第三章晶格振动和晶体的热学性质

合集下载

《固体物理基础》晶格振动与晶体的热学性质

《固体物理基础》晶格振动与晶体的热学性质

一、三维简单格子
二、三维复式格子
三、第一布里渊区
四、周期性边界条件
◇一个原胞内有P
个不同原子,则
有3P个不同的振
动模式,其中3支 声学波。
◇具有N个原胞的 晶体中共有3PN个
振动模式,其中
3N个声学波, 3N(P-1)个光学波。
四、周期性边界条件 总结
§ 3.4 声子
声子:晶格振动中格波的能量量子
二、一维单原子链的振动
格波
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
周期性边界条件
玻恩—卡曼边界条件
二、一维单原子链的振动
周期性边界条件
即q有N个独立的取值—晶格中的原胞数第一布
◇非弹性X射线散射、非弹性中子散射、可见光 的非弹性散射。
§ 3.4 声子
§ 3.4 声子
90K下钠晶体沿三个方向的色散关系
§ 3.5 晶格热容
一、晶格振动的平均能量
热力学中,固体定容热容:
根据经典理论,每一个自由度的平均能量是kBT, kBT/2为平均动能,kBT/2为平均势能,若固体有
N个原子,总平均能量: 取N=1摩尔原子数,摩尔热容是:
二、一维单原子链的振动
一维单原子链的振动
二、一维单原子链的振动
简谐近似下的运动方程
二、一维单Hale Waihona Puke 子链的振动简谐近似下的运动方程
在简谐近似下,原子的相互作用像一个弹 簧振子。一维原子链是一个耦合谐振子,各原 子的振动相互关联传播,形成格波。

固体物理-第3章-晶体振动与晶体热学性质-3.1

固体物理-第3章-晶体振动与晶体热学性质-3.1

第三章 晶格振动与晶体热学性质 §3.1 一维晶格的振动
格波的意义
格波方程
un Aei(tnaq)
i(t 2 x )
对比连续介质波 Ae
A ei (t qx )
波数 q 2
—— 格波和连续介质波具有完全类似的形式
晶体中所有原子共同参与的一种频率相同的振动,不同 原子间有振动位相差,这种振动以波的形式在整个晶体 中传播,称为格波。
m
d 2un dt 2
(un1 un1 2un )
设方程解
un Aei(t naq)
naq — 第n个原子振动位相因子
un1 Aeitn1aq
un1 Aeitn1aq
得到 m2 (eiaq eiaq 2)
2 4 sin2 ( aq )
m
2
~ q —— 一维简单晶格中格波的色散关系,即振动频谱
—— N个原胞,有2N个独立的方程
方程解的形式
Aei[t(2na)q] 2n
and
Be 2n1
i [t ( 2 n 1) aq ]
两种原子振动的振 幅A和B一般不同
第三章 晶格振动与晶体热学性质 §3.1 一维晶格的振动
第2n+1个M原子 M &&2n1 (22n1 2n2 2n ) 第2n个m原子 m&&2n (22n 2n1 2n1)
要求 eiNaq 1 Naq 2h
q 2 h —— h为整数
Na
波矢的取值范围 q
a
a
N h N
2
2
h — N个整数值 q 取N个不同分立值
第三章 晶格振动与晶体热学性质 §3.1 一维晶格的振动
N h N

固体物理基础第3章-晶格振动与晶体的热学性质

固体物理基础第3章-晶格振动与晶体的热学性质

3-2 一维单原子链模型
格波的色散关系 4 2 2 aq sin ( )
m 2 • ω取正值,则有 (3)
(q)
aq 2 sin( ) m 2 • 频率是波数的偶函数
• 色散关系曲线具有周期性, 仅取简约布里渊区的结果即可 • 由正弦函数的性质可知,只有满足 0 2 / m 的格波 才能在一维单原子链晶体中传播,其它频率的格波将被强
原子n和原子n+1间的距离
非平衡位置
原子n和原子n+1间相对位移
a n1 n
n1 n
3-2 一维单原子链模型
• 忽略高阶项,简谐近似考虑原子 振动,相邻原子间相互作用势能 1 d 2v v(a ) ( 2 ) a 2 2 dr • 相邻原子间作用力 dv d 2v f , ( 2 )a d dr • 只考虑相邻原子的作用,第n个原 子受到的作用力
• 连续介质中的波(如声波)可表示为 Ae ,则可看出 • 格波和连续介质波具有完全类似的形式 • 一个格波表示的是所有原子同时做频率为ω的振动 • 格波与连续介质波的主要区别在于(2)式中,aq取值任意加减 2π的整数倍对所有原子的振动没有影响,所以可将波数q取值 限制为 q a a
V
O
a
r
• 第n个原子的运动方程
(n1 n ) (n n1 ) (n1 n1 2n )
(1)
平衡位置
d 2 n m 2 ( n1 n 1 2n ) dt
非平衡位置
——牛顿第二定律F=ma
3-2 一维单原子链模型
• 上述(1)式的解(原子振动位移)具有平面波的形式

a
)

晶格振动与晶体的热学性质

晶格振动与晶体的热学性质

格波: 连续介质弹性波:
Ae
i t naq
i t xq
Ae
将 µ nq
Ae i t qna
i t naq
代入运动方程得
m 2 Ae
Ae
m 2 eiaq eiaq 2 2 cos aq 1
解 得
第三章 晶格振动与晶体的热学性质
布拉伐晶格晶体中的格点表示原子的平衡位置,原子在格点附近作热振动,由于晶体内 原子之间存在相互作用力,各个原子的振动不是孤立的,而是相互联系在一起的,因此在晶 体中形成各种模式的波,称为格波。只有当振动非常微弱时,原子间的相互作用可以认为是 简谐的,非简谐的相互作用可以忽略,在简谐近似下,振动模式才是独立的。由于晶体的平 移对称性,振动模式所取的能量值不是连续的,而是分立的。通常用一系列独立的简谐振子 来描述这些独立的振动模,它们的能量量子称为声子。
nj Aje
i jt naqj


频率为 j 的特解:
方程的一般解:
n

线性变换系数正交条件: 系统的总机械能化为:
Ae
j j
i jt naqj


Q q, t einaq Nm
q
1
1 N
=N=晶体链的原胞数 晶格振动格波的总数=N· 1 =晶体链的自由度数 三、格波的简谐性、声子概念
1 2 n m 2 n 2 1 U n 晶体链的势能: n 1 2 n
晶体链的动能:T

系 统 的总 机械 能 即 体系的哈密顿量为:
H

2 1 1 2 n m n n 1 2 n 2 n
1 d2V dV V a V a 2 2 d x a d x

固体物理 课后习题解答(黄昆版)第三章

固体物理 课后习题解答(黄昆版)第三章

(2)计算与该频率相当的电磁波的波长,并与 Nacl 红外吸收频率的测量 值 61 μ 进行比较。
w
波矢取值 因此
3.6 计算一维单原子链的频率分布函数 ρ (ω )
解:设单原子链长度 L=Na
q=
w
. e h c 3 . w
-6-
m o c
α e2
r +
β
rn
其中
2π 2π Na q= ×h Na Na ,状态密度 2π 每个波矢的宽度


w
M M

us −1
d 2us = C (Vs −1 − us ) + 10C (Vs − us ) , dt 2 d 2Vs = 10C ( us − Vs ) + C ( us +1 − Vs ) , dt 2
w
a/2
o
vs −1
. e h c 3 . w
c 10c
m o c
o

o

us
vs
解:如上图所示,质量为 M 的原子位于 2n-1, 2n+1, 2n+3 ……
质量为 m 的原子位于 2n, 2n+2, 2n+4 …… 牛顿运动方程:
m μ 2 n = − β (2 μ 2 n − μ 2 n +1 − μ 2 n −1 ) M μ 2 n +1 = − β (2 μ 2 n +1 − μ 2 n + 2 − μ 2 n )
所以可以得到
w
μl +1,m = μ (0) exp{i[(l + 1)k x a + mk y a − ωt ]} μl −1,m = μ (0) exp{i[(l − 1)k x a + mk y a − ωt ]} μl ,m+1 = μ (0) exp[i (lk x a + (m + 1)k y a − ωt )] μl ,m−1 = μ (0) exp[i (lk x a + (m − 1)k y a − ωt )]

固体物理(第三章 晶格振动与晶体的热学性质)

固体物理(第三章 晶格振动与晶体的热学性质)

µi 之间,通过如下形式的正交变
mi µ i = ∑ aij Q j
j =1
3N
= ai1Q1 + ai 2Q2 + L + ai 3 N Q3 N
m1 µ1 = a11Q1 + a12Q2 + L + a13 N Q3 N
§3-1 简谐近似和简正坐标 8 / 17
& i2 µ
mi µ i = ∑ aij Q j = ai1Q1 + ai 2Q2 + L + ai 3 N Q3 N
15 / 17 11/11
§3-1 简谐近似和简正坐标
由上所述,只要能找到体系的简正坐标,或者说振动模, 问题就解决了。
§3-1 简谐近似和简正坐标
16 / 17
§3-1 简谐近似和简正坐标
17 / 17
Qi = A sin(ωi t + δ )
§3-1 简谐近似和简正坐标 10 / 17
任意简正坐标的解为:
Qi = A sin(ωi t + δ )
ωi
是振动的圆频率,ωi
= 2πν i
表明:一个简正振动是表示整个晶体所有原子都参与的振 动。而且它们的振动频率相同。一个简正振动并不是表示某一 个原子的振动。 由简正坐标所代表的体系中所有原子一起参与的共同振动 常常称为一个振动模。
能量本征值
ε i = (ni + )hωi
ϕ n (Qi ) =
i
1 2
本征态函数
ωi
ξ=
Qi h H ni (ξ ) 表示厄密多项式
14 / 17
ω
ξ2 exp H ni (ξ ) − 2 h

固体物理晶格振动

固体物理晶格振动

3. 量子描述
1 3N 2 H = pi i2Qi2 2 i =1
根据经典力学写出的哈密顿量, 可以直接用来作为量子力学分 析的出发点, 只要把 pi 和 Qi 看作量子力学中的正则共轭算符
3N 1 2 2 2 2 i Qi (Q1 , Q2 ,, Q3 N ) 2 Qi i =1 2 = E (Q1 , Q2 ,, Q3 N )



方程的一般解: un = Aj e
j
i j t naq j

=
1 Nm
Q q, t einaq
q
Q(q, t ) = Nm A j e
i j t
线性变换系数正交条件:
1 N
e
n
ina q q
= q , q
系统的总机械能化为(详细推导过程见后面附录部分)
处理小振动问题时往往选用 位移矢量u (t) 的 3N 个分量 n 与平衡位置的偏离为宗量 写成ui (i=1,2,…,3N)
N 个原子体系的势能函数可以在平衡位置附近展开成泰勒级 数
V 1 3 N 2V V = V0 ui 2 i , j =1 ui u j i =1 ui 0
q=
2π s Na
晶格振动波矢只能取分立的值, 即是量子化的. 为了保证un的单值性, 限制q在一个周期内取值
< q
N N , 0, 1, 2, , 1), ( 2), ( 3), 1, 2 2
N N <s 2 2
2π q= s Na 波矢q也只能取 N 个不同的值, 即
1 2 晶体链的动能: T = mun 2 n 1 2 晶体链的势能: U = un un 1 2 n 1 1 2 2 系统的总机械能: H = mun un un1 2 n 2 n

第三章晶体振动和晶体的热学性质

第三章晶体振动和晶体的热学性质
dra
泰勒展开式中 2项 只。 保留到
简谐近似— 振动很
UaUa1 2d d2U 2ra2
微弱,势能展式中
只保留到二阶项。
5
恢复 f d d力 U 1 2 d d : 2 U 2 r a2 d d 2 U 2 r a
(4)结果分析
由于 和q存在两种不同的色散关系,即存在两种
独立的格波,所以一维复式晶格中存在则两种不同的格 波,分别有着各自的色散关系。
1 2 M M m m M 2 m 2 2 M c2 o q m 声s a 学波
2 2 M M m m M 2 m 2 2 M c2 o q m s a 光学波24
共有N个类似的运动方程。
8
2.运动方程的求解及结果分析 (1)方程的解
m dd 2x 2n t xn1xn12xn xnAiq en ta
振幅为A,角频率为 的简谐振动。
其中qna表示第n个原子的振动的位相因子。
9
(2)结果分析 ①原子之间的振动存在着固定的位相关系
2.空位或间隙原子
少数原子脱离其格点的振动。
3.熔解
温度相当高,整个晶体瓦解,即长程序解体。
三、晶格振动的特点
1.当原子间相互作用微弱时,原子的振动可近似为相互
独立的简谐振动。
2.由于晶体的周期性,振动模式所取的能量值不是连续
的,而是分立的。
2
3.可以用一系列独立的简谐振子来描述这些独立而又
分立的振动模式。简谐振子的能量用能量量子ħ(称为
当n 第 个原子 n个 和原 第子(n 的 an 距 )a为 离 2的整数
q 时,两个原产 子生 因的 振位 动 即 移 而 x : n相 xn等 10

固体物理第三章 晶格振动与晶体热学性质

固体物理第三章 晶格振动与晶体热学性质

固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。

只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。

由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。

对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。

和光子的情形相似,这些谐振子的能量量子称为声子。

这样晶格振动的总体就可以看成声子系综。

若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。

当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。

晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。

ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。

这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。

若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。

23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。

第3章 晶格振动与晶体的热学性质new

第3章 晶格振动与晶体的热学性质new
– 格波波矢的数目=晶体原胞数 – 格波频率的数目=晶体的自由度数(模数)
• 当基元有s个原子时, 模数有sN个=自由度数。
33
§3.3 二维简单格子
• 同理,可建立二维方程,如对四方晶系, x= y= d 2 u l1 l 2 m 2 β 4 u l1 l 2 u l1 1 l 2 u l1 1 l 2 u l1 l 2 1 u l1 l 2 1 dt
5
§3.2 一维晶格振动格波
晶体振动势能
1 d2U dU U(r0 ) U(r0 ) ( ) r0 ( 2 ) r0 2 dr 2 dr
简谐近似 —— 振动很微弱,势能展式中作二级近似:
1 U(r0 ) U(r0 ) U' | r0 U' ' | r0 2 2
vp

q
• 群速:(group velocity)波包(能量)传播速度。 ( q ) • 对三维情况: vg= grad(q) vg q • 对非连续晶格,在长波极限时,群速等于相速,且 它们都等于声速;此时,点阵的行为象一个连续 体,没有色散发生。随着波长的变短,群速减少, 到短波极限q时减至0。
• 在第一布里渊区,-/a < q < /a, 对应于 - N/2 < n < N/2, 故n只能取N个值 .
21
周期性边界条件
(periodic boundary condition)
每个波矢在第一布里渊区占的线度 第一布里渊区的线度 第一布里渊区状态数
2 q Na 2 a 2 / a N 2 / Na
= (ma/2)q = vsq
vs= (ma/2) • 长波极限时为线性关系,连续介质情形。

固体物理第三章 晶格振动与晶体的热学性质.

固体物理第三章 晶格振动与晶体的热学性质.

方程了,方程解为: nq Aei( tnaq )
2. 格波—解的物理意义 连续介质波的解:
i (t 2
Ae
x)
Ae i(t qx )
格波:上述原子振动方程的解与一般连续介质的波有完全类似
的形式,所不同的是只在格点位置上有原子的振动。我们称原
子振动的波为“格波”。
格波与连续介质波的区别:
(1)连续介质中x表示空间任意一点,而格波中空间位置只能取
将包含N个原胞的有限原子链首位相连, 呈封闭环,使链上所有原(胞)子等价。
第n个原(胞)子与第n+N个原子情况完 全相同。B-K边界条件也
称周期性边界条件。nq Aei(tnaq)
边界条件要求:eiNaq 1 即:Nqa=2 π h, q 2 h (h为 整 数)
Na
q
a
a
N h N , h取N个整数值 2 / a N
(Qi
)
i (Qi
)
解出:
i
(ni
1 2
)hi
ni
i
h
exp(
22)Hni来自()其中
i
h
Qi
系统的本征能量:
,Hni(ξ)是厄米尔多项式。
E
3N i 1
(ni
1 2
)hi
3N
系统的本征函数:
(Q1 ,Q2 ...Q3N )
ni (Q1 )
i 1
只要找出系统的简正坐标,或说是振动模, 晶格振动问题就解决
4. 简正坐标代表所有原子的一种集体运动(而不是哪个原子的位移) 因为原子位移和简正坐标之间存在正交变换关系:
mi i
aij Q j
假设只存在某一个Qi,j 其它的都为0 (即只考察一个Qj振动),那么,

晶格振动与晶体的热学性质-习题

晶格振动与晶体的热学性质-习题

第三章 晶格振动与晶体的热学性质1。

什么是简谐近似?解:当原子在平衡位置附近作微小振动时,原子间的相互作用可以视为与位移成正比的虎克力,由此得出原子在其平衡位置附近做简谐振动。

这个近似即称为简谐近似。

2.试定性给出一维单原子链中振动格波的相速度和群速度对波矢的关系曲线,并简要说明其意义.解:由一维单原子链的色散关系2sin2qamβω= ,可求得一维单原子链中振动格波的相速度为22sinqa qamaqv p βω== (1)2cos qam a dq d v g βω==. 由(1)式及结合上图3。

1中可以看出,由于原子的不连续性,相速度不再是常数。

但当0→q 时,mav p β=为一常数。

这是因为当波长很长时,一个波长范围含有若干个原子,相邻原子的位相差很小,原子的不连续效应很小,格波接近与连续媒质中的弹性波。

由(2)式及结合上图3。

1中可以看出,格波的群速度也不等于相速度.但当0→q ,mav v p g β==,体现出弹性波的特征,当q 处于第一布区边界上,即aq π=时,0=g v ,而mav p βπ2=,这表明波矢位于第一布里渊区边界上的格波不能在晶体中传播,实际上它是一种驻波。

3。

周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎样?解:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。

考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件.其具体含义是设想在一长为Na 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j 个原子和第j tN +个原子的运动情况一样,其中t =1,2,3…。

引入这个条件后,导致描写晶格振动状态的波矢q 只能取一些分立的不同值。

如果晶体是无限大,波矢q 的取值将趋于连续。

固体物理 课后习题解答(黄昆版)第三章

固体物理 课后习题解答(黄昆版)第三章


w
M M

us −1
d 2us = C (Vs −1 − us ) + 10C (Vs − us ) , dt 2 d 2Vs = 10C ( us − Vs ) + C ( us +1 − Vs ) , dt 2
w
a/2
o
vs −1
. e h c 3 . w
c 10c
m o c
o

o

us
vs
当 当
k = k x ,且 k y = 0 时的 ω − k 图,和 kx = k y
时的 ω − k 图,如右图所示。
3.5 已知 Nacl 晶体平均每对离子的相互作用能为 U (r ) = −
马德隆常数 α =1.75,n=9,平均离子间距 r0 = 2.82 Å 。 (1)试求离子在平衡位置附近的振动频率
(b)根据题意,
μl ,m = μ (0) exp[i (lk x a + mk y a − ωt )]
) = c[( μl +1,m + μl −1,m − 2μl ,m ) 的解, dt 2 + ( μl ,m +1 + μl ,m −1 − 2μl ,m )] M(
因为
d 2 μl , m
μl ,m = μ (0) exp[i (lk x a + mk y a − ωt )]
代回到运动方程得到
若 A、B 有非零的解,系数行列式满足:
w
两种不同的格波的色散关系:
w
. e h c 3 . w
-2-
m o c
——第一布里渊区
解答(初稿)作者 季正华

固体物理(第3章)讲解

固体物理(第3章)讲解
2
—— 每一个原子运动方程类似 —— 方程的数目和原子数相同
§ 3-2简谐近似和简正坐标 一维单原子链 —— —— 晶格振动与晶体的热学性质 § 3-1 晶格振动与晶体的热学性质
方程解和振动频率 设方程组的解 naq — 第n个原子振动相位因子
得到 应用三角公式
4 2 aq sin ( ) m 2
—— 常数
—— 平衡条件
§ 3-2简谐近似和简正坐标 一维单原子链 —— —— 晶格振动与晶体的热学性质 § 3-1 晶格振动与晶体的热学性质
dv 1 d v v (a ) v (a ) ( )a ( 2 )a 2 High items dr 2 dr
简谐近似 —— 振动很微弱,势能展式中只保留到二阶项
2 1 2 2 任意一个简正坐标 [ 2 i Qi ] (Qi ) i (Qi ) 2 2 Qi
1 能量本征值 i ( ni ) i 2
本征态函数
—— 谐振子方程
n (Qi )
i
i

exp(

2
2
) H ni ( )
— 厄密多项式
§3-1 简谐近似和简正坐标 ——
格波 波矢的取值和布里渊区 相邻原子相位差 格波1的波矢
—— 原子的振动状态相同
相邻原子相位差
§ 3-2简谐近似和简正坐标 一维单原子链 —— —— 晶格振动与晶体的热学性质 § 3-1 晶格振动与晶体的热学性质
格波 格波2的波矢
aq1 / 2
相邻原子的位相差
—— 两种波矢q1和q2的格波中,原子的振动完全相同
原子位移宗量
N个原子的位移矢量 —— 体系的势能函数在平衡位置按泰勒级数展开

第三章 晶格振动和晶体的热学性质

第三章 晶格振动和晶体的热学性质

第三章晶格振动和晶体的热学性质[引言]晶体中原子、离子实际上不是静止在晶格平衡位置上,而是围绕平衡位置作微振动,称为晶体振动。

对晶体振动的研究是从解释固体的热学性质开始的,最初把晶体中的原子看作是一组相互独立的振子,应用能量均分定理可以说明固体比热容服从杜隆-珀替定律,但与T=0K时的0C=的规律不符。

1906年爱因斯坦提出固体比热容的量子理论,V认为独立谐振子的能量是量子化的,可以得到T=0K时0C=的规律的结论,但与低温V下3C T的实验结果不符。

1912年德拜提出固体的比热容理论,把固体当成连续介质,~V晶格振动的格波看连续介质中的弹性波,得到低温下3~C T的结果。

随后,玻恩及玻V恩学派逐步建立和发展了比较系统的晶格振动理论成为最早发展的固体理论之一。

晶格振动理论不仅可以用来解释固体的热学性质、结构相变等许多物理性质都是极为重要的,是研究固体物理性质的基础。

因为固体是由大量原子组成的,原子又由价电子和离子组成,所以固体实际上是由大量电子和离子组成的多粒子体系。

由于电子之间、电子与离子以及离子之间的相互作用,要严格求解这种复杂的多体问题是不可能的,但注意到电子与离子的质量相差很大,离子的运动速度比电子慢得多,可以近似地把电子的运动与离子运动分开考虑,变成一个在晶格周期场中运动的多电子问题;在考虑离子的运动时,则认为电子能够即时跟上离子位置的变化,变成离子或原子如何围绕平衡位置运动的问题。

这种近似称为绝热近似。

晶格振动理论就是在这个近似的基础上建立的。

本章首先从最简单的一维晶格出发,说明晶格振动的基本性质,然后推广到三维情况,最后讨论晶体的热学性质。

[本章重点]一维单原子链晶格振动,一维双原子链晶格振动,声子,晶格比热的德拜模型,晶格振动的模式密度,N 过程与U 过程§3-1一维单原子链考虑由N 个相同的原子组成的一维晶格,如图3-1-1所示,相邻原子间的平衡距离为a ,第j 原子的平衡位置用x 0j 来表示,它偏离平衡位置的位移用u j 来表示,第j 原子的瞬时位置就可以表示为:j j j u x x +=0………………………………………………(3-1-1) 原子间的相互作用势能设为)(ij x ϕ,如果只考虑晶体中原子间的二体相互作用,则晶体总的相互作用能可表示为:()∑≠=Nji ij x U ϕ21……………………………………………(3-1-2)式中ij ij i j ij u x x x x +=-=0是i 、j 原子的相对距离,i j ij u u u -=是i 、j 两原子的相对位移,在温度不太高时,原子在平衡位置附近作微振动,相邻原子的相对位移要比其平衡距离小得多,可将ϕ展开为:………………(3-1-3)于是有:()∑∑∑≠≠≠+⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫⎝⎛∂∂+=j i ij ij j i ij ijj i ij u x u x x U 202200412121ϕϕϕ……………(3-1-4) 图3-1-1 一维单原子晶格()()()+⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=+=2220021ij ij ij ijijij ijij u x u x xu x x ϕϕϕϕϕ式中第一项是所有原子处于平衡位置上时的总相互作用能,用U 0来表示,是U 的极小值,()∑≠=ji ij x U 0021ϕ…………………………………………………………………… (3-1-5) 第二项是i j u 的线性项,它的系数为:()∑≠⎪⎪⎭⎫⎝⎛∂∂i j ij x 0ϕ,是所有其它原子作用在i 原子的合力的负值,当所有原子处在平衡位置上时,晶体中任一原子所受到的净作用力应为零,所以在式(3-1-4)中不存在位移的线性项。

《固体物理学》讲义(34章)

《固体物理学》讲义(34章)

第三章晶体振动和晶体的热学性质(12学时)晶体内的原子并非在各自的平衡位置上固定不动,而是围绕其平衡位置作振动,并且由于原子之间存在着相互作用力,因而各个原子的振动是相互联系着的,这样在晶体中就形成了各种模式的机械波。

晶格振动对固体的比热、热膨胀、热导等性质有重要的影响。

本章将向大家介绍晶格振动的一般性质。

基本要求:掌握一维晶体振动模式的色散关系,晶格振动的量子化、声子的概念。

爱因斯坦模型和德拜模型解释固体的比热性质。

了解非谐效应,确定振动谱的实验方法以及晶格的自由能。

基本内容:1、一维原子链的振动,色散关系、格波2、晶格振动的量子化、声子,长波近似3、固体比热,爱因斯坦模型和德拜模型4、非简谐效应5、确定振动谱的实验方法,晶格的自由能重点:一维晶体振动模式的色散关系,晶格振动的量子化、声子的概念,爱因斯坦模型和德拜模型。

难点:晶格振动的量子化、声子的概念。

§3.1 一维原子链的振动晶格振动最简单的情形就是一维晶格的振动,本节将介绍一维原子链的振动情况及其色散关系。

通过简单情形的讨论,把所得的一些主要结论和主要方法加以推广,应用到复杂的三维晶格的振动。

一、一维简单格子的情形1、一维简单格子的振动晶体内的原子围绕其平衡位置在不停地振动,由于原子间存在着相互作用力,各个原子之间的振动相互关联,从而在晶体中形成了各种模式的机械波。

(1)、简谐近似和最近邻近似一维简单格子是最简单的情形,考虑一个一维原子链,每个原子具有相同的质量m,平衡时原子间距为a。

由于热运动各原子离开了平衡位置,用x n代表第n个原子离开平衡位置的位移,第n个和第n+1个原子间的相对位移就为x n+1-x n,和第n-1个原子间的相对位移就为x n-x n-1。

只考虑最近邻原子间的简谐相互作用,其恢复力常数为 。

(2)、运动方程对第n 个原子进行受力分析,列牛顿定律方程可得运动方程为:)()(1122-+---=n n n n nx x x x dtx d m ββ )2(1122n n n nx x x dtx d m -+=-+β(n=1、2、…、N ) 式中β为原子间简谐相互作用的恢复力常数。

《固体物理学》房晓勇主编教材-习题解答参考03第三章 晶体振动和晶体的热学性质

《固体物理学》房晓勇主编教材-习题解答参考03第三章 晶体振动和晶体的热学性质

⎧ d 2 xn m = β 2 ( xn +1 − xn ) − β1 ( xn − xn −1 ) ⎪ ⎪ dt 2 ⎨ 2 ⎪m d xn +1 = β ( x − x ) − β ( x − x ) 1 2 n n+2 n +1 n +1 ⎪ dt 2 ⎩
设格波的解分别为
n i [( ) aq −ωt ] ⎧ ⎪ xn = Ae 2 ⎨ n ⎪ x = Bei[( 2 ) aq + qb −ωt ] ⎩ n +1
A 2β cos qa / m = =0 B 2β / m − 2β / M
由此可知,声学支格波中所有轻原子 m 静止。 而在光学支中,重原子 M 与轻原子 m 的振幅之比为
B 2β cos qa / M = =0 A 2β / M − 2β / m
由此可知,光学支格波中所有重原子 M 静止。 此时原子振动的图像如下图 3.6 所示:
v弹 =
ω
q
=
c
ρ
,c = βa , ρ =
1
⎡ ⎢ v弹 = ⎢ β a ⎛ m+M ⎢ ⎜ ⎢ ⎝ 2a ⎣
⎤2 1 ⎥ ⎛ 2β ⎞ 2 ⎥ =⎜ ⎟ a ⎞⎥ ⎝m+M ⎠ ⎟ ⎠⎥ ⎦
由此可以看出,弹性波的波速与长声学波的波速完全相等,即长声学波与弹性波完全一样。 长声学波,格波可以看成连续波,晶体可以看成连续介质。 3.5 设有一维原子链 (如图) , 第 2n 个原子与第 2n + 1 个原子之间的力常数为 β ; 而第 2n 个原子与第 2n − 1 个原子的力常数为 β ' ( β ' < β ) 。设两种原子的质量相等,最近邻间距均为 a,试求晶格振动的振动谱以 及q = 0 和q = ±
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把U(r)在平衡位置r0附近作泰勒展开:
当δ很小时,作二级近似
恢复力 ------简谐近似
----胡克定律 ( 为倔强系数)
研究一维单原子链的振动 模型:设一维单原子链中,原子间距(晶格常量)为a, 总长为 L = Na , N为原子总数(晶胞数 ) ,原子质量为m。
第n个粒子的受力情况:
运动方程:
2

m a / 2 q
与 速度 之间是线性关系
v ma / 2
(弹性波的特点)
声学支格波(声学波): 长声学波为弹性波;频率较低
q 0, 0
(2)q空间的周期对称性
色散关系
2
qa sin m 2

具有周期对称性,周期为 2 / a
本章主要内容:
先讨论简谐晶体的经典运动,建立原子的运动方程,
得到 晶格振动的能量和频率并讨论其色散关系。 对简谐晶体进行量子力学处理,将多体问题化为单体 问题,并建立声子的概念(晶格振动波的能量量子) 晶格振动谱的实验测定原理和方法。
对晶体的热学性质,即比热、热膨胀和热导率等进行讨论
质量为M的原子编号为:· · ·n-1,1、 n,1、n+1,1、· · · 质量为m的原子编号为:· · ·n-1,2、 n,2、n+1,2、· · ·
2 设 1u n ,, 、 u n 是相应于原子M、m在沿链方向对其平衡位置的偏离
方程和解
和单原子链类似,若只考虑最近邻原子的相互作用,则有:
M u n ,1 2 u n ,1 u n , 2 u n 1, 2 m u n , 2 2 u n , 2 u n 1,1 u n ,1




a
a
(纵轴)的正方形
2 a
2
面积为:
第一BZ为一个原胞的大小
§3.2
模型:
三维晶格的振动
设三维无限大的晶体,每个原胞中有p个原子,相当于每个 基元有p个原子,各原子的质量分别为
m 1 , m 2 , , m p ;
原胞中
这p个原子平衡时的相对位矢分别为 r1 , r2 , , r p
(3)周期性边界条件、第一布里渊区中的模数
a
波恩-卡门边界条件 (周期性边界条件)
a
q的取值采用波恩-卡门边界条件(周期性边界条件)来定:
u 1 u N 1
即: N为晶格中的原子个数(晶胞数 )
Ae
i ( qa t )
Ae
i [ q ( N 1) a t ]
u n Ae
1 2
—最简单的一维双原子链的色散关系
1)色散曲线
1 2 mM 4mM 2 2 1 (q ) 1 1 sin qa o, 光 学 支 格 波 ( 光 学 波 ) ; 2 m M (m M ) 2 1 2 mM 4mM 2 2 1 (q ) sin qa A, 声 学 支 格 波 , 声 学 波 1 1 2 m M (m M ) 2 (acoustics)
第三章 晶格振动和晶体的热学性质
晶格振动:组成晶体的原子并非固定于格点位置,而是以 格点为平衡位置作热振动
晶格振动的强弱依赖于温度,对晶体热学性质起重要作用 (热容、热膨胀和热传导等)。另外,对晶体的光学性质
和电学性质等也有重要影响。
点阵动力学的建立
1907年,Albert Einstein发表了题为“Planck辐射理论与比热 的理论”,第一次提出比热的理论。更重要的,第一次提出经典 力学的点阵振动和量子力学的谐振子能级可以对应。 1912年,Peter Joseph William Debye认识到,Einstein提出 的比热公式在极低温下与实验不符合,是因为没有考虑到晶体 中的原子振动频率不是单一的。后来德拜通过谐振理论求得近 似的原子振动的频率分布,得到与实验更加符合的比热公式。 1912年,Max Born和Theodore von Karman发表了题为“论空间 点阵的振动的论文”。提出晶体中原子振动应该是以点阵波的形 式存在,是点阵动力学的奠基之作。 1920-1950年,点阵动力学被应用到晶体的热力学性质、热传导、 电导、介电、光学和X射线衍射等诸多方面。比较完整地总结在 Max Born和黄昆的书“晶体点阵的动力理论”中。 1950年以后,发展了测量点阵动力学性质的实验:中子衍射。
2 mM
)2 q 分别代入原方程 :
得两原子的振幅之比为:

2

(
A B
)
m M
;
(
A B
) 1.
2 m 2 M
O
A
长光学波
长声学波
π a
o
π a
q
长声学波
长声学支格波相邻原子都是沿着同一方向振动的。
长声学波,相邻原子的位移相同,原胞内的不同原子 以相同的振幅和位相作整体运动。因此,长声学波代表了 原胞质心的运动。 长光学波:
Rn rs


表示平衡时顶点位矢为 R n 的原胞内第s个原子的位矢; 表示顶点位矢为
Rn
第s个原子离开平衡位置在方向的位移。 (=x, y, z)
n u s
的原胞内
Rn
rs
( l 只能取N个值----模数 )
结论:在第一布里渊区内的q值唯一地描述了所有的晶格 振动模式,这些值的数目等于晶格的自由度数N。
二、一维双原子链的振动
(揭示复式格子振动的基本特点)
模型:一维无限长双原子链,原子质量为m和M,且m<M。 原胞长仍为a,两原子之间的距离为 a / 2 ,恢复力系数为。 总长为 L = Na , N为原胞总数。
§3.1 一维晶格的振动
一、一维单原子链的振动
(简单格子,揭示晶格振动的基本特点)
研究固体中原子振动时的两个假设:
每个原子的中心的平衡位置在对应Bravais点阵的格点上. 原子离开平衡位置的位移与原子间距比是小量,可用谐振近似
. 二原子间的相互作用能 两原子之间的相互作用能为U(r),r为两原子间的距离;
色散概念来自于光学,不同频率的光在同一介质中的传播速
度不同,于是产生色散,频率与波矢之间的关系叫色散关系
讨论:
(1)长波极限 由于周期性,考虑 0 q / a 的区间 当
q 2 / 0
qa qa sin m sin m 2 2
4 2 2
1 M m 2 ( M m ) 4 sin q a 0 2
4 2 2 2
解关于 的一元二次方程得:
2
mM 2 (q ) 1 mM
4mM 2 1 sin q a 1 2 (m M ) 2

O
2

2 m 2 M
A

π a
o
π a
q
2)周期性边界条件、第一布里渊区中的模数
mM 2 (q ) 1 mM 4mM 2 1 sin q a 1 2 (m M ) 2
1 2
q的取值采用波恩-卡门边界条件(周期性边界条件)来定:
i ( qna t )
u 1 u N 1
Ae
i ( qa t )
Ae

i [ q ( N 1) a t ]
e
iqNa
1
l =0,±1,±2……等整数
得: qNa 2 l
q 2 l Na
在第一布里渊区,q取值为 对应于
N / 2l N / 2
/a q /a
得:qNa 2 l
l =0,±1,±2……等整数
(
在第一布里渊区,q取值在区间

, a a
)
对应于
N / 2l N / 2
( l 只能取N个值)
与单原子链比较可知,对应于每个波矢q,一维双原子链出现 了两个频率不同的振动模式。由于不等价的q的数目与原胞数 目相等,因此,双原子链共有2N个不同的振动模式。(N个波 矢数,2N个频率数)
qa 2
) A (2 M ) B 0
上式看成是以A、B为未知数的线性齐次方程.
以A、B为未知数的线性齐次方程有非零解的条件为系数 行列式为零:
2 m 2 cos
2
2 cos 2 M
2
qa 2
2
qa 2
0
1 M m 2 ( M m ) 4 sin q a 0 2
试探解
m u n , 2 u n 1,1 u n ,1 2 u n , 2
m M 2 (q ) 1 mM 4mM 2 1 1 s in q a 2 (m M ) 2
i ( qna t )
,即
第一布里渊区
在晶格中具有物理意义的波矢仅存在于 / a q / a 的区间 举例说明 u n Ae
(1) (2)
对格点振动有贡献的是原 子,两原子之间的振动在 物理上没有意义。
/a q /a
第一布里渊区(倒格子空间)
倒格子空间-波矢空间
A B ) m M
(
;
MA mB 0
长光学波,原胞的质心保持不动。所以定性地说, 长光学波代表原胞中两个原子的相对振动。
光学波
声学波
光学支格波,相邻原 子振动方向是相反的。
相关文档
最新文档