2*3=2×3+3=9.有下列结论:①
( -3 )*4=-8;②a*b=b*a;③x=5是方程( x-4 )*3=6的解; ④( 4*3 )*2=32.其中正确的结论是
①③④ .( 填序号 )
12.已知方程( 2m-4 )x2+x3n-5-8=0是关于x的一元一次方程,求m,n的值.
解:由题意,得2m-4=0,3n-5=1.解得m=2,n=2.
第五章 一元一次方程
认识一元一次方程
第1课时
第五章
第1课时 一元一次方程
知识要点基础练
综合能力提升练
拓展探究突破练
知识点1 一元一次方程的定义
1.下列方程是一元一次方程的是( D )
A.2x-y=0
B.x2-x=1
C.xy-3=5
D.x+1=2
认识一元一次方程课件
求解一元一次方程的步骤
总结词
按照一定的步骤顺序求解一元一次方程。
详细描述
求解一元一次方程需要遵循一定的步骤,包括去分母、去括号、移项、合并同类项和化简等步骤,每一步都需要 仔细进行,以确保最终得到正确的解。
04
一元一次方程的应用
代数问题中的应用
代数问题
一元一次方程是代数问题中的基础, 通过解一元一次方程可以找到未知数 的值,从而解决代数问题。
合并同类项法则是解一元一次方 程的重要步骤,通过将方程中相 同类型的项合并在一起,可以使 得方程变得更简单,易于求解。
去括号法则
总结词
去掉方程中的括号,并按照运算顺序 进行简化。
详细描述
去括号法则是解一元一次方程的基本 步骤之一,通过去掉方程中的括号, 并将括号内的项进行简化,可以使得 方程变得更简单,易于求解。
03
一元一次方程的解法
移项法则
总结词
将方程中的某一项从一边移到另一边,以简化方程。
详细描述
移项法则是解一元一次方程的基本步骤之一,通过将方程中的某一项从等式的左 边移到右边,或将右边移到左边,可以使得方程变得更简单,易于求解。
合并同类项法则
总结词
将方程中相同类型的项合并在一 起,简化方程。
详细描述
学会了如何将实际问 题转化为数学模型, 提高了数学应用能力。
下节课预告
主题
二元一次方程组
内容
二元一次方程组的定义、解法及应用。
学习目标
掌握二元一次方程组的解法,理解其在解决实际问题中的应用。
THANKS
感谢观看
解一元一次方程的方法
通过移项、合并同类项、系数化为1等步骤,将 一元一次方程化为x=a的形式。
《认识一元一次方程》一元一次方程PPT课件
D.5x-3=6x-2
2. 若 x=1是方程x2 -2mx +1=0的一个解,则m的
值为( C )
A. 0
B. 2
C. 1
D. -1
✓ 过关检测
3.根据第六次全国人口普查统计数据:截至2010年11月1日 0时,全国每10万人中具有大学文化程度的人数为8930人,与 2000年第五次全国人口普查相比增长了147.30%.2000年第五 次全国人口普查时每10万人中约有多少人具有大学文化程度?
✓练
判断下列各式是不是一元一次方程,并说说你的依据。
(1)、2x2 - 5x+6=0 (×)
(2)、3χ-1=7 ( √ )
(3)、m=0 (√) (5)、χ+y=8 (×)
(4)、 (6)、
(√ ) ( ×)
注意:判断前,要将原方程化简、整理后,再作判断!
✓识
自主阅读下列文字,思考并完成下列问题:什么叫一元一次方 程的解?怎么判断一个数是不是方程的解?(时间:2min)
使方程左、右两边的值相等的未知数的值,叫做方程的 解.(注:我国古代称未知数为元,只含有一个未知数的方 程叫做一元方程,一元方程的解也叫根。)
判断一个数是不是方程的解,把这个数代入方程的左、 右两边,如果左、右两边的值相等,那么这个数是方程的解, 如果左、右两边的值不相等,那么这个数就不是方程的解。
今天问的:去日游期乐场的每张车票要多少元?
等量关系: 出租车费 + 门票钱 =总花费
问题2:设去游乐场的每张车票要x 元,可列出 方程
5+2x=13
✓识
为庆祝开园半周年,门票特惠!一张门票8折销售的售价 为72元! 请问:门票多少元一张?
一元一次方程 课件ppt
例子:例如,解方程 2x + 5 = 7,首先移项得 2x = 7 - 5,然后合并同类项得 2x = 2,最后系数化为1得 x = 1。
图像法
定义:图像法是一种通过绘制函数图像来解一元一次方 程的方法。 1. 确定函数:根据方程的形式确定表示该方程的函数。
3. 标记解:在图像上标记交点的坐标,即为方程的解。
型,例如成本、价格、利润等问题的计算。
物理问题的数学模型建立
03
在物理领域中,一元一次方程可以用于建立各种问题的数学模
型,例如速度、加速度、时间等问题的计算。
04
一元一次方程的变式
移项
概念
移项是将方程中的项改变符号后 移动到另一边的过程。
目的
通过移项,将方程中的未知数系 数变为正数,以便更容易求解。
步骤
2. 绘制图像:绘制函数的图像,将坐标轴上的交点作 为方程的解。
例子:例如,解方程 x + 2 = 5,确定函数为 y = x + 2,绘制图像后,交点为 (3,5),因此方程的解为 x = 3 。
实际应用法
定义:实际应用法是一种通过实际应用案例来解一元一次 方程的方法。
步骤
1. 分析问题:分析实际问题中涉及到的变量和关系。
2. 建立方程:根据实际问题建立一元一次方程。
3. 解方程:通过解方程得到未知数的值,解决实际问题 。
例子:例如,解方程 3x + 2 = 14,分析问题为求解 x 的 值使得 3x + 2 = 14,建立方程为 3x + 2 = 14,解方程 得 x = 4。因此,x 的值为4。
03
一元一次方程的应用
THANKS
感谢观看
06
一元一次方程的注意事项和易错点
图像法
定义:图像法是一种通过绘制函数图像来解一元一次方 程的方法。 1. 确定函数:根据方程的形式确定表示该方程的函数。
3. 标记解:在图像上标记交点的坐标,即为方程的解。
型,例如成本、价格、利润等问题的计算。
物理问题的数学模型建立
03
在物理领域中,一元一次方程可以用于建立各种问题的数学模
型,例如速度、加速度、时间等问题的计算。
04
一元一次方程的变式
移项
概念
移项是将方程中的项改变符号后 移动到另一边的过程。
目的
通过移项,将方程中的未知数系 数变为正数,以便更容易求解。
步骤
2. 绘制图像:绘制函数的图像,将坐标轴上的交点作 为方程的解。
例子:例如,解方程 x + 2 = 5,确定函数为 y = x + 2,绘制图像后,交点为 (3,5),因此方程的解为 x = 3 。
实际应用法
定义:实际应用法是一种通过实际应用案例来解一元一次 方程的方法。
步骤
1. 分析问题:分析实际问题中涉及到的变量和关系。
2. 建立方程:根据实际问题建立一元一次方程。
3. 解方程:通过解方程得到未知数的值,解决实际问题 。
例子:例如,解方程 3x + 2 = 14,分析问题为求解 x 的 值使得 3x + 2 = 14,建立方程为 3x + 2 = 14,解方程 得 x = 4。因此,x 的值为4。
03
一元一次方程的应用
THANKS
感谢观看
06
一元一次方程的注意事项和易错点
认识一元一次方程优秀课件
是一元一次方程的有: ②、 ③、 ⑥、 ⑧
a 1 xa 5 0
你还记得老师的年龄吗?
2x-3=45 X=24
方程的解:
使方程左、右两边的值相等的 未知数的值,叫做方程的解。
判断下列t的值是否是2t+1=7-t的解? (1 )t=-2 (2) t=2
解:当t=-2时,
左边=2×(-2)+1 =-4+1 =-3
2009年11月工资+增长的工资=2019年11月工资
x
147.30%x 8930
设张明的爸爸在2009年11月的工资是x元
x 147.30%x 8930
情境三:行程问题
甲、乙两地相距22㎞,小明从甲地出发到乙地, 每小时比原计划多行走1 ㎞ ,因此提前12分钟到 达乙地,小明原计划每小时行走多少千米?
解:设甲队胜了χ场,则甲平了 (1 0 x ) 场.
由题意得: 3 x (1 0 x ) 2 2
这是一元一 次方程吗?
x=3是这 个方程的 解吗?
2.小悦买书花费48元钱,付款时恰好用了1元和 5元的纸币共12张.设所用的1元纸币为x张,根 据题意,下面所列方程正确的是( A )
A.x+5(12-x)=48 B.x+5(x-12)=48 C.x+12(x-5)=48 D.5x+(12-x)=48
A.π×42x=π×32×(x+5) C.π×82x=π×62×(x+5)
B.π×42x=π×32×(x-5) D.π×82x=π×62×(x-5)
5.电影院的门票售价:成人票每张40元,学生 票每张20元.某日电影院售出门票200张, 共得6400元.设学生票售出x张,依题意可 列方程为( A ) A.20x+40(200-x)=6 400 B.40x+20(200-x)=6 400 C.20x-40(200-x)=6 400 D.40x-20(200-x)=6 400
北师大版七年级数学上册《一元一次方程——认识一元一次方程》教学PPT课件(4篇)
元一次方程,求a的值.
解:由题意可知:|a|-2=1, 所以|a|=3,则a=±3. 又因为a+3≠0,所以a≠-3,所以a=3.
易错警示:一元一次方程中未知数的系数不能为0, 这一点要特别注意.
6.列方程: (1)把一些图书分给某班同学,如果每人4本,则剩余12本,如果 每人5本,则还缺30本,则该班有多少名学生 (设该班有x名学生)? (2)一本书的封面的周长为50 cm,长比宽多5 cm,则这本书的 封面的长和宽分别是多少(设这本书的封面的宽为x cm)?
认识一元一次方程
第1课时
情境导入
小游戏:猜老师的年龄
老师的年龄乘以3再减去17刚好为73,那现在你能 知道老师的年龄吗?你是怎么猜?
情景1: 你5猜得小你的出数敏今年你是,年龄年多我1乘3龄少能岁2.减?
不21信
她怎么知道 我的年龄是13
岁的呢?
小敏
如果设小敏的年龄为x岁,那么“乘2再减5”就
是 2x-5 ,因此可以得到方程: 2x-5=21 .
解:(1)根据题意可得4x+12=5x-30. (2)根据题意得x+x+5=50÷2.
古代故事: 隔墙听得客分银, 不知人数不知银. 七两分之多四两, 九两分之少半斤.
(注:在古代1斤是16两,半斤就是8两)
古诗文意思: 有几个客人在房间内分银子,每人分七两,最后多 四两,每人分九两,最后还差八两,问有几个人? 有几两银子?
只含有一个未知数,未知数的系数不等于0 4. (k 2)x2 kx 21 0 是一元一次方程,则k =_-2__
获取新知
使方程左、右两边的值相等的未知数的值, 叫做方程的解.
在“猜年龄”游戏中,当被告知计算的结果是21时,我们 所列的方程为2x-5=21,从而求出年龄是13.由于13能使 方程的两边相等,我们就把13叫做方程2x-5=21的解.
解:由题意可知:|a|-2=1, 所以|a|=3,则a=±3. 又因为a+3≠0,所以a≠-3,所以a=3.
易错警示:一元一次方程中未知数的系数不能为0, 这一点要特别注意.
6.列方程: (1)把一些图书分给某班同学,如果每人4本,则剩余12本,如果 每人5本,则还缺30本,则该班有多少名学生 (设该班有x名学生)? (2)一本书的封面的周长为50 cm,长比宽多5 cm,则这本书的 封面的长和宽分别是多少(设这本书的封面的宽为x cm)?
认识一元一次方程
第1课时
情境导入
小游戏:猜老师的年龄
老师的年龄乘以3再减去17刚好为73,那现在你能 知道老师的年龄吗?你是怎么猜?
情景1: 你5猜得小你的出数敏今年你是,年龄年多我1乘3龄少能岁2.减?
不21信
她怎么知道 我的年龄是13
岁的呢?
小敏
如果设小敏的年龄为x岁,那么“乘2再减5”就
是 2x-5 ,因此可以得到方程: 2x-5=21 .
解:(1)根据题意可得4x+12=5x-30. (2)根据题意得x+x+5=50÷2.
古代故事: 隔墙听得客分银, 不知人数不知银. 七两分之多四两, 九两分之少半斤.
(注:在古代1斤是16两,半斤就是8两)
古诗文意思: 有几个客人在房间内分银子,每人分七两,最后多 四两,每人分九两,最后还差八两,问有几个人? 有几两银子?
只含有一个未知数,未知数的系数不等于0 4. (k 2)x2 kx 21 0 是一元一次方程,则k =_-2__
获取新知
使方程左、右两边的值相等的未知数的值, 叫做方程的解.
在“猜年龄”游戏中,当被告知计算的结果是21时,我们 所列的方程为2x-5=21,从而求出年龄是13.由于13能使 方程的两边相等,我们就把13叫做方程2x-5=21的解.
《一元一次方程》课件
解释
一元代表方程中只有一个未知数 ,一次代表未知数的指数为1,即 未知数为线性关系。
方程形式
标准形式
ax + b = 0(a ≠ 0)
特殊形式
a = 0 或 b = 0 或 ax + b = c(c 为常数)
方程解的概念
01
02
03
解的概念
满足方程的未知数的值称 为方程的解。
解的求法
通过移项、合并同类项、 系数化为1等步骤求解。
PART 03
一元一次方程的应用
代数式与方程的关系
代数式
由数字、字母通过有限次加、减 、乘、乘方运算得到的数学表达
式。
方程
含有未知数的等式,通过等号连接 。
关系
方程是代数式的一种特殊形式,用 于表示未知数与已知数之间的关系 。
实际问题中的一元一次方程
购物问题
速度与时间问题
如“买x个苹果,每个苹果y元,共花 费z元”,可以建立一元一次方程 z = x × y。
a。
利润问题
某商品进价为p元,售价为q元, 利润为r元,可以建立一元一次
方程 r = q - p。
时间与速度问题
某人在路上行走,从起点到终点 需要的时间为t小时,行走的距 离为d公里,可以建立一元一次
方程 d = v × t。
PART 04
一元一次方程的解法技巧
观察法
总结词
通过观察方程的形式,直接得出解的方法。
图解法
总结词
通过绘制数轴上的点来表示方程的解的 方法。
VS
详细描述
对于一些一元一次方程,可以通过在数轴 上绘制点来表示方程的解。例如,对于形 如 (x - 3 = 0) 的方程,可以在数轴上找 到表示 (3) 的点,该点即为方程的解。这 种方法直观易懂,适用于一些简单的一元 一次方程。
一元代表方程中只有一个未知数 ,一次代表未知数的指数为1,即 未知数为线性关系。
方程形式
标准形式
ax + b = 0(a ≠ 0)
特殊形式
a = 0 或 b = 0 或 ax + b = c(c 为常数)
方程解的概念
01
02
03
解的概念
满足方程的未知数的值称 为方程的解。
解的求法
通过移项、合并同类项、 系数化为1等步骤求解。
PART 03
一元一次方程的应用
代数式与方程的关系
代数式
由数字、字母通过有限次加、减 、乘、乘方运算得到的数学表达
式。
方程
含有未知数的等式,通过等号连接 。
关系
方程是代数式的一种特殊形式,用 于表示未知数与已知数之间的关系 。
实际问题中的一元一次方程
购物问题
速度与时间问题
如“买x个苹果,每个苹果y元,共花 费z元”,可以建立一元一次方程 z = x × y。
a。
利润问题
某商品进价为p元,售价为q元, 利润为r元,可以建立一元一次
方程 r = q - p。
时间与速度问题
某人在路上行走,从起点到终点 需要的时间为t小时,行走的距 离为d公里,可以建立一元一次
方程 d = v × t。
PART 04
一元一次方程的解法技巧
观察法
总结词
通过观察方程的形式,直接得出解的方法。
图解法
总结词
通过绘制数轴上的点来表示方程的解的 方法。
VS
详细描述
对于一些一元一次方程,可以通过在数轴 上绘制点来表示方程的解。例如,对于形 如 (x - 3 = 0) 的方程,可以在数轴上找 到表示 (3) 的点,该点即为方程的解。这 种方法直观易懂,适用于一些简单的一元 一次方程。
《认识一元一次方程》一元一次方程PPT优质课件(第1课时)
等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87, 列方程: 1.2×0.8x+2×0.9(60-x)=87.
巩固练习
变式训练
根据下列问题,设出未知数,列出方程:
(1)某长方形足球场的周长为310米,长和宽之差为25米,
求这个足球场的宽. 解:设这个足球场的宽为x米,依题意,得2x+2(x+25)=310.
2000年6月具有大学文化程度的人+增长的人数=8930
解:设2000年6月底每10万人中约有x人具有大学文化程度, 则:
x (1+147.30%)=8930.
探究新知
请同学们思考:
1. 怎样将一个实际问题转化为方程问题?
2.列方程的依据是什么?
抓关键句子找等量关系
实际问题
一元一次方程
设未知数列方程
我能猜出 你的年龄
你的年龄乘以2 减5得数是多少?
你今年13岁
21
他怎么
知道的?
小彬 小华 小彬 小华
小彬 小华
找出这道题中有哪些相等的关系,列出方程. 解:设小彬今年x岁,
根据题意“你的年龄乘2再减去5”就是 2x-5 ,
因此得到等式 2x-5=21.
探究新知
2.甲、乙两地相距 22 km,张叔叔从甲地出发到乙地,每时 比原计划多行走1 km,因此提前12 min到达乙地,张叔叔原 计划每时行走多少千米?
青山 翠湖
秀水
素养目标
3. 通过列方程的过程,感受方程作为刻画现实世界 有效模型的意义,从而体会数学的方程模型思想. 2. 根据实际问题列一元一次方程.
1. 理解方程及一元一次方程的概念,会检验一个数 是不是方程的解.
巩固练习
变式训练
根据下列问题,设出未知数,列出方程:
(1)某长方形足球场的周长为310米,长和宽之差为25米,
求这个足球场的宽. 解:设这个足球场的宽为x米,依题意,得2x+2(x+25)=310.
2000年6月具有大学文化程度的人+增长的人数=8930
解:设2000年6月底每10万人中约有x人具有大学文化程度, 则:
x (1+147.30%)=8930.
探究新知
请同学们思考:
1. 怎样将一个实际问题转化为方程问题?
2.列方程的依据是什么?
抓关键句子找等量关系
实际问题
一元一次方程
设未知数列方程
我能猜出 你的年龄
你的年龄乘以2 减5得数是多少?
你今年13岁
21
他怎么
知道的?
小彬 小华 小彬 小华
小彬 小华
找出这道题中有哪些相等的关系,列出方程. 解:设小彬今年x岁,
根据题意“你的年龄乘2再减去5”就是 2x-5 ,
因此得到等式 2x-5=21.
探究新知
2.甲、乙两地相距 22 km,张叔叔从甲地出发到乙地,每时 比原计划多行走1 km,因此提前12 min到达乙地,张叔叔原 计划每时行走多少千米?
青山 翠湖
秀水
素养目标
3. 通过列方程的过程,感受方程作为刻画现实世界 有效模型的意义,从而体会数学的方程模型思想. 2. 根据实际问题列一元一次方程.
1. 理解方程及一元一次方程的概念,会检验一个数 是不是方程的解.
《一元一次方程》课件完美版
《一元一次方程》课件完美版(PPT优 秀课件 )
定义
注意:移项一定要变号 移项
步骤 合并同类项
应用
系数化为1
《一元一次方程》课件完美版(PPT优 秀课件 )
布置作业
1.教科书第92页习题3.2第6,10,11题。 2.补充作业:周末,甲、乙两个商场搞促销活动,甲商场的 活动为所有商品全部按标价的8折出售,乙商场的活动为标价 200元以下的商品按标价出售,超出200元的部分打7折。现有 某件商品在两个商场的标价都为400元,应当在哪个商场购买 更实惠?如果标价为600元呢?为800元呢?你能否给顾客一 些建议,以便获得更大的实惠呢?
怎样才能使它向 x=a (a为常数)的形式转化呢?
一、用移项解一元一次方程
合作探究 请运用等式的性质解下列方程:
(1) 4x-15 = 9;
你有什么发现?
解:两边都加15,得 4x-15 +15 = 9 +15 合并同类项,得 4x = 9 +15。 4x = 24 系数化为1,得 x=6
(1) 4x--1155= 9
①
4x = 9 +15 ②
问题1 观察方程①到方程②的变形过程,说一说有 改变的是哪一项?它有哪些变化?
(1) 4x--1155 = 9
①
4x = 9 +15 ② “-15”这项移动后,从方程的左边移到了方程的右边。
符号由“-”变“+”
(2) 2x = 5x -21 解:两边都减5x,得
2x-5x = 5x-21-5x 2x-5x = -21 合并同类项,得
例2 某制药厂制造一批药品,如果用旧工艺,则废水排量要比环保限制的最 大量还多200 t;如果用新工艺,则废水排量要比环保限制的最大量少100 t。 新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?
定义
注意:移项一定要变号 移项
步骤 合并同类项
应用
系数化为1
《一元一次方程》课件完美版(PPT优 秀课件 )
布置作业
1.教科书第92页习题3.2第6,10,11题。 2.补充作业:周末,甲、乙两个商场搞促销活动,甲商场的 活动为所有商品全部按标价的8折出售,乙商场的活动为标价 200元以下的商品按标价出售,超出200元的部分打7折。现有 某件商品在两个商场的标价都为400元,应当在哪个商场购买 更实惠?如果标价为600元呢?为800元呢?你能否给顾客一 些建议,以便获得更大的实惠呢?
怎样才能使它向 x=a (a为常数)的形式转化呢?
一、用移项解一元一次方程
合作探究 请运用等式的性质解下列方程:
(1) 4x-15 = 9;
你有什么发现?
解:两边都加15,得 4x-15 +15 = 9 +15 合并同类项,得 4x = 9 +15。 4x = 24 系数化为1,得 x=6
(1) 4x--1155= 9
①
4x = 9 +15 ②
问题1 观察方程①到方程②的变形过程,说一说有 改变的是哪一项?它有哪些变化?
(1) 4x--1155 = 9
①
4x = 9 +15 ② “-15”这项移动后,从方程的左边移到了方程的右边。
符号由“-”变“+”
(2) 2x = 5x -21 解:两边都减5x,得
2x-5x = 5x-21-5x 2x-5x = -21 合并同类项,得
例2 某制药厂制造一批药品,如果用旧工艺,则废水排量要比环保限制的最 大量还多200 t;如果用新工艺,则废水排量要比环保限制的最大量少100 t。 新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?
《一元一次方程——认识一元一次方程》数学教学PPT课件(6篇)
未知数的指数
且方程中的代数式都是整式,______________
都是1,这样的方程叫做一元一次方程.
做一做
判断下列各式是不是一元一次方程.
√
√
x
√
⑤x+3>0;⑥2x -2(x -x)=1;⑦
2
①2x2-5=4;②-m+8=1;③x=1;④x+y=1;
7 4
2
2
√
;⑧πx=12.
判断一个方程是一元一次方程,化简后必须
所以得到等式:___________
像这样含有未知数的等式叫做方程.
情境引入
小颖种了一株树苗,开
始时树苗高为40厘米,栽种
后每周树苗长高约15厘米,
大约几周后树苗长高到1米?
如果设x周后树苗长高
到1米,那么可以得到方程:
40+15x =100
情境引入
第六次全国人口普查统计数据, 2010年全
国每10万人中具有大学文化程度的人数为8930
例3 根据下列问题,设未知数并列出方程
(1)用一根长24 cm的铁丝围成一个正方形,正
方形的边长是多少?
解:设正方形的边长为x cm.
等量关系:正方形边长×4=周长.
列方程: 4 x 24
x
.
(2)一台计算机已使用1700 h,预计每月再使用
150 h,经过多少月这台计算机的使用时间达到规
定的检修时间2450 h?
的值,叫做方程的解.
x=2是方程3x+(10-x)=20的解吗?
新知探究
练一练
(1)下列四个方程中,一元一次方程是 ( D )
A. x2-1=0
B.x+y=1
C.12-7=5
且方程中的代数式都是整式,______________
都是1,这样的方程叫做一元一次方程.
做一做
判断下列各式是不是一元一次方程.
√
√
x
√
⑤x+3>0;⑥2x -2(x -x)=1;⑦
2
①2x2-5=4;②-m+8=1;③x=1;④x+y=1;
7 4
2
2
√
;⑧πx=12.
判断一个方程是一元一次方程,化简后必须
所以得到等式:___________
像这样含有未知数的等式叫做方程.
情境引入
小颖种了一株树苗,开
始时树苗高为40厘米,栽种
后每周树苗长高约15厘米,
大约几周后树苗长高到1米?
如果设x周后树苗长高
到1米,那么可以得到方程:
40+15x =100
情境引入
第六次全国人口普查统计数据, 2010年全
国每10万人中具有大学文化程度的人数为8930
例3 根据下列问题,设未知数并列出方程
(1)用一根长24 cm的铁丝围成一个正方形,正
方形的边长是多少?
解:设正方形的边长为x cm.
等量关系:正方形边长×4=周长.
列方程: 4 x 24
x
.
(2)一台计算机已使用1700 h,预计每月再使用
150 h,经过多少月这台计算机的使用时间达到规
定的检修时间2450 h?
的值,叫做方程的解.
x=2是方程3x+(10-x)=20的解吗?
新知探究
练一练
(1)下列四个方程中,一元一次方程是 ( D )
A. x2-1=0
B.x+y=1
C.12-7=5
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
情景2:
小颖种了一株树苗,开始时树苗高为40厘米,栽种后
每周升高约15厘米,大约几周后树苗长高到100厘米?
如果设x周后树苗升高到100厘米,那么可以得到方
程:
。
x周
40cm
100cm
知识点三:
• 列方程的一般步骤: ①审题,找等量关系; ②设未知数; ③列出方程.
情景3:
在一卷公元前1600年左右遗留下来的古埃及 草卷中,记载着一些数学问题。其中一个问题 翻译过来是:“啊哈,它的全部,它的 ,1其和
我是谁???
5.1 认识一元一次方程
学习目标
1.在方程概念基础上理解一元一次方 程的概念;
2.会列简单方程解决实际问题。
情景1:
不信
小彬,我 能猜出你年
龄。
你的年龄
乘2减5得数
是多少?
21
你今年13岁
他怎么 知道的我 的年龄是 13岁的呢?
他怎么知道的呢?说出自己的想法。
小彬
方法一: (21+5)÷2=13 方法二:如果设小彬的年龄为x岁,那么“乘2再减5”就 是 2x-5 ,所以得到等式: 2x-5=21 。
• 归纳判断一元一次方程的条件:
等号两边都是整式; 只含一个未知数; 未知数的指数为1;
小组内同学每人举一个一元一次方程例子,组内同学互
相判断,并纠正错误。
课堂检测
1、在下列方程中: ①2χ+1=3; ②22y+1=0; ③2a+b=3;④2-6y=1; ⑤2χ+5=6; 属于一元一次方程的有 ①②④⑤ 。 2、方程3xm-2 + 5=0是一元一次方程, 则m= 3 ,代数式 4m-5= 7 。 3、方程(a+6)x2 +3x-8=7是关于x的一元一次方程, 则a= -6 。
知识点一:
• “2x-5=21”这个等式中含有未知数。
像这样含有未知数的等式叫做方程。
归纳判断方程的条件:
①有未知数; ②是等式;
选一选:判断下列各式是不是方程,是的打“√”,不是 的打“x”。
1)、-2+5=3 ( ) 2)、3x-1=7 ( ) 3)、m=0 ( )
4)、x﹥3 ( ) 5)、x+y=8 ( ) 6)、2a +b ( )
4、根据下列条件,列出关于x的方程: (1)12与x的差等于x的2倍;
(2)x的三分之一与5的和等于6;
课堂小结与反思: • 1.本节课你在知识方面有哪些收获?
方程及一元一次方程的概念;列方程。 • 2.在进行一元一次方程的判断时应注意哪几个关键?
等号两边都是整式; 只含一个未知数; 未知数的指数为1;
7)、
()
y2 4 y
知识点二:
• 方程的解:
使方程左、右两边的值相等的 未知数的值 ,叫做方程 的解。
• 下列结论正确的是( )
A. x+3=1的解是x=4; B.3-x = 5的解是x=2;
C. 的解是 ; D. 的解是x=-1.
5x 3
x5 3
3x 3 22
试一试: 思考下列情境中的问题,列出方程。
7 等于19。” 你能求出问题中的“它”吗?
情景4:
某长方形足球场的周长为310米,长和宽之 差为25米,这个足球场的长与宽分别是多少米?
议一议:
• 由上面的情景你得到了哪些方程?这些方程有什么共 同特点?小组讨论。
知识点四:
• 只含有一个未知数(元),并且含有未知数的项的 次数是1(次)的整式方程叫做一元一次方程。
• 3.通过今天的学习,你想进一步探究的问题是什么? 如何解方程.