专业英语系统工程部分

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

UNIT 1 A 电路

电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。如果网络不包含能源,如电池或发电机,那么就被称作无源网络。换句话说,如果存在一个或多个能源,那么组合的结果为有源网络。在研究电网络的特性时,我们感兴趣的是确定电路的电压和电流。因为网络由无源电路元件组成,所以必须首先定义这些元件的电特性.

就电阻来说,电压-电流的关系由欧姆定律给出,欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。在数学上表达为:u=iR(1-1A-1)式中u=电压,伏特;i=电流,安培;R=电阻,欧姆。

纯电感电压由法拉第定律定义,法拉第定律指出:电感两端的电压正比于流过电感的电流随时间的变化率。因此可得到:U=Ldi/dt式中di/dt=电流变化率,安培/秒;L=感应系数,享利。

i,

用积分代替式(1-1A-6)中的i,可得1-1A-7

UNIT 2 A 控制的世界

简介

控制一词的含义一般是调节、指导或者命令。控制系统大量存在于我们周围。在最抽象的意义上说,每个物理对象都是一个控制系统。

控制系统被人们用来扩展自己的能力,补偿生理上的限制,或把自己从常规、单调的工作中解脱出来,或者用来节省开支。例如在现代航空器中,功率助推装置可以把飞行员的力量放大,从而克服巨大的空气阻力推动飞行控制翼面。飞行员的反应速度太慢,如果不附加阻尼偏航系统,飞行员就无法通过轻微阻尼的侧倾转向方式来驾驶飞机。自动飞行控制系统把飞行员从保持正确航向、高度和姿态的连续操作任务中解脱出来。没有了这些常规操作,

飞行员可以执行其他的任务,如领航或通讯,这样就减少了所需的机组人员,降低了飞行费用。

在很多情况下,控制系统的设计是基于某种理论,而不是靠直觉或试凑法。控制系统能够用来处理系统对命令、调节或扰动的动态响应。控制理论的应用基本上有两个方面:动态响应分析和控制系统设计。系统分析关注的是命令、扰动和系统参数的变化对被控对象响应的决定作用。如某动态响应是满足需要的,就不需要第二步了。如果系统不能满足要求,而且不能改变被控对象,就需要进行系统设计,来选择使动态性能达到要求的控制元件。

控制理论本身分成两个部分:经典和现代。经典控制理论始于二次大战以传递函数的概念为特征,分析和设计主要在拉普拉斯域和频域内进行。现代控制理论是随着高速数字计算机的出现而发展起来的。它以状态变量的概念为特征,重点在于矩阵代数,分析和设计主要在时域。每种方法都有其优点和缺点,也各有其倡导者和反对者。

与任何空间分布无关的系统。在作用上,物体被假设为刚性的,被作为质点处理;弹簧是没有质量的,电线是没有电阻的,或者对系统质量或电阻进行适当的补偿;温度在各部分是一致的,等等。在分布参数系统中,要考虑到物理特性的连续空间分布。物体是有弹性的,弹簧是有分布质量的,电线具有分布电阻,温度在物体各处是不同的。集中参数系统由常微分方程描述,而分布参数系统由偏微分方程描述。

确定系统和随机系统:一个系统或变量,如果其未来的性能在合理的限度内是可预测和重复的,则这个系统或变量就是确定的。否则,系统或变量就是随机的。对随机系统或有随机输入的确定系统的分析是基于概率论基础上的。

单变量和多变量系统:单变量系统被定义为对于一个参考或命令输入只有一个输出的系统,经常被称为单输入单输出(SISO)系统。多变量(MIMO)系统含有任意多个输入和输出。

控制系统工程设计问题

控制系统工程由控制结构的分析和实际组成。分析是对所存在的系统性能的研究,设计问题是对系统部件的一种选择和安排从而实现特定的任务。控制系统的设计并不是一个精确或严格确定的过程,而是一系列相关事情的序列,典型的顺序是:

1)被控对象的建模;2)系统模型的线性化;3)系统的动态分析;4)系统的非线性仿真;5)控制思想和方法的建立;6)性能指标的选择;7)控制器的设计;8)整个系统的动态分析;9)整个系统的非线性仿真;10)所用硬件的选择;11)开发系统的建立和测试;12)产品模型的设计;13)产品模型的测试。

这个顺序不是固定的,全包括的或必要次序的。这里给出为后续单元提出和讨论的技术做一个合理的阐述。

UNIT 7 A 传统控制与智能控制

是传统控制的提高。其更有挑战性和普遍性。不断提高的控制要求需要使用不同于传统控制典型应用的方法,这一点并不令人惊讶。智能控制领域其实是跨学科的,它尝试将诸如控制、计算机科学和运筹学等多个领域的理论和方法混合和扩展,使之能达到复杂系统的控制目标。

注意,由于运筹学和计算机科学领域的理论和方法是根据不同的需要发展而来的,通常这些理论和方法无法直接用来解决控制问题;在非常复杂的动态系统控制器能用系统的手段设计出来之前,这些理论和方法必须首先得到增强,并且其与传统控制方法结合的新方法也得到发展。同样传统控制的诸如稳定性类的定义也必须随之修改,例如被控过程被描述为离散时间系统模型;本文也谈到了这个问题。在智能控制中,当研究计划系统时,如能到达性和死锁等发展于运筹学和计算机科学领域的定义将被使用到。基于诸如预测运算的严格数学结构被用于研究此类问题。然而,为了解决控制问题,这些数学结构可能不太方便,他们

必须提高,或者必须发展新的方法来妥善处理这些问题。来源于计算机科学和运筹学的技术主要是作为分析非动态系统的工具发展起来的,当将其应用到控制时,综合这些技术来设计动态系统的实时反馈控制律才是我们主要关心的。鉴于此讨论,我们应该清楚主要为应用所驱动的智能控制研究含有非常重要和具有挑战性的理论成分。但凡重大的理论跨越必先解决一些悬而未决的问题,于是控制理论学家们被邀请来解决这些问题。这些问题虽然很平凡,但仍需付出巨大努力才能解决。

如前所述,智能控制中的控制一词要比传统控制中的控制一词具有更普遍的意义;其事实上也更近于日常用语中的控制一词。由于智能控制解决了包含传统控制解决的问题在内的更多更广泛的问题,所以提出有代表性的例子相当困难。智能控制能够解决一些传统控制无法阐释的控制问题。例如,在轧钢厂中,传统控制器可以包括钢辊的速度(rpm)整定器,而智能控制结构的控制器却可以包含更多,如故障诊断和报警系统;还有决定整定器设

语既不是第一次也不是最后一次服务于某人的目的而被使用。象诸如最优这个词被他人大量使用(或被误用)一样,智能控制这个易被记住的词也被一些人大量使用(或误用)乃至更多;当然一些最严重的错误甚至牵涉到“民主”这个词!不论好坏,智能控制这个词被大量使用。一个替代性词汇是“自治控制”。它强调一点,即在完成甚至设置控制目标时智能控制器关注如何可以达到更高程度的自治,而非强调达到这些目标的方法。另一方面,“智能控制”只是一个今天看来有用的名字而已。同样地由于六十年代的“现代控制”已经变成了主流部分,现在它也变成了“传统控制”了,而今日所谓“智能控制”在不远的将来也就只能被称为“控制”了。比使用的术语更重要的是定义和方法,及是否控制领域和智能控制能够满足当今科技社会日益增长的控制需求。这才是真正的挑战。

我愿以乐观的语调来结束这篇概述;而且也的确有许多乐观的理由。这确实是控制领域

相关文档
最新文档