认识一元一次方程ppt
合集下载
7.2一元一次方程的定义(18张PPT)

右边 41 4
右边 4 1 4
左边 右边
左边 右边
x 1不是该方程的解。 x 1是该方程的解。
(1)2x 4 16 x, (x 2, x 2) 9
(2)7x 8(x 1) 38, (x 2, x 2)
一.方程的定义
四.如何估方程的值
方程3x+1=64,4+3(x-1)=64,以及上节 中的方程9x-0.75=393,32+x-8=29等, 它们有什么共同特点?
这些方程都只含有一个未知数,并且未 知数的次数都是1,像这样的方程叫做一 元一次方程。
三个条件:
1.一个未知数
2.未知数的次数是1
3.等号两边都是整式。
下列方程哪些是一元一次方程,哪些不是? 为什么?
像这样含有未知数的等式叫做方程
二.检验一个数是不是方程的解的步骤:
1.将数值代入方程左边进行计算,
2.将数值代入方程右边进行计算,
3.比较左右两边的值,若左边=右边, 是 则 方程的解,反之,则不是.
三.一元一次方程的定义 这些方程都只含有一个未知数,并且未 知数的次数都是1,像这样的方程叫做一 元一次方程。
(2)你会解方程2x=x+3吗?
方程2x=x+3的两边都减去x,得
2x--xx=3 即x=3
(3)从上面解方程的过程中,你发现了什么?
将方程中的一项由 等式的一边移到另 一边时,它的符号
发生了改变。
把方程中的某一项改变符号后,从方程 的一边移到另一边,这种变形叫做移项。
下列方程的变形正确吗?如果不正确,怎样改正?
:合并同类项,得
x=-3
练习1解方程: (1) x-3=-12 (2) 5-2x=9 -3x (3) 16x+6=-7+15x (4) 3y-2=2y-10
5.1 认识方程 课件 (共20张PPT) 北师大版数学七年级上册

4. 已知方程 (m 2)x m 1 3 m 5 是关于 x 的一元一 次方程,求 m 的值,并写出原方程.
解:因为方程 (m 2)x m 1 3 m 5 是关于 x 的一元 一次方程, 所以 |m|-1 = 1,且 m-2 ≠ 0,得 m = -2. 所以原方程为-4x + 3 = -7.
A. 3x-2=2x
B. 4x-1=2x+3
C. 3x+1=2x-1 D. 5x-3=6x-2
2. 若 x=4 是关于 x 的方程 ax=8 的解,则 a 的值 为___2___.
当堂小结
认识方程
方程的定义 一元一次方程
方程的解
课堂练习 1. x = 1 是下列哪个方程的解
A. 1 x 2 C. x 1 x 2
甲种支数 乙种支数 20支
解:设甲种铅笔买了 x 支,乙种铅笔买了 (20 - x) 支. 0.3x + 0.6(20-x) = 9,是一元一次方程.
(3)一个梯形的下底比上底多 2 cm,高是 5 cm,面 积是 40 cm2,求上底.
1 2 (上底+下底)×高 = 梯形面积
解:设上底为 x cm,则下底为 (x + 2) cm. 1 (x x 2)5 40,是一元一次方程. 2
x
415 424 433 442 451 460 379 388 …
10x + 15(45 - x) 46570 64655 6460 465 470 475 480 485 …
总结 使方程左、右两边的值相等的未知数的值,叫作方 程的解。求方程的解的过程称为解方程。
练一练
1. 下列方程中,解为 x=-2 的是( C )
典例精析
例1 判断下列各式哪些是方程:
《认识一元一次方程》一元一次方程PPT课件

D.5x-3=6x-2
2. 若 x=1是方程x2 -2mx +1=0的一个解,则m的
值为( C )
A. 0
B. 2
C. 1
D. -1
✓ 过关检测
3.根据第六次全国人口普查统计数据:截至2010年11月1日 0时,全国每10万人中具有大学文化程度的人数为8930人,与 2000年第五次全国人口普查相比增长了147.30%.2000年第五 次全国人口普查时每10万人中约有多少人具有大学文化程度?
✓练
判断下列各式是不是一元一次方程,并说说你的依据。
(1)、2x2 - 5x+6=0 (×)
(2)、3χ-1=7 ( √ )
(3)、m=0 (√) (5)、χ+y=8 (×)
(4)、 (6)、
(√ ) ( ×)
注意:判断前,要将原方程化简、整理后,再作判断!
✓识
自主阅读下列文字,思考并完成下列问题:什么叫一元一次方 程的解?怎么判断一个数是不是方程的解?(时间:2min)
使方程左、右两边的值相等的未知数的值,叫做方程的 解.(注:我国古代称未知数为元,只含有一个未知数的方 程叫做一元方程,一元方程的解也叫根。)
判断一个数是不是方程的解,把这个数代入方程的左、 右两边,如果左、右两边的值相等,那么这个数是方程的解, 如果左、右两边的值不相等,那么这个数就不是方程的解。
今天问的:去日游期乐场的每张车票要多少元?
等量关系: 出租车费 + 门票钱 =总花费
问题2:设去游乐场的每张车票要x 元,可列出 方程
5+2x=13
✓识
为庆祝开园半周年,门票特惠!一张门票8折销售的售价 为72元! 请问:门票多少元一张?
5.2 一元一次方程课件(共20张PPT)

同学们再见!
授课老师:
时间:2024年9月15日
随堂练习
1. x=3,x=0,x=-2,各是下列哪个方程的解?(1) 5x+7=7-2x;(2) 6x-8=8x-4;(3) 3x-2=4+x.
x=0
x=-2
x=3
2.已知关于 x 的一元一次方程2(x-1)+3a=3的解为4,则 a 的值是( )A.-1 B.1 C.-2 D.-3
解析:将x=4代入2(x-1)+3a=3,得2×3+3a=3,解得a= -1.
A
技巧点拨:根据方程的解的定义求有关字母的值时,通常先将解代入方程中,得到关于字母的方程,求解即可得到这个字母的值.
3.以下哪些是一元一次方程?
解: (4)(5)是一元一次方程.
不是整式方程
不是等式
含有两个未知数
是不等式,不是方程
x=60是方程x2=4 000的解吗?x=80呢?
观察下列式子:1-2x+18,4x-3=1,x2+1=10x,6-x>3,y=xy+9.
思考
问题1:请判断哪些式子是方程,哪些不是方程.为什么?问题2:请思考每个方程所含未知数的个数与所含未知数的项的次数分别是多少?
1.4x-3=1,x2+1=10x,y=xy+9是方程,其他的不是.含有未知数的等式叫作方程,其他的式子不符合.2.4x-3=1 一个未知数,未知数次数是1;x2+1=10x 一个未知数,未知数次数是2;y=xy+9 两个未知数,未知数次数是2.
已知甲、乙两村相距18 km,小明骑自行车从甲村出发到乙村,行驶的速度是12 km/h.当小明骑行的时间为t h时,距乙村还有3 km,由此得到方程12t+3=18.
授课老师:
时间:2024年9月15日
随堂练习
1. x=3,x=0,x=-2,各是下列哪个方程的解?(1) 5x+7=7-2x;(2) 6x-8=8x-4;(3) 3x-2=4+x.
x=0
x=-2
x=3
2.已知关于 x 的一元一次方程2(x-1)+3a=3的解为4,则 a 的值是( )A.-1 B.1 C.-2 D.-3
解析:将x=4代入2(x-1)+3a=3,得2×3+3a=3,解得a= -1.
A
技巧点拨:根据方程的解的定义求有关字母的值时,通常先将解代入方程中,得到关于字母的方程,求解即可得到这个字母的值.
3.以下哪些是一元一次方程?
解: (4)(5)是一元一次方程.
不是整式方程
不是等式
含有两个未知数
是不等式,不是方程
x=60是方程x2=4 000的解吗?x=80呢?
观察下列式子:1-2x+18,4x-3=1,x2+1=10x,6-x>3,y=xy+9.
思考
问题1:请判断哪些式子是方程,哪些不是方程.为什么?问题2:请思考每个方程所含未知数的个数与所含未知数的项的次数分别是多少?
1.4x-3=1,x2+1=10x,y=xy+9是方程,其他的不是.含有未知数的等式叫作方程,其他的式子不符合.2.4x-3=1 一个未知数,未知数次数是1;x2+1=10x 一个未知数,未知数次数是2;y=xy+9 两个未知数,未知数次数是2.
已知甲、乙两村相距18 km,小明骑自行车从甲村出发到乙村,行驶的速度是12 km/h.当小明骑行的时间为t h时,距乙村还有3 km,由此得到方程12t+3=18.
一元一次方程ppt课件

计算精度要求
因式分解法和配方法相对公式法而言,计算过程较为简单,更适 合对计算精度要求较高的场合。
理解难度
因式分解法和配方法更易于理解,适合初学者学习。
解法的局限性
1 2
公式法的局限性
对于某些特殊形式的一元一次方程,公式法可能 无法求解或求解过程非常复杂。
因式分解法的局限性
对于没有公因子的一元一次方程,因式分解法无 法使用。
03
未知数
一元一次方程中的未知数可以是一个字母,通常表示为 x。
特点
01
02
03
只有一个未知数
一元一次方程只包含一个 未知数 x。
未知数的指数为1
一元一次方程中未知数的 最高次数为1。
方程的解是实数
一元一次方程的解是实数 ,因为它的形式简单,解 容易找到。
示例
2x + 5 = 0
输标02入题
01
总结词
根号的引入使得一元一次方程的解法 变得较为特殊。
详细描述
含根号的一元一次方程通常表示为 ax + b = c√x,其中 a、b、c 是常数。 根号的引入使得方程的解法变得较为 特殊,需要利用根式的性质进行化简 ,并采用特定的方法求解。
一元一次方程的解法总结与比
05
较
三种解法的比较
公式法
01
含绝对值的一元一次方程
总结词
绝对值的引入使得一元一次方程的解法变得相对复杂。
详细描述
含绝对值的一元一次方程通常表示为 f(x) = ax + b |x - c|,其中 a、b、c 是常数 。绝对值的引入使得方程的解法变得相对复杂,需要分情况讨论绝对值内部的正 负情况,从而得到不同的解。
含根号的一元一次方程
因式分解法和配方法相对公式法而言,计算过程较为简单,更适 合对计算精度要求较高的场合。
理解难度
因式分解法和配方法更易于理解,适合初学者学习。
解法的局限性
1 2
公式法的局限性
对于某些特殊形式的一元一次方程,公式法可能 无法求解或求解过程非常复杂。
因式分解法的局限性
对于没有公因子的一元一次方程,因式分解法无 法使用。
03
未知数
一元一次方程中的未知数可以是一个字母,通常表示为 x。
特点
01
02
03
只有一个未知数
一元一次方程只包含一个 未知数 x。
未知数的指数为1
一元一次方程中未知数的 最高次数为1。
方程的解是实数
一元一次方程的解是实数 ,因为它的形式简单,解 容易找到。
示例
2x + 5 = 0
输标02入题
01
总结词
根号的引入使得一元一次方程的解法 变得较为特殊。
详细描述
含根号的一元一次方程通常表示为 ax + b = c√x,其中 a、b、c 是常数。 根号的引入使得方程的解法变得较为 特殊,需要利用根式的性质进行化简 ,并采用特定的方法求解。
一元一次方程的解法总结与比
05
较
三种解法的比较
公式法
01
含绝对值的一元一次方程
总结词
绝对值的引入使得一元一次方程的解法变得相对复杂。
详细描述
含绝对值的一元一次方程通常表示为 f(x) = ax + b |x - c|,其中 a、b、c 是常数 。绝对值的引入使得方程的解法变得相对复杂,需要分情况讨论绝对值内部的正 负情况,从而得到不同的解。
含根号的一元一次方程
一元一次方程 课件ppt

例子:例如,解方程 2x + 5 = 7,首先移项得 2x = 7 - 5,然后合并同类项得 2x = 2,最后系数化为1得 x = 1。
图像法
定义:图像法是一种通过绘制函数图像来解一元一次方 程的方法。 1. 确定函数:根据方程的形式确定表示该方程的函数。
3. 标记解:在图像上标记交点的坐标,即为方程的解。
型,例如成本、价格、利润等问题的计算。
物理问题的数学模型建立
03
在物理领域中,一元一次方程可以用于建立各种问题的数学模
型,例如速度、加速度、时间等问题的计算。
04
一元一次方程的变式
移项
概念
移项是将方程中的项改变符号后 移动到另一边的过程。
目的
通过移项,将方程中的未知数系 数变为正数,以便更容易求解。
步骤
2. 绘制图像:绘制函数的图像,将坐标轴上的交点作 为方程的解。
例子:例如,解方程 x + 2 = 5,确定函数为 y = x + 2,绘制图像后,交点为 (3,5),因此方程的解为 x = 3 。
实际应用法
定义:实际应用法是一种通过实际应用案例来解一元一次 方程的方法。
步骤
1. 分析问题:分析实际问题中涉及到的变量和关系。
2. 建立方程:根据实际问题建立一元一次方程。
3. 解方程:通过解方程得到未知数的值,解决实际问题 。
例子:例如,解方程 3x + 2 = 14,分析问题为求解 x 的 值使得 3x + 2 = 14,建立方程为 3x + 2 = 14,解方程 得 x = 4。因此,x 的值为4。
03
一元一次方程的应用
THANKS
感谢观看
06
一元一次方程的注意事项和易错点
图像法
定义:图像法是一种通过绘制函数图像来解一元一次方 程的方法。 1. 确定函数:根据方程的形式确定表示该方程的函数。
3. 标记解:在图像上标记交点的坐标,即为方程的解。
型,例如成本、价格、利润等问题的计算。
物理问题的数学模型建立
03
在物理领域中,一元一次方程可以用于建立各种问题的数学模
型,例如速度、加速度、时间等问题的计算。
04
一元一次方程的变式
移项
概念
移项是将方程中的项改变符号后 移动到另一边的过程。
目的
通过移项,将方程中的未知数系 数变为正数,以便更容易求解。
步骤
2. 绘制图像:绘制函数的图像,将坐标轴上的交点作 为方程的解。
例子:例如,解方程 x + 2 = 5,确定函数为 y = x + 2,绘制图像后,交点为 (3,5),因此方程的解为 x = 3 。
实际应用法
定义:实际应用法是一种通过实际应用案例来解一元一次 方程的方法。
步骤
1. 分析问题:分析实际问题中涉及到的变量和关系。
2. 建立方程:根据实际问题建立一元一次方程。
3. 解方程:通过解方程得到未知数的值,解决实际问题 。
例子:例如,解方程 3x + 2 = 14,分析问题为求解 x 的 值使得 3x + 2 = 14,建立方程为 3x + 2 = 14,解方程 得 x = 4。因此,x 的值为4。
03
一元一次方程的应用
THANKS
感谢观看
06
一元一次方程的注意事项和易错点
《一元一次方程》PPT优秀课件

列方程: 1700 .150x 2450 .
探究新知
(3) 某校女生占全体学生数的52%,比男生多8人,这个学校一共有多少学 生?
解:设这个学校的学生人数为x,那么女生人数为 0.52x,男生人数为 (1- 0.52)x.
等量关系:女生人数- 男生人数=8, 列方程:0.52x- (1-0.52)x=8.
(7) 3x+1.8=3 y.
含有两个
未知数 解析: 只含有一个未知数(元),未知数的次数都是1(次)的整式方程
叫做一元一次方程.
(4)(5)是一元一次方程.
巩固练习
下列哪些是一元一次方程?
(1)3y-7 ;
(2)7a+8=10 ;√
(3)16y-7=9-2y ; √ (4)7y-y2=12;
(5)-4.5y-12=x-10 ; (7)7-13 y 9 .
方程 的解
解方程就是求出使方程中等号两边相等的未知数 的值,这个值就是方程的解.
建立 方程 模型
实际 问题
设未 找等量 知数 关系
列方程
一元一次方程
导入新知 用方程来解决
汽车匀速行驶途经王家庄、青山、秀水三地的时间 如表所示,翠湖在青山、秀水两地之间,距青山50千米 ,距秀水70千米.王家庄到翠湖的路程有多远?
地名 时间 王家庄 10:00
青山 13:00 秀水 15:00
如果设王家庄到翠湖的路程为x千米,你能列出方程吗? 70千米
x千米 50千米
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其是不是一元一次方程.
探究新知
(3) 某校女生占全体学生数的52%,比男生多8人,这个学校一共有多少学 生?
解:设这个学校的学生人数为x,那么女生人数为 0.52x,男生人数为 (1- 0.52)x.
等量关系:女生人数- 男生人数=8, 列方程:0.52x- (1-0.52)x=8.
(7) 3x+1.8=3 y.
含有两个
未知数 解析: 只含有一个未知数(元),未知数的次数都是1(次)的整式方程
叫做一元一次方程.
(4)(5)是一元一次方程.
巩固练习
下列哪些是一元一次方程?
(1)3y-7 ;
(2)7a+8=10 ;√
(3)16y-7=9-2y ; √ (4)7y-y2=12;
(5)-4.5y-12=x-10 ; (7)7-13 y 9 .
方程 的解
解方程就是求出使方程中等号两边相等的未知数 的值,这个值就是方程的解.
建立 方程 模型
实际 问题
设未 找等量 知数 关系
列方程
一元一次方程
导入新知 用方程来解决
汽车匀速行驶途经王家庄、青山、秀水三地的时间 如表所示,翠湖在青山、秀水两地之间,距青山50千米 ,距秀水70千米.王家庄到翠湖的路程有多远?
地名 时间 王家庄 10:00
青山 13:00 秀水 15:00
如果设王家庄到翠湖的路程为x千米,你能列出方程吗? 70千米
x千米 50千米
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其是不是一元一次方程.
《一元一次方程》优秀ppt课件

(1)写出y1,y2与x之间的函数关系式(即等式); (2)一个月内通话多少分钟,两种通话方式的费用相同? (3)若某人预计一个月内使用话费120元,则应选择哪一
种通话方式较合算?
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
课堂小结
1、计费类的应用题解决时应注意什么? 2、列一元一次方程解应用题的一般步骤有哪
3.4实际问题与一元一次方程
——电话计费问题
(第1课时)
学习目标
会用一元一次方程解决电话计费问题; 重点
会根据实际情况进行列表讨论。难点
《一元一次方程》优秀实用课件(PPT 优秀课 件)
情境导入
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
议一议:怎样选择计费方式更省钱?
•如果一个月内累计通话时间不 足300分,那么选择“方式二” 收费少;如果一个月内累计通 话时间超过300分,那么选择 “方式一”收费少。
《一元一次方程》优秀实用课件(PPT 优秀课 件)
• 假如你爸爸也遇到同样的问题,请为你爸爸作个选择。
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
典题精讲
• 一个周末,王老师等3名教师带着若干名学生外出考察旅游(旅费 统一支付),联系了标价相同的两家旅游公司,经洽谈,甲公司给 出的优惠条件是:教师全部付费,学生按七五折付费;乙公司给的优 惠条件是:全部师生按八折付费,请你参谋参谋,选择哪家公司较 省钱?
种通话方式较合算?
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
课堂小结
1、计费类的应用题解决时应注意什么? 2、列一元一次方程解应用题的一般步骤有哪
3.4实际问题与一元一次方程
——电话计费问题
(第1课时)
学习目标
会用一元一次方程解决电话计费问题; 重点
会根据实际情况进行列表讨论。难点
《一元一次方程》优秀实用课件(PPT 优秀课 件)
情境导入
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
议一议:怎样选择计费方式更省钱?
•如果一个月内累计通话时间不 足300分,那么选择“方式二” 收费少;如果一个月内累计通 话时间超过300分,那么选择 “方式一”收费少。
《一元一次方程》优秀实用课件(PPT 优秀课 件)
• 假如你爸爸也遇到同样的问题,请为你爸爸作个选择。
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
典题精讲
• 一个周末,王老师等3名教师带着若干名学生外出考察旅游(旅费 统一支付),联系了标价相同的两家旅游公司,经洽谈,甲公司给 出的优惠条件是:教师全部付费,学生按七五折付费;乙公司给的优 惠条件是:全部师生按八折付费,请你参谋参谋,选择哪家公司较 省钱?
北师大版七年级数学上册《一元一次方程——认识一元一次方程》教学PPT课件(4篇)

元一次方程,求a的值.
解:由题意可知:|a|-2=1, 所以|a|=3,则a=±3. 又因为a+3≠0,所以a≠-3,所以a=3.
易错警示:一元一次方程中未知数的系数不能为0, 这一点要特别注意.
6.列方程: (1)把一些图书分给某班同学,如果每人4本,则剩余12本,如果 每人5本,则还缺30本,则该班有多少名学生 (设该班有x名学生)? (2)一本书的封面的周长为50 cm,长比宽多5 cm,则这本书的 封面的长和宽分别是多少(设这本书的封面的宽为x cm)?
认识一元一次方程
第1课时
情境导入
小游戏:猜老师的年龄
老师的年龄乘以3再减去17刚好为73,那现在你能 知道老师的年龄吗?你是怎么猜?
情景1: 你5猜得小你的出数敏今年你是,年龄年多我1乘3龄少能岁2.减?
不21信
她怎么知道 我的年龄是13
岁的呢?
小敏
如果设小敏的年龄为x岁,那么“乘2再减5”就
是 2x-5 ,因此可以得到方程: 2x-5=21 .
解:(1)根据题意可得4x+12=5x-30. (2)根据题意得x+x+5=50÷2.
古代故事: 隔墙听得客分银, 不知人数不知银. 七两分之多四两, 九两分之少半斤.
(注:在古代1斤是16两,半斤就是8两)
古诗文意思: 有几个客人在房间内分银子,每人分七两,最后多 四两,每人分九两,最后还差八两,问有几个人? 有几两银子?
只含有一个未知数,未知数的系数不等于0 4. (k 2)x2 kx 21 0 是一元一次方程,则k =_-2__
获取新知
使方程左、右两边的值相等的未知数的值, 叫做方程的解.
在“猜年龄”游戏中,当被告知计算的结果是21时,我们 所列的方程为2x-5=21,从而求出年龄是13.由于13能使 方程的两边相等,我们就把13叫做方程2x-5=21的解.
解:由题意可知:|a|-2=1, 所以|a|=3,则a=±3. 又因为a+3≠0,所以a≠-3,所以a=3.
易错警示:一元一次方程中未知数的系数不能为0, 这一点要特别注意.
6.列方程: (1)把一些图书分给某班同学,如果每人4本,则剩余12本,如果 每人5本,则还缺30本,则该班有多少名学生 (设该班有x名学生)? (2)一本书的封面的周长为50 cm,长比宽多5 cm,则这本书的 封面的长和宽分别是多少(设这本书的封面的宽为x cm)?
认识一元一次方程
第1课时
情境导入
小游戏:猜老师的年龄
老师的年龄乘以3再减去17刚好为73,那现在你能 知道老师的年龄吗?你是怎么猜?
情景1: 你5猜得小你的出数敏今年你是,年龄年多我1乘3龄少能岁2.减?
不21信
她怎么知道 我的年龄是13
岁的呢?
小敏
如果设小敏的年龄为x岁,那么“乘2再减5”就
是 2x-5 ,因此可以得到方程: 2x-5=21 .
解:(1)根据题意可得4x+12=5x-30. (2)根据题意得x+x+5=50÷2.
古代故事: 隔墙听得客分银, 不知人数不知银. 七两分之多四两, 九两分之少半斤.
(注:在古代1斤是16两,半斤就是8两)
古诗文意思: 有几个客人在房间内分银子,每人分七两,最后多 四两,每人分九两,最后还差八两,问有几个人? 有几两银子?
只含有一个未知数,未知数的系数不等于0 4. (k 2)x2 kx 21 0 是一元一次方程,则k =_-2__
获取新知
使方程左、右两边的值相等的未知数的值, 叫做方程的解.
在“猜年龄”游戏中,当被告知计算的结果是21时,我们 所列的方程为2x-5=21,从而求出年龄是13.由于13能使 方程的两边相等,我们就把13叫做方程2x-5=21的解.
数学北师大七年级上册5.1《认识一元一次方程》【 课件】 (共28张PPT)

观察这三个方程,有什么共同点? ⑴ ⑵ ⑶
在一个方程中,只含有一个未知数(元),并且未知数的 指数是1(次),这样的方程叫做一元一次方程。
特别注意:一元一次方程是整式方程。
概念深化
判断下列各式是不是一元一次方程,是的打“√”,不是的打“x”。
(1) -2+5=3
( x ) (2) 3x-1=0
( Байду номын сангаас)
作业
习题5.1 第2,3题
谢谢欣赏
学生活动: 1.在规定时间内完成下列题目中至少2题 2.四人组顺时针交换批改 3.针对错误和不会的地方讨论交流 4.展示结果
根据题意列方程
1.小颖种了一株树苗,开始时树苗高为40厘米,栽种后每 周升高约15厘米,大约几周后树苗长高到1米?
2.甲、乙两地相距 22 km,张叔叔从甲地出发到乙地,每 时比原计划多行走1 km,因此提前 12 min 到达乙地,张 叔叔原计划每时行走多少千米?
4.甲、乙两队开展足球对抗赛,规定每队胜一场得3分, 平一场得1分,负一场得0分。甲队与乙队一共比赛了10 场,甲队保持了不败记录,一共得了22 分,甲队胜了多 少场?平了多少场?(根据题意列方程)
解:设甲队胜了x场,则乙胜了(10 -x)场 由题意得 3 x+(10-x)=22
课堂小结
1.数学就在我们身边,并在对其它实际问题研究中感受方 程作为刻画现实世界有效模型的作用 2.方程和一元一次方程的概念 3.列方程的关键
(3) y=3
(√)
(5) 2x2-5x+1=0 ( x )
(7) 2m -n
(x)
(4) x+y=2 (6)x -1 = 5
x (8) S=πr 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.未知数的指数都是1
使方程左、右两边的值相等的未知数的值, 叫做方程的解。
挑战自我
1.
设“它”为X,则:X+1/7 X=19
设甲队胜X场,则:3X+(10-X)=22
2.
X=2 是方程3X+(10-X)=20 的解吗?
解:当X=2时,左边=3x2+10-2=14 右边=20 ∵左边≠右边 ∴X=2 不是方程3X+(10-X)=20 的解
5.1认识一元一次方程
情 境
一.情境对话
2x-5
因此,可以得到方程:
2x-5=21
二.尝试解 决
5x+40=100
(1+153.94%)x=3611
2(x+25)+2x=310
2x-5=21 5x+40=100 (1+153.94%)x=3611 2(x+25)+2x=310
1.只含有一个未知数。
在我国古代,大约两千多年前成书的《九章算 术》中,就记载了用一组方程解决实际问题的 史料。
直到三百多年前,法国的数学家笛卡尔
第一个提倡用x、y、z等字母代表未知数,才
形成了现在的方程。
学了这节课后,什么地方 是你要提醒用这个方程 说一个小故事。
3.你能用心里的天平称出这幅图里的方程吗?
2 x + 7 = 11
4.用方程表示下面的数量关系。 张大爷每天早饭后忙完家务,就去休闲广场散步。 他每分走m米,经过5分,正好走完600米。 列方程:5 m = 600 散完步,张大爷就去打太极拳。老人们排着整齐的队伍, 每排y人,共6排。前面还有2名教练示范,一共有62人。 列方程:6 y + 2 = 6