二进制介绍

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二进制

二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。

20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。

运算

加法

有四种情况: 0+0=0

0+1=1

1+0=1

1+1=10

0 进位为1

减法

0-0=0,1-0=1,1-1=0,0-1=1。

除法

0÷1=0,1÷1=1。

乘法

有四种情况:0×0=0

1×0=0

0×1=0

1×1=1

优点

(1)容易表示:二进制数只有“0”和“1”两个基本符号,易于用两种对立的物理状态表示。例如,可用"1"表示电灯开关的“闭合”状态,用“0”表示“断开”状态;晶体管的导通表示“1”,截止表示“0”;电容器的充电和放电、电脉冲的有和无、脉冲极性的正与负、电位的高与低等一切有两种对立稳定状态的器件都可以表示二进制的“0”和“1”。而十进制数有10个基本符号(0、1、2、3、4、5、6、7、8、9),要用10种状态才能表示,要用电子器件实现起来是很困难的。

(2)运算简单:二进制数的算术运算特别简单,加法和乘法仅各有3条运算规则

( 0+0=0,0+1=1,1+1=10和0×0=0,0×1=0,1×1=1 ),运算时不易出错。[其实计算机处理算术运算时都是加法和移位,并没有乘除法,如11B左移一位就成了110B,11B是十进制的3,而110B是6,看看是不是等于乘二,左移乘,右移就除,哈哈,好玩吧]此外,二进制数的“1”和“0”正好可与逻辑值“真”和“假”相对应,这样就为计算机进行逻辑运算提供了方便。算术运算和逻辑运算是计算机的基本运算,采用二进制可以简单方便地进行这两类运算。

转换方法

二进制转十进制:

要从右到左用二进制的每个数去乘以2的相应次方

例如:二进制数1101.01转化成十进制

1101.01(2)=1*20+0*21+1*22+1*23 +0*2-1+1*2-2=1+0+4+8+0+0.25=13.25

所以总结起来通用公式为:

abcd.efg(2)=d*20+c*21+b*22+a*23+e*2-1+f*2-2+g*2-3

或者用下面这种方法:

把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。这种做法称为"按权相加"法。

2的0次方是1(任何数的0次方都是1,0的0次方无意义)

2的1次方是2

2的2次方是4

2的3次方是8

2的4次方是16

2的5次方是32

2的6次方是64

2的7次方是128

2的8次方是256

2的9次方是512

2的10次方是1024

2的11次方是2048

2的12次方是4096

2的13次方是8192

2的14次方是16384

2的15次方是32768

2的16次方是65536

2的17次方是131072

2的18次方是262144

2的19次方是524288

2的20次方是1048576

即:

此时,1101=8+4+0+1=13

再比如:二进制数1000110转成十进制数可以看作这样:

数字中共有三个1 即第二位一个,第三位一个,第七位一个,然后对应十进制数即2的1次方+2的2次方+2的6次方,即

1000110=64+0+0+0+4+2+0=70

十进制转二进制:

1. 十进制整数转换为二进制整数

十进制整数转换为二进制整数采用"除2取余,逆序排列"法。具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。

十进制整数转二进制

如:255=(11111111)B

255/2=127=====余1

127/2=63======余1

63/2=31=======余1

31/2=15=======余1

15/2=7========余1

7/2=3=========余1

3/2=1=========余1

1/2=0=========余1

789=1100010101

789/2=394 余1 第10位

394/2=197 余0 第9位

197/2=98 余1 第8位

98/2=49 余0 第7位

49/2=24 余1 第6位

24/2=12 余0 第5位

12/2=6 余0 第4位

6/2=3 余0 第3位

3/2=1 余1 第2位

1/2得0 余1 第1位

2.十进制小数转换为二进制小数

十进制小数转换成二进制小数采用"乘2取整,顺序排列"法。具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,此时0或1为二进制的最后一位。或者达到所要求的精度为止。

然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。

十进制小数转二进制

如:0.625=(0.101)B

0.625*2=1.25======取出整数部分1

0.25*2=0.5========取出整数部分0

0.5*2=1==========取出整数部分1

再如:0.7=(0.1 0110 0110...)B

0.7*2=1.4========取出整数部分1

0.4*2=0.8========取出整数部分0

0.8*2=1.6========取出整数部分1

0.6*2=1.2========取出整数部分1

0.2*2=0.4========取出整数部分0

0.4*2=0.8========取出整数部分0

0.8*2=1.6========取出整数部分1

0.6*2=1.2========取出整数部分1

0.2*2=0.4========取出整数部分0

相关文档
最新文档